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ABSTRACT

A prudent decision-maker facing a complicated strategic decision considers the fac-
tors relevant to the decision, gathers information about the identified factors, and
attempts to formulate the best course of action based on the available information.
Careful consideration of any alternative course of action might reveal that in addi-
tion to the desirable intended consequences, a number of less desirable outcomes
are likely to follow as well. Facing a complicatedly entangled net of considerations,
entwined positive and negative outcomes, and uncertainty, the decision-maker will
attempt to organize the available information and make the decision by using some

strategy of reasoning on the information.

A logic is a way of reasoning adherent to rules, based on structured knowledge. A
modeling langnage and inference rules comprise a logic. The language of a logic is for-
mal, consisting of a defined set of building blocks having well defined meanings. The
decision-maker can use a modeling language to describe the information pertinent
to the decision-making problem, and organize the information by giving it a struc-
ture, which specifies the relationships between the individual considerations. While
reasoning about the extensive amount of information in its disorganized form may
be overwhelming, in a structured form the information becomes much more useful
for the decision-maker, as now it can be analyzed in a systematic fashion. Inference is
systematic reasoning about structured information. As the information is described
in a formal and structured way and the process of reasoning about it is systematic,
the inference may be automated. Computational inference permits reasoning that
would not be possible by intuition in cases where the amount of considerations and
their interdependencies exceeds human cognitive capacity. The decision-maker may
direct the efforts to describing the decision factors and knowledge with the formal
language, with a narrower and more manageable frame of attention, and perform

the inference with a computer.

Probabilistic language gives room for haziness in knowledge description, and is



thus suitable for describing knowledge originating from humans, conveyed to the
decision-maker in a non-formal format, such as viewpoints and opinions. Many do-
mains of decision-making and planning use human sourced knowledge, especially if
the informants are knowledgeable people or experts with relevant, developed under-
standing on the domain issues. The expert views can augment the knowledge bases
in cases where other forms of information, such as empirical or statistical data, are
lacking or completely absent, or do not capture or represent considerations impor-
tant for the decision-making. This is a typical setting for strategic decision-making,
long range planning, and foresight, which have to account for developments and
phenomena that do not yet exist in the form they might in the future, or at all.
This work discusses approaches for decision support and foresight oriented mod-
eling of expert knowledge bases and inference based on such knowledge bases. Two
novel approaches developed by the author are presented and positioned against pre-
vious work on cross-impact analysis, structural and morphological analysis, and
Bayesian networks. The proposed approaches are called EXIT and AXIOM. EXIT is
a conceptually simple approach for structural analysis, based on a previously unuti-
lized computational process for discovery of higher-order influences in a structural
model. The analytical output is, in relation to comparable approaches, easier to in-
terpret considering the causal information content of the structural model. AXIOM
is a versatile probabilistic logic, combining ideas of structural analysis, morphologi-
cal analysis, cross-impact analysis and Bayesian belief networks. It provides outputs
comparable to Bayesian networks, but has higher fitness for full model parameteriza-
tion through expert elicitation. A guiding idea of the methodological development
work has been that the slightly aged toolset of cross-impact analysis can be updated,
improved and extended, and brought to be more interoperable with the Bayesian

approach.
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1 INTRODUCTION

When faced with a decision-making problem, a prudent person considers the fac-
tors relevant to the decision, gathers information about the identified factors, and
attempts to formulate the best course of action based on the available information.
If the decision contemplated is important, and time is available for intelligence gath-
ering on the relevant considerations, a significant amount of background informa-
tion may be collected to serve the decision-making. Single pieces of information may
lend support to one alternative decision, others might sanction an opposite course of
action. Careful consideration of any alternative might reveal that in addition to the
desirable intended consequences, a number of less desirable outcomes are likely to
follow as well. Facing a complicatedly entangled net of considerations, positive and
negative outcomes, and uncertainty, the decision-maker will attempt to organize the
available information and make the decision by using some strategy of reasoning on
the information. A logic is a way of reasoning adherent to rules, based on structured

knowledge.

A modeling language and inference rules comprise a logic. The language of a logic
is formal, meaning that it consists of a defined set of building blocks having well de-
fined meanings with little ambiguity. The decision-maker can use such a language
to describe the information pertinent to the decision-making problem, and organize
the information by giving it a structure, which specifies what kind of relationships
exist between the individual considerations. While reasoning about the extensive
amount of information in its disorganized form may be overwhelming, in its struc-
tured form the information becomes much more useful for the decision-maker, as it
can now be analyzed in a more systematic fashion.

Systematic reasoning about structured information is called inference. Inference
is said to “produce statements about the unknown on the basis of the known” [54].
As the information is described in a formal way and the process of reasoning about

it is systematic, the inference may be auntomated. Computational inference permits
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reasoning that would not be possible by intuition, as the amount of considerations
and their interdependencies exceeds human cognitive capacity. The decision-maker
may direct the efforts into describing the considerations and knowledge with the
formal language, with a narrower and more manageable focus: the computationally

complex inference is delegated to a computer.

The information relevant to decision-making and described in the modeling lan-
guage involves uncertainty. The uncertainty concerns both the description of the
information and the information itself. Facts relevant to decision-making are of-
ten uncertain, and the way the information about the relationships of these facts
is described may be incomplete, not fully describing every possible detail, case and
exception, as such description might be both unfeasible to create and impractical
to use. Describing knowledge in a language of probability can give consideration to
both types of uncertainty [104]. A probabilistic language gives room for ambiguity
and haziness in knowledge description, and is thus suitable for describing knowledge
originating from humans, conveyed to the decision-maker in a non-formal format,

such as viewpoints and opinions.

Many domains of decision-making and planning can benefit from being able to
use human informant sourced knowledge, especially if the informants are knowl-
edgeable people or experts with relevant, developed understanding on the domain
issues. The expert views can augment the knowledge bases in cases where other
forms of information, such as empirical or statistical data, are lacking or completely
absent, or do not capture or represent considerations important for the decision-
making. This is a typical setting for strategic decision-making, long range planning,
and foresight, which have to account for developments and phenomena that do not

yet exist in the form they might in the future, or at all.

Bayesian belief networks are an established approach for description of knowl-
edge bases in a probabilistic and causal way and providing a systematic way for rea-
soning with the knowledge. While Bayesian belief networks are successfully used in a
host of decision support and planning applications [39, 55, 78, 132], the approach has
features that may limit its usability in cases where expert informants are the primary
or sole information source and the decision-making context is foresight-oriented.
The field of foresight has produced methodological proposals which pre-date the
Bayesian network approach, and are more heuristic in nature, having advantages, as

well as significant disadvantages, over Bayesian networks in the foresight niche.
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This work presents two novel modeling approaches contributing to the field of
expert informant oriented systems modeling and foresight-oriented decision sup-
port. The approaches are developed by the author, building on the previous work
on cross-impact analysis, structural and morphological analysis, and Bayesian net-
works. A guiding idea has been that the slightly aged toolset of cross-impact analysis
can be updated, improved and extended, and brought to be interoperable with the
Bayesian approach. The proposed approaches are called AXIOM [93, 98, 99] and
EXIT [100, 101]. The thesis discusses a number of conceptually and functionally re-
lated approaches, positioning AXIOM and EXIT to the state of the art. The included
publications detail the approaches and illustrate their use in modeling, systems anal-

ysis and decision support use.
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2 CONCEPTUAL FRAMEWORK

2.1 Systems thinking, modeling and simulation

This work is about tooling for systems modeling. Therefore it is appropriate to start
by asking what is a system. The Merriam-Webster dictionary [87] tells us that in its
most generalized sense, a system is understood to be “a regularly interacting or inter-
dependent group of items forming a unified whole” such as “a group of interacting
bodies under the influence of related forces”. This definition underlines the standing
relationship of the items that form the system. Another widely restated definition
for a system is given by the [58], in the form “A system is a collection of elements
that together produce results not obtainable by the elements alone”. This alludes
to the synergy or emergent properties such a collection, when set up as a system and
working together, is thought to have, resulting from the interaction of the elements.

Various real world phenomena can be abstracted and conceptualized by applying
systems thinking for the purpose of viewing them as a system. A business process
of a company can be viewed as a system, comprised of the products, personnel and
other assets, clients or customers, as well as the market competitors. The techni-
cal infrastructure, made up by computers and other technical assets the company
uses, forms a technical system, which can be thought to be a subsystem in the larger
business process system. The company operates in a larger context of society, legal
framework of the country it operates in, and the natural environment, which too
are systems by their own right and in which the company, as a system, exists as a
subsystem. From the perspective of the company in question, better understand-
ing of these systems, which exist within the company or the company exists within
or interfaces with, is useful in making better decisions, improving its business pro-
cesses, and strategy formulation for the eventuality that the larger supersystem of the
company’s operating environment changes or realigns.

Figure 2.1 presents a conceptual model of China’s electricity sector, outlining the
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Figure 2.1 A conceptual model of the development of China’s electricity sector. Adapted from Steenhof
and Fulton [120].

important drivers and considerations influencing the development of the electricity
sector and mapping the general dependencies these forces have on each other, in an
informal way. This type of informal model of an electricity system is undoubtedly
useful for understanding the important, pivotal elements of the system. Its use is
nevertheless limited to assisting in forming a conceptual-level overview of the system
components and their relationships. A conceptual model can be a starting point of
a more formal description of the system, where the elements and their relationships
are described in more detail and higher formality, enabling a higher level of analytic

scrutiny of the description of the system.

Figure 2.2 presents a cognitive map [122] depicting the causal influences related
to cocaine availability in the United States. This model has more information and
a higher level of formality than the conceptual model of the Chinese electricity sys-
tem presented in Figure 2.1. It describes the forces influencing or driving illegal
cocaine availability in the United States market, using a graphical representation of
the cocaine market, outlined as a system. The graph nodes represent the perceived
elements of this system and the arcs or graph edges represents causal influences the
system elements have on the analytical focal point, drug availability, and on each

other. The arcs are directed, indicating which elements are thought to be canses and
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Figure 2.2 A cognitive map depicting the promoting and obstructing causal influences driving cocaine
availability in the US market. Adapted from Taber [122].

which are effects in the causal relationships. The arcs additionally specify whether

the causal influence is promoting or obstructing the effect.

System description of this degree of formality can already be used [8] for formal
inference based on the available information. The number of causal links from a
node to other nodes (or in graphical terms, the outdegree) reflects, to some extent,
the system-level influence an element has. The number of incoming causal links (or
indegree) in turn reflects the systemic dependence, the degree to which the system

element is dependent on other factors.

The systemic relationship between two elements, that is, the causal influence an
element has on another not only directly, but also indirectly, through causal influ-
ences routed through or mediated by intermediary elements, could be assessed by
analyzing the causal paths connecting the elements extant in the system. Whether
an indirect causal path influences the ‘effect’ element in a promoting or an obstruct-
ing way can be determined by counting the number of negative links in this path:
an odd number of negative links means that the causal influence through this path is
obstructing; an even number means that the influence is promoting. The reasoning
behind this is that a negative causal link will reverse the direction of the influence,
but another negative causal link in the causal chain will reverse the direction again.

This is further illustrated in Figure 4.1 on page 68.
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Figure 2.3 A Bayesian network model composed of four descriptor variables, and their probabilistic
causal relationships described with node-specific conditional probability tables.

Finally, all the possible causal paths in the system could be discovered, the nature
of their impact reasoned and the balance of the total impact assessed by counting the
obstructing and promoting influences. The picture formed of the total impacts be-
tween any cause element and effect element would be somewhat hazy, as the system
description contains no information about the magnitudes of the impacts, meaning
that there is no way to relate them to each other in terms of significance. Developing
this causal model further, some additional information about the impact magnitudes
would enable a more detailed analysis and a more justified process of inference about

the causal structure of the system.

Figure 2.3 displays a simple system of forces and elements influencing a lawn, the
analytical focal point being whether or not the grass of the lawn is wet. The system
is represented by a Bayesian network. The network is a graph, where the nodes are
system descriptors, carrying information about the possible states the system elements

influencing wetness of grass directly (sprinkler or rain) or indirectly (cloudy sky) can
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be in. The statement that sky is cloudy can be true or false; Sprinkler can be on (true)

or off (false); and rain can occur (true) or not occur (false).

The graph edges represent causal relationships the system elements have: wet-
ness of the grass depends on the state of the sprinkler and rain, both of which in
turn depend on the cloudiness of weather. The state of the sprinkler and whether
it is raining or not are related to the cloudiness of the sky in a probabilistic way: in
conditions of cloudy weather, the probability of rain is 0.8, whereas in non-cloudy
conditions the probability for rain is only 0.2. This can be read from the conditional
probability table positioned above the ‘Rain?’ node in Figure 2.3. Weather turning
cloudy from non-cloudy also decreases the probability of sprinkler being on from
0.5t00.1.

These forces in the system influence the state of grass (wet or non-wet) directly,
as is the case with rain and sprinkler, or indirectly, as the weather does. Given a
piece of information about the state of one of the system elements, or possibly sev-
eral elements, updated probabilities of the states of uncertain elements, capturing the
improved situational awareness or knowledge about the system, can be inferred us-
ing Bayesian inference [63, 64]. A Bayesian network specifies the causal relationships
of the system in terms of conditional probabilities in a very specific and detailed way,
and analytically can deliver more versatile and justified outputs than the cognitive
map shown in Figure 2.2. Creating a Bayesian network representation of a system
requires that the conditional probabilities of the system states can be observed from
the real system or estimated in some other way. Compared to a conceptual model or
a cognitive map discussed earlier, the additional information required for the defini-
tion of a Bayesian network means that it is a more costly way to represent a system,

measured as the work required to arrive at such a representation.

As these three examples of system representations illustrate, the study of any
system must involve identifying the parts of the system, and understanding what
results from the interaction of the system parts. Identification of the relevant parts
must be based on an idea of the system, which exists before its parts are identified.
This idea of a system is related to what the synergy or emergent properties produced
by the system parts working in co-operation are: what the system does. System is the
explanation of its outcome: System is expressed by its functioning. The idea of what
the system does and what is its function or purpose is the starting point in outlining

a representation of a real world object or phenomenon as a system. The perceived
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function of the system governs how the system as a complex whole is outlined, divided

into elements, and how it is delineated from its environment and other systems.

Systems thinking, when it is successful in organizing real world complexity into
conceptual abstractions, can lead to system models. A system model is a representa-
tion of a system, depicting the system at some level of abstraction or possibly mul-
tiple levels of abstraction [118, p. 5]. The system representations of Figures 2.1, 2.2
and 2.3 are all models of varying levels of formality. A model is an attempt to cap-
ture the essential parts of the ‘real’ system and the way they are connected from the
perspective of the perceived function of the entire system. What is seen as essential
depends on the perspective and the information needs of the modeling endeavor.
Models come in varying degrees of formality: some models might simply be a list
of system components or aspects that are thought to be involved in and relevant to
the functioning of the system, but models can also strive to represent the system “in
a mathematically reliable fashion” [118]. Differences in level of formality of mod-
els and their information content determine how the model can be analytically used
to understand the systems they depict. If a model is a purely conceptual model,
itemizing the relevant components of a system and outlining the structure of their
relationships in an informal way, the model can deliver a quick conceptual reference,
an overview of the parts of the system assumed important, and perhaps a common
vocabulary for the people using it to understand the system. A more formal model
with more logical and perhaps quantified information about the system components
and their relationships might be used to compute some derived information about
the model. This information, depending on the information contents and the details
of the computational inference, reflects in some way the emergent characteristics of

the modeled system.
Kelly et al. [69] identify 5 uses for models:

Developing system understanding resulting from summarizing and integrating
available knowledge into the model, as well as deriving observations from the model
and its outputs without a specific prediction, forecasting or decision support objec-
tive. Models mainly aiming at better understanding of the system they represent
can often also include components whose functioning, operating logic and relation-
ships to other components are less certain or not fully understood, with the aim of

enabling testing various assumptions about the system and its rules.
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Prediction or projectinga value for a single system characteristic based on a known
configuration of the system with regard to other characteristics. Predictive models
may often be structurally simple, as predictive performance often does not improve
with increased model complexity, and they often have a strong reliance on historical
data. It must be noted that this need not be the case even for predictive models, even

when these characteristics are typical.

Forecasting or projecting values for system characteristics without a known con-
figuration for the system with regard to other characteristics than the forecasted ones.
This type of modeling is strongly driven by theories and assumptions of the relation-
ships between the system components. Forecasting use of models is characterized by
using less information and data than prediction-oriented modeling, especially rela-
tive to the number of predicted values or the amount of information inferred and
output from the input data. For this reason, it deals with more uncertainty and is

more reliant on theories and assumptions.

Decision support  use of models means answering simulation-type or optimization-
type questions with the help of the model. Simulation-type questions are ‘what if’-
questions projecting a system development as a context for decision-making, whereas
optimization refers to finding a ‘best’ option under a set of objectives and constraints.
Modeling approaches and tools with fitness for multi-objective optimization and
multi-criteria analysis can provide insight into the trade-offs between competing ob-

jectives, associated risks, and unintended consequences.

Social learning is a processual outcome of modeling. The experts and stakehold-
ers included in the modeling effort will have to explicate their mental models, as well
as their interests and values, while simultaneously being exposed to the mental mod-
els and preferences of other parties. The conceptual framework behind the model is
usually refined and developed as a result of the social learning processes.

As Kelly et al. [69] note, there is a great deal of overlap between these differ-
ent aims of modeling in actual modeling exercises, and the mentioned purposes are
clearly not mutually exclusive. The emphasis of a modeling approach on these aims
may vary, but building models of any level of formality could always be said to sup-

port social learning and system understanding [ 118], and depending on the type of

25



information in the model also the other mentioned aims with differing utility pro-

files.

To be able to use models for prediction, forecasting or decision support, a logi-
cal or computational transformation on the model information contents is normally
necessary. As system components and their relationships are inputs for the model-
ing, the output of modeling must, to have some value, tell something about what
happens as a result of the interaction between the system components: transforma-
tion aims to infer in some way what are the emergent or systemic properties of the
system. The transformation summarizes the complex information included in the
model to deliver a simplified account of these systemic properties, such as the level
of influence or dependence a single component might have in the system at large or a
specific other component. Several such transformations are discussed in Publication
I, and in Chapter 3 of this thesis. The transformation can be an analytic transfor-
mation where a computation reveals some characteristic of the model without the
process emulating the actual operation of the system, or the transformation can be
a simulation.

In the same way a model represents a system, simulation represents the operation
of the system [9, 136]. Simulation has a temporal aspect. The representation of
the operation can mean a continuous-time representation, if sufficient details are
available in the model. On the other hand, the operation can also be represented as a
starting point and an end point. In this two-step description of the operation of the
system, a starting state is fed to a transformation and a transitioned state is output
as the end result. This type of approach to simulation is sometimes called analytical

simulation [82].

2.2 Data-driven approach to modeling and simulation

Systems modeling is often said to be strongly data-driven [118, p. 5] [84], meaning
that the formal descriptions or definitions of the relationships between the model
components are estimated on the basis of statistical data. These formal descriptions
are normally presented as mathematical equations relating the model variables. Of-
ten techniques such as regression analysis are used for parameterization of the rela-
tionships [118]. Even when the estimation of details of the relationships is based on

data, such model is still considered “a formal representation of a theory” [2]; Data-
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driven modeling is fundamentally based on theoretical-level understanding of the

system rather than ‘hard” empirical evidence.

A common problem in systems modeling is data inavailability [118], due to dif-
ficulties in quantifying the essential parts of the modeled system at the precision
required by data-driven modeling approaches or the costs of data acquisition. Data
inavailability limits modeling, both in application area of systems thinking and mod-
eling (as only systems with good data availability will be modeled) and utility and
reliability (as only system aspects for which data is available will be included in the
models). These limitations might result in incomplete or biased models, which leave
possibly crucial aspects of the system unmodeled and unaccounted for. The method-
ological limitations of modeling are reflected in the decision-making process using
the modeling results, as their strategic and policy scope omits important considera-

tions.

In some modeling domains, empirical data is an impossibility. For instance,
foresight-oriented modeling of complex socio-techno-economic systems has to ac-
count for changing or emerging system characteristics that are not manifested in ex-
isting statistical data, as well as possible occurrence of singular and unique historical
events for which no data reporting occurrence frequencies can exist. Historical data
does not necessarily capture or reflect the way the modeled system is changing, even
when the change and the dynamics involved might be well understood by experts of
the modeled system [ 14, 106, 133, 134].

Data-driven modeling is often called mathematical modeling, and thus contrasted
with modeling approaches emphasizing an intuitive-logical way of describing the
properties of the modeled systems. Highlighting the mathematical nature of mod-
eling, in the experience of the author, easily leads to a false impression of the model
resting on a solid mathematical foundation. The irrefutability of mathematics lends
itself to the outputs of the model, and the model may even become akin to a mag-
ical object delivering incontestable, but poorly understood results. However, in
data-driven modeling, the fundamental choices about the model structure, logic and
causal relationships and interdependencies are made based on theory, expertise, in-
tuition, or even guesswork, instead of some axiomatic mathematical principles and
empirical evidence. The theoretical foundation of models and simulations can some-
times be obscured by their claimed mathematicity. Often this theoretical foundation

of the model is laid out in a rather informal and unstructured way, by a small mod-
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eling team or just one single person doing the modeling, and the foundation and
theoretical choices made are not explicated or documented. Given the high tech-
nical expertise requirement of data-driven modeling approaches the model-building
team might consist of experts of the utilized modeling approach, instead of substance
experts of the modeled domain.

The theory-based structure of causalities and dependencies of models built using
the data-driven approach is often nontransparent. Understanding the logical struc-
ture of the models might require good understanding of the underlying mathemat-
ics. Even with such expertise, understanding the structure might often be laborious.
This cognitive cost of examining and understanding the model will often make the
models ‘black boxes’ [ 14, 106] whose output is used without good grasp of the logi-
cal structure underlying the model: from a user perspective, the general causal logic
of the model might remain unclear.

From a model user perspective, understanding the model structure, the causalities
and the interdependencies of the model components is often very important for ac-
ceptance of the model results [ 106, 118]. The only way modeling and simulation, or
any type of strategic foresight activity for that matter, can ultimately bring benefits,
is by informing and influencing decision-making. If the model is intended to sup-
port decision-making, the opaque, black box nature of data-driven models can be a
serious hindrance for the use of model in actual decision-making and strategy formu-
lation. Models are also used to facilitate strategic discussion of alternative courses of
action and exploration of possible options. A model with a muddy causal structure
requires almost blind trust from the users to be used in an important role in decision
support. Such models, whose logic is poorly understood by the end users, cannot be
easily used for facilitation of discussion and exploration of strategic prospects [ 14,
27, 106].

2.3 The niche of expert informant oriented modeling

The expert informant-based approach to modeling, or expert elicitation of model in-
puts, is an alternative to data-driven modeling [ 14, 62, 106, 107]. Expert informants
are knowledgeable people in possession of relevant understanding of the characteris-
tics and operating logic of the modeled system. An expert informant does not need

to possess expert-level competence in a/l knowledge domains relevant for the system
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being modeled. In many cases the expertise of the informant only partially covers
the system knowledge, with the focus often being on a specific area. An ensemble
of such expert informants may jointly cover the expertise required for the modeling.
The formulation of an expert knowledge base into a formal system model is a col-
laborative process, where the expert informants discuss the model structure, logic,
and parameterization, and seek consensus on the various model design and valuation

choices emerging in the process.

Foresight-oriented modeling, especially in the context of complex, weakly quan-
tified systems with system descriptors and interactions of high abstraction level, such
as socio-techno-economic systems, often has to rely, at least partly, on expert elic-
itation for model structure and parameters [62]. Modeling changing systems and
operating logics cannot rely on existing statistical data for parameterization of the
model. These derived characterizations reflect the current logic of the system and
not necessarily how this logic might change in the future, due to changes in the envi-
ronment at large and interventions, such as new policies. These changes create new
dependencies between system elements, as well as altogether new elements. Model-
ing utilizing expert informants to a high degree can cover the expertise area relevant
and required for the modeling by mustering the aid of a group or groups of experts,
providing a large knowledge base. An ensemble of expert informants also enable tri-
angulation of the theories, mental models, and assumptions that form the modeled
knowledge base. Expert insight of the modeled system may cover domains or sys-
tem aspects for which data in the format required for modeling does not exist, but
which are still known at some level of detail, enough to base the modeling on [25,
40, 751.

Expert informants suitable for building an expert sourced model based on the
conceptual model presented in Figure 2.1 might include people knowledgeable on
different energy technologies such as nuclear energy and natural gas, economists,
urbanization experts and energy policy experts, as well as political scientists. Ide-
ally the expertise of this informant group would be triangulated by involving not
only Chinese, but also non-Chinese experts of these fields. In the case of the system
Figure 2.2, law enforcement officials, criminologists, and sociologists with special-
ization in drug use would be of high relevance for covering the pertinent aspects of
the system. In practice, the aims, ambitions and available resources of the modeling

effort place constraints on what kind of expert group can be mobilized, and how
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Figure 2.4 Data-driven and expert informant driven modeling processes.

much time they can allocate for the exercise.

Figure 2.4 illustrates the flow of the process in data-driven modeling, contrasted
against a process of expert informant oriented modeling. The parameterization of
the formal system model is the most important difference between the orientations.
Empirical and statistical data and other ‘hard’ evidence is used in the expert infor-
mant oriented modeling as well, but it is filtered through the expert informant layer,
and the experts perform the model parameterization instead of it being done directly
on the basis of data. In the data-driven orientation, data also influences the concep-
tual model, as it is easily compelled to conform to the data that is available: The

conceptual model easily ends up not including the things data is not available for.

In a modeling process based on expert elicited inputs, it should be obvious that
the processual intricacies of the elicitation process are of decisive importance to the
entire modeling effort and the quality of its outputs. Important questions include

a) identification of relevant expertise 5) identification of experts with this expertise
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¢) securing their commitment d) organizing the elicitation e) facilitating the expert
work f) synthesizing the elicited views into format suitable for the model, and g) facil-
itating analysis work of the model outputs with the experts. As foresight and futures
thinking methodologically often revolve around facilitating the work of expert in-
formants to elicit views and estimates about future developments and attempting to
build a coherent synthesis of these views, such expert processes have been studied
in the field of foresight [5, 7, 10, 28, 36]. Practices for and auxiliary techniques of
expert elicitation have also been investigated and applied outside the futures field,
especially in the context of formulating models as Bayesian belief networks and in-

fluence diagrams, and augmenting them with expert knowledge [62, 91, 106].

A structured and relatively well-known process employed in foresight is the Del-
phi technique, which is described as a “communication and collaboration technique
used with expert panels” [81]. There are many variations of the Delphi method,
but the basic process is as follows: People with expertise considered relevant for a
studied topic answer questions and provide verbalized reasoning about their answers
anonymously. The Delphi facilitator summarizes the answers and the reasoning and
presents the summary to the panel, maintaining the anonymity of answers and rea-
soning. Discussion about the results may or may not take place. On the basis of
the summary, expert participants reconsider and revise their answers. This usually
leads to answers converging and the range of answers narrowing. These phases may
be reiterated until some halting condition is met; the halting condition may be that
a consensus is reached or that answers do not converge further or change anymore.
If there is no consensus, a mean, median or mode of the answers can be used. This
consensus or iterated average expert opinion is then considered to be the result of
the Delphi process and to be close to the ‘real’ value or at least be information of
higher value than the initial expert opinions. Similar processes can be executed in a

more contemporary fashion online [115].

The Delphi technique is, however, just one possibility for the elicitation process
among many, and is presented here as an example of a highly structured process of
eliciting experts’ judgments. Expert informant based modeling does not need to fol-
low the fairly rigid ideal of a Delphi process, and the author’s personal opinion is
that a less formal and more conversational approach, conducted in relatively small
expert groups with an iterative format, is more viable. As this thesis focuses on ques-

tions related to the description of knowledge bases with formal modeling languages,
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the computational transformations on the knowledge bases, and the inference proce-
dures made possible by these transformations, the best practices of elicitation and

modeling group work facilitation, while important, are not elaborated further.

While the data-driven modeling approaches can rely on expert inputs as well, ex-
pert elicitation is often in an auxiliary role, and not the methodological focus. A
modeling approach primarily intended for expert informant oriented modeling pro-
cesses should provide a modeling language more suitable for this type of modeling
than what is normally available in cases of using expert inputs in parameterization of
data-driven models. Elicitation of structural equations relating system components
to each other and describing the rules of their operation is possible in principle, but
an approach unfeasible in practice for description of expert knowledge. A modeling
language for this purpose should support the heuristic-logical mode of work, and
be natural in use of an expert-oriented modeling process. Suitable proposals would
operate on a less exact and more approximate precision in description of the rela-
tionships of model components than what is typical in a data-driven model, where
the relationships can be parameterized on the basis of the available empirical data,
using techniques like regression analysis. Section 3.5 discusses the preferable design
characteristics of an approach with high intended fitness for modeling approaches

using chiefly expert elicited inputs.

2.4 Probabilistic and causal reasoning

A logic is a formal language and a set of inference procedures [114]. The language
of a logic is formal, consisting of a finite set of symbols or building blocks. This
language can be used to describe knowledge in the domain the logic is intended for.
Inference produces statements about “the unknown on the basis of the known” [54].
The inference procedures of a logic are more or less justified operations performed
on a construct composed of the language symbols. They enable reasoning based on
the knowledge described in the language. As the language is formal and the inference
procedures well defined, the inference can be automated. The automation enables
drawing inference from the knowledge base described with the language computa-
tionally in cases where the knowledge base is extensive and the network of relating

rules complex.

Computational inference will in such cases permit reasoning that would not be
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possible by more intuitive human reasoning alone. The human informants used
in building a formal knowledge base may concentrate on describing the knowledge
with the formal language primitives, with a focus on atomic facts and their relation-
ships. The computationally complex inference can be automated and performed
with a computer. Classical propositional logic could be said to describe knowledge
as atomic propositions and logical connectives. The logical connectives of classical
propositional logic relate the propositions to each other in a deterministic way. The
atomic propositions have a truth value, and the truth value of more complex state-
ments made up from the atomic propositions is inferred by the rules defined for the
logical connectives. Propositional logic can be extended [128] to consider partial-
ity of truth and other additional layers of information about the propositions. Lan-
guage of a probabilistic logic describes knowledge with consideration to uncertainty.
A probabilistic logic can describe problem complexes, decision-making problems or
possibly systems as a set of propositions and their relationships with additional in-
formation concerning probability: The facts can be assigned probabilities, as well as
their relationships. This probability can be based on empirical observations, but it
can also be elicited from expert informants, capturing the experts’ degree of belief on

the propositions and the rules describing the relationships.

Bayesian belief networks, formalized in the late 1980’s [105] and established as a
field of study thereafter, are an established, well researched and supported approach
for description of knowledge bases in a probabilistic and causal way and providing
means for reasoning with such descriptions. Given their wide use in decision sup-
port activities, they can be seen nearly as a default case of a probabilistic and causal
logic, and former proposals, as well as new proposals, can be positioned against the
Bayesian network approach and better understood in relation to it. A Bayesian belief
network is a graphical representation of facts, and their causal relationships, specified
in the language of probability. Figure 2.3 on page 22 illustrated the graphical repre-
sentation of causal dependencies in a Bayesian belief network. Pearl [ 105] argues for
the high fitness of a belief network in representation of causal theories. Linguistic
descriptions of relationships and rules between facts, as humans express them, do
not normally map to absolute, deterministic rules as per propositional logic. Causal
rules are not specified by human informants as absolute rules, but rather in a lan-
guage of probability, which is tolerant to unexplicated exceptions to these rules and

imperfect information. This tolerance allows the description of knowledge bases to
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focus on the main issues of explaining causal domain rules, instead of considering
all possible corner cases and imaginable exceptions. In the Bayesian interpretation
of probability, probabilities encode degrees of belief about facts in the world or the
domain reasoned about, and new information, or perhaps a set of assumptions in

reasoning, updates these degrees of belief [1-3 105].

The interpretation of the concept of probability is a foundational problem in sci-
entific thought, and several different interpretations are commonly employed in dif-
ferent application areas of the concept [53]. Generally, in application of a language
of probability in description of beliefs, the probabilities encode expert informants’
subjective estimates of strengths of the facts and rules of the discourse, making the
relevant interpretation of probability in this context that of subjective probability.
The uncertainty measured by the probabilistic characterizations of the domain of
discourse is a combination of two kinds of uncertainty: a) epistemic, as in uncer-
tainty about the real facts and rules of the modeled domain; b) expressive, as in un-
certainty related to the partiality of the description of the explanatory framework of
the domain. In the case of a model of beliefs elicited from human informants, prac-
ticality dictates that the modeling work must focus on a subset of considerations
relevant for the modeling task, replacing the exhaustive description of the explana-

tory framework with a probabilistic, approximate description.

Several approaches for describing knowledge and beliefs of expert informants and
performing reasoning based on the descriptions have been proposed in the foresight
arena. Many of them pre-date the emergence of Bayesian approach as a relatively
accepted formalism for knowledge representation and reasoning. A number of ap-
proaches relevant from this perspective are discussed in Chapter 3 and reviewed in
detail in Publication I. Their modeling language will determine the level of detail and
the nature of information in the expert informant sourced system model. Given a
relatively simple modeling language, the system description may be very transpar-
ent, in comparison to the system description of the data-driven approaches. Expert
informant oriented models are used to the same ends as all models discussed earlier
in this chapter: to understand the system better, to support learning, and to make
inferences based on the expert-sourced knowledge base captured in the model, often
with a foresight or decision support aim. The processual ease of building knowledge
bases in expert processes is often a trade-off against analytical possibilities and mod-

eling power. For this reason, different modeling contexts and aims may call for using
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different approaches.

The chief contribution of this thesis is the two novel approaches for expert infor-
mant oriented modeling called EXIT [100, 101] and AXIOM [93, 98, 99]. The ap-
proaches are developed by the author, building on the previous work on cross-impact
analysis, structural and morphological analysis, and Bayesian networks. A guiding
idea has been that the slightly aged toolset of cross-impact thinking can be updated,
improved and extended, and brought to have a level of interoperability with the ma-
tured Bayesian approaches. In modeling domains and fields of research that heavily
rely on expert informants, better methodological alternatives are needed to promote
the utilization of systems thinking and modeling in foresight, strategy work, deci-
sion support activities and perhaps social sciences research aiming to support plan-
ning in general. Both new approaches have been implemented as freely available
software, and the work related to these implementations is ongoing. Further de-
velopment will introduce a graphical user interface for the implementing software,
lowering the barrier of adoption for audiences not versed in modeling and simulation

activities.

Publication I reviews the approaches for probabilistic causal modeling with a rel-
atively high fitness for modeling utilizing expert informant processes. It commensu-
rates the approaches by formulating a clear presentation of their characteristics, using
basic graph theory concepts, and maps out the analytical utility of the approaches
by looking at what questions they can be used to answer. Bayesian belief networks
are used as a base case, from which other approaches can be arrived at by making
various trade-offs to ease the expert elicitation. EXIT is presented in Publication IV,
and its use in modeling in a case of a high-level model of the future developments
of the Finnish electricity system is illustrated in Publication V. EXIT is also sum-
marized in Section 4.1 of this thesis, and positioned against structural cross-impact
approaches such as MICMAC, ADVIAN, DEMATEL, and cognitive mapping and
fuzzy cognitive mapping approaches. The proposal for AXIOM approach in model-
ing of complex systems is made in Publication II, focusing on the AXIOM modeling
language and outlining the computational process. Publication III details the analyt-
ical possibilities of AXIOM models and illustrates the use of AXIOM in processing a
compact causal model originally used by Weimer-Jehle [133] in presenting the Cross-
Impact Balances approach. AXIOM approach is also discussed in Section 4.2 of this

thesis, where it is positioned against other probabilistic cross-impact approaches and
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Bayesian belief networks, and its use in conjunction with Bayesian models is consid-

ered.
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3 EXPERT KNOWLEDGE BASE MODELING
AND ANALYSIS

This chapter discusses proposed logics for knowledge description and reasoning, with
fitness for generic modeling of systems outlined as interrelated facts. They share an
intended fitness for usage in expert processes where the model design and parameter-
ization is based on expert-sourced inputs or can be solely based on them. Given the
definition “Expert system = knowledge base+inference engine” [126], the discussed
modeling approaches are also techniques for creating expert systems, the system mod-
els being the knowledge base, and their associated computational transformations be-
ing the inference engine. Systematic representation of expert knowledge in decision
support activities is especially useful [4, 91, 106] in cases that are poor on data or that
have a “dimensionally poor” data coverage, in the sense that some important consid-
erations about the system or problem domain are not well covered by or captured
in the data.

The methods discussed in this chapter differ in their modeling languages, analyt-

ical aims and computational transformations, but they all have

1. aformal modeling langnage or a defined set of generic building blocks used for

describing knowledge about the system, its relationships and its rules,

2. acomputational transformation or a set of transformations, used to extract the
higher-order, systemic or emergent information about the system, on the basis
of the knowledge base concerning the system properties and rules described

by the model, and

3. guidelines and recommendations for inference, analyzing the output of the

computational transformation and drawing conclusions from it.

The computational transformation (or inference engine) is simply a process, more

or less justified by some argumentation, to draw inferences, higher-order informa-
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tion, or recommendations from the models. A generic modeling language is impor-
tant for making the expert based knowledge description feasible, as well as the trans-
parency of the knowledge base. The language should make it relatively easy for par-
ticipating experts to describe their knowledge base, and other experts involved in the
modeling and the model end users to ‘read’ this knowledge base and understand it
[72]. A generic modeling language for description of the system rules is an enclosed
or bounded set of primitives or atomic modeling building blocks, that are expressive
enough to provide means to describe a variety of different systems. At the same time,
the modeling language should also limit the expressiveness of the modeling in a way
that prevents the logical or mathematical complexity of the model from rising too
high, making the model scrutiny difficult and eventually turning the model into a
black box where the basis of the inference is no longer transparent. Often the trans-
formations discussed in the method descriptions and documentation and provided
by the software implementations are a subset of the possible transformations made
possible by the information content of the model. These undocumented possibilities
for analysis should also be considered when the modeling approaches are appraised,
as they may be introduced into the analysis if the methodological specfications are

changed and associated software implementation is extended or recreated.

The existing modeling approaches relevant for this work, comparable to the pro-
posed novel modeling approaches, EXIT and AXIOM, share the idea of expert elicited
information as, at the very least, an important, in most cases the sole source of model
inputs. Although Bayesian belief networks, discussed in more detail in Section 3.1,
do not necessarily rely on any expert elicitation in model parameterization, but can
be algorithmically learned [14, 64, 71] from empirical data without any associated
expert process, an often-mentioned selling point of Bayesian networks is the possi-
bility to incorporate expert knowledge into the model through elicitation. Bayesian
networks can also be completely based on expert inputs, fully parameterized in an
elicitation process without any direct use of statistical data. Techniques for learn-
ing fuzzy cognitive maps from data have also been presented [38, 102, 119]. The
other discussed approaches, in normal use cases, fully rely on expert elicited inputs
in model parameterization. It is possible to envision techniques for valuating the
normally expert-elicited inputs on the basis of empirical data instead, but processes
aiming at that have not been defined. A possibly sensible use case for valuation of a

normally expert-elicited input in a data-driven way would be a model where a small
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number of inputs, relative to the total number of input valuations in the model, could
be derived from data in a justified way, but the great majority of inputs are such that
they cannot be valuated on the basis of data. This primary reliance on subjective es-
timates in the case of the majority of inputs justifies using an expert informant-based
modeling approach instead of a data-based approach in the first place.

The modeling approaches comparable to EXIT and AXIOM also are character-
ized by their degree of conceptual and functional overlap with Bayesian belief net-
works and influence diagrams, a generalization [105] of Bayesian networks. This
overlap exists specifically in how Bayesian belief networks and other discussed ap-
proaches are used in systems modeling, decision support, representation of knowl-
edge bases of experts, and on how analytical utility of various orientations is derived
from them. Bayesian belief networks are probabilistic causal models. The other
discussed approaches are causal and probabilistic as well, although this might not
be immediately evident from the way these methods are described in their original
sources.

Probabilistic models could be said to be, in comparison to deterministic models,
a better fit for expert informant oriented modeling. This results from the fact that
probabilistic models allow the modeling of the rules of the modeled systems in a way
that accounts for the uncertainty and incompleteness associated with these elicited
rules. The expert elicited descriptions of the system’s rules are almost always approx-
imate and incomplete. The probabilistic description of causalities can be thought to
reflect the incomplete knowledge of the system. A deterministic model based on
such description might be biased and more importantly, impractical. Probabilistic
modeling of rules gives leeway in terms of abstraction level: the system does not need
to be described to the tiniest details, but the model can focus on the considerations
essential for the decision-making problem and context.

The modeling approaches discussed in this work could be classified, in an or-
dering where the conceptual distance from Bayesian networks is increasing, to the

following groups:

1. Bayesian belief networks (BBNs) and influence diagrams (IDs) themselves.

2. Cross-impact techniques aiming at explicitly probabilistic inference, such
as cross-impact analysis by Gordon and Hayward (GHCIA) [49, 50, 51] and
AXIOM [98, 99].
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3. Cross-impact techniques aiming at morphological inference, such as BA-
SICS [56, 57] JL-algorithm [83], and SMIC [34, 45, 46, 47, 48].

4. Structural analysis approaches, such as EXIT [100, 101], MICMAC [6, 20,
45, 46], ADVIAN [41, 79, 80], cognitive maps 8, 35, 124] and fuzzy cognitive
maps (FCMs) [38, 66, 103, 121].

5. Morphological analysis approaches, such as General morphological analysis
[112, 113], Field anomaly relaxation (FAR)[110], and the Cross-Impact Balances
approach [131, 133, 134].

As these approaches are to a large extent conceptually overlapping, it is not sur-
prising that their analytical outputs overlap as well. Bayesian networks and influ-
ence diagrams, as well as the AXIOM approach, can analytically cover several aims
other discussed approaches have. Probabilistic and causal reasoning approaches with
foresight applications are discussed in Publication I, which positions them against
Bayesian belief networks and each other and identifies their analytical aims. It also
outlines the computational transformations of these approaches. The analytical aims
of expert informant oriented causal modeling techniques fall into three classes that
are not mutually exclusive: structural, morphological and probabilistic.

Structural analysis focuses on the structure of the causal network: Structural in-
formation is inferred from the structure of the network of causal influences. It can
provide the analyst an improved understanding of the relationships of the model
variables or descriptors, and their role in the system overall. The inference is based
on indirect impacts. Morphological analysis deals with the compatibility, consistency
or congruence of system states or partial system states. It is used to identify prob-
able, viable, harmonious or logical morphological configurations of the system. By
doing that, the alternative scenarios for the system or consistent solutions to a prob-
lem can be explored. Explicitly probabilistic analysis provides the greatest degree of
direct decision support, as it allows for analytically simulating the functioning of
the system, testing it under different conditions, and observing how interventions
influence the facts’ probabilities. The probabilistic information can be used in con-
junction with utility functions, which map model states to utility valuations. Utility
functions make the identification of an intervention set that is optimal according to
some criteria straightforward, resulting in easy decision support use. Probabilistic

models hold greater amounts of information than structural or morphological mod-
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els, so the cost or difficulty of creating them is higher. They can, on the other hand,

be used for structural and morphological analysis as well.

Explicitly probabilistic causal models need to describe the probabilistic depen-
dencies the different system components have on the states of other system com-
ponents, specifying quantified probability changes conditional to the dependencies.
This work discusses two alternative approaches: the Bayesian approach and the cross-
impact approach. In Bayesian belief networks, the probabilistic relationship of any
fact on all of its causes is fully specified with a conditional probability table. The
conditional probability table reports the probability of a fact in all possible combi-
nations of the facts it is dependent on. The ‘language’ of a Bayesian belief network
describes probabilistic dependency of an effect on its causes in an exact way. Cross-
impact language describes the probabilistic impact of a cause on its effect, in a more
approximate and heuristic way. These different ways of specifying the probabilistic
impacts have their strengths and weaknesses, but no matter which one is used, from
the perspective of eliciting model inputs in an expert process, the probabilistic data

is an additional layer of information to be elicited.

Structural and morphological information can be inferred without an exact de-
scription of dependencies of facts in terms of probability. The causal influences need
to be described by their magnitude only in relation to other influences in the model,
and these influences do not need to map to quantified changes in probability values:
the structural or morphological information can be extracted from such relative in-
fluence valuations. For this reason, structural and morphological modeling is clearly
easier for eliciting experts, as they need to supply a smaller amount of information
to create a fully valued model, but also as the additional layer of conceptual com-
plexity in the form of quantified probability is not involved in the modeling. While
the modeling process is easier, the models are of higher abstraction level compared to

explicitly probabilistic models, and their direct decision support use is more difficult.

To better position EXIT and AXIOM among the Bayesian approach, cross-impact
approaches, and structural and morphological modeling approaches, they are next
discussed in more detail. Publication I reviews a number of related approaches with
applications in the foresight domain and commensurates them using graph theory
concepts, and outlines their analytical functionalities. Graphical concepts are also
used here in description of the methods to facilitate the understanding of the differ-

ences in the modeling languages.
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3.1 Bayesian belief networks

Bayesian belief networks are models for probabilistic causal reasoning under uncer-
tainty [26]. They are widely used in several areas, with numerous scientific, indus-
trial, and decision support applications [55, 108]. The small model of Figure 2.3
in Chapter 2 was presented as a minimal example of a Bayesian network; typically
Bayesian networks are more complex, consisting of a much greater number of nodes.
Bayesian network, as a knowledge base representation, captures a causal structure of
a collection of related facts and presents their probabilistic dependency with regard
to the causal structure with full precision: a full joint probability distribution for
any fact, given that all of its causes are included in the model, can be derived from
the representation. The basic use case for the representation in decision support is
inferring the change in the probability distributions of the states of the node descrip-
tors in the network, when other nodes are set to be in a known state, to represent a
decision-making context, or a set of assumptions to be tested for their effect on the
system. Alternatively changes can be made to the probability distributions of nodes
of interest, to capture different assumptions about the rules and relationships, aim-
ing at observing the effects of those assumptions. The probabilistic inference in a
Bayesian network can be predictive, dealing with probability changes of effects given
information about their causes, but also diagnostic, inferring the likely causes based
on the observed effects [18, 71].

The common graphical representation of a Bayesian network is a directed acyclic
graph, Causal dependencies are denoted by directed edges between variables or de-
scriptors denoted by graph nodes. The parent nodes are causes to the child nodes,
their effects. The causes of a node can themselves be effects of other nodes higher
up in the causal hierarchy. The Bayesian network nodes are probabilistic random
variables and can represent almost any types of system properties. They often rep-
resent mutually exclusive discrete states, but nodes can also represent continuous

quantitative system properties. Same model can hold both node types.

For influence diagrams, a special case of Bayesian belief network, also decision
nodes and utility nodes are available as modeling primitives [64]. Decision nodes
affect the state of at least one of the random nodes: the decision node states are alter-
native decisions or policies. Decisions that can potentially be implemented in par-

allel are given nodes of their own. Utility nodes receive information from random
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or decision nodes of the system, and model the positive or negative utility, benefit
or harm, gain or cost, of their dependencies. In essence, they are used to compose a
utility function. The decision making criteria is modeled with decision nodes, and
these criteria are used in comparison and assessment of alternative decisions or sets
of decisions. For a model containing several decision nodes, a combination of policy
elements or interventions can be discovered by search of maximum expected utility

(which can also be minimization of negative utility, harm) [64, 78].

The graph edges represent causal dependency relationships of the head nodes on
tail nodes, or as the Bayesian network is a directed acyclic graph, dependency of
child nodes on their parent nodes. The relationships are defined by populating the
node-specific conditional probability tables with probability valuations conditional
to each possible configuration of the states of the parents or explanatory variables,
the causes. The parent nodes are causes and their child nodes are effects, which can
in turn be causes for other effects further down the causal hierarchy. For defining the
dependencies numerically, several methods can be applied: usinglearning algorithms
on empirical or statistical data [1, 111], deterministic or probabilistic simulations
[31, 109], and expert elicitation [62, 76, 91], or some combination of these. It is
common to augment a data-based Bayesian model with expert informant sourced

information, as Bayesian networks are well suited for that.

Modeling using Bayesian networks is well supported by software implementa-
tions such as Netica [89] and Hugin [70] that enable versatile analytical outputs, well
beyond the basic output of Bayesian probability updating in a graph given some as-
sumptions about the node states: if a Bayesian network representation of the system
can be fashioned, the mature software tools and analytic processes enable very flexi-
ble and multipurpose examination of it. Bayesian networks, however, specifically in
systems modeling relying chiefly on expert elicited inputs, can be problematic as the
number of required inputs, in cases of structurally complex models, easily becomes
unmanageably high. Structural complexity in this context means a high number of
node states and a high number of dependency links. As structural complexity in the
model increases, the amount of information required by the conditional probability
table representation of the relationships grows exponentially. The number of con-
ditional probabilities to be elicited for an effect e, in a case of 7 dependencies for
e, is [T7_; s(c;) x s(e), where s(c;) is the number of possible states a specific cause

¢; can have, and s(e) is the number of possible states of the dependent effect. An
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effect node with three possible states, and three dependencies, each also with three
possible states, requires 81 conditional probabilities to have its relationship defined.
An extensive model may have tens or hundreds of such dependency descriptions.
4-state node with 5 dependencies having 4 possible states each would require elicita-
tion of 4096 conditional probabilities: This is certainly unfeasible to directly elicit,
and some auxiliary technique would have to be employed to valuate the model. Such
dependency structures are, in the experience of the author, based on the initial exper-
iments of modeling with EXIT and AXIOM, not uncommon in the way an expert
group might want to model a system.

For cases where the probability tables are elicited, the amount of input informa-

tion can be managed by the following approaches

1. The structural complexity of the model is sufficiently limited to keep the
number of elicited values manageable. This is suboptimal from a concep-
tual perspective of modeling, as possibly important considerations have to
be pruned from the model, and the conceptual contents of the nodes might
become highly abstracted or convoluted, in the sense that a single node will

represent multiple aspects of the system or decision-making context.

2. The elicitation can aim at extracting parameters for probability distributions
instead of the distributions directly, and this may reduce the work load, but
this approach is normally applicable only for continuous variables, or discrete
distributions where the states can be placed in a logical ordering: examples
would be a discretized continuous variable or a node indicating whether or
not a quantity or degree of something is decreasing, stable, or increasing. Still,
even when distribution parameters are elicited instead of individual probabil-
ity valuations for states, the number of distributions can remain unfeasibly

high in complex cases.

3. For discrete distributions without a logical ordering, a technique of eliciting a
smaller amount of information, from which the actual conditional probability
table valuations are inferred, can be employed [30, 32]. An auxiliary approach
will add additional complexity to the modeling process, but for complex cases
relying on elicited inputs such approaches are undoubtedly necessary. AX-
IOM can be used as an auxiliary technique in valuation of a Bayesian belief

network.
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A Bayesian network graph is acyclic, thus the method does not allow modeling
of cyclic interaction. The temporal aspect of the system, in cases where the system
is modeled as a Bayesian network, is tightly coupled with the graph structure. There
can be no ambiguity about the cause-effect relationship between nodes, and struc-
tural inference loops are not normally possible. This characteristic cannot be seen
as a drawback in a general sense, it is simply a byproduct of the Bayesian reasoning
rules. A strength of the acyclic form of a normal Bayesian network is that the proba-
bility updates are computationally fast as there is no need for a sampling process, and
no error introduced by the random element of it to the results. For some application
domains, however, it does impose limitations on the expressive power of the model-
ing language. Modeling of societal, political or technological developments, typical

in foresight, benefits from a possibility to specify ambiguous causal structures.

Strengths of Bayesian networks in expert elicited systems modeling include the
versatile analysis the approach provides, and the well-established and efficient tech-
niques to incorporate statistical data or simulation results into the model, which
can then be augmented with expert elicited inputs. For many decision support con-
texts, Bayesian networks are a highly fit approach for knowledge representation and
reasoning. In a case where most of the model parameterization relies on expert
informants, Bayesian network-based system models are problematic as the number
of required inputs can become unfeasibly high, given a sufficiently complex model
structure. Strategic, foresight-oriented probabilistic and causal reasoning largely re-
lies on information that is expert sourced, and the decision support utility of models
based on expert inputs is the ability to formally represent them with sufficint gran-
ularity and to automate reasoning on these complex knowledge bases. Limiting the
structural complexity of the knowledge base description easily results in system de-
scriptors being overloaded with non-aligned conceptual content which muddies the
causal structure. Modeling in foresight does not typically aim at making predictions
in the most efficient and data-economical way possible but rather at systematic and
conceptually clear representations of the interaction of systemic drivers and forces.
These characteristics of the modeling niche call for consideration of other proposals

for alternative expert knowledge representations and inference mechanisms.
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3.2 Probabilistic cross-impact languages

The early experiments with modeling the causal relationships on the basis of expert
elicited inputs in the context of futures studies and foresight were performed in the
late 1960’s [49, 50]. The motivation for these modeling experiments was to be able
to provide an auxiliary technique for forecasting and foresight work done utilizing
expert panels, especially the Delphi technique. T. Gordon and Hayward [49] called
the approach augmenting the Delphi technique by incorporating consideration of
the interaction between the future events cross-impact analysis. The next two decades
saw a lot of discussion [12, 13, 16, 17, 29, 47, 49, 50, 59, 60, 67, 68, 85, 88, 90, 127]
on the methodological details of cross-impact techniques and applications of and
incremental amendments to the cross-impact technique proposed by Gordon and
Hayward have been published with lower frequency since [3, 10, 11, 19, 24, 45, 46,
51, 65, 86,92, 123, 133].

The techniques normally referred to as cross-impact analysis are the Gordon-
Hayward cross-impact analysis [49, 50, 51], henceforth referred to as GHCIA, and
the SMIC approach by Godet and Coates [46]. GHCIA and SMIC are both proba-
bilistic binary descriptor models resolved in a discrete event simulation. In a graph-
ical representation of GHCIA and SMIC models, the graph nodes are system de-
scriptors, presenting a hypothesis or a postulate about the state of the system in
the future, also called an event by T. J. Gordon [51]. This state is assigned an ini-
tial or prior probability of occurrence, which is an estimate of the probability of
the hypothesis, assuming no available information about the system, meaning that
the states of the other descriptors are unknown. This kind of ‘independent” initial
probability for a/l random variables is one aspect where a cross-impact language dif-
fers from a Bayesian language, where only root nodes (or nodes without parents or
causes) have independent priors. Unlike a Bayesian network, the graph is cyclic, and
models bidirectional interaction with the interpretation of such bidirectional inter-
action that the temporal ordering of the random variables is unclear: whichever of
two bidirectionally interacting variables should occur first will exert its probabilis-
tic influence on the one occurring later. The graph is also fully connected, as can be
seen in the example model presented in Figure 3.1. The model descriptor events take
place in an unstructured temporal space the future’, and have no temporal or causal

ordering, only omnidirectional interaction.
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Figure 3.1 A Gordon-Hayward cross-impact model with five events.

The edges in the graphical representation of GHCIA carry information about the
occurrence probability of the head node hypothesis, conditional to the occurrence of
the tail node hypothesis. In the SMIC approach, the edges additionally carry infor-
mation about the occurrence probability of the head node hypothesis, conditional
to the non-occurrence of the tail node hypothesis [34, 46]. In GHCIA, the prob-
ability of the head hypothesis conditional to the non-occurrence of tail hypothesis
is inferred [51, p. 8] from the probabilities conditional to the occurrence of the tail
hypothesis.

The expert-elicited conditional probabilities are, in the case of GHCIA, checked
for compliance with the standard probability axioms. The following conditions

should be met:

1. 0<P(i)<1

If the initial conditional probabilities do not fall within permissible bounds, it is the
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task of the expert group to resolve the inconsistency by changing either the condi-
tional probabilities or the initial a priori probability valuations. In the case of SMIC,
the emphasis is much more in discovering a valuation for the initial and conditional
probability valuations that are consistent by the SMIC criteria: the initial probabil-

ities should meet the following conditions:

(l)

—_

(7)=P(j|i)P(1) = P(i,])
P(il)P(j) + P(i]=7)P(=]) = P(i)

The initial valuations are further computationally corrected to find a consistent set
of valuations. The software implementation features a linear optimization function
[46, pp. 144-146], which corrects the initial expert-sourced valuations into permissi-
ble bounds [34], aiming at keeping the corrected valuations as close to the original ex-
pert valuations as possible. The focus of SMIC on consistent valuation scheme heav-
ily limits the number of nodes that can realistically be incorporated in the model.
Godet and Coates [46, p. 149] recommend that the number of descriptors should
not exceed 6. Any real modeling effort struggles to describe the domain with such a
limited number of descriptors, and the abstraction level in the model easily becomes
very high.

When the conditional probabilities have been defined, model evaluation can be
performed. The evaluation process is a Monte Carlo process, where truth values
are assigned to model descriptors in random order, according to the defined prob-
abilities. When a descriptor is assigned a truth value, the probabilities of other de-
scriptors are updated, using the odds ratio technigue described by T. J. Gordon [51,
pp- 7-9]. When all descriptors have been evaluated, the system of the model has a
tully resolved state, which is saved. This saved state can be thought of as a scenario.
The probabilities of the descriptors are reset to the initial values. The evaluation is
repeated a large number of times.

The cross-impacted posterior probabilities are computed simply as the occurrence
frequency of descriptors in the set of generated scenarios: the simulation-generated
set of worlds is treated as a sample. The posterior probabilities reflect the influence
of the impact network and capture the influence of longer impact chains. In GH-
CIA, the recommended inference procedure is to test various assumptions with the

model by changing the initial probability valuations, for instance to simulate inter-
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ventions: different initial setups are compared in terms of posterior probabilities.
In the case of SMIC, the aim is to identify the most probable scenarios for further
examination with other futures methods [46]. For a system model of 7 hypothe-
ses, SMIC outputs the probabilities for 2” scenarios, ordered by their probability.
Godet also recommends deriving an elasticity matrix for the variables by means of

performing sensitivity analysis on the initial probability valuations of the variables.

As illustrated by Figure 3.1, every descriptor event is conditionally dependent on
every other event in the model. A Bayesian network-esque conditional probability
table description of the interactions, assuming that our modeling approach would
allow the bidirectional interaction described in the graph, would require (2% x 2) x
5 = 160 conditional probability values. Only five initial probability values and 20
conditional probabilities are defined in the example model. How are the probability
updates performed in the discrete event simulation? Equation (3.1) presents the odds

ratio technique, the probability update logic of the Gordon-Hayward approach.

P,(P,P;,P.)= ——— (3.1

—p;

In Equation (3.1), P is the current probability to be adjusted; P; is the initial
probability; P, is the probability conditional to a single cause; and P, is the updated
probability. The basic idea is to reason about the magnitudes of the probability
impacts based on the differences of initial probabilities of events and the conditional
probabilities. In the course of a single model evaluation, the first probability update
always updates the probability equal to the conditional probability defined for the
effect conditional to the cause. The subsequent probability updates need to take
into account the fact that the probability has already been updated: the odds-ratio
technique is one way to do that. Figure 3.2 plots the updating function with the
initial probability P; fixed at 0.5. Using this approach, the order of updates is not
significant. The probability updating is contextual, dependent on the value of the
updated probability at the time of the adjustment. This is the essence of a cross-impact
langnage description of probabilistic interaction, and the same contextual updating
logic is present in other probabilistic cross-impact techniques, such as BASICS or

AXIOM. As a consequence of the hazier, contextual approach to the updates, in

49



comparison to the exact description of a Bayesian belief network, a much smaller

number of input values suffice to valuate the model.

Gordon-Hayward updating function, P, = 0.5
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Figure 3.2 Probability updating function in Gordon-Hayward cross-impact analysis.

The GHCIA descriptors, as they are defined in the method descriptions, are bi-
nary. Mutually exclusive relationship between facts A and B can be modeled by
defining P(B|A) = P(A|B) = 0, but this requires that the initial probability valua-
tions for both A and B are such that the probability constraints discussed in page 47
are met. A mutually exhaustive state set cannot be modeled at all: there is no way to
guarantee that the sum of the probability distribution of an intendedly exhaustive
fact set remains equal to 1 in the course of the model evaluation. GHCIA and SMIC
also have no built-in way to express a time dimension in models: all the system de-
scriptors exist in a single temporal space. The lack of temporal depth means that the
modeling of interventions, policies and other such influences remains quite vague:
If fact 7 is intended to represent a policy action, there is no way to guarantee that

I will actually be resolved in the model evaluation before the variables representing
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policy outcomes are resolved, and have the chance to propagate its influence on the
intended target variables. These features limit the modeling power and practicality

of the approaches, and their usability in systems modeling.

A later proposal in the cross-impact analysis genre, BASICS, takes the idea of con-
textual probability updates further. BASICS discards the information about the ini-
tial probabilities in probability updating, as well as the probability theory-inspired
bounds for the initial probabilities and update magnitudes. The BASICS probabil-
ity updates could be thought to be, instead of conditional probabilities, signals or
messages, that update the probabilities in a fully contextual fashion. This approach
to expressing the conditional probability effects in a cross-impact model has been
discussed by Enzer [37] and implemented in the BASICS approach [56] and later by
Luukkanen [83] in the JL-algorithm with incremental improvements over BASICS.

The BASICS approach is described by Honton, Stacey and Millett [56]. In the
BASICS modeling language, descriptors can have an arbitrary number (greater than
one) of possible states, which are assigned prior probabilities, whose sum is equal to
1. The probabilistic interactions that the model components have on each other are
expressed as references to probability updating functions in a fixed set of such func-
tions. BASICS updating functions take a probability to be updated as an argument
and return an updated probability, altering the descriptors’ probabilities contextu-
ally: a probability update by the same function will result in a different amount of
probability change in the influenced descriptor, depending only on the value of the
adjusted probability at the time of the adjustment. The probability updates ensue
when the descriptor state causing the updates is evaluated to be true. The BASICS
updating function set is graphed in Figure 3.3.

This further reduces the difficulty and workload of describing the relationships
between the system components, especially in a model with a high descriptor count
and complex dependencies. Instead of specifying conditional probabilities, the up-
date logic is made fully contextual. The elicited experts may simply invoke an update
capturing the approximate magnitude and direction of the probability change, with-
out consideration to the initial probability valuation. As the function references are
conceptually ‘causal signals’ instead of conditional probabilities, the need to consider
logical bounds for conditional probabilities present in GHCIA disappears. The fixed
set of updating functions is quite coarse: A degree of precision is undoubtedly lost,

but gains are made in the ease and speed of the model valuation. The saved time and
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Figure 3.3 BASICS probability updating function set. Update of probability with value 0.6 by function
‘42’ alters the value to 0.838.

cognitive power can hopefully be used in more thorough consideration of the actual
rules and logic of the modeled system, and how these considerations are captured in
the model. The BASICS updating logic is the fundamental template of the AXIOM
approach to probability updating, but the approach is developed further, as discussed

in Section 4.2.

BASICS does not employ a Monte Carlo process in its model evaluation, and
does not produce a posterior probability distribution for the states of the system
descriptors. Instead, it employs a deterministic process, where the model is evaluated
twice for each possible state of all of its descriptors, assuming the state in question
to ‘be true’ or occur, then ‘be false’ or not occur. In the evaluation of descriptors,
the most probable state is selected, making the model evaluation deterministic. Each

model evaluation produces a set of descriptor states occurring in that evaluation, and
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this set can be interpreted as a scenario. A model with 10 descriptors, with 3 states

each, results in 10 X 3 x 2 scenarios.

The motivation is to find scenarios that are “probable and consistent” [56], in the
light of the supplied prior probabilities and interactions. The scenarios that emerge
from multiple different evaluations are interpreted to be probable and consistent,
warranting further study with other analytical techniques. In this sense, the out-
put produced by BASICS is analytically serving a similar purpose as morphological
analysis, discussed in Section 3.4. JL-algorithm [83] is derived from BASICS, and
proposes changes to the model evaluation procedure to eliminate effects of the or-
dering of the descriptors in the user input, as they are significant at least in some
BASICS implementations.

BASICS and JL-algorithm make it possible to identify morphologically consis-
tent scenarios, but they do not support simulation-style use of the model for test-
ing the effect of interventions or other changes to the system that can be observed
from posterior probabilities resulting from different initial conditions. The analyti-
cal output is limited to identifying sets of system descriptors that are probable with
the given description of prior probabilities and interactions, inferred by the BASICS

evaluation process.

3.3 Structural analysis

The term “Structural analysis” has been used by Godet [48] to refer to a process
studying “systems consisting of interrelated elements”. The analytical focus is strictly
on the structure of the relationships of these elements, or the influence network.
Generalizing the analytical aim of Godet’s structural analysis, approaches enabling
structural analysis are MICMAC [45, 46] and its fuzzified version FCMICMAC
[130], ADVIAN [41, 52, 79, 80], cognitive maps [8, 35, 124] and fuzzy cognitive
maps [72, 122], DEMATEL [44, 77], and EXIT [95, 96, 100, 101]. Structural anal-
ysis attempts to reveal the structure of higher-order influences, meaning the indirect
connections between the model components: the higher-order influences effectu-
ate over chains of causal links. Analysis of these higher-order connections through
some computational transformation aims at revealing the ‘hidden’ structure of the
influence network. Indirect influences are discovered from the model of the direct

impacts given as input.
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Structural causal models can be represented as directed cyclic graphs. The nodes
represent concepts, trends, and driving forces. Their description is normally in a
form of a hypothesis or a postulate about the state of the system. The graph edges
are directed, and represent the direct causal influence the descriptors have on each
other. Direct causal influence of cause variable V, on effect variable V,, in the con-
text of structural analysis, means that there are no intermediary, mediating elements
in between V, and V, which are included in the model: the model elements could
be further broken down into sub-elements, or the model could be expanded in some
other way to have more variables, so that the causal mediating elements would be
included in the model or made visible. This would then change the structure of
the direct causal influences so that they would be routed through these now-visible,
newly modeled mediating elements. The direct influence on model level is not nec-
essarily conceptually direct, but the model represents the system at a certain level or
resolution and detail, and at any precision such a description will abstract away some

mediating causal components.

The structural model edges may or may not be weighted. Unweighted edges can
be thought of as a Boolean indicator of influence. The edge weight is an indicator of
the strength or magnitude of the causal impact. The indicator can additionally hold
information about the direction or ‘sign’ of the causal effect, whether or not the
influence is promoting (positive) or obstructing (negative). The magnitudes of the
influences can be expressed with a number, or with linguistic or ordinal valuations,
which in practice are mapped to numeric values in the computational processes of

the structural approaches.

Structural analysis approaches generally rely on a matrix representation of the
model for some parts of their inference. As somewhat of a convention, the causes
or impacting variables are placed as row variables and the effects or impacted vari-
ables are placed as column variables. In a case where the causal influence magnitudes
are indicated as numeric values, the absolute row sum reflects the overall systemic
influence of the row variable, how much influence it commands over the rest of the
model variables. The absolute column sum reflects the overall systemic dependence
of the column variable, or to what extent it is driven and influenced by the other
model variables. This straightforward analysis technique [129] has been the outset
for more elaborate proposals for analysis of models with similar information con-

tent. Most of these proposals rely on some form of iterative multiplication of the
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impact matrix to reveal the indirect impacts.

The MICMAC and ADVIAN approaches aim at ordering the variables based on
their systemic influence or dependence, on the basis of the direct influences and the
indirect influences [80]. The applications of the DEMATEL approach often have a
similar aim of classification of the factors into several, typically four clusters based on
relative influence and dependence [116, 117, 137]. In the MICMAC and ADVIAN
approaches, the ordering based on the magnitudes of the direct systemic influence or
dependence is the initial ordering. It is compared to the ordering based on indirect
influences, once it is computed. The discovery of the indirect influences is based on
the matrix multiplication approach. The starting point is the direct impact matrix
(D) given as input. In MICMAC, usually this direct impact matrix only contains val-
ues 0 and 1. Squaring the direct impact matrix (D x D) reveals the indirect influences
of 2™ order, or the indirect influences between variables with one intermediary vari-
able. Multiplying this result matrix R with the initial matrix (R x D) reveals the 3"
order influences, and repeating this matrix multiplication operation reveals the fur-
ther higher-order indirect influences. For each iteration, a new ordering of the vari-
ables, based on either influence or dependence, can be produced by ranking by sum
of row or column values. In MICMAC, the terminating condition for the iteration
is when this ordering no longer changes. For some impact matrices, it is possible
that this terminating condition is never satisfied and the process is non-terminating;
the ADVIAN approach proposes a solution to this problem [79]. This MICMAC or-
dering is thought to reflect the higher-order interactions and the differences between
the direct initial ordering and the MICMAC ordering are the analytical focus of the
MICMAC approach. In ADVIAN, the row and column sums for each iteration are
saved and the process yields a total sum reflecting the influence or dependence of
each variable [79]. This enables some level of quantification of the magnitude of the
overall direct and indirect influences, but does not consider pairwise relationships
between the variables, or the direction or ‘sign’ of the influences. The development
of the EXIT approach [95, 96, 100, 101] was motivated by the aspiration to extract
more detailed and useful information about the relationships between the structural
model variables, compared to MICMAC and direct derivatives of it. The EXIT ap-

proach is detailed in Publication IV and discussed in Section 4.1 of this thesis.

The DEMATEL method [44] uses the matrix multiplication approach in a way
that produces outputs more comparable to EXIT than MICMAC or ADVIAN. In
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DEMATEL, the direct impact matrix D is first normalized as D x %, where m 1s the
maximum of the absolute row and column sums of D, to yield the normalized impact
matrix N. The total impact matrix is then obtained by first multiplying N by itself
to yield matrix R, and then repeating R = Rx N until R converges to the null matrix,
and summing each R to yield the total impact matrix T. The result can normally,
but not always [77], be obtained as T = N(I—N)~!, where I is the identity matrix.
The DEMATEL total impact matrix quantifies the pairwise systemic influences, and
considers the influence direction (sign), providing much more information from a
structural model than MICMAC or ADVIAN. The logic is however quite different,

and this difference is discussed more in Section 4.1.2.

The above-discussed approaches explicitly identifying as methods for structural
analysis are conceptually and functionally somewhat related to cognitive maps and
their fuzzified versions, fuzzy cognitive maps. Early on, cognitive maps have been
proposed by Tolman [124] and Axelrod [8]. Cognitive maps are signed directed
graphs, in which the nodes represent variable concepts: the node descriptions are
formulated so that they carry information on the state of the concept or its devel-
opment direction with them, not just the concept itself. Directed edges represent
causal influences. Positive edges are interpreted to causally support or strengthen
the head node concept. Negative edges indicate causal antagonism of the tail node
concept on the head node concept. Causal propagation of variables on each other
is inferred by means of reachability matrices. The aim is to infer what is the nature
of the causality of a cause on an effect. This is done by investigating the direct and
indirect connections of the cause on the effect, or all possible causal paths connect-
ing them. A single indirect causal effect is negative if the number of negative causal
edges in the path is odd, positive if the number is even. The total causal effect is
interpreted to be positive if all indirect effects are positive, negative if all indirect
effects are negative, and indeterminate otherwise. In practical modeling cases, this

often leads to indeterminacy dominating in the total effects [72].

Extending on the ideas of cognitive maps, Kosko [72] proposed fuzzy cognitive
maps and a computational process to draw inferences from such maps. The original
ideas have been greatly elaborated since [38, 103, 135]. Fuzzy cognitive maps are of-
ten considered as a type of recurrent artificial neural networks [125]. The graphical
system representations in FCM form consist of variable concept nodes and weighted

edges. The concept nodes normally have an activation level value in the range [0, 1].
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This activation level value reflects their fuzzy truth value: in the lines of fuzzy set
theory [72, 138], a value close to 1 indicates a strong fuzzy membership of the con-
cept in the category ‘true’, and conversely a value close to 0 indicates the concepts
strong fuzzy membership in the category ‘false’, or weak membership in the cate-
gory ‘true’. The edge weights are in the range [—1,+1]. They reflect the magnitudes

and directions of causal impacts the model nodes have on each other.

(— Equilibrium activation degree %
09—

Initial activation degree

Figure 3.4 Fuzzy cognitive map with 9 concepts. The iterative evaluation process yields an equilibrium
state for the system, and the activation degrees in this state are one important object of
interest in FCM modeling.

Figure 3.4 shows an example of a FCM model. The process of model evalua-
tion consists of successive steps, where the concept activation degrees are iteratively
changed based on the influences described by the impact matrix. The network of-
ten, but not always, reaches an equilibrium state, where the activation degrees cease
changing. The halting condition is 2) two consecutive identical activation degree vec-
tors, b) consecutive activation degree vectors where the greatest absolute difference
between identically indexed entries is equal to or smaller than a defined threshold
value (such as 0.001), or ¢) cyclically repeated series of identical activation degree
vectors (in cases where equilibrium is not reached). The behaviour can, depending
on the used threshold function (see next paragraph), also be chaotic, never reaching

equilibrium or meeting other halting condition.
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The initial activation vector is multiplied by the weighted adjacency matrix (both
objects can be derived from the information of the graph in Figure 3.4). The en-
try values of resulting vector are ‘squashed’ with a threshold function (also called
squashing or clamping function), such as the sigmoid function presented in Figure 3.4,
or a similar function with a codomain of [0,1], such as functions £}, /, and f; in
Equation (3.2). The result vector is multiplied with the adjacency matrix again, and
squashed, until a stopping condition is met. In the case of the model of Figure 3.4,

equilibrium is reached in the 6 iteration.

1 0 x <—0.65

1 tanh(xA)+ 1

fl:m fzzf = ;X—I—O.S —0.65 < x <+40.65
1 x > 40.65

(3.2)

The resulting new activation degree vector reflects the influence of the impact
network on the concepts: with the assumptions of the model, a certain set of con-
cepts will end up active (with a high activation degree close to 1) and others will end
up non-active, with their activation degrees closer to 0. In standard Koskoan infer-
ence[72], the initial activation degrees can influence the end result, but in many cases
they only influence the number of iterations required to reach equilibrium. The ex-
act behaviour of the model is highly dependent on the selection of the threshold

function.

Properties of the FCM graph are proposed [135] as one possible way to reason
about the knowledge base or system modeled as an FCM: the in- and outdegrees
reflect the influence and dependence a concept has. Measures of centrality for the
nodes can be used to assess the systemic role different concepts have. The dynamic
behaviour of the model exhibited in the iterative concept activation updating process
is perhaps the main analytical focus, and the most obvious output is the ultimate
vector of concept states or their activation levels. The transient states of concept
states and the number of iterations to reach equilibrium state are also proposed as
analysis targets for FCMs [ 125, 135].

The idea of using a neural network in representation of a system is interesting
and can be quite easily implemented in a computational sense. The analysis aim is to
reason about the influence of the impact network, just as in MICMAC, ADVIAN
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and EXIT. The causal propagation of FCMs could be said to be closer to the EXIT
method and DEMATEL than MICMAC or ADVIAN. The FCM approach does
not seek to order or quantify the indirect impacts in any way, but their influence
is rather accounted for by the dynamic process where the concept activation levels
change. The equilibrium state is the output from which the inferences are mostly
made. The generally high abstraction level of structural analysis modeling is by no
means lower in the case of fuzzy cognitive mapping. The selection of the threshold
function influences the results quite significantly, and cannot easily be rationalized

by the nature of the system.

Structural analysis approaches provide a simple set of modeling primitives for
mapping causal flows in a system with a relatively high level of abstraction. The
modeling process is fast, as much less information needs to be elicited compared
to approaches that deal with probability on an explicit, computational level. In the
most complex case of structural analysis, where numeric values are assigned for all di-
rected variable pairs, a 20-variable model requires supplying 380 impact values. The
high abstraction level implies that the structural modeling approach can be useful in
efforts to formulate understanding and theory about the complex causal interlink-
ages in the modeled system, but the analytical output is often not highly actionable
in direct decision support use. Structural analysis can, however, deliver a more in-
formed picture of the interactions of the system components, based on a systematic
expert process. An example of structural analysis using the EXIT approach is pre-
sented in Publication V. Use of AXIOM approach for deriving structural analysis

outputs is discussed in Publication III.

3.4 Morphological analysis

Morphological analysis aims at using system models or modeled decision problems
for identifying logical, consistent or probable system states, or reducing the total
problem space into a smaller, internally consistent solution space [112, 133]. Mod-
els used for morphological analysis must contain information about the pairwise
‘agreement’ of the system descriptors, in order to enable identification of system
configurations where the states of the descriptors are ‘in agreement’ or ‘harmonic’.
This can be achieved by analyzing the joint probabilities of system configurations or

partial configurations, if the model contains explicitly probabilistic information. In
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morphological analysis proper, however, the consistent solution space is discovered
using other means than computing joint probabilities. Morphological models de-
scribe the consistency or agreement between system descriptors or states of system
descriptors with Boolean flags indicating consistency (or inconsistency) as is done
in general morphological analysis [112], or a numeric agreement magnitude indica-
tor, as is done in the Cross-Impact Balances (CIB) approach [133]. These indicators
can well be interpreted in probabilistic terms, meaning that two descriptors with a
Boolean flag indicating consistency, or a positive agreement magnitude indicator, are
likely to occur together. This probabilistic interpretation of morphological analysis

is not normally mentioned when the approach is discussed [see 112, 133].

The general morphological analysis (GMA) approach to modeling is to define the
most important dimensions of the system or the problem complex to be investigated
[112]. For each of these dimensions, a set of possible values, or states, is defined. A
freld configuration or morphotype in the GMA terminology is designated by selecting
a single value for each dimension: this combination represents a ‘solution’ within
the problem complex, or more generally, the system in a particular state. Each pos-
sible dimension state in the model is assessed in terms of logical consistency against
the possible states of other dimensions. The solution may or may not be logical or
consistent, depending on whether or not there are pairwise logical inconsistencies

in the solution.

Mapping the pairwise inconsistencies enables eliminating the system configura-
tions, which are inconsistent given some assumption of the states of other dimen-
sions in the model. The viable solution space, the possible combinations of the sys-
tem states that have not been bound or given a state in the initial assumptions, can
now be presented to the analyst. The model can be asked questions in the format
“assuming these states for these dimensions, what states are possible for the rest of

the dimensions”.

Cross-Impact Balances approach (CIB) also aims at “identification of plausible
configurations of qualitatively defined impact networks” [133]. The degree of pro-
moting or restricting influence the possible states of system descriptors have on other
descriptors is expressed with more granularity than in the GMA approach, using a
qualitative judgment scale, normally positive or negative integers. The CIB algo-
rithm explores the configuration space and identifies a set of configurations which

exhibit a balanced combination according to the CIB criteria.
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Morphological analysis can be very useful in identification of internally consis-
tent system configurations or scenarios, and finding solutions to problems with com-
plicatedly entangled considerations. The modeling process is, in relation to proba-
bilistic models, easier and the model evaluation process is relatively simple, both
conceptually and computationally. Morphological modeling can also be a realistic
approach in cases where the expert informants are not expected to be able to assess in-
teractions between the system descriptors in terms of probability changes, but only
on a more intuitive-heuristic level. However, the analytical outputs of the morpho-
logical approach can be approximated with probabilistic approaches, which in turn
enable outputs which are not possible to extract from a morphological model. An
example of deriving morphological outputs from AXIOM models is given in Publi-

cation III.

3.5 ldeal modeling approach for expert elicitation

The methodological niche of modeling systems or decision-making problems on the
basis of expert elicited inputs has particular characteristics that are important to con-
sider, when techniques for modeling work in this niche are assessed. These include

at least the following:

1. Limited time and expert informant resources call for limiting the number of re-
quired inputs. Requesting too great a number of input valuations from the
expert informants will likely make them unwilling to partake in the model-
ing altogether, as the modeling effort is thought to be unfeasible. Even with a
highly motivated expert informant group, the time allocated for modeling is
always limited. A high level of required inputs per system descriptor can often
mean that the model complexity, in terms of number of system descriptors or
the structure of dependencies, has to be limited. This might lead to a very
high abstraction level and reduce the usefulness of the model in knowledge

representation or decision support.

2. A trade-off exists between the number of inputs and contemplation of what the
valuations are supposed to capture about the system. Less time in specifying
atomic input valuations, such as conditional probability table values, means

more time used in contemplation of the actual system rules and properties
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being modeled. The level of scrutiny concerning individual valuations will
be low in a case of high number of elicited inputs. There is less time for dis-
cussion among the expert group, and discussion and consensus seeking is the
validation mechanism for expert elicited models. This will negatively impact

the quality of the model, and obviously the quality of the eventual results.

. Expert informant have varying levels of technical modeling expertise. The expert
informants can in some cases be well versed in formal modeling, but this is not
always the case. As the expert informant based modeling approach is often
used to model domains that are typically not formally modeled, the experts
of said domain often do not have technical modeling expertise. If such expert
informants are directly exposed to a great deal of technical complexity of the
modeling approach, they may be discouraged from the idea of using formal
modeling as a research strategy. The technical details of the method should be

quickly conveyed to the expert informants and easily learned.

. Expert inputs are approximate in nature. Expert valuations are hazy, approxi-
mate and of limited precision. The modeling approach should not needlessly
require inputs of higher precision than what the expert valuators are capable of
providing. In some cases, however, the valuations can be of higher precision:
evidence or theory may exist that warrants defining a specific relationship in
the model with higher precision than other relationships. Ideally the model-
ing approach should be able to provide a way to model these higher-precision
valuations too, but the method should not insist on precise valuations by de-

fault.

. Cognitive capacity of experts is [imited. The experts are not able to keep all the
details of the model in mind simultaneously. Experts can be expected to be
able to consider pairwise interaction, and the more complicated multilateral
dependencies should ideally be derived by the computational transformation
from these modeled pairwise interactions. The modeling style made possible
by the modeling language should be efficient in breaking the description of
the system rules into smaller parts, dividing the modeling problem into man-
ageable segments. High technical complexity of the modeling language might
also be a serious distraction for the actual cognitive work of thinking of the
modeled system. A modeling language should add to the cognitive load as little

as possible.
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6. Model input elicitation often takes place in group work setting. Modeling sys-
tems based on expert inputs can be based on inputs received from just one
single expert. This is not the standard case, however: expert groups are often
involved in the modeling and the inputs are elicited in a group work process.
Different experts will use different concepts and different abstractions about
the system. The process of modeling may in some cases lead to convergence of
the concepts and abstractions, a synthesis that can be validated by general ac-
ceptance among the expert group. This kind of conceptual convergence might
require iterative modeling work. Different experts can also be used for valu-
ation of different parts of the model. The valuations made by one group of
experts should be easy to “read” by other experts, focused on a different part
of the model.

7. Domain concepts are difficult to identify and formulate. The conceptual system
model, which is the foundation for building a formal system model, can be
unclear and ambiguous in the start of the modeling process. If the modeling
process is successful, the ‘correct’, expressive, and collectively accepted con-
cepts and abstractions are found. This might require several iterative rounds
of modeling, discarding some parts of the model and redesigning the model
structure. The abstractions and concepts derived from the conceptual model
are subject to change during any attempt to formally model a system. Finding
concepts and abstractions that are ‘fit’, descriptive and for which a consensus
among the expert group can be found, is difficult. Identifying them may re-

quire iterative work.

With this argumentation and understanding of the special nature of the modeling
niche, combined with the overview of the strengths and weaknesses of probabilistic,
structural and morphological modeling, and their relatedness to each other, the de-
sirable properties for better expert informant oriented systems modeling approaches

can be outlined as follows:

1. The modeling language should be feasible for the expert elicitation work mode.
It should be simple and relatively easy to understand for domain experts not
well versed in modeling. The modeling language should “hide” technical, math-
ematical or algorithmic complexity, where that complexity is unessential to

the aim of describing the system rules. The language primitives should be ef-
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ficient in capturing the essential characteristics, rules, and operating logic of
the system, at the precision that the expert informants can be expected to be
able to provide. A higher precision level should not be required. Ideally, for
the cases where the expert informants are able to model specific model com-
ponents with greater precision, the language should support varying levels of

precision for parameterization.

. The modeling language should be easy to understand for ‘readers’ of the model.
The readers of the model can be participating expert informants, who have not
been involved in the modeling of a specific part of the model, but which they
need to understand to better perform the modeling tasks assigned to them.
Readers can also be model end-users, for whom the transparency of the model
is important for understanding how the model works, why the model outputs
are what they are, as well as having enough trust in the model to agree with

the conclusions drawn from it.

. The modeling language should enable making relatively easy changes to the
formal model, as the underlying conceptual model is subject to change dur-
ing the modeling process. Ideally such changes would result in minimal re-
valuation in the model parts that are not changed themselves. Reformulation
of the model in the course of the expert process can be seen as a very impor-
tant benefit and outcome of modeling, so the modeling approach should not

be antagonistic to it.

. The computational transformations associated with the approach should sup-
port deriving different analytical outputs from the modeling effort. Expert
informant oriented techniques often focus in delivering either structural, mor-
phological or simulation-type analytical outputs. Ideally the modeling ap-
proach could deliver all of these types of information. The model should be
able to answer a range of different questions about the system, enabling as ver-
satile, detailed, and actionable output as possible with the information content
of the model.

. The approach should provide a clear and practical mechanism for testing in-
terventions on the system. These interventions should have a counterpart in
reality and should not be too abstract. Interventions that are too abstract at

the model level may be difficult to translate into actionable strategic or policy
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recommendations.

6. The approach should support combined use with data-driven models. Several
modeling domains are such that some modeled details or system aspects are
well captured and represented by statistical data, or empirical data can be col-
lected about them. Other modeled system characteristics, in turn, might not
have any empirical data available. Ideally the expert informant based modeling
approach could somehow integrate model parts parameterized on the basis of
data, and model parts parameterized purely on expert informant sourced in-

puts.

7. The approach should have a free, well documented, open source software im-
plementation. An implementation of an approach should be freely available
and its usage documented. The source code should also be free, for trans-
parency and for the case when the analysts might want to make changes to
the method or extract something surprising. Documentation of some meth-
ods is somewhat obscure and makes it difficult to reproduce the implemen-
tation of the method, without filling the gaps in the method descriptions by

experimentation and guesswork.

The various modeling approaches reviewed in Chapter 3 can be compared along
several dimensions of design choices. These include the nature and the information
content of the descriptors, the way relationships are described and what they mean,
general graphical properties of the models, the computational transformations per-
formed for the models and the way analysis is facilitated in the approach. These

design characteristics are discussed in Publication L.
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4 METHODOLOGICAL PROPOSALS OF THIS
WORK

4.1 EXIT approach for structural analysis

EXIT falls in the category of approaches for structural analysis discussed in Sec-
tion 3.3. As such, it can be most meaningfully compared to MICMAC, ADVIAN,
FCMICMAC, and DEMATEL approaches, but also cognitive maps and fuzzy cogni-
tive maps. MICMAC and ADVIAN models, as well as EXIT models, are normally
presented as impact matrices. Cognitive maps and fuzzy cognitive maps are typi-
cally presented as graphs. These representational details are conventional, and both
representations can be used for all models in the structural analysis category. If the
graphical representation of the model is a dense graph, meaning that the number of
edges is close to the maximal number of edges, the matrix representation is likely
more practical and informative for an analyst. For a model with few connections
between the variables, the graph representation is easily more informative. A de-
tailed methodological description of the EXIT approach is given in Publication IV,
and a use case is presented in Publication V, where the near-future change trends of

the Finnish electricity system are related to each other as an EXIT model.

4.1.1 Overview of the approach

The EXIT modeling language consists simply of hypotheses and direct causal impacts.
The hypotheses are the system descriptors, representing the events, driving forces,
trends and phenomena of the modeled domain. They are formulated as postulates
of possible facts about the system. Conceptually, the hypotheses have an unknown
truth value, which can be thought to be found out “as the future unfolds”, or as

the modeled uncertainties are resolved in the real system or world. Hypotheses are
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Figure 4.1 Logic of impacts’ influence in EXIT. H,, H,,, H_ and H are hypotheses in an EXIT model.
The vertical arrows indicate the direction of probability change of a hypothesis: an upwards
arrow signifies probability increase, downward arrow probability decrease.

ideally formulated in a precise, unambiguous way. Examples of hypotheses can be
found in Figure 4.2.

Impacts are directed probabilistic relationships of causal nature between the hy-
potheses. In an impact, one hypothesis is the cause and the other hypothesis the
effect. In a different impact, the direction can be reversed: cycles are allowed in the
graph representation of an EXIT model. Hypothesis H, can be both a cause of and
an effect of the same hypothesis /). An impact carries an impact value in the range
[—1,+1]. Impact value indicates the magnitude and sign of the probabilistic influ-
ence the impact represents. The basic interpretation is that information about the
cause hypothesis changes the probability of the effect hypothesis. In the case of a
positive impact value, knowing that the cause hypothesis is true, the probability of
the effect hypothesis increases. Information about the cause hypothesis being false
decreases the probability of the effect hypothesis. In the case of a negative impact
value, the probability changes in the effect hypothesis are reversed. The information
about the cause hypothesis can be thought of in a more general way: changes in the
probability of the cause change the probability of the effect in a way described by
the impact value. This reasoning is illustrated in Figure 4.1 and Table 4.1.

Normally impact values are expressed as integers in range [ —max Value, maxValue]
for convenience, as integers are easier to use in the elicitation process than decimals
in the [—1,41] range. Using this approach means that a maximum impact value
has to be defined for the model before assigning the impact values. The maximum
impact value does not mean a fully determining probabilistic influence, it is simply
the greatest magnitude for an impact in the model. The strengths of the other used

impact values are interpreted in a linear fashion: impact with a value of +2 repre-
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AP(H) H5H, H,5H,

a

P(H)) increases P(H)) increases P(H)) decreases

P(H,) decreases P(H),) decreases P(H,) increases

Table 4.1 EXIT direct impacts and their interpretation in terms of probability change of the impacted
hypothesis.

sents an influence of half the strength of impact with value +4. While the impacts
are understood to mean probability-changing influences, the impact values do not
map to specific, quantified changes in the probabilities of the impacted hypotheses.
The impact values simply relate the magnitudes of the impacts to the magnitudes of
other impacts in the same EXIT model. Description of the probabilistic influences
between the system descriptors at this level enables structural analysis of the system,
with a very simple modeling language and low conceptual complexity.

On the basis of the modeled information about the direct impacts, the indirect
impacts can be discovered. Indirect impacts are captured by impact chains, impacts
connecting the elements in ordered sets of model hypotheses. The set of indirect
impacts of hypothesis H, on hypothesis H}, in an EXIT model with 7 hypotheses
is the set of permutations of the hypotheses starting with A, and ending with H,
of lengths 3 to 7. For instance, in a model with hypotheses H,, H,, H, and H,, the
influence of hypothesis H, on H, effectuates through the causal chains H, — H),
(the direct impact), H, - H, - H,, H, —> H; > H,, H, - H. — H; — H),
and H, - H; — H. — H,,. The relative impact of a single impact chain is simply
the product of the impact values of the impacts in the chain, given they are in the
range [—1,+1]; If the maximum impact defined for the model is not equal to 1, each
impact value is divided by the defined maximum impact. The total relative impact
of a cause on an effect is the sum of all the relative impacts of the impact chains from
the cause to the effect.

Computing the total relative impacts for all directed hypothesis pairs yields a
summed or total impact matrix. The total relative impact values represent the impacts
cause or row hypotheses have on column or effect hypotheses, when flows of causal
influence through all possible routes in the system are considered. The values are
relative quantifications of influence magnitude, and relate the influences to the other

influences in the same system model. The hypotheses can thus be compared to each
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other, in terms of their significance for a particular effect hypothesis of interest, their

important dependencies, or their overall systemwide influence or dependence.

The summed impact matrix values are normalized by dividing each matrix en-
try by the mean of the absolute entry values of the summed impact matrix. This
brings the matrix into a scale, where the unit is the so-called cross-impact unit, the
average impact on an average cause on an average effect. Similarly, the direct im-
pact matrix can be normalized by the mean of its absolute entry values, and after
these transformations, the summed impact matrix and the direct impact matrix can
be meaningfully compared. The time complexity of computing the relative impacts
of the impact chains possible in the model grows exponentially as the hypothesis
count grows, so an estimation strategy for the total relative impacts is needed. The
estimation strategies are discussed in Publication IV. To summarize, the EXIT im-
plementation uses a combination of full computation for short impact chains, the
definition of ‘short’ being dependent on the hypothesis count, and an estimation of
relative impacts of longer chains by stratified sampling. Given the approximate na-
ture of the expert-sourced input valuations, this approach should provide more than

sufficiently accurate estimates.

The EXIT model of Figure 4.2 exemplifies the inference logic related to indirect
impacts. The direct impact of hypothesis H, (“Electricity price increases”) influences
hypothesis H), (“Wind and solar capacity increases”) in a promoting way, with the
impact value +73. Hypothesis H, (“Renewable energy subsidies increase”) promotes
H,, with equal strength as H,. However, impact of H, on H, is negative, valued
_73. Indirect impact of H, through H, on H), is therefore negative as well, as the
promoting influence of H, on H), is impeded by H,, it H, ‘occurs’. If H, was known
to be true, it would directly promote H), by +73, but the indirect influence through
H, mitigates this influence by some extent. H’s total relative impact on H), is +T3 +
FxB=24 2= =101875.

Hypothesis H, has directly no influence on hypothesis /4, (“Electricity storage
capacity increases”). The influence effectuates through hypotheses H), and H;. As
discussed in the previous paragraph, H, influences ), both directly, in a probability-
increasing way, and through H, in a probability-decreasing way. The indirect impact

of H, on H, through H} is valued +Tl X _Tl = %, and through H),, based on what

+3
> 162
+0.03125: the indirect influences largely cancel each other out in the system.

. . .43 -1 _
was already computed so the total relative impact of H, on H, is 55 + 1z =

+1_
32—
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Figure 4.2 An illustrative EXIT model with five hypotheses (/1,—F,). Hypotheses describe possible de-
velopments in the Finnish energy system. Impact valuations assigned by the author. Adapted
from Panula-Ontto et al. [101].

This small example illustrates how the picture of the systemic relationships is
formed by inference based on the impact network. In a small model, such as the
example model of Figure 4.2, the results are easy to confirm, and the indirect impacts
can be effortlessly observed from the graph representation of the model. In a large
EXIT model, dense with impacts, the EXIT transformation becomes useful and may
reveal unexpected and counter-intuitive relationships. The expert informants can be
used to partition the contemplation of the relationships of the system elements to
pairwise interactions, and the synthesis of this information is discovered with the

EXIT transformation. Publication V shows a real modeling example utilizing EXIT.

EXIT can structure the discussion about important events, driving forces and
trends. Once the causal network has been modeled, the EXIT transformation can
commensurate the complex interactions between the system elements and relate
them to each other in terms of magnitude. This enables the analyst to form a better
understanding about the relationships between the system elements and the impor-

tance of each element on others. As the modeling language is of minimal conceptual
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complexity, grasping the basic idea of EXIT modeling is easy for expert informants,
at least on the basis of the initial experiments with expert groups [73, 74, 101]. The
modeling process is also fast, and leaves time available for discussion within the ex-
pert group, as the number of elicited inputs remains low. In large system models
representing complex, densely connected systems, the analysis can give surprising
insights that cannot be made available by intuitive-heuristic means without a similar
computational transformation. A software implementation of EXIT is available at
https://github.com/jmpaon/EXIT.

4.1.2 Relationship to other approaches for structural analysis

Short descriptions of MICMAC, ADVIAN, DEMATEL, cognitive maps and fuzzy
cognitive maps have been given in Section 3.3. All of these approaches use some form
of iterative matrix multiplication as a means to infer about the indirect influences,
the main object of interest in structural analysis. MICMAC and ADVIAN aim at
providing an alternative ranking for the model variables based on either their general
influence or dependence, and classifying the variables by their rankings along these
two dimensions. If an expert panel is assembled to provide the valuations for a struc-
tural impact model, it is desirable to extract more analytical value from the modeling
effort than mere alternative rankings, if the information content of the model per-
mits that. The rankings and MICMAC-style classification can be produced by simple
summation of row or column values, if pairwise indirect impacts are quantified by
some means: the original aim of MICMAC is thus achieved, but the much more
detailed information of the pairwise interaction is also made available. The develop-
ment of the EXIT approach was motivated by this aim, and the method is positioned,
in the Publication IV proposing it, mainly against the MICMAC approach.

Matrix multiplication can be used to give a reasonable quantification of the total
influences of a structural model, when the initial direct impact matrix is suitably
scaled so that a terminating condition for the iteration exists. This is exactly what
is done in the DEMATEL approach: the direct impact matrix is normalized by the
maximum value of the row and column sums, guaranteeing that any row sum does
not exceed 1. Iterating (N x N) x N) x N) x ... with the normalized direct impact
matrix N converges towards the null matrix, and the total impacts are obtained as

the sum of the yielded matrices.
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The results reflect a different way of thinking about the causal influences in the
system, compared to EXIT. In the direct impact matrix multiplication approach,
cyclic or recursive impacts are included in the results. The causal propagation can
indirectly cycle back to the cause, but as a result of the way the direct impact matrix is
normalized, the magnitude of the causal flow is weakened with each step as it flows in
the causal cycle. As a result, iteration eventually produces the null matrix. In EXIT,
the pairwise total impact represents the sum of the relative impacts of all possible
impact chains, which themselves are acyclic. The aim is simply to relate all the extant
causal paths between two model variables in terms of magnitude to each other, and

DEMATEL-like ‘dynamic’ system behaviour is excluded from consideration.

For acyclic EXIT models with 7 variables, the total impact matrix can be obtained
much more efficiently than with the used sampling-based approach by normalizing
the direct impact matrix by the inverse of maximum impact value and iteratively
multiplying the normalized matrix 7 — 1 times. Based on the initial experiments
with the EXIT approach, however, acyclic models are rare and more typically the
graphical representations of EXIT models are dense, if not fully connected. From
this perspective, the matrix multiplication approach is normally not applicable to
get the EXIT results.

Should the recursive, cyclic influences be considered in computing the total im-
pacts in a structural model? It would at least make the computation much simpler,
as no combinatorics would be involved. The answer must depend on the exact inter-
pretation of the meaning of model variables and the causal flows. EXIT defines the
variables as hypotheses with an unknown truth value. The computation of total pair-
wise influence considers only the possible causal paths from cause to effect, but not
the dynamics captured by cyclic impacts. The argumentation for disallowing cyclic-
ity in the causal flow between two variables is that information about the cause being
true (or false) cannot increase its own degree of being true or false, even indirectly.
The EXIT reasoning about the structural relationship between two variables starts
with those two variables and proceeds to form an image of the possible causal paths
between them. A different interpretation of the meaning of the model variables
would be required for allowing ‘dynamic’ causal flows indirectly returning to the
cause and cycling in an ever-weakening fashion to make sense. The EXIT interpre-
tation of the causal propagation is perhaps more ‘Bayesian’ than system-dynamical.

Arguments can be made for allowing cyclic causal flow in a structural model-if those
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arguments are convincing, the DEMATEL approach is available for analysis of the
same model that can be analyzed with EXIT. Conversely, EXIT can be used in anal-
ysis of any model created with the DEMATEL approach in mind. Ultimately, the
two approaches perform transformations of quite different nature on the model.

A fuzzy cognitive map could, in theory, be derived from an EXIT model by sim-
ply assigning an initial activation value for each hypothesis and selecting an appro-
priate squashing function: Modeling languages of both approaches are, in terms of
interactions, very similar. For many models, it would not be straightforward to map
the EXIT variables formulated as hypotheses, more akin to binary random variables
in nature, to the variable concepts of fuzzy cognitive maps. But with some reformula-
tion of the EXIT hypotheses, an EXIT model could be analyzed as a fuzzy cognitive
map as well. The aim of the fuzzy cognitive map computational transformation
is to model the dynamic behaviour of the system. The dynamic behaviour obvi-
ously results from the structural properties of the system model, and in this sense
the analytical focus is similar to that of EXIT. However, as the main output is the
equilibrium state for the system, and the values of the activation state vector, the
approaches produce a very different natured end result from largely similar infor-
mation. As the purpose is so different, they cannot be reasonably assessed against
each other in terms of fitness for a purpose. They could be seen as complementary

computational transformations for very similar models, very much like EXIT and
DEMATEL.

4.2 AXIOM approach

4.2.1 Overview

AXIOM is a probabilistic causal logic, and as such also a generic modeling approach,
with a high intended fitness for expert elicitation based modeling and decision sup-
port use. It is suitable for modeling decision-making problems and systems involv-
ing uncertainty. While it can be applied in modeling of a wide range of planning and
decision-making contexts, it has only low fitness for modeling non-changing, deter-
ministic systems with well-known rules. The design choices of AXIOM are aimed
at providing a modeling approach with a special fitness for using expert informant

elicited inputs, with a focus on foresight applications. To achieve this goal, AX-
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IOM combines aspects of cross-impact techniques, morphological analysis, struc-
tural analysis and Bayesian belief networks. AXIOM modeling language, the com-
putational transformation, and analysis of modeled systems are the focus of publica-
tions IT and III.

As a probabilistic causal logic with a modeling language capable of represent-
ing facts and rules with varying levels of precision or haziness, it has applications
especially in the foresight domain. Future developments are uncertain, and they
are related to other developments in an uncertain way. Essential considerations for
foresight are often not captured in existing data, and as a result, reasoning about
future developments has to rely on heterogenous data sources, especially the views
of expert informants. A logic capable of encoding expert elicited information with
formality and providing reasonable processes of inference can be useful in synthe-
sizing the heterogenous viewpoints and reasoning about the possible developments
and their consequences. Automated reasoning capabilities of a logic allow for com-
partmentalizing the complicately interdependent considerations and drawing higher
level insights from combined descriptions of lower level details with less complex-
ity. From a decision support perspective, the ultimate aim is to evaluate decisions,

policies and strategies by simulating their outcomes with the model.

The modeling language of AXIOM has a relatively high fitness for modeling pro-
cesses fully relying on expert elicitation for model inputs. This claimed fitness for
the expert informant niche results from the probabilistic nature of the model rules,
the relatively low number of inputs required, and the flexibility of the modeling lan-
guage capable of representing system rules at varying levels of precision. The nature
of the outputs lends to decision support easily, and cover many of the analysis aims
of other modeling approaches discussed in this work. AXIOM is also suitable to be
used as an auxiliary modeling approach in conjunction with Bayesian networks: its
output can be an itemset which can be used for parameterization of a Bayesian net-
work. This means that expert informant oriented modeling can be done in AXIOM
and the results used together with empirical data in creation of a Bayesian network.
This approach can bring highly expert oriented and data oriented modeling tech-

niques in the same analytical framework.
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4.2.2 Positioning and contribution

Functionally, and in terms of the basic nature of inference, the closest modeling ap-
proach equivalents for AXIOM are Bayesian belief networks and influence diagrams,
though technically the approaches are different. In a sense, a Bayesian network be-
comes an AXIOM model, if

1. the posterior probabilities are estimated with a sampling process instead of
being computed with the exact computational methods used in Bayesian net-

works in normal cases,

2. graph cycles are allowed in the model (bidirectional influence can be allowed,

as the posterior probabilities are estimated via sampling), and

3. conditional probability table based description of the causal dependencies is

replaced with one based on AXIOM updating functions.

As posterior probabilities in a Bayesian networks can be estimated by means of sam-
pling as well, it is perhaps not impossible to think of AXIOM as a special case of a
Bayesian belief network. The analytical use of an AXIOM model is very close to
the use of a Bayesian belief network or an influence diagram. The same facilities of
predictive and diagnostic inference are present in AXIOM, as they are in Bayesian
networks, although these facilities are provided through different, and less efficient,
means of computation. The decision support facilities of influence diagrams, such
as decision nodes and utility nodes, can be approximated with AXIOM as well.

Technically, the computational process of AXIOM is a discrete event simulation
[15, 23]. The process generates a sample of possible worlds, and the probabilistic rea-
soning is based on occurrence frequencies of facts in the generated sample or samples.
In this sense, the computational process differs from the exact methods of Bayesian
network significantly. It must be noted, however, that the computation in Bayesian
networks has to resort to sampling-based estimation as well in cases of very complex
models [21, 104, 105].

Computationally the sampling based on discrete event simulation is inefficient
compared to the way probability updates are implemented in Bayesian networks.
However, the Monte Carlo process based inference allows for things that would not
be allowed in a Bayesian belief network (or a normal Bayesian belief network, if AX-

IOM is understood to be a special case of it). Graph cycles are allowed in a graph

76



representation of an AXIOM model, as they are in many other cross-impact mod-
els. Cycles can be allowed for a Bayesian belief network as well if the posteriors are

estimated by sampling. This is important in modeling with a foresight aim.

Bidirectional probabilistic interaction between possible developments or system
states is a typical thing to be modeled as characteristics of systems, especially when
the modeling has a foresight aim. The semantics of bidirectional interaction, in prob-
abilistic terms, is that the causal and temporal positioning of bidirectionally depen-
dent descriptors is unclear or uncertain: one might happen before or after the other.
In a discrete event simulation process of model evaluation, a set of ‘possible worlds’
is created. In a single possible world, the temporal and causal ordering of the two
descriptors is clear (one happens before the other), but in the next possible world
generated, the order can be reversed. The posterior probabilities inferred from the

generated sample of possible worlds reveal the results of the bidirectional interaction.

The AXIOM model gives control over the evaluation logic with the timestep
property, and the temporal dimension of a system can truly be modeled with the
modeling language, unlike GHCIA or BASICS approaches. At the model level, de-
scriptors with equal timestep values are evaluated and their states resolved in ran-
dom order, meaning that their sequence is subject to change between model eval-
uations. Semantically and in the analytic sense, they happen simultaneously or in
the same temporal space. Descriptors with a lower timestep value are guaranteed to
be resolved before the descriptors with a higher timestep value. Comparable cross-
impact approaches do not provide ways to model time. In Bayesian belief networks,
the causal and temporal logic is coupled with the model structure, and this imposes
limitations to the modeling power. The timestep approach and the cyclicity of an
AXIOM graph provide more leeway for the modeler in this regard. In an AXIOM
model, the temporal positioning of descriptors can be changed without necessarily
having to change anything else in the model. In a Bayesian belief network, relocat-
ing a descriptor in the causal structure, through which the time aspect is represented,
would create the need to redefine some of the conditional probabilities. Such changes

might involve a great deal of work for the expert informants.

The discrete event simulation nature of AXIOM also opens up other possibil-
ities that are not available in Bayesian belief networks. The updates fired by the
evaluation of descriptors and resolving their state normally update probabilities of

yet-unknown model facts, mimicking Bayesian probability updating in face of new
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evidence. However, the updates can also be set to do more than just update prob-
abilities: they may change the remaining evaluation sequence or logic, or they can
do structural or valuational updates to the model. This does not strictly mean that
similar things could not be modeled with Bayesian belief networks, but that the way
such consequences are represented at the model level can be, from the perspective of
the model user, more obvious and understandable. Considering that a use purpose
of both Bayesian belief networks and AXIOM models is also knowledge representa-
tion, such clarity is a positive aspect of the approach, even if it does not analytically

enable something that would not otherwise be possible at all.

Generally speaking, the sampling based computation and the consequent ‘slow-
ness’ of the model evaluation is obviously negative. However, this inefficiency is,
in the opinion of the author, largely unimportant for the typical use case of a cross-
impact model in general or an AXIOM model in particular. The functional bottle-
neck in expert informant oriented modeling is the expert process, by a cosmological
margin. The time used in any computational transformation of linear time complex-
ity imaginable is going to be insignificant in the timeline of the modeling process.
Once the model has been built, the inference can be performed as batch process-
ing, already supported quite well by the intervention statement functionality of the
AXIOM implementation currently in distribution [94]. More support for batch ex-
traction of outputs will be provided in the implementation in the future. If real-time
manipulation of the model and instant probability updating are necessary, the nor-
mal BN is vastly superior to any sampling based estimation strategy, but this compu-
tational efficiency comes at the cost of limited modeling expressiveness. It must also
be noted that the computational process of an AXIOM model aiming at estimation
of posteriors with a single setup can be performed in a matter of minutes in most
cases even with the current implementation, where computational efficiency has not
been a particular concern. The sampling process can be fairly trivially parallerized,
and this alone will in the case of many a personal computer make the process 3-4
times faster. As the software implementation development proceeds, the etficiency
of the implementation will be of higher concern in the development of the frame-
work. Still, optimizations to the computational process might be in conflict with
modeling language features to be introduced in the future, so it might be too early

to optimize the sampling at this point.

From a modeling language standpoint, and specifically from a full expert elici-
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tation based model valuation, the most important difference between AXIOM and
Bayesian belief networks are the way interactions are described in the model. In AX-
IOM, the probabilistic relationships of model components are described, instead of
conditional probability tables, as in Bayesian networks, with references to updating
functions. This approach has been developed and utilized in the cross-impact analy-
sis tradition [49, 50, 51, 56].

The motivation of describing the probabilistic dependencies of facts as a Bayesian
network is to avoid the need to define full joint probability distributions. By adding
information about the structure of the dependencies, the number of required con-
ditional probabilities can be dramatically reduced, and the full joint probability dis-
tribution can be inferred from the graphical model [104]. If a Bayesian network is
algorithmically learned from data with a full joint probability distribution, the con-

version to a Bayesian network s, in practical cases, an information-lossy operation.

Analogously, the motivation to describe probabilistic dependencies of facts in
the cross-impact analysis language, as strictly or predominantly pairwise probabilis-
tic influences between facts, is the desire to avoid the need to define full conditional
probability tables for all dependencies, as in a Bayesian network. The cross-impact
language description is not particularly useful if the causal structure is well defined
and the complexity of the structure, namely the number of dependencies of a vari-
able and the number of states of the dependencies, is low. In such cases, the condi-
tional probability table description is not more difficult, and can even be conceptu-
ally simpler for the informants. However, the cross-impact language description can
be very useful for complex systems with a high number of causal dependencies be-
tween facts, especially when the model parameterization relies on expert informants.
In a Bayesian network, the number of conditional probabilities grows exponentially
as the number of dependencies grows: The number of conditional probabilities in a
Bayesian belief network is 3" s(n;) x p(n;), where N is the number of nodes in
the model, s(7;) is the number of states node 7; has, and p(#;) is the number of state

combinations parents of node 7, have, or 1 if 7, has no parents.

Figure 4.3 shows three abstract models and compares the number of input valua-
tions necessary for full model parameterization using a BBN description and a cross-
impact language description. Models A and B have the same number of states, but
the dependency structure is different between them. Model C has nodes with higher

number of states. Comparison illustrates how the input valuation count grows fast
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Model A Model B Model C

BBN 102 BBN 216 BBN 1585
CIL 120 CIL 174 CIL 457

Figure 4.3 Number of inputs required for BBN and for a cross-impact language (CIL) representation.
Node labels indicate the number of possible states the node has.

in the case of a BBN, as the dependency structure becomes more complex and state
count for nodes increases. The input valuation counts in Figure 4.3 are very pes-
simistic for both approaches, but especially for cross-impact language description:
the assumption is that a dependency is described with a value in all entries of the
submatrix describing the influence of different states of the cause on the states of the

effect. Normally, only half or less of these entries would be valuated.

Making expert elicitation a more feasible approach for input acquisition in the
context of Bayesian networks is almost a research topic on its own [25, 30, 32, 33,
43, 62]. Auxiliary techniques are useful in easing the elicitation process, but they do
bring an additional layer of complexity to the modeling. AXIOM is an alternative
way to generate input material for Bayesian networks, and it has the advantage of

being a causal reasoning and decision support tool on its own.

In the cross-impact languages, the number of inputs to be elicited grows only in
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a quadratic or subquadratic fashion, as the probability impacts are described mostly
in a pairwise fashion, instead of for all possible configurations of the states of the
dependencies of an effect. The cross-impact language description, if the language
does not allow for multi-cause updates, is less expressive in the sense that synergic
influences, conditional to the joint occurrence of several facts cannot be modeled at
all. Figure 4.4 displays a synergic influence of three causes C,, C, and Cj; on effect E,
and shows how the strictly pairwise impact description of the influences runs into

problems with such structural intricacies.

0.4 0.5 0.6 0.1865
C1l Cc2 C3 E
® ® O
T T F 0.125
T F T 0.125
T F F 0.05
F T T 0.125
F T F 0.05
F F T 0.05
F F F 0.01

conditional to C1 A C2 A C3, p(E) is updated to

Figure 4.4 A synergic probabilistic influence, problematic in a GHCIA model. Occurrences of causes
C,, C, and C; update the probability of effect £ .

All causes raise the probability of the effect £ on their occurrence. The probability-
elevating influence of the three causes is very high (raising the probability to 0.99)
when all causes occur, but the individual impacts of the causes are much more marginal.
This makes the GHCIA description of the nature of the dependency structurally very
approximate. The joint influence could be divided to the three individual causes, but
then the estimate of the probability of £ would be very biased in cases where only
one or two of the causes occur.

As discussed in Chapter 3, the BASICS approach uses a set of six updating func-
tions to which determining the quantified probability change of the contextual prob-
ability update is delegated to. The BASICS probability updates are, equal to GHCIA,
conditional to a single cause. As such, they are also unable to model structurally

complex, synergic influences. The haziness in the BASICS cross-impact language
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description of interactions is both valuational and structural.

Valuational haziness is an inevitable consequence of the contextual probability
updating logic. The informant providing a conditional probability, in the case of
GHCIA, or referencing an updating function, in the case of BASICS or AXIOM, is
unable to know the context in which the probability update happens and will there
be further probability updates on the updated probability. Contextual updating is
hazy and approximate-and that is its whole point, as it is means to the end of easing
the model valuation. Valuational haziness, in cross-impact languages, could be said
to be lowest in GHCIA, as at least the first update is exactly what the informant
specified. BASICS is very high in valuational haziness, as the limited set of updating
functions forces to model the impacts with low granularity. AXIOM is somewhere
in between these approaches in valuational haziness, as it can have any number of
updating functions.

Structural haziness, illustrated in Figure 4.4, is equally high in GHCIA and BA-
SICS. In most cases it is not necessarily a significant limitation: many joint influ-
ences or several causes can mostly be conceptually decomposed into single-cause in-
fluences, and the situation described by Figure 4.4 is more of a special case. However,
the structural haziness issue can be improved without much conceptual overhead by
allowing the contextual probability updates to be conditional to an arbitrary num-

ber of causes.

0.4 0.5 0.6 0.1865
C1 Cc2 C3 E

T T T 0.99
T T F 0.125
T F T 0.125
T F F 0.05
F T T 0.125
F T F 0.05
F F T 0.05
F F 1) 0.01

F1(p) = (((0:32 + 1)?) x p)/(4 x 0.32 x p + ((0.32 = 1)?))
F2(p) = (((0.86 + 1)2) x p)/(4 x 0.86 x p + ((0.86 — 1)2))

| conditional to C1 A C2 A Cs, p(E) is updated to

Figure 4.5 Multi-cause impacts in AXIOM.

Figure 4.5 shows how the influence structure of Figure 4.4 could be modeled
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with AXIOM by allowing multiple causes for impacts. It must be noted that the dis-
tributed version of AXIOM implementation does not yet support this functionality
at the time of writing, but the expansion is trivially implemented and one possible
way is outlined in Publication III as pseudocode. The possibility of modeling the
multi-cause impacts does not in any way force using them, and in this sense there is

no trade-off in terms of ease of model valuation.

BASICS uses an approach of delegating the probability updates to updating func-
tions. The modeler simply describes the magnitude of a probability influence as a
reference to an appropriate updating function, without any additional information.
The BASICS approach has been the inspiration for AXIOM way of performing the
updates. BASICS has a set of six updating functions, which update probabilities con-
textually, mapping a current probability to an updated probability. The probability
updates could be thought of as signals or messages facts send to other facts to update
their probability. This information flow between the facts is conditional to state
changes in the model: When a statement is evaluated and resolved to a state, and
something more is known about the system, the probability influences conditional

to this new known fact are fired and update probabilities.

The BASICS approach to interaction description is simpler and more heuristic
in comparison to GHCIA. In GHCIA, the magnitude of the probability updates is
specified as conditional probabilities, and their values have defined bounds (see 3.2).
In BASICS, the probability updates are not specified as conditional probabilities, and
the system of prior probabilities and cross-impacts does not need to conform to any
requirements imposed by probability axioms. The approach to updates is fully con-
textual. This could of course be seen as a drawback as well. If the GHCIA approach
of the conditional probabilities being subject to constraints is seen as an important
part of the modeling approach by the users of AXIOM, it warrants consideration of
extending the GHCIA approach, or providing a more GHCIA-like updating func-
tion in AXIOM.

An extended, modernized version of GHCIA would have to be generalized for
multi-state descriptors, and an AXIOM-like timestep property would need to be
introduced to increase the modeling power of the original GHCIA approach. A
modernized GHCIA approach could be used in conjuction with BBNs just like AX-
IOM, as a BBN could be derived from the output relatively unproblematically, or in
a no more problematic fashion than from AXIOM output. The BASICS language
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has the upside to GHCIA language in that there is no need to define probability
impacts between all descriptors. In GHCIA, all events have a defined probability
impact on all other descriptors: The conditional probabilities need to be consistent
according to the rules defined for a GHCIA cross-impact matrix. This might take
some focus out of the heuristic expert process of defining system rules. Note that
the conditional probabilities can be set equal to initial probabilities, representing a
neutral impact. However, these neutral updates might violate the bounds defined for
the GHCIA conditional probabilities, so in this sense, there is no ‘neutral’ update

available in the case of GHCIA cross-impact language.

BASICS updating functions are equivalent to AXIOM simple updating functions.
One difference is that in BASICS, the set of updating functions is fixed, but in AX-
IOM, there can be as many updating functions as are needed in the opinion of the
modelers. This detail is of course implementation specific and BASICS could easily

be amended to have a different set of updating functions.

AXIOM expands on the idea of updating functions in cross-impact languages.
The AXIOM updating functions close over the entire model: The updates can be
made conditional to any information in the model. As discussed above, this can mean
any number of states of the model, i.e. a combination of several facts, or descriptor
states. In addition to this, it could mean the current probability distributions of yet-
unresolved statements, or structural information, such as the structure of the impact
network. Making updates conditional to other information than resolved states is
currently an experimental feature. The main issue is to provide a way for the modeler
to describe such dependencies in a way that is simple to understand and results in
model behaviour that is relatively easy to predict. Expanding the modeling language
to this direction comes at a cost of increased complexity, and might run counter to
the original idea of providing a conceptually simple logic for modeling with expert

inputs.

Using probability distributions of unevaluated nodes could be used to model ac-
tor behaviour. The decision or strategy or an actor is often dependent on the outlook
of future developments at the moment the decision is made. A descriptor or a set
of descriptors would be set up to model the decisions of actor or actors, and the
probability distribution would be made dependent on current probability distribu-
tions of other descriptors. No AXIOM models modeling actor behaviour though

this mechanism currently exist, but the approach lends to modeling it.
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The updates can also do more than update probability distributions. Most im-
portantly, they could alter the evaluation logic in the sense of reordering the evalu-
ation sequence. An important expansion to simple probability updates is to be able
to model an impact to compel the occurrence or non-occurrence of a state imme-
diately, to model a deterministic relationship, as per propositional logic. Such an
update can be performed in two ways: The first option is to set the state of the tar-
get descriptor of the update, but fire its updates later, when the descriptor is taken
up for normal statement evaluation. The second option is to perform the updates
conditional to the state immediately. These two options are slightly different from a
modeling semantics perspective. Updates could also change the model structurally,
such as eliminate impacts or add them. These logic extensions can be useful in some
cases, but for the most part, the author expects that simple updating functions per-

forming probability updates are sufficient.

The AXIOM way, or the way of the cross-impact languages in general, of describ-
ing the interactions is more approximate and hazy, but reduces the number of inputs
that need to be elicited, making full model parameterization based on expert infor-
mant elicited inputs much more feasible, especially in structurally complex models.
The cross-impact approaches have introduced ways to do probability updates based
on a limited number of inputs, compared to BBNs, although the motivation has
hardly been to ease the parameterization of a BBN, as the cross-impact analysis tra-
dition seems to have developed independently from the use of BBNs. Their short-
coming in the description of the probabilistic dependencies is the approximateness
and lack of expressiveness for modeling multi-cause impacts. The AXIOM logic is a
possible approach to do the expert informant based modeling with a more realistic
number of inputs, and use the output to arrive at a BBN representation of the system.
Another important difference is the causal structure of the model, where AXIOM
allows more freedom for modeling. This flexibility is important for the most obvi-
ous use cases of AXIOM, namely foresight applications and other decision problems

where causal hierarchies are not obvious.

Despite the differences, the basic utility of both Bayesian networks, influence dia-
grams and AXIOM models is the same: Assuming specific parts of the system to be in
specific, known states, and observing how the probabilities of states for other system
parts change as a result. This can mean observing how effects behave as assumptions

are made about their causes, or conversely, observing what are the likely states of
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the causes, given certain states for the effects. Specifying utility valuations for the
model states and their combinations enables identifying combinations of decisions,
policies and interventions to the system that would maximise utility or minimize

harm.

AXIOM makes it possible to perform structural and morphological analysis as
well, so the analytical aims of probabilistic logics in foresight can be covered quite
well with it. Examples of structural and morphological reasoning with a small model
are presented in Publication III. The structural analysis aim is to discover the ‘real’
influence a cause exerts on some effect of its, by consideration of the indirect in-
fluences mediated by other facts. In AXIOM, this can be accomplished simply by
comparing the posterior probabilities of the effect in two different iterations: one
where the occurrence of the cause is resolved probabilistically and one where it is set
to be true. The difference between the posteriors indicates the impact of the cause
on the effect over the impact network, measured as change in probability. An EXIT-
like total impact matrix can be derived by generating 7 iterations for a system of n
total states for descriptors, where in each iteration, a single state is assumed to oc-
cur. If analytically useful, this impact matrix can be normalized as is done in EXIT,
by dividing the matrix entries with the mean of absolute values of the matrix. The
morphological analysis can be performed by computing posterior probabilities for
full system configurations or partial configurations. The fundamental meaning of
morphological consistency of any set of facts is that they are “probable to occur to-
gether” or perhaps “not improbable to occur together”. Therefore, configurations
or morphologies of high probability, relative to other possible morphologies, can be

interpreted to be morphologically consistent.

4.2.3 Modeling language, processing and inference

The modeling language of AXIOM is subject to some changes as the framework
is developed further. Publication II describes a basic case of AXIOM model, with
only simple updates. The AXIOM approach as discussed in Publication II is fully
implemented with a ‘user interface’ in the sense that analysis can be performed by
giving a text file with the model information as input. Publication III discusses fur-
ther developments in the AXIOM framework, such as non-simple updates. It lays

out the basic implementation logic for non-simple updates, that is easily applicable
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to multi-cause impacts. However, the best implementation of dependencies on ‘par-
tial facts’, meaning, probabilistic states of unresolved statements, is slightly open for

interpretation.

The system descriptors in AXIOM are called statements, and they have an arbi-
trary, but greater than one, number of possible states. These states are called op-
tions in the AXIOM nomenclature. Statements describe possible system or domain
facts with their options. Options can be loaded with varying levels of descriptive
information about the system. Conceptually, options can represent a very atomic,
indivisible fact about the system, such as an occurrence of an event, or a numeri-
cal detail, such as an amount or a percentual share. They can also represent several
closely related facts, akin to a mini-scenario about a particular part of the system or
a subsystem. Options are mutually exclusive, and exhaustive: for each statement,
exactly one option will ‘occur’ in a single model evaluation. Options have an ini-
tial or prior probability, as well as a mutable probability, that is subject to change
during the model evaluation. The prior probabilities and the mutable probabilities
for states of a statement are probability distributions, covering the probability space

completely: sum of the probabilities is equal to 1 in both distributions.

The prior probability, in the context of cross-impact analysis, means the initial,
independent probability valuation of a fact. The prior probabilities are assigned for
the options assuming no information available about the state of the system, or at
the model level, the states of the other statements. In a case of deriving an AXIOM
model from a BBN, if there was a need to do that, the initial probabilities would be
the BBN probabilities without evidence. The terminology, which in the case of AX-
IOM conforms to the terminology of GHCIA and BASICS, can be misleading for a
reader familiar with Bayesian belief networks. A Bayesian prior probability means
probability before acquiring some evidence. The information of the evidence, in
Bayesian thinking, updates the probabilities, after which they are posterior to the new
evidence. In the established cross-impact lingo, the posterior probability is probabil-

ity posterior to accounting for the model cross-impacts, however that is performed.

The statements also have a timestep property, which indicates the temporal po-
sition of a statement in relation to other statements in the model. In a single model
evaluation, statements with a lower timestep value are evaluated first. Statements
with equal timestep property values are evaluated in random order. The timestep

property gives the modeler arbitrary precision in control of the model evaluation
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logic.

The influence of known facts on other, unknown facts in the model is expressed
with impacts. Impacts have conditions and consequences. Normally, the conditions
are states of descriptors, and the consequence is a probability update. In a basic case,
a single system state is the condition. As the single-cause condition is resolved to be
true, its impacts occur. The impact is ‘fired” or executed when the source option is
evaluated to be true or occurs, in the course of model evaluation. Again, normally,
the consequence that occurs is a probability update. The effect option undergoes
a probability update, where its current probability is mapped to an updated prob-
ability with an updating function. This results in the complement probabilities in
the statement, i.e. the probabilities of the other options, to be adjusted as well to
preserve a valid probability distribution: The complement probability of the up-
dated probability of the effect option is divided to the other options so that each
option’s share of the new complement probability remains equal to their share of
the old (unupdated) complement probability. Determining the exact magnitude of
the probability update is contextual and is delegated to a probability updating func-

tion.

Figure 4.6 shows a number of probability updating functions. They are used to
map the probability of an effect option to an updated probability. The probability
updating functions must have a domain of [0, 1] and a codomain of [0, 1]. Addition-
ally, probability updating functions are recommended to @) be symmetric about the
line y = —x + 1, b) have the property y(x,) < y(x;) when x4 < x;, and ¢) have the
property y(x) > x if the name of the function implies positive (probability-increas-
ing) impact, and the property y(x) < x if the name of the function implies negative
(probability-decreasing) impact. However, these recommended properties are not
required, and updating functions not having these properties are allowed, and can

be used if seen fit by the modeler.

Figure 4.7 plots the graphs of some unusual probability updating functions. A
case where the function ‘Unusual A’ could be used would be such that the modelers
do not want the probability of some fact to climb over some value, such as 0.85, by
the update. A similar motivation might explain the use of function ‘Unusual B’. The
function ‘activates’, upon first probability update with the function, a fact whose
probability might be very close to zero: An extremely unlikely fact will become

possible by the update, its probability elevated to ~ 0.1. Subsequent updates might
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Figure 4.6 A set of simple AXIOM updating functions. Simple updating functions map probabilities sub-
ject to a probabilistic influence, conditional to occurrence of some cause of theirs, to updated
probabilities. Functions plotted in this graph are parameterized with the 72 value, or the mag-
nitude of the probabilistic impact, in the domain [—1,+1]. The m value can be placed in
the binary function #(p,m) = ((p x (m +1)?))/(4mp + ((m — 1)?)) to get the plotted
probability updating functions.

further elevate the probability by decreasing increments. However, updates by only
this function guarantee that the probability will not climb past 0.433. To give a
possibility for more predictable updates, in terms of absolute probability change, an
updating function like ‘Predictable decrease” might be used. It decreases, in cases
where the probability to be updated is in range [0.2,0.9], the probability by exactly
0.15.

While these features are not yet implemented in the distributed version of AX-
IOM implementation, it is also possible that the update does not change the proba-
bility distribution of the target statement. Instead, the update can force a statement
to immediately be evaluated to a certain state, in turn firing the impacts associated

with that state. This represents a deterministic influence a fact has on another. Ad-
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Figure 4.7 Alternative AXIOM probability updating functions.

ditionally, the updaters can perform any change in the model, such as a structural
change, like removing or adding an option or an entire statement, or removing or

adding an impact.

The model is evaluated by evaluating each statement of the model. The sequence
of the evaluation is determined by the timestep property. Statements with a lower
timestep property value are always evaluated before statements with a higher value.
Statements with equal timestep are evaluated in random order. Conceptually this
means that their temporal and causal ordering is ambiguous, and that they happen
in unknown order or ‘simultaneously’, even when they do have a defined ordering
within a single model evaluation. The timestep property values give the model its

temporal structure.

Evaluation of a statement means assigning one of its options as its value. The
probability of assignment of any option under a statement is equal to its current

probability, which may have been updated several times already in the course of
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the model evaluation. Assignment of an option as the value of a statement fires all
of its updates. These updates reflect the causal influences and possibly the altered
situational awareness about the system, reflected in the probability updates on other
statements. The model is fully evaluated when all of its statement have been assigned
a state. This resolved model state is called configuration, and represents a possible
world or ascenario. The configuration information is stored in an AXIOM iteration
object. The model is reset to its initial state, meaning that all statements are again set
to be in an unknown state, the option probabilities are reset to their initial values and
the model structure is restored to the initial setup. The model evaluation process is

performed again, a large number of times, saving the results to the iteration.

The iteration object, and sets of iteration objects, are the basis for inference. The
posterior probability for any atomic fact is computed as its occurrence frequency
in the iteration. The posterior probability for any compound fact, or a morphol-
0gy, is computed as the occurrence frequency of its elements in the iteration. This
is equal to computing the association rule learning (ARL) operation ‘support’ for
an itemset. Similarly, the ARL operation ‘Confidence’ is an estimate of the proba-
bility of any atomic or compound fact conditional to another atomic or compound
fact. Bayesian ‘inverse logic’ and ‘mixed inference’ can be performed with the item-
set of the iteration object, given that it holds a sufficient number of configurations.
Inferring the possible causes of a fact down in the causal hierarchy is achieved by
selecting the rows in the itemset contained in the iteration where the fact occurs,
and observing the probability distribution of the possible causes within this subset
of configurations. The approach is rather inefficient compared to the Bayesian di-
agnostic inference, but nevertheless, such analytical outputs can be made available
from AXIOM output.

The difference in initial or prior probabilities and the posterior probabilities com-
puted from the iterations, in a case of no assumptions of interventions having been
made, in the opinion of Gordon [49, 50, 51] reflect both inconsistency in the expert
elicited valuation of initial probabilities and the influence of higher-order or indirect
impacts. In the opinion of the author of this thesis, they mainly reflect inconsistency
in the initial valuations, assuming that all causes for every effect are included in the
model-which is of course not always true. Initial valuations that do yield probabil-
ities posterior to the cross-impacts equal to the initial valuations can be composed

for at least small AXIOM models. This, however, requires defining an information-
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dense setup of very precise impact valuations. The difference in the prior and poste-
rior probabilities of any effect also reflects the absence of drivers and their influences

on the effect in the model-things that have not been modeled.

With that, the main inference feature in a process like AXIOM is the compari-
son of the posterior probability distributions between several different iteration ob-
jects. Different iteration objects hold results of different AXIOM models, with the
meaning that some details are changed for the evaluated model between different
iterations. This can mean altering the model valuations, model structure or other
details, but chiefly the use of intervention statements, a convenience feature provided
by the current AXIOM implementation [94]. Statements flagged as intervention
statements are not evaluated probabilistically, as in normal model evaluation, but are
rather resolved to a predefined state when they are taken up for evaluation. Inter-
vention statements can represent policy or some other intervention to the system.
When a model has flagged intervention statements, the AXIOM implementation
generates an iteration for each possible combination of the states of the intervention
statements. This enables fairly easy comparison of different assumptions about the
system and is the primary batch processing facility in the current implementation
of AXIOM.

The intervention statements roughly correspond to decision nodes in influence
diagrams. Conversely, any AXIOM model statement can be used as an utility node
of an influence diagram. An utility function can be defined for desirable or undesir-
able states of statements, and be used for identification of optimal interventions or
comparisons between different initial setups of the model. This is illustrated in the

analysis part of Publication IIL.

As AXIOM can output full system configurations, it can generate an itemset-like
dataset. A Bayesian belief network can be algorithmically learned from such data[1,
22, 42, 61, 64, 71]. As already discussed in Section 4.2.2, this provides a degree of
interoperability with AXIOM and Bayesian approaches.

4.2.4 Significance and future work

AXIOM draws from the aged toolset of cross-impact analysis techniques, and the
newer Bayesian approach for probabilistic reasoning, to propose a new probabilis-

tic logic for foresight and decision support activities. In structurally complex mod-
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els, the approach is much more feasible for full expert elicitation based valuation
than Bayesian networks and influence diagrams. In comparison to cross-impact tech-
niques such as Gordon-Hayward approach or BASICS, the new approach offers
much more modeling power. Compared to several other logics proposed for fore-
sight and systems analysis activities, such as structural and morphological analysis
techniques, AXIOM can analytically cover most of their ambitions. The approach
combines different orientations of analysis under the same framework. The straight-
forward way the output can be used to derive a Bayesian network representation of
the knowledge base described as an AXIOM model connects the AXIOM modeling
to Bayesian modeling. Deriving a Bayesian network from AXIOM output enables
use of more extensive expert informant based knowledge bases with models based
on empirical data.

The discrete event simulation nature of the AXIOM computational transforma-
tion is hopetully conceptually simple, or at least less obscure than the inference based
on e.g. fuzzy cognitive maps seeking, but possibly never arriving in an equilibrium.
The analytical transformation of Bayesian networks to derive the posteriors might
also be conceptually more difficult than the AXIOM discrete event simulation. In
the case of AXIOM, the computational transformation directly maps to a metaphor
of the future unfolding, a great number of possible worlds being generated under the
rules of the simulation, and treating this set of possible worlds as a sample, on which
the inference is based on. This metaphor is especially viable in the case of foresight
and futures.

The AXIOM approach can and will be developed further, especially in terms
of the software implementation, but possibly also the methodological specification
and modeling language. In terms of the modeling language, the following expansions
would appear justified, as they would be backwards compatible and not increase the

conceptual complexity much, but would enable more expressiveness.

1. Probabilistic timestep values. In addition to the normal timestep, the timestep
could be random variable with a mean, standard deviation and skewness. The
value for a random timestep would be defined for each model evaluation, in
the beginning of the evaluation The evaluation sequence would be ordered in

the beginning of each model evaluation.

2. Probabilistic dependency of timestep values on model facts. The timestep values

could be made subject to change conditional to the occurrence of model facts.
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The model arriving in specific states could reorder the evaluation sequence
defined at the beginning of the model evaluation. The counterpart in real
systems being modeled with AXIOM is any set of conditions that might make
a development take place sooner (or later) than it is expected to take place

without information about the relevant developments.

3. Descriptors with continuous values. Numerical descriptors can obviously be
included in models in a discretizised form with normal AXIOM statements,
but the possibility of modeling them in continuous form might be important
in some modeling cases. They would, however, require the introduction of
some other way of propagating their influence over the network than normal
AXIOM updates, which occur only once upon the evaluation of statements.
In this sense, the conceptual complexity continuous values introduce might

defeat the modeling power they add.

For the software implementation, further development steps are discussed in Sec-
tion 6.7. From the perspective of adoption of the method, by far the most important
issue would be the development of a graphical user interface. After all, the approach
is intended to support modeling in domains not normally modeled, and the relevant
expert informants, as well as modelers, in these domains most likely expect not to be
faced with a command line interface, let alone to be forced to compose their models

as Java code using the implementation classes as a library.
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5 CONCLUSIONS AND DISCUSSION

This thesis has described and reviewed a number approaches for modeling and anal-
ysis of collections of interrelated facts. The discussed approaches share the property
that they can be understood as probabilistic logics. A logic is comprised of a model-
ing language and rules for inference. A modeling language is a finite, often a compact
set of symbols. The symbols are are used to transform information (knowledge or
data) into a model, which is a structured representation of the information, formal
to the degree the modeling language itself is formal. While logics differ, often the
symbols can be thought as facts and rules. The symbols of the modeling language
themselves have the same meaning in different models representing different knowl-
edge bases. The inference rules of a logic describe how higher-order constructs of
reasoning are generated from the atomic model facts and rules. The approaches this
work has discussed can also be understood as approaches for creating expert systems.
An expert system, in turn, is said to comprise of a knowledge base and an inference
engine. Understanding the approaches as expert systems perhaps gives a better cue
on the type of information the approaches discussed model: information elicited
from knowledgeable people or experts of the modeled domain. While empirical and
statistical data can obviously be used as an information source for Bayesian networks
and fuzzy cognitive maps, and ways to parameterize other models discussed in this
thesis can be devised, this work has focused on the idea of using expert knowledge

as the primary or sole source of model inputs.

Is modeling based on expert elicited inputs useful? After all, for many questions
where an expert opinion exists to answer it, we can find a divergent or opposing ex-
pert view as well: experts can be, and often are, in disagreement about the facts and
rules about almost any given system. This divergence in expert opinion, however,
is not exhibited across the board in modeling systems: the views and opinions of
experts are often in conflict only in the case of a subset of the properties and rules

of the modeled system, and a solid concensus may exist for a majority of details con-
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cerning the modeled systems. For the areas where expert views diverge, a collabora-
tive, iterative process of information exchange, reasoning and modeling may lead to
convergence of positions, ultimately eliminating a lot of the conflicts in the ‘source
material’ of such expert informant oriented modeling. If this does not happen, the
effort to formally model a knowledge base still reveals the points of contention, and
may direct the further information gathering towards the right direction. Formal
modeling based on expert inputs may produce significant processual benefits, even
when the end result from a perspective of using the model in direct decision support

is that the source material is too ambiguous to be used.

For many modeling domains, incorporating expert knowledge into models could
be seen as a very useful idea, as it may augment the modeling based on data in ar-
eas where the data coverage is poor, and incorporate decisively important aspects
relevant to decision-making that are not necessarily covered by data at all. Such di-
mensionally poor data coverage is easily the case in many strategic considerations,
which have to factor in the change of the systems reasoned about. From a modeling
perspective, change in systems will introduce new variables and form new relation-
ships between them. Existing data is, in most cases, unable to capture change in
operating logic of a system, so reasoning beyond the apparent reasoning based on
data 1s often required. Experts can obviously be used in modeling in various capaci-
ties no matter the approach, but different approaches have different levels of fitness
for expert informant processes. Especially modeling work using inputs from expert
panels requires, in practice, an approach with a modeling language where the expert
views can be mapped to model inputs in a straightforward way and the number of
those inputs is feasible. Structural equations, for example, would be quite unfeasible
to elicit in high numbers, and the process of transforming hazy expert inputs into
such representation is not easy. Graphical representations of dependencies between
model components and valuations of those dependencies as degrees of belief are a

substantially more realistic format of inputs for expert processes.

The fitness of a modeling language for expert processes of possibly great numbers
of participants enables covering the modeled knowledge base with the joint exper-
tise of a group of experts. If the modeling language is conceptually simple, the expert
processes may involve domain experts with limited expertise on the technical aspects
of modeling itself. This will, again, enable covering more ground analytically and

incorporating views and knowledge bases in modeling that might otherwise be ig-
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nored. The comparative technical simplicity of expert informant oriented modeling
approaches makes them also easy to be examined and understood by possible model
users and other stakeholders. The only way models can influence decision-making is
that the relevant decision-makers trust the models-and if understanding the model
structure and valuations is made easier, no blind trust is required: the included con-
siderations, choices made and the fundamental assumptions can be scrutinized with-
out a high level of technical expertise also by people who have not been involved in

the modeling.

Models in the service of foresight, be they based on data or expert inputs, cannot
be validated in the same sense as models aiming at prediction of recurring phenom-
ena. There is no empirical benchmark to assess the predictive power of foresight. As
the future unfolds, the actual developments may or may not be aligned with the rea-
soning based on the models, but the actual development is only one possible world
out of many that foresight seeks to reason about. Model validation, if one can speak
of validation, comes from a wide exposure to experts of different fields, and seeking
of consensus on the model structure and valuations through contemplation and ar-
gumentation. Compared to predictive statistical models, the modeling aim is not to
predict recurring outcomes with the greatest accuracy and efficiency. The models
created do not need to aim for using the minimum amount of data and the simplest
possible structure. They should rather aim to model the knowledge in the domain
comprehensively, and the structure can be complex if such complexity serves the

reasoning about the domain and decision-making related to it.

Foresight processes, most of the time, rely on expert informants and collaborative
work. The challenge is often to facilitate the expert work, structure the process
and synthesize useful information from the outputs. Foresight activities relying on
expert informants need structured processes which aim at formulating descriptions
about the relationships and dependencies of new developments, events and forces,

and the outcomes of policies and interventions.

The EXIT approach provides an alternative inference approach for structural
modeling, which has not been previously proposed, perhaps because of the higher
computational complexity involved, compared to the matrix multiplication based
approaches. The matrix multiplication approach in structural analysis focuses on
dynamic properties of a model that is defined to be causal, and can potentially be

hard to interpret. The EXIT approach focuses purely on the structure of the causal
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network, eliminating dynamic behaviour from consideration, and is better aligned
with normal interpretations of causality. It can be used in conjunction with ma-
trix multiplication based structural analysis approaches and fuzzy cognitive maps to
provide an alternative view on the causal structure. For modelers, the approach is
of minimal complexity and provides a framework for a well structured process of
foresight oriented systems thinking.

The AXIOM approach modernizes the slightly aged ideas of cross-impact lan-
guages and reformulates the cross-impact approach to be quite compatible with rep-
resenting models as Bayesian networks. AXIOM models can interoperate with Bayesian
networks as an auxiliary technique, as their output can be used as input for algorith-
mic generation of a Bayesian network. In the case of full expert elicitation, AXIOM
is easily more feasible, and it can be used to represent system properties that are
not easily represented in a Bayesian network. This work has identified the struc-
tural, morphological and probabilistic analysis aims of probabilistic reasoning, and
the way AXIOM can be utilized for all of these analysis aims has been outlined. The
comparatively high modeling power of AXIOM against other approaches has been
illustrated.

More generally, this work has examined a number of approaches that are not
often discussed in the same context. In their original sources, the approaches use
disparate concepts, making comparison and positioning challenging. The method-
ological discussion on expert informant oriented modeling and probabilistic logics
in systems analysis and strategic foresight remains factionalized and divided. Their
conceptual and functional overlap may be difficult to perceive by the potential users.
In addition to proposing novel approaches, this thesis has brought the alternatives
under the same methodological discourse. The factional and disintegrated nature
of the discussion stifles methodological development in the modeling niche. Com-
parative assessment of the alternatives and clearly identifying their analytical aims,
strengths and weaknesses is a step towards mainstreaming their utilization in research
and needed for the gradual betterment of the tooling for systems thinking, expert in-

formant oriented modeling, and probabilistic reasoning.
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6 PERSONAL CONTRIBUTION

The main contributions of this entire work are the two modeling approaches, EXIT
and AXIOM, and their implementations. The approaches and their implementa-
tions are the sole work of the author. The methodological details of EXIT and AX-
IOM have been discussed earlier in this introduction in Sections 4.1 and 4.2, and are
the focus of Publications II, ITI, and IV. A crucial point in proposing any analytic
process involving non-trivial computation is to provide software implementations,
which are also a part of the contribution of this thesis. The five publications in-
cluded in this thesis describe the EXIT and AXIOM approaches methodologically,
position them against comparable approaches, argue for their comparatively high fit-
ness in systems modeling using expert informant processes, and illustrate their use in
research, analysis and decision support. The publications and their role in the thesis

are presented in Figure 6.1.
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Figure 6.1 Publications and their role in the thesis.
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6.1 Publication I: Probabilistic Reasoning in Foresight

Publication I reviews the most prominent methodological proposals for probabilis-
tic reasoning, or probabilistic logics, with applications in the foresight domain. Over
time, the interest and need of researchers and analysts to study various difficult-to-
model and complex phenomena has resulted in the emergence of a number of tech-
niques under the banners of structural analysis, morphological analysis, cross-impact
analysis and probabilistic causal modeling. The original works documenting these
techniques often do not reference to or discuss similar concepts and approaches, and
positioning and comparison is difficult as a result of non-congruent terminology and
framing. For this reason, a comparative review of relevant approaches is valuable for
advancing the state of the art. The positioning of the approaches is done by start-
ing from Bayesian networks and detailing what is given up, and possibly gained, in
terms of expressive power of modeling languages and analytical outputs, as some as-
pects of the Bayesian approach are rethought from the perspective of more intuitive-
heuristic modeling. The manuscript provides descriptions of Bayesian networks,
BeNe-EIA approach, Gordon-Hayward cross-impact analysis, SMIC, the BASICS
approach, JL-algorithm, AXIOM, MICMAC and ADVIAN, EXIT, cognitive maps
and fuzzy cognitive maps, general morphological analysis, and the Cross-Impact Bal-
ances approach. The approaches are commensurated with basic graph theory con-
cepts to assist the reader with interrelating them. These techniques are compared to
each other in terms of amount or required input information, analysis possibilities

and general properties.

Annukka Lehikoinen wrote, assisted in writing and commented extensively on
the section about Bayesian networks, and provided important comments on the
manuscript in general. Sakari Kuikka wrote the part describing the Bayesian link ma-
trix approach (BeNe-EIA), and commented on the manuscript overall. The manuscript

has been submitted to journal Technological Forecasting and Social Change.
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6.2 Publication Il: AXIOM Approach for Modeling and

Analysis of Complex Systems

Publication II proposes the AXIOM modeling language and an associated discrete-
event simulation process used in the analysis of AXIOM models. The argumentation
for the method design choices made in AXIOM is presented by discussing other tech-
niques in the cross-impact analysis cluster of methods. The focus is on the modeling
language concepts, and their use in modeling is illustrated with a small semi-abstract
model. Research related to Publication IT has been presented in the conference “Fu-
tures of A Complex World” organized in Turku, Finland 12.6.2017-13.6.2017 and

published in the conference proceedings.

6.3 Publication Ill: The AXIOM Approach for Probabilistic
and Causal Modeling with Expert Elicited Inputs

Publication III elaborates on the AXIOM approach by relating it, in addition to the
most prominent cross-impact techniques, to Bayesian belief networks. The method-
ological inheritance of AXIOM from Gordon-Hayward approach and the BASICS
approach is discussed in detail. The utilization area of AXIOM against Bayesian net-
works is delineated. The analytical orientations typical for comparable methods are
identified and the use of AXIOM in delivering outputs of these orientations are il-
lustrated with a cross-impact model used in proposals for related methods, BASICS
and the Cross-Impact Balances approach. The interoperability between AXIOM
and Bayesian networks is discussed. The focus is on the novel modeling and analysis

possibilities of the new approach.

Publication IIT has been published in journal Technological Forecasting and Social
Change.
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6.4 Publication IV: EXIT: An Alternative Approach for

Structural Cross-Impact Modeling and Analysis

Publication IV proposes the EXIT modeling language and details the computational
transformation used to extract the information about the higher-order influence be-
tween the EXIT model variables. EXIT is positioned against the matrix multipli-
cation approach for analysis of similar expert-sourced information. The conceptual
level interpretation of the model components is discussed at length. As the process
proposed is computationally more costly than the matrix multiplication approach
based solution, the possible estimation strategies are discussed and a feasible strategy
is proposed.

Kalle A. Piirainen provided comments for the manuscript overall. Publication

IV has been published in journal Technological Forecasting and Social Change.

6.5 Publication V: Cross-Impact Analysis of Finnish
Electricity System with Increased Renewables:
Long-run Energy Policy Challenges in Balancing Supply

and Consumption

Publication V presents the process and results of a small-scale expert informant mod-
eling exercise, where pivotal factors and drivers influencing the development of the
Finnish electricity system in the timeframe 2018-2030 and their mutual interactions
have been modeled using the EXIT approach. The aims were to formulate a specific,
compact set of system descriptors relevant to the near-term future of the Finnish
energy system, recognizing emerging challenges related to increasing wind and solar
penetration, model the direct interactions based on an expert group process, discover
the internal dynamics of the modeled system, and ultimately to identify the critical
system drivers to increase understanding of the systemic relationships between the
descriptors and the emergent system characteristics. The study was a trial of the
EXIT approach, aiming at demonstrating the use of the EXIT approach in energy

foresight domain, using a relatively small and high-level set of system descriptors.

102



J. Luukkanen, J. Kaivo-oja and J. Vehmas led the model design and the research
process leading to model variable selection. S. Valkealahti, T. Bjorkqvist, T. Korpela,
P. Jirventausta, Y. Majanne, M. Kojo, P. Aalto, P. Harsia, K. Kallioharju, H. Holt-
tinen and S. Repo were involved in the model valuation and provided feedback in
the interpretation of the results. T. O’Mahony, J. Vehmas and J. Kaivo-oja provided
comments on the manuscript overall. Publication V has been published in journal

Energy Policy.

6.6 EXIT software implementation

The EXIT software implementation is a Java program for performing the compu-
tation of EXIT structural cross-impact analysis. The current implementation has a
command line interface. A text file containing the model variable names and the
initial direct impact matrix is passed as an argument, along with the maximum im-
pact value and the sample size to be used in the sampling process. The release can be
downloaded at https://github. com/jmpaon/EXIT/releases and the source code
at https://github.com/jmpaon/EXIT/tree/master/EXIT.

6.7 AXIOM software implementation

The AXIOM software implementation available at https://github. com/jmpaon/
AXIOM/releases implements all the functionalities described in Publication II. The
expanded functionalities discussed in Publication III are not yet featured in a release
of the AXIOM software implementation. These features will be added in the next
version of the implementation, which is a Groovy application and will take more of
a domain specific language approach to the modeling.

The software implementation of AXIOM will be further developed, with roughly

with the following order of importance:

1. Direct support for multi-cause probability updating functions
2. Better support for batch processing of the model
3. Parallerization of computation

4. A Groovy DSL for AXIOM modeling
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5. Direct support for ‘complex’ update processes
6. Graphical user interface
7. More efficient sampling process, if one can be developed
While the software will be significantly developed further in the future, the current

distribution is a functional modeling and analysis tool with the initial ideas of the
AXIOM approach fully implemented.
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1. Introduction

This paper discusses probabilistic modeling approaches with high fitness for expert elicita-
tion processes and strategic foresight applications. Probabilistic modeling is especially suited
for foresight applications dealing with uncertain future events and developments, as it is able to
consider the high level of epistemic uncertainty involved in foresight activities. Foresight often
relies on inputs elicited from expert informants (23439 and the modeling languages of proba-
bilistic logics are relatively well suited for participatory expert processes aiming at elicitation of
model inputs.

Probabilistic logic can be used for several foresight-oriented inference aims: reasoning about
the likely future developments with consideration to a number of factors, also causally linked
to each other, reasoning about the likely consequences of policies and interventions, identifying
best combinations of actions to maximize utility or minimize harm, identifying consistent options
or scenarios, and forming an understanding of relationships of factors in complex networks of
interdependencies. These analytical aims are not mutually exclusive and can be pursued with
different models and inference procedures.

Bayesian belief networks are the most established modeling approach for representation of
knowledge in a probabilistic way and providing the means for inference for that knowledge base.
While Bayesian belief networks are widely used in decision support activities in a multitude of
applications 7891048 some characteristics of the approach limit its utilization in foresight. Sev-
eral other probabilistic logics using expert informants as the information source, with conceptual
and functional overlap with Bayesian belief networks, have been proposed in the literature, espe-
cially in the foresight field. These approaches can be related to Bayesian belief networks in terms
of the trade-offs they make to ease the expert elicitation and to offer more flexibility in modeling,
with the cost of losing some precision in the description of the modeled domains and sacrificing
some of the analytical possibilities. This paper positions these approaches to Bayesian networks
and each other, outlines the research questions they can be used to answer, and evaluates their
strengths and weaknesses.

Modeling approaches such as flow charts and cognitive maps aiming only at non-formal,
conceptual-level modeling fall outside the scope of this paper. The review does not focus on the
substance-oriented case studies, but the approaches are reviewed from the perspective of their
characteristics and fitness for expert elicited modeling process. The contribution is to inform
the readers on the availability, characteristics and potential uses of the methods in the category,
especially in foresight applications.

While narrower methodological reviews of analysis techniques of interest in this paper such
as cross-impact analysis ''213) morphological analysis '), and Bayesian belief networks !>-16-17
have been presented before, their mutual applicability to formulating models in expert processes
and analytical possibilities have not been compared using congruent concepts and terminology.
We describe the reviewed approaches using basic graph theory concepts (even when the original
descriptions of the approaches use some other set of concepts or way of representation), and
identify the analytical outputs they are able to deliver. The aim is to commensurate and position
the probabilistic reasoning approaches against each other and assist the readership in forming an
understanding of the available methods. The publications reporting the various methods in this
modeling niche often position the presented method against a few very similar approaches, but a
broader and more comprehensive look into the properties, similarities and differences, and rela-
tive fitness for modeling, research and decision support uses has been lacking. This review aims
to fill this gap, and facilitate further methodological discussion and development in this specific
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realm of modeling.

2. Expert Elicitation and Probabilistic Reasoning

A logic is a formal language and a set of inference procedures!®. The language of a logic
is formal, consisting of a finite set of symbols or building blocks. This language can be used to
describe knowledge in the domain the logic is intended for. The inference procedures of a logic
are more or less justified operations performed on a construct composed of the language symbols.
They enable reasoning based on the knowledge described in the language. As the language is
formal and the inference procedures systematic, the inference can be automated. The automation
enables drawing inference from the knowledge base described with the language computationally
in cases where the knowledge base is extensive and the relating rules complex.

Classical propositional logic could be said to describe knowledge as atomic, indivisible
propositions and logical connectives. The logical connectives relate the propositions to each
other in a deterministic way. The atomic propositions have a truth value, and the truth value of
more complex statements made up from the atomic propositions is inferred by the rules defined
for the logical connectives. Propositional logic can be extended in different ways 1 to consider
partiality of truth and other additional layers of information about the propositions.

Language of a probabilistic logic describes knowledge with consideration to uncertainty
A probabilistic logic can describe problem complexes, decision-making problems, or systems of
interconnected considerations as a set of propositions and their relationships with additional in-
formation concerning probability. In a probabilistic language, the facts, as well as their relation-
ships, can be assigned probabilities. These probabilities can be based on empirical observations,
but they can also be elicited from expert informants, capturing a degree of belief of the experts
on the propositions and the rules describing the relationships.

More or less formal and reductive descriptions of reality are called models ®", and the prac-
tice of representing reality with such formalizations modeling. Formal modeling is traditionally
understood to be strongly data-driven?", meaning that the properties of modeled elements of
reality and the definitions of their relationships are derived from statistical data. Normally, these
formal descriptions of relationships are presented in the form of mathematical equations, and the
parameterization of the relationships relies on statistical techniques such as regression analysis.
While the empirical data drives the modeling, such modeling still aims at “formal representa-
tion of theory”®?, and the structure and the rules of the models are based on theoretical-level
understanding of reality.

Data-driven modeling is bounded by data availability *". This is due to costs of acquiring
the data, but also difficulties in quantification of important or interesting aspects of the system.
The scope of modeling is limited by data unavailability, as only systems, domains, and problems
with ample available data will be modeled, but also in the sense that important system drivers and
features, for which data is not available, wind up simply not represented in models. As models
are often used in policy or strategy formulation concerning future decision options and decision
support, data unavailability in modeling also limits policy scope and strategic perspective in
decision-making ®®.

Expert elicitation is an alternative to the data-driven approach for getting the inputs required
for modeling ®#2262) " In cases where data for modeling is available, data-driven modeling
may result in higher predictive performance, but models integrating expert knowledge are often
of higher relevance for decision support ®®. Expert knowledge may cover parts and aspects of

(20)
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modeled reality for which statistical data is unavailable, but are still understood in some level of
detail. This knowledge may be needed in order to support the analysis of such future decision op-
tions, for which there is no historical data®®. This is almost inevitably the case in many strategic
considerations. Foresight-oriented modeling, especially in the context of complex, weakly quan-
tified systems with high abstraction level, such as socio-techno-economic systems, often has to
rely, at least partly, on expert elicitation for model structure and parameters. Modeling changing
systems and operating logics cannot rely on existing statistical data for parameterization of the
model, as these derived characterizations reflect the current logic of the system, but not neces-
sarily how this logic will change in the future, as a result of new developments and policies that
create new dependencies between variables.

While many modeling approaches can be used in conjunction with expert elicitation pro-
cesses, most modeling techniques are not well suited to be used with inputs elicited from experts,
making the process more or less difficult. Modeling work relying on expert informant sourced
inputs can only be feasible with a modeling language suitable for the expert-oriented work mode.
Such languages should offer a way to describe model relationships in a way that is practical for
the purpose, typically less precise than specifying mathematical equations directly. Probabilis-
tic logics have a high fitness for describing expert knowledge bases. They can model both the
epistemic uncertainty related to the modeled domain, but also the uncertainty and haziness of the
expert inputs. The conceptual simplicity and the relatively low amount of elicited information
typical for modeling reality in the language of probabilistic logics mean that the elicitation pro-
cess is much more feasible than a similar expert process aiming at parameterization of normally
data-driven models.

3. Approaches for probabilistic reasoning

This section gives a description of the most prominent probabilistic modeling approaches
with foresight applications. The approaches are commensurated using basic graph theory con-
cepts. The models of some approaches are not represented as graphs in their original descriptions,
but they can be represented as graphs, and this representation is useful in helping the reader to
understand the information content of the models. For models that are, in their graphical form,
dense or fully connected, the graphical representation is often not practical for presenting actual
models, but it serves the purpose of making the approaches more comparable in the context of
this review.

Understood as probabilistic logics, the modeling languages of approaches discussed in this
paper need to provide facilities for description of the facts and the rules of the modeled domain.
In graphical representations of the discussed models, nodes are descriptors, representing facts or
propositions about the modeled domain. Depending on the approach, the descriptors can hold
the following information:

a) A continuous value, with a probability distribution.

b) Two or more mutually exclusive values or possible states of the descriptor. These mutually
exclusive values are also, at the model level, thought to be exhaustive, fully covering all
the possible states of the descriptor. The set of states may or may not have a probability
distribution.

¢) Binary truth-valued concepts, capable of having true and false as their states. Binary con-
cepts may or may not have a probability.
4



d) Variable concepts, with a defined direction of change, such as ‘population grows’ or ‘wind
power capacity increases’. This is distinct from binary truth-valued concepts as variable
concepts are never resolved to a state.

The edges connect the graph nodes, and represent information about the relationships, causal
influences and dependencies between the descriptors, or more generally, rules. Edges can be
directed, meaning that one of the nodes connected by the edge is a head node and one a tail node,
and the direction is meaningful. The significance is often the direction of influence, the tail node
being the influencer or cause and the head node being the influenced or effect. Edges can also
be undirected, with the interpretation that the causal direction of the relationship between the
connected nodes is not specified: the facts represented by the nodes are simply, in probabilistic
terms, probable or improbable to occur together. The nature of their causal connection is left
undefined in a structural sense. Hyperedges can also be used in graphical descriptions of models:
a hyperedge connects an arbitrary number of nodes, in a directed or undirected fashion.

Edges carry information describing the relationship between the connected nodes. This in-
formation can be the following:

a) A conditional probability, expressing the probability of the head node or effect conditional
to a single tail node or cause (see Section 3.2), or a set of tail nodes, or all of its causes
(see Section 3.1). In a case of a set of tail nodes or causes, the edge is a hyperedge.

b) A reference to an probability-updating function, to which the conditional probability up-
dates of the effect are delegated to. Graphically, these edges can be normal directed edges
in cases of single tail nodes or causes (see Section 3.3), or directed hyperedges in cases of
multiple tail nodes or causes (see Section 3.4).

C

N2

A relative magnitude indicator of the probabilistic influence. The relative magnitude indi-
cators do not map to any quantified changes in probabilities, but rather simply express the
magnitudes of the influences in relation to other relative influences in the model.

The graphs themselves can be cyclic or acyclic. Cyclic models are able to represent bidi-
rectional interaction and ambiguous causality. Acyclic models are in this sense more limiting
from modeling perspective. In acyclic graphs, the tail nodes can also be called parents and the
head nodes child nodes or children. The acyclic form of graph makes for computationally more
efficient inference. In some cyclic models, the computational transformation on which the in-
ference relies on is an estimation process based on sampling, such as a Monte Carlo process.
Sampling based estimation is computationally slow compared to the inference made possible
by the acyclic form of a model: the cyclicity is a trade-off between modeling power and com-
putational efficiency, if it results in a need to estimate the results by sampling. On the other
hand, acyclic models, in structurally complex cases, may also need to resort to sampling based
estimation instead of exact computational methods ®?.

3.1. Bayesian belief networks and influence diagrams

A Bayesian belief network, henceforth BBN, is a graphical model for probabilistic causal rea-
soning under uncertainty. The graphical representation of a BBN is a directed acyclic graph, de-
scribing relationships, denoted by directed edges, between random variables, denoted by nodes.
The nodes are normally multi-state descriptors, but in many implementations of bayesian net-
works the nodes can also hold continuous values. The relationships are defined by populat-
ing node-specific conditional probability tables (CPTs) with conditional probability distributions
(CPDS) (20.29.30) .
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A CPD contains information on the probability of a variable (child node, effect) being in a
certain state depending on the state of its explanatory parent variables (causes). For defining the
numerical dependencies, a wide variety of methods can be applied, beginning from the simula-
tions of either deterministic®" or probabilistic nature ®? or the direct use of data by utilizing
different learning algorithms ®*3%). Under the belief that future events are exchangeable with
earlier observations, the statistical frequency distributions can be utilized as well®®. In data-
or resource-poor cases, eliciting the degrees of belief of the experts, is widely used (6-26:36.37.38)
In elicitation of inputs, conditional probability tables can be elicited directly or parameters for
distributions can be asked from experts. In direct elicitation of conditional probability tables, the
dependency structure of the model has to remain relatively simple to keep the number of elicited
values manageable. Eliciting distribution parameter values instead of ‘naked’ conditional prob-
abilities may reduce work load for elicited experts, but this approach is normally used only for
continuous variables.

Normally, the BBN nodes are probabilistic random variables and can represent several dif-
ferent kinds of system properties. The random nodes can represent mutually exclusive discrete
states, but also continuous quantitative system properties, and both types can be used in the same
model. For an influence diagram, a special case of Bayesian belief network, also decision nodes
and utility nodes are available as node types®”. Decision nodes affect the state of at least one
of the random nodes: the states of a decision node are mutually alternative decisions or policies.
Decisions that can be potentially implemented in parallel, are given nodes of their own. Utility
nodes receive information from one or more nodes of the system (both random nodes and de-
cision nodes). A utility node defines the utility, harm, gain, or cost for all the possible output
combinations of interest. Utility nodes of the model define the decision making criteria, against
which the model evaluates the ranking order of the mutually alternative decisions. If the model
includes several decision nodes, an influence diagram can suggest policy optimization, meaning
that a search for the combination of the decision alternatives that maximizes the expected utility
or minimizes the expected harm, or find the most cost-effective solution, can be performed 69,

Unlike most models discussed in this review, a Bayesian network graph is acyclic, and does
not allow for structural inference loops. This imposes limitations on the expressive power of the
model, as cyclic interactions or ambiguous causal structures cannot be modeled. This limitation
can, to some extent, be overcome by applying ‘time-slicing’, i.e. duplicating the model and
this way creating dynamic and adaptive time-steps “*#"#?. For complex systems, however, this
solution is not very sustainable, as the size of the model easily grows beyond human perception
capacity.

The inference in a BBN follows the so-called Bayes’ theorem stating that the posterior prob-
ability of fact B given fact A represents what is known about how likely fact B is to be true
given the observation or occurrence of fact A. The Bayesian logic can also be called ‘inverse
logic’, as it can be used not only for predicting events given the causing factors, but also in an
omnidirectional fashion, for inferring the likely causes based on the observed effects “>*_ As a
consequence, a BBN can be used for three types of inference: a) predictive inference, meaning
forward direction—from parent to child node), b) diagnostic inference, meaning backward direc-
tion—from child to parent node, and ¢) mixed inference, meaning forward and backward at the
same time 4346,

Of the discussed approaches, BBNs are the most widely used, with many scientific, indus-
trial and decision support applications “7*®). They are used in planning and management activi-
ties 72495 with a limited foresight aim, and they have been applied in technology foresight ®",
but their utilization in e.g. scenario work typical to long range foresight is not yet common. An-
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alytically, BBNs can be used for delivering many outputs similar to other approaches discussed
in this section, with certain limitations, mainly resulting from the acyclic form of the model
prohibiting loops and modeling of bidirectional interaction. Analysis based on BBNs is well
supported with mature software implementations such as Hugin®? and Netica®?.

From the perspective of utilization in foresight applications, normal BBNs could be said to
have the following problems:

a) The acyclic form of the model means that bidirectional interaction between descriptors
cannot be modeled, and the causal structure is unambiguous. In foresight applications,
the causality structure is often ambiguous: occurrence of event A before event B might
causally influence B, but it might often be reasonable to expect a causal influence in the
other direction, should B occur before A.

b) The temporal logic of a foresight-oriented model is tightly coupled with the structure of
the Bayesian network. A temporal dimension can be modeled to some extent by the time-
slicing approach, but the nodes themselves carry no information about their temporal po-
sitioning in relation to other nodes. This limits the description of the temporal dimension
of models to some degree.

¢) The number of required inputs, in cases of structurally complex models, easily becomes
unmanageably high. As the structural complexity of the dependencies in the model in-
creases, the amount of information required by the conditional probability table represen-
tation of the relationships grows exponentially. The number of conditional probabilities to
be elicited for an effect e, in a case of n dependencies for e, is ([T, s(c;)) X s(e), where
s(c;) is the number of possible states a specific cause ¢; can have, and s(e) is the number of
possible states of the dependent effect. While the probabilistic interaction between nodes
can be accurately described with this approach, it limits modeling by expert elicited inputs
as the structural complexity has to be kept relatively low to keep the elicitation process
feasible. Limiting the structural complexity heavily will result a high abstraction level for
the descriptors and possible omission of considerations that might be important.

There are solutions (16-27-543336.57) to the problem of exponentially growing input information
in a Bayesian network, but the basic problem has to be considered in their use in chiefly ex-
pert elicited model parameterization. While BBNs undoubtedly can be a very useful approach in
foresight applications as well, their problematic aspects may warrant consideration of other prob-
abilistic modeling approaches. The use of Bayesian approaches in expert elicitation processes
has inspired methdolological proposals aiming at providing more intuitive-heuristic model valu-
ation, such as the approach by Varis ©83. This approach differs substantially from conventional
BBN models, aiming at modeling of probabilistic influences between continuous variables with
a discretized representation at the model level. The discrete states of the nodes are assigned
prior probabilities, and they are updated with information linked from other parts of the network,
yielding the posterior probability distribution. The posteriors are calculated by using two in-
dependent likelihood messages. The updated belief is obtained as the product of them and the
prior probability, i.e. what is known without the model structure and how much more is learned
when looking at the state of all variables. A link transfers information from one node to another
and is described by a link matrix. In a standard BBN, only nodes without parents can have an
independent prior probability distribution.

The analysis starts from a ‘tabula rasa’ model, in which all model variables are technically
connected with all other variables, but these connections are non-informative: a change in one
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variable does not influence the other variables. Also the variables are, at the outset, empty of all
information. In Bayesian terms, they are represented by a uniform, non-informative probability
distribution. In the modeling process, the tabula rasa is being filled with information on the vari-
ables and their interconnections, typically via an expert informant elicitation process®®. The
knowledge in the other parts of the model is taken into account by the information flow through
the links and other variables. Several parent nodes can have an impact on one node, and the
strength of these dependencies is influenced by the link values and computed by matrix multi-
plication. From statistical point of view, link values are equal to R?. Techniques for estimating
the belief network valuations® have been presented. This approach is especially suitable for
directive and strategic analysis. The modeling power of the approach is limited in cases of non-
linear dependencies, which can be well represented in a standard BBN model, and is suitable for
cases where the modeled domain can be represented with continous variables. However, it offers
many useful features for combined use of statistical, deterministic and other types of models. In
addition to basic analyses, comprehensive sensitivity analyses for causal thinking can be carried
out in the approach®?.

3.2. Gordon-Hayward cross-impact analysis and SMIC

The cross-impact approach ©!) predates Bayesian models, and has been introduced with
an explicit foresight aim and full expert-based model valuation in mind. The Gordon-Hayward
cross-impact analysis ©%01:92 or GHCIA, and the SMIC approach ©3% are probabilistic binary
descriptor cross-impact modeling approaches. There appears to be no link from existing literature
on Bayesian approaches to the cross-impact techniques or the other way around. While the
cross-impact analysis comes from a quite different research tradition than the BBN approach,
and approaches probabilistic reasoning from a difterent technical standpoint, the basic ambition
is similar: to observe probability changes in a probabilistic network, posterior to some evidence
or assumptions.

The GHCIA and SMIC nodes are binary descriptors with probabilities. They present a hy-
pothesis or a postulate, or a fact, about the state of the system in the future. The facts are
assigned an initial probability of occurrence, which is the expert estimate of the probability of
the fact when no other information about the system is available.

The edges carry information about the conditional occurrence probability of the fact of the
head node (effect), given the occurrence of the fact of the tail node (cause) 62 Tn SMIC, the
edges additionally carry information about the occurrence probability of the head node fact,
conditional to the non-occurrence of the tail node fact©*®%. In GHCIA, the non-occurrence
conditional probability is inferred from the occurrence conditional probability, instead of being
specified by the expert informants 2,

The initial and conditional probabilities are supplied by a single expert or an expert group,
preferably a group. In the case of GHCIA, the probability valuations P(i) and P(j) for any
two facts i and j in the model and the conditional probability valuation P(i|j) are checked for
compliance with the following conditions:

1L.O<Pl) <1
2. 0< P(ilj) < 1
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The last condition specifies the allowed bounds for the conditional probability of fact i given
the occurrence of fact j. If the expert-sourced probabilities do not fall within permissible bounds,
it is the task of the expert(s) to resolve the inconsistency by changing either the conditional prob-
abilities or the initial probability valuations ©?. In the case of SMIC, the acceptable conditional
probability bounds are reasoned ® to be different and more strict than what is acceptable in GH-
CIA. The software implementation provides a linear optimization function ®¥, which corrects the
initial expert-sourced valuations into the permissible bounds, while keeping the corrected valua-
tions as close to the original expert valuations as possible. The emphasis is on the discovery of a
consistent system of conditional probability valuations.

When the interactions and dependencies of the model facts have been described as a system
of conditional probabilities, model evaluation can be performed. Evaluation consists of assigning
a truth value, meaning that the state of the variable is known after assignment, for all the model
descriptors in random order, according to their probabilities. When a descriptor is assigned a
truth value, the probabilities of the other descriptors are updated according to the relationship
described by the system of conditional probabilities. This is done according to the odds ratio
technique®?, described by Eq. (1).

P
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Equation (1) presents the probability update logic of the Gordon-Hayward approach. P is the
current probability to be updated, P; is the initial probability, P, is the probability conditional to a
single cause, and P, is the updated probability. The idea is to reason about the magnitudes of the
probability impacts based on the differences of initial probabilities of facts and the conditional
probabilities. The first probability update a node undergoes brings its probability equal to the
conditional probability defined in the update. For the subsequent probability updates, it is nec-
essary to take into account that that the probability has already been updated, and the updating
technique of Eq. (1) is one possible way to do that. Function presented in Eq. (1) is plotted in
Fig. 1 with the initial probability fixed at 0.5.

The model is evaluated when all of its descriptors have been assigned a truth value. This
system state can be thought as a scenario and is the result of a single model evaluation. This
result is saved, the probabilities of the descriptors are reset to their initial a priori values, and
the evaluation is performed again, “a large number of times”: the computation is a Monte Carlo
process . After a number of evaluations deemed sufficient have been performed, the cross-
impacted posterior probabilities for the possible states of the descriptors (true or false) can be
computed as the frequency of occurrence of these states in the set of generated scenarios. The
operation of the modeled system can now be tested under various assumptions by changing the
initial probability valuations or the conditional probabilities and comparing how the a posteriori
probabilities change under different setups. For example, the likely impacts of implementing a
certain value for a decision node can be evaluated with the model.

A SMIC model is evaluated in a process similar to GHCIA, but the aim is to identify the
most probable scenarios, or combinations of node states, for further examination with other
futures methods %Y. For a system of n hypotheses, SMIC produces the probabilities for 2"
scenarios, ordered by their probability. Godet also recommends ® deriving an elasticity matrix
for the variables of model by means of performing sensitivity analysis on the initial probability
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Figure 1: Gordon-Hayward approach probability updating function graphed. Graph is plotted with the initial probability
fixed at 0.5.

valuations of the variables.

Comparing GHCIA to a BBN, the inference is of similar nature: a system of conditional
probabilities is defined, and the changes in the probabilities of facts in the model are observed
when the probabilities of nodes representing decisions, policies, or other variables of interest are
changed by the analyst. Technically, the approaches differ significantly, as the GHCIA approach
uses a sampling process to arrive at estimates of the posterior probabilities, whereas a Bayesian
network normally uses exact computational methods to yield the posterior probability distribu-
tions (although in complex networks sampling may be used to estimate posteriors)®?. The basic
analytical aim, however, is similar. An utility function can be defined for the model, and used
to identify an optimal combination of policies and interventions, represented as a set of decision
nodes.

The modeling power of GHCIA is limited compared to BBN, as the descriptors are binary
and the model has no structure in the same sense as a BBN: all events represented by nodes
occur at the same time, in an analytical sense. Temporal dimension cannot be modeled with
the GHCIA approach. The binary nature of descriptors means that mutual exclusivity of facts
cannot be reliably modeled, and exhaustiveness of facts cannot be modeled at all: there is no way
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to guarantee that at least one of random variables, in a set supposed to represent an exhaustive
set of facts, will be evaluated true.

@) C, | &3 E
p 04 | 06 | 07 | 05475
0168 | T T T 0.95
0072 | T T F 0.72
0112 | T F T 0.68
0.048 | T F F 0.39
0252 | F T T 055
0108 | F T F 035
0168 | F F T 03
0072 | F F F 0.2

1

Figure 2: BBN and GHCIA representations of conditional probabilities

The modeling power of GHCIA, in terms of interactions, is also limited compared to a BBN.
In a BBN, the conditional probabilities for a fact are specified for all combinations of the facts
it is causally dependent on. In GHCIA, the conditional probabilities are specified for all causes
independently, not for all possible combinations of causes. This property could be called struc-
tural haziness of causality. However, from the point of view of the feasibility of expert elicitation
of model inputs, this difference means that there are less conditional probabilities to be elicited.
The exact number of elicited probabilities for a model with n nodes is n”. Fig. 2 illustrates the
difference between a BBN and GHCIA in description of probabilistic dependencies.

In the BBN model of Fig. 2, a probability for each possible configuration of the causes
C1, C; and Cs is obtained as the product of the probabilities of the causes (or their complements
in case the cause does not occur). The probability of the effect E is defined by the modeler
for each configuration. The probability of E is simply the sum of p(E) in each configuration
multiplied by the probability of the configuration in question. The GHCIA model, presented
alongside on the right in Fig. 2, represents the precise information of the BBN to the precision
limits of its modeling language. The ‘independent initial probability’ the effect £ in the GHCIA
model has can be obtained directly from the BBN model as the probability of E in a case where
no information or evidence is available. This probability (0.548) is visible in the p(E = T)
column, bottom row. The probabilities conditional to individual causes could be obtained by
changing the probability of each cause, one at a time, to 1, and recomputing the probability
for E. Populating the BBN model requires 11 values, whereas for the GHCIA model, 7 values
suffice. Some information from the BBN representation is lost, but less input values need to be
elicited: GHCIA represents the causalities in an approximate fashion, with fewer inputs. In a
case of structurally complex causation, where an effect node has a high number of cause nodes,
this difference becomes important. For a GHCIA model, the number of conditional probabilities
to be elicited grows in a quadratic fashion, whereas for a BBN the growth is exponential: if one
more binary cause would be added, the number of conditional probabilities in a BBN description
of the dependency would be doubled. Table 5 illustrates this.

As initial and conditional probabilities in GHCIA and SMIC models are expected to meet
the conditions specified above, the elicitation of these values may require redefinition of values
already elicited, resulting in considerable amount of iteration in the valuation process. The ap-
proaches also requires definition of conditional probabilities for all directed variable pairs in the
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model. While the number of elicited inputs in the case of a structurally complex model may
be significantly lower than in a BBN, the number of descriptors has to remain relatively low
to keep the elicitation process feasible. Godet et al.® actually recommend that the number of
descriptors in a SMIC model should not exceed 6. Most actual modeling cases require the use
of a much greater number of descriptors to produce actionable information for decision support.
Attempting to model any real system or decision-making context with a very limited number of
descriptors means that the model turns out highly abstracted, and its analytical outputs are of
high abstraction level as well, and its decision support use limited. For a GHCIA model, a fea-
sible number of descriptors may be significantly higher compared to SMIC, as the requirements
for valid conditional probability valuations are less stringent. The modeling power is still limited
by the binary descriptors and the lack of temporal structure.

3.3. BASICS

The BASICS approach® has been proposed after the GHCIA approach for application of
probabilistic reasoning in foresight applications and futures thinking. BASICS is a probabilistic
logic aiming at identifying scenarios, or combinations of facts, that are mutually consistent in the
sense of being probable to occur together. The BASICS nodes are multi-state descriptors, with a
probability distribution for the states, similar to a BBN. The edges describe causal influences on
the head node, conditional to the tail node being in a certain state: When the state of the tail node
is resolved during model evaluation, the probabilities of states of the head node are updated.

BASICS does not employ sampling in its model evaluation, as the GHCIA approach, and
doesn’t produce posterior probability distributions for the nodes. Instead, the model evaluation
is a deterministic process: the model is evaluated twice for each possible state of its nodes, first
assuming the state in question to ‘be true’ or occur, and second the state to ‘be false’ or not occur.
The other nodes are evaluated in sequence, so that the most probable state is selected for it and the
probability updates for that state on other states are performed. Each model evaluation produces
a set of node states occurring in that evaluation, and this set can be interpreted as a scenario. This
process yields s X 2 scenarios for a model with s states in total for its nodes. The motivation is to
find scenarios that are “probable and consistent”®”), in the light of the supplied prior probabilities
and interactions. The scenarios that emerge from multiple different evaluations are interpreted
to be probable and consistent, warranting further study with other analytical techniques. JL-
algorithm ©7 is derived from BASICS, and proposes changes to the model evaluation procedure
to eliminate effects of the ordering of the descriptors in the user input, as they are significant in
some BASICS implementations.

BASICS has a more limited inference aim than BBN or GHCIA: the aim is simply to gen-
erate a small set of scenarios and to identify whether or not same scenarios are produced with
different starting assumptions about individual node states. The intended use coincides with the
SMIC approach discussed in Section 3.2, as well as the approaches discussed in Section 3.6. The
process does not aim at computing or estimating posterior probabilities as BBN or GHCIA mod-
els. BBN and GHCIA models, on the other hand, can be used for identifying consistent model
configurations, covering the analysis aim of BASICS.

The modeling language of the BASICS approach further simplifies the description of the
probabilistic influences, compared to the GHCIA approach. The probability-changing interac-
tions that the model components have on each other are expressed as references to probability-
updating functions 76369 which alter the descriptors’ probabilities ‘contextually’. This means
that adjustment by the same function will result in a different amount of probability change in
the influenced descriptor, depending on the value of the adjusted probability at the time of the
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adjustment. Figure 3 illustrates how current probabilities are mapped to updated probabilities
with the updating function set available in BASICS.

1
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0.5 .
041 .
03} 3 |
0.2 .
0.1 .

Updated probability

0 | | | | | | | |
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Figure 3: Probability updating in BASICS.

The GHCIA probability updating is based on an updating function as well: a single updat-
ing function maps current probabilities to updated probabilities, taking the current probability P,
initial probability P; and the conditional probability P, defined for the edge as arguments. In BA-
SICS, there is a set of six updating functions, each of which simply takes the current probability
as an argument and maps it to an updated probability. The description of probabilistic influences,
for the modeler, is now simply to reference the appropriate updating function, depending on the
perceived magnitude of the influence: +1 to model a small probability-increasing influence of
the cause on the effect, —3 to model a strong probability-decreasing influence.

The approach taken in BASICS is, in comparison to GHCIA, another step towards more in-
tuitive valuation of the model. GHCIA bargains on the structural precision of the causality, by
only holding information on single cause specific conditional probabilities, instead of a condi-
tional probability table describing probabilities of the effect in all possible state configurations of
all of its causes. BASICS bargains on both structural and valuational precision, modeling both
the structure and the magnitude of the causalities in a hazier, more approximate way compared to
a BBN. As the probability updating is fully contextual, there is no need to specify a set of initial
and conditional probabilities compliant to a set of probability axioms as in GHCIA. Impacts do
not need to be specified for all model state pairs, as in GHCIA, where a conditional probability
is needed for all node pairs. Multi-state nodes can model what a basic BBN can model, with a
structurally and valuationally hazy precision. What is gained by losing the precision is an easier,
faster model valuation process in expert elicitation.

BASICS and JL-algorithm make it possible to identify consistent scenarios, but the inference
and analytical outputs are limited to that, and probabilistic inference is not possible with the
computational process of BASICS. The decision support oftfered by the approach is thus indirect
and limited. Like GHCIA and SMIC, the descriptors have no temporal structure or ordering. This
fact also limits the modeling power. The modeling language, however, lends quite well to expert
elicitation, reducing the number of inputs required for structurally complex models and perhaps
being more suitable for the hazy expert valuation than the conditional probability orientation of

13



GHCIA.

3.4. AXIOM

The AXIOM approach7*7) combines features from BBN, GHCIA and BASICS. While
technically different, functionally it could be seen as a special case of a BBN, where

1. graph cycles are allowed,
2. posterior probabilities are estimated by sampling, as in GHCIA, and

3. probabilistic influences are described in a cross-impact language, i.e. by delegating the
updates to updating functions, instead of populating effect node specific conditional prob-
ability tables.

AXIOM uses updating functions to perform the updates, but the idea is extended from GHCIA
and BASICS approaches. An AXIOM model can have an arbitrary number of updating functions,
as opposed to BASICS, which has a fixed set of six updaters. The updating functions close over
the model, and can use any information in the model to determine the magnitude of probability
update. This could mean making the updates conditional to any number of causes instead of just
one, as is the case in BASICS. In this sense, the AXIOM edges are hyperedges, connecting a set
of causes to an effect, and carrying a reference to an updating function.

AXIOM nodes have a timestep property, which determines the evaluation logic during the
model evaluation. The timestep property values indicate the temporal position of the node in re-
lation to other nodes in the model. Nodes with a lower timestep value are evaluated before nodes
with higher values; Nodes with an equal timestep value are evaluated in random order. This way,
the temporal structure of the model can be specified: the lower timestep nodes are guaranteed to
be resolved and exert their influence over higher timestep nodes in the model evaluation, unlike
in GHCIA or BASICS. Nodes with equal timestep values occur ‘simultaneously’, in an analytical
sense, or at the level of a single model evaluation in the Monte Carlo process, in random order.

The AXIOM updating approach partially eliminates the structural haziness of the updating in
GHCIA and BASICS. Fig. 4 illustrates a case of probabilistic dependence this feature is useful.
The BBN conditional probability table on the right side of Fig. 4 shows how the probabilistic
impact of the three causes Cy, C, and Cj is synergic: all causes somewhat elevate the probability
of effect E, but the probability increase is modest when just one or two of the causes are present.
The occurrence of all three causes raises the probability to 0.98.

Such synergic probabilistic influences, that can precisely be modeled in a BBN model, can-
not be modeled with the individual-cause approach taken in GHCIA and BASICS, but can be
approximated with AXIOM-style hyperedges. Valuationally the description is hazy, although
perhaps not as hazy as in BASICS, as the AXIOM model can, if needed, have a greater number
of updating functions. Structurally the description is hazier than a BBN description, but less
hazy than in GHCIA or BASICS. This modeling power comes at no cost in the sense that model-
ing the additional structural accuracy to the probabilistic influence is not forced on the modeler;
The dependence could be modeled with single-cause influences as well, discarding the structural
precision if desired.

The results of AXIOM model evaluations, that is, the generated ‘scenarios’ where each model
node has a state, are saved to AXIOM iteration objects. The probabilistic inference is based on
treating this collection of generated ‘possible worlds’ as a sample. The approach is capable of
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Figure 4: Probability updating functions in AXIOM.

providing analytical outputs of similar nature as a BBN, such as predictive, diagnostic and mixed
probabilistic inference.

With reservation to the haziness of the inputs and the inevitable haziness of the outputs,
the decision support capabilities of AXIOM are very much congruent with BBNs and influence
diagrams: any AXIOM node can act as a decision node or an utility node, and the software im-
plementation directly supports setting nodes as decision nodes through the intervention statement
mechanism. The reliance on sampling based estimation means that these outputs are extracted
in a computationally rather expensive way, but they are available and can be extracted as batch
processing. BBN implementations using exact computational methods are able to provide the
results in real time after changes to the model, whereas the AXIOM implementation requires a
recomputation of the iterations after changes to display the posterior probabilities.

The cyclic graphical nature of an AXIOM model allows for extraction of similar outputs as
the structural and morphological approaches discussed in the next subsections. These could be
said to be available in a BBN as well, but the acyclicity causes the use of BBNs to be some-
what limited for structural and morphological analysis. As consecutive AXIOM evaluations can
be used to output a list of full system configurations, the output could be used for estimating
conditional probability tables for a BBN. This means that AXIOM can be used in modeling the
parts of the system where expert informants are the main source of inputs, and other parts of the
model, for which there might be empirical data available, could be algorithmically learned into
a BBN model and the two models combined as a single BBN model.

3.5. Structural analysis

Michel Godet has used the term ‘structural analysis’ ® to refer to an analytical process that
studies “systems consisting of interrelated elements”, and aims to reveal, through a computa-
tional transformation, a more ‘real’ picture of the structure of the relationships between the sys-
tem components. MICMAC method is the computational transformation associated with Godet’s
structural analysis. The later ADVIAN 72 approach is derived from MICMAC, and proposes im-
provements to it.

MICMAC and ADVIAN models can be represented as directed cyclic graphs, where the
nodes represent variable concepts: they only have a description and no other properties, such
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as an associated probability, a set of states with probabilities, or a node type. The description
is in a form of a proposition, hypothesis or postulate about the state of the system. The edges
represent direct causal influence tail node variables have on head node variables. The strength or
magnitude of each edge is expressed with a positive number. Also negative numbers can be used,
but this of no consequence to the analysis results, as only impact magnitudes are considered in
MICMAC and ADVIAN. The magnitudes of the causal influence are not specified in terms of
probability change, but only as relative magnitudes, relating the influences to other influences in
the same model.

The model is normally presented as an impact matrix, where the row variable is the impactor
and the column variable is the impacted variable: the impact matrix presents the direct influ-
ences the nodes have on each other. The row sum of the impact values reflects the overall direct
systemic influence of the row variable; the column sum, in turn, reflects the overall direct sys-
temic dependence of the column variable. The variables can be ordered according to this direct
influence or dependence, and this ordering based on direct impacts is the initial ordering in the
MICMAC approach (6369,

MICMAC aims to reveal the ‘hidden’ structure of the impacts by accounting for the indirect
influences extant in the system. These indirect influences are inferred from