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Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have been shown to be useful to
improve techniques that are developed for the study of cardiac disease. Abnormalities in Ca®* transients are
commonly present in iPSC-CMs derived from individuals with a cardiac disease. We previously observed that
Ca®* transient signals of healthy CMs can be distinguished from transients of CMs derived from individuals
having different genetic cardiac diseases. Machine learning was used to distinguish different diseases from each
other as well as from controls. We wanted further to investigate whether we are able to separate iPSC-CM Ca>*
signals of any genetic cardiac disease as one group from those of healthy individuals by utilizing machine
learning methods. A total number of 593 CM transient signals from healthy individuals and from patients were
analyzed. We obtained a best classification accuracy of 87% between the disease group and controls. This finding
provides evidence that machine learning methods are efficient for identifying iPSC-CMs derived from individuals
with a disease phenotype, and that iPSC-CMs may be useful to identify individuals at risk for a cardiac event.

1. Introduction

Genetic cardiac diseases present a wide range of symptoms, ranging
from completely asymptomatic to severe arrhythmias, and even sudden
cardiac death [1,2]. Additionally, most if not all of these diseases have
an increased risk for arrhythmia, in addition to structural or other
cardiac abnormality, e.g., in various cardiomyopathies. If the mutation
causing disease is known in the family, it is easy to focus on the mu-
tation carriers for follow-up and primary prevention of potential ar-
rhythmias. However, this is often problematic when the disease is
presented by sudden death in the family, but no mutations are found. In
such situations, induced pluripotent stem cell (iPSC) -derived cardio-
myocytes may provide a useful alternative to predict arrhythmic risk,
and to identify those family members with increased risk of clinical
symptoms including arrhythmias.

On a cellular level, cardiac functionality can be studied with the
help of CMs differentiated from human pluripotent stem cells [3,4]. The
induced pluripotent stem cell (iPSC) technology offers a way to repro-
gram differentiated cells back to the pluripotent state — and, therefore,
it is a useful tool for studying the pathophysiology of various disorders
and drug responses in human cells [5]. Additionally, cellular differ-
entiation and maturation can be studied with these cells [6].
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Thus far, iPSC-CMs have successfully been used to model genetic
cardiac diseases such as catecholaminergic polymorphic ventricular
tachycardia (CPVT) [3,4,7-12], long QT syndrome (LQT) [13-16] and
hypertrophic cardiomyopathy (HCM) [17-19]. iPSC-derived CMs have
revealed considerable abnormalities and diversity in intracellular Ca®*
cycling features compared to healthy control CMs. Ca®* cycling plays
an important role in cardiac functionality by linking electrical activa-
tion and contraction, and the characterization of Ca®" cycling is vital in
order to facilitate investigations of cardiac disorders and dysfunctions,
as well as to study disease management with different compounds.

Heretofore, machine learning has rarely been applied to the data
associated with induced pluripotent stem cell-derived cardiomyocytes.
Machine learning has however been applied to the mechanistic action
of cardioactive drugs [20]. We demonstrated in previous articles that
the separation of calcium transient signals of abnormally and normally
grown cardiomyocytes can be accurately done with machine learning
[21,22]. In these papers, abnormality is defined as deformed Ca®* peak
forms varying in amplitudes (sizes) and durations of Ca®* transients
and normality as harmonious transients of approximately the same size
and form throughout entire calcium transient signals. To the best of our
knowledge, our recent study [23] was the first one in which different
genetic cardiac diseases were separated according to their calcium
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transient signals by using classification performed with machine
learning methods.

In the present research, visually normal and abnormal Ca®* tran-
sient signals and peak variables of three genetic cardiac diseases and
healthy control CMs were used. Disease-specific CMs were generated
from patients suffering from CPVT, an exercise-induced malignant ar-
rhythmogenic disorder [3,8], LQT type 1, an electric disorder of the
heart that predisposes patients to arrhythmias, and HCM, a disorder
that affects the structure of heart muscle tissue leading to arrhythmias
and progressive heart failure [19]. All of the transients of diseased cells
were pooled and compared to all of the transients obtained from control
cells, and different machine learning algorithms were designed and
used to analyze this technology to automatically distinguish the groups.

2. Materials

The current study was approved by the Ethics Committee of
Pirkanmaa Hospital District in establishing, culturing and differ-
entiating human iPSC lines (R08070). The patient-specific iPSC lines
were established and characterized as described earlier, as well as the
CM differentiation and dissociation of beating areas [22]. The studied
cell lines included six CPVT lines generated from CPVT patients car-
rying cardiac ryanodine receptor (RyR2) mutations, four HCM cell lines
generated from HCM patients carrying either a-tropomyosin (TPM1) or
myosin-binding protein C (MYBPC3) mutations, two LQT type 1 cell
lines generated from patients carrying potassium voltage-gated channel
subfamily Q member 1 (KCNQ1) mutations, and one cell line generated
from a healthy control individual. Thus, there were 13 subjects alto-
gether.

Ca®™ imaging was conducted in spontaneously beating, 4 uM Fura-2
AM (Invitrogen, Molecular Probes) or 4uM Fluo-4 AM (Life
Technologies Ltd) loaded dissociated CMs as described earlier [3].
During the measurements, CMs were perfused with 37 °C HEPES based
perfusate consisting of (in mM) 137 NaCl, 5 KCl, 0.44 KH2PO4, 20
HEPES, 4.2 NaHCO3, 5 p-glucose, 2 CaCl2, 1.2 MgCl2, and 1 Na-pyr-
uvate (the pH was adjusted to 7.4 with NaOH). Ca?™ measurements
were conducted on an inverted IX70 microscope with a UApo/340 x20
air objective (both Olympus Corporation, Hamburg, Germany) or with
Axio Observer.A1 microscope with Objective Fluar 20x/0.75 M27 (both
Carl Zeiss Microscopy GmbH, Gottingen, Germany). Images were taken
with an ANDOR iXon 885 CCD camera (Andor Technology, Belfast,
Northern Ireland) and synchronized with a Polychrome V light source
by a real time DSP control unit or with Lambda DG-4 Plus (Sutter In-
strument, California, USA) wavelength switcher and TILLvisION, Live
Acquisition (TILL Photonics, Munich, Germany) or ZEN 2 blue edition
software (Carl Zeiss Microscopy GmbH, Géttingen, Germany) software.
For Ca®* analysis, regions of interest were selected for spontaneously
beating cells and background noise was subtracted before further pro-
cessing. Each Ca®* signal corresponded to a recording from one cell.

3. Data computed from Ca®* transient signals

Human induced pluripotent stem cell-derived CMs were the data
source from which cycling Ca®* transient signals were obtained. Data
used in the computation were based on the peaks of Ca®* transient
signals. Cycling peaks were recognized, and data variables or features
were extracted from every peak. Previously Ca?™ transient signals were
categorized using our recognition algorithm [22], which classified them
into either normal type or abnormal signal type on the basis of normal
or abnormal peaks of the signals, and where we observed that it was
possible to separate normal from abnormal signals up to the accuracy of
approximately 90% when compared to a human expert's classification
decisions.

Fig. 1 presents 10 s segments of four signals as examples. The signals
were short, their durations being from 7.7s to 46.5s and 19.0s on
average. An entire signal was determined to be abnormal if even a
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single peak was observed as abnormal. In the current research, we did
not differ normal and abnormal signals from each other, but advanced
to separate Ca®" transient signals of diseased induced pluripotent stem
cell-derived CMs from those of control subjects. It was interesting to
study whether disease transient signals can be differentiated from those
of controls, although both classes contained both normal and abnormal
signals. The number of the abnormal control signals was only 12.6% of
all control signals. The disease transient signals originated from the
group of the three above-mentioned diseases: LQT1, HCM and CPVT.
These were used jointly as the disease class. The other class was formed
by the signals of the controls (wild type, WT).

The data used comprised 394 disease transient signals and 199
control transient signals. These contained, respectively, 179 normal and
215 abnormal signals, and 174 normal and 25 abnormal signals. It is
noticeable that there were only relatively few abnormal signals in
controls, since these were far more infrequent compared to those of
disease CMs.

Sampling of the transient signals contained three different fre-
quencies, because the data were recorded at different times and the
sampling frequency was increased in the meantime. The approximate
sampling frequencies were 8 Hz, 11 Hz and 23 Hz. In this order, 35%,
26% and 39% of the diseased signals were recorded, and, correspond-
ingly, 5%, 15% and 80% of the control signals.

In order to detect individual peaks of a transient signal, values of its
first derivative were computed in short sequential segments, where
slopes of linear regression computed with sequential signal segments of
a few samples were used to estimate first derivative values (Fig. 2). To
determine the beginning of a peak, its first derivative values had to
remain smaller than a small positive threshold value determined ex-
perimentally during a few sequential slope values. Thereafter, slope
values became greater while proceeding forward along a typically steep
left side of a peak producing large positive first derivative slope values.
Next a peak maximum or top was found when slope values again de-
creased less than the positive threshold value. After the maximum, first
derivative slope values changed negative along the decreasing right
side of a peak (Fig. 2). Ultimately, the end of a peak was encountered
when the first derivative slope values again increased close to zero. The
detailed procedure for the peak detection was introduced in our pre-
vious research [22]. However, oscillations of very small amplitudes
were not accepted as valid peaks in a signal, as follows. After the re-
moval of a possible linear trend in a signal, the amplitude of large peaks
in a signal was estimated as a difference from the average of the highest
sample (amplitude) values (15% of all) to the lowest sample values in
the current signal. Such peak candidates that had the amplitude of the
left or right side of a peak less than approximately 8% from the above
amplitude estimate of the large peaks were not accepted as peaks, but
were suspected as being probable noise [22]. The numbers of the peaks
extracted from the signals varied from 1 to 61, and were only 12.8 on
average.

After the recognition of the peaks from the transient signals, values
of 12 variables for every peak were computed as follows. First, the
amplitudes of the left and right side of a peak were computed - see
Fig. 2. Second, the durations of both peak sides were computed from
locations a to ¢ and from c to e. Third, the maximum of the first deri-
vative from the left side of a peak and the absolute minimum of the first
derivative from the right side were computed. Fourth, the maximum
and absolute minimum of the second derivative were computed from
the right side only. The left side was not now applied, because fre-
quently these were too short (as to the number of samples) for second
derivative values to have been calculated. Fifth, the surface determined
by a peak curve and a line from the beginning to the end of a peak was
computed. Sixth, the duration (time difference) from the maximum at
location ¢ to the maximum of the preceding peak was computed, or if
the current peak was the first peak of a signal, the duration was cal-
culated from the signal beginning. Seventh, the duration (time differ-
ence) from peak beginning a to location b of the first derivative
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Fig. 1. (a) A 10 s segment of a normal CPVT signal in which the peaks recognized to be normal are marked with green bars, and also the beginning and end of every
peak marked. (b) An abnormal CPVT signal in which all peaks were recognized as deformed to be abnormal and marked with stars. (c) A 10 s segment of a normal
control transient signal. (d) An abnormal control transient signal, where two abnormal peaks were marked with stars. (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version of this article.)

maximum of the left peak side and the duration from location c of the
peak maximum to location d of the first derivative minimum of the right
peak side were computed.

To visualize the data, in other words, variable values computed
from 5290 recognized peaks of the disease transient signals and 2291
peaks of the control transient signals, after the normalization of the
data Stochastic Neighbor Embedding algorithm with the Euclidean
distance measure in MATLAB was used to present the data in two di-
mensions. This is depicted in Fig. 3. When a great part of the cases in
two different classes are apart from each other, it is possible that this
predicts a successful classification for the classes.

The means and standard deviations of all 12 variables are presented
in Table 1. Considerable differences for the means of two classes for
every variable are seen, which may denote a favorable classification
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chance between the disease and control transient signals.

Next we evaluated how efficient the 12 variables are to separate or
classify the two classes. We ran the reliefF algorithm in MATLAB for our
data. It functions on the basis of applying a nearest neighbor searching
method, in order to measure the differentiation power or weight,
variable by variable. We chose nine k values for the numbers of nearest
neighbors, control parameter of the algorithm. They were 3, 5, 7, 9, 11,
15, 21, 25 and 31, where odd values only were used to prevent possible
ties (equal numbers from the two opposite classes) during nearest
neighbor searching. For each peak variable, the median of weights
given by the reliefF algorithm for results of nine runs (Fig. 4) was
computed. The positive weights mean that all variables are able to se-
parate the two classes. Weights are relative and they express ranking of
variables for differentiation of classes. For all nine runs, variables 3, 4, 5
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Fig. 3. The visualization of the peak variable values of disease and control (WT)
transient signals in two dimensions.

and 11 obtained the greatest or best weights and variables 9, 10 and 12
resulted in the smallest or poorest instances to separate the two classes.
Instead, variables 1, 2, 6, 7 and 8 were between the best and poorest,
and their ranking varied slightly among the nine test runs, when their

Table 1
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Fig. 4. Medians of weights were calculated with the reliefF algorithm for the 12
variables of the current data by using 9 different k values (number of nearest
neighbors). Variables 3, 4, 5 and 11 are the most efficient and variables 9, 10
and 12 the least efficient for the differentiation of the disease transient signals
from those of controls.

Means and standard deviations of 12 variables for 5290 peaks of the disease transient signals and 2291 peaks of the control transient signals.

Variable number Peak variable

Disease transient signal peaks Control transient signal peaks

1 Peak left side amplitude 201.3 + 134.4 2725 + 170.2
2 Peak right side amplitude 203.4 + 135.4 2754 = 171.8
3 Left duration [s] 0.31 = 0.181 0.492 + 0.263
4 Right duration [s] 0.597 * 0.394 1.039 + 0.601
5 Maximum of left side first derivative 1348 + 985 2131 = 1276
6 Absolute minimum of right side first derivative 780 + 496.33 927 + 635

7 Maximum of right side second derivative 3397 = 3110 4465 *= 3386
8 Absolute minimum of right side second derivative 2116 *= 2561 3938 * 4359
9 Peak area 68 + 76 132 + 115

10 Duration from peak maximum to preceding one (or beginning) [s] 1.039 = 0.858 1.944 + 1.58
11 Duration from peak beginning [s] to left side maximum of first derivative 0.201 = 0.14 0.312 * 0.198
12 Duration from peak maximum [s] to right side minimum of first derivative 0.138 + 0.075 0.156 + 0.145
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weights were approximately equal as seen in Fig. 4. In any case, on the
basis of these results as well those in Table 1, all 12 variables were
found to be useful for the differentiation of disease and control calcium
transient signals from each other.

4. Classification methods used and design of experiments

We used a wide collection of classification algorithms in our study,
ranging from traditional methods to state-of-the-art methods. Since our
dataset consists of a true class label defined by the human expert for
each signal, we concentrated only on supervised classification methods
and, hence, semi-supervised and unsupervised methods were out of the
scope of this paper. Methods used in our study were mostly the same as
used in our previous study [23]. However, in Ref. [23] the classification
task was multi-class by nature, whereas in this paper the classification
task is a two-class problem. We do not present the detailed description
about the actual classification methods, but a reader can find thorough
descriptions about the algorithms from the given references. Compared
to Ref. [23], there were now two novel peak variables: variables 11 and
12 (Table 1).

As a first classification algorithm, we applied the k Nearest Neighbor
(kNN) searching method [24-26] that is one of the earliest classifica-
tion algorithms and most used. The performance of the kNN algorithm
depends mainly on three factors: k value, distance measure, and dis-
tance weighting scheme. These factors are data-dependent and for each
dataset, a suitable combination must be searched separately. For our
study, we selected k values of 1, 5,7, 11, 13 and 17 to be examined, and
here we followed the principle used in Ref. [23]. We selected eight
distance measures to be tested: Chebyshev, cityblock (Manhattan),
correlation, cosine, Euclidean, Mahalanobis, standardized Euclidean
and Spearman. We performed -classification with three distance
weighting schemes: no weighting (weighting equal to 1), reciprocal,
and squared reciprocal with respect to distance.

The second wholeness used was discriminant analysis based algo-
rithms. Discriminant analysis covers various variations, and from them
we applied linear discriminant analysis [27,28], quadratic discriminant
analysis [28,29], and Mahalanobis distance based discriminant analysis
[30]. When moving to probability based algorithms, naive Bayes clas-
sifier [24,31,32] cannot be dismissed. Naive Bayes is a classical widely
used method in many applications. It can be used with or without
kernel density estimation [24,31]. In this paper we used the naive Bayes
algorithm in both senses. When kernel density estimation was used, we
examined Gaussian, box, triangle and Epanechnikov kernels. We also
applied the naive Bayes classifier without kernel density estimation
when the normal distribution assumption over the dataset is expected.
Besides naive Bayes classifier, kNN and discriminant analysis based
classification methods, we used multinomial logistic regression [33,34]
which returns to logistic regression [31,32] in two-class tasks.

Decision tree-based solutions are commonly used alternatives in
machine learning tasks. Their advantages are easy interpretation and
computational efficiency. These issues are important to take into ac-
count when considering the end-users of our application, who are
persons not experts in the machine learning area. In our study, we in-
vestigated CART [25,35] algorithm and Random Forests [36-38]. For
Random Forests we varied the number of trees from 1 to 100.

The Support Vector Machine [39] has gained great popularity since
the early 1990s, and has been used in various applications. However, in
our study, we decided to use a variant of SVM called the least squares
support vector machine (LSSVM) [40-42] which differs from traditional
SVM in such a way that LSSVM solves a system of linear equations
instead of a quadratic optimization problem. The performance of
LSSVM is heavily dependent on the selection of a kernel function and
(hyper)parameter values. Hence, it is always necessary to perform a
thorough search of (hyper)parameter values in order to ensure the best
possible result. A common parameter for all kernel functions in LSSVM
is C, also called box constraint. We selected the linear, quadratic, 3rd
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degree of polynomial kernel and the RBF kernel to be examined in our
paper. The parameter value space for the box constraint and hy-
perparameter o (the width of Gaussian function) is {2712 2711
..,21%217}, By this means polynomial kernels were tested on 30
parameter values and the RBF kernel on 900 (C,0) combinations.

The classification was performed based on the leave-one-signal-out
(LOSO) procedure, which is a modification compared to the leave-one-
out method. In signal classification, a noticeable detail must be re-
membered. Variables are determined from peaks, and a signal consists
of one or more peaks. Thus, the data gained from one signal usually
includes several rows in an observation matrix. When defining training
and test sets, one needs to ensure that the whole data from the signal is
in either the training or test set. Signal data must not be split into two,
such that one part is in training set and the other is in test set. In LOSO,
the peak-based data from each signal in turn forms a test set, and the
rest of the data are in the training set.

When we train a computational model based on a classification
method, we must remember that the training phase of an algorithm is
performed on peak-based data, not on signal level data. Hence, a
classifier learns its model based on peaks and not on signals. After
training of a classifier, we give the test set as an input to the classifier.
Then the classifier gives a predicted class label for each peak in a test
set. In this stage, results are at peak level. However, since the aim of this
paper is signal classification, we need to transform the peak level results
into a signal level result. This is done by taking a mode from the pre-
dicted class labels for peaks in a test set. We can do this because we use
the LOSO procedure, where a test set covers data only from one signal.
However, mode is not always unambiguously defined and a tie may
occur. In our paper we had only two classes, so a tie could occur with
only two classes. If a tie occurred, we solved the problem in the fol-
lowing way.

1. Extract the training data of classes C; and C, occurring in a tie, from
the training set.

2. Find the proportions P;=(|Cq|/(|C;|+|C2]))100% and P,=(|Cs|/
(|C1|+|C2|))100% where |.| is the size of a set. Hence, an interval
[0,P,] is for the class C; and interval (P;,100] is for the class C..

3. Generate a random number R from the uniform distribution U(0,1).

4. If R*100% belongs to interval [0,P;], select C; as final class label for
the signal. Otherwise, select C,.

After finding a predicted class label for each signal in a dataset, we
can compare the predicted class label with the true label and construct
a confusion matrix. From the confusion matrix, we can evaluate dif-
ferent kinds of measures which describe how well the classification has
succeeded. For our study, we selected accuracy ((TP + TN)/
(TP + TN + EN + FP)), true positive rate (TP/(TP + FN)) for diseases
and true negative rate (TN/(TN + FP)) for controls. For the classifi-
cation methods which require parameter tuning, we repeated LOSO
with all parameter values examined, and selected a parameter value
(combination) that achieved the highest accuracy.

5. Classification results of disease or control transient signals

The main target of the research was to study how efficiently two
transient signal groups can be differentiated from each other. For this
purpose, several classifiers were implemented as described above. Their
results are presented in the following.

Classification results are shown in Tables 2—4, in which true positive
rates (sensitivity) correspond to disease transient signals, and true ne-
gative rates (specificity) to control signals. Accuracy equals the sum of
true positive and negative cases divided by the number of all cases.
Now k nearest neighbor searching with cityblock (Manhattan) metric
yielded the best accuracy results of 86.0% in Table 2. In Table 3, k
nearest neighbor searching with Euclidean metric and squared inverse
weighting was the best method, obtaining a 84.5% level. In Table 4, the



M. Juhola et al.

Informatics in Medicine Unlocked 14 (2019) 15-22

Table 2

Classification results of k nearest neighbor (kNN) searching, with different metrics or measures with the best k value.
Classification method True positive rates of diseases % True positive rates of controls % Accuracy %
kNN with Chebychev metric and equal weighting, k = 1 87.3 69.3 81.3
kNN with Chebychev metric and inverse weighting, k = 1 87.3 69.3 81.3
kNN with Chebychev metric and squared inverse weighting, k = 5 86.5 71.4 81.5
kNN with cityblock metric and equal weighting, k = 1 91.1 75.9 86.0
kNN with cityblock metric and inverse weighting, k = 1 91.1 75.9 86.0
kNN with cityblock metric and squared inverse weighting, k = 1 91.1 75.9 86.0
kNN with correlation measure and equal weighting, k = 1 89.3 67.8 82.1
kNN with correlation measure and inverse weighting, k = 5 89.3 71.4 83.3
kNN with correlation measure and squared inverse weighting, k = 5 89.3 71.9 83.3
kNN with cosine measure and equal weighting, k = 1 86.8 71.4 81.6
kNN with cosine measure and inverse weighting, k = 5 87.8 74.4 83.3
kNN with cosine measure and squared inverse weighting, k = 7 89.3 72.9 83.8

support vector machine (LSSVM) with radial basis function (RBF)
kernel having an accuracy of 84.7% and random forest with 87.4%
were the best techniques. Overall, the classification of data into two
classes was very successful.

6. Discussion

This study was aimed at investigating whether machine learning
could, in general, separate healthy cardiomyocytes from diseased ones.
The phenotype of the iPSC-derived CMs was determined by Ca®*
imaging. Both control and diseased cardiomyocytes contained cells
with normal beating, as well as those with abnormal beating behavior.
With machine learning, very high classification accuracy values (up to
87.4%) were obtained to distinguish control and diseased cells, despite
both having mixed CM populations (containing both normal and ab-
normal CMs), i.e., to distinguish CMs derived from patients carrying a
mutation for a cardiac disease from control CMs.

The iPSC technology has revolutionized the study of genetic cardiac
diseases [43]. It enables the investigation of patient- and mutation-
specific cells in order to understand the disease pathophysiology of
interest, as well as to provide a platform to study drug responsiveness in
a personalized way [4]. However, CMs derived from iPSCs obtained
with current differentiation protocols still have several problems. They
are first of all immature cardiomyocytes [44]. In addition, they present
all types of cardiomyocytes including atrial, ventricular and pacemaker
cells. These issues make it problematic to produce and determine a
disease phenotype in a reproducible way. In our current study, these
limitations were evident. The CMs were immature, and both our control
CMs as well as the diseased CMs were mixed cell populations and with
Ca®™ transient signals, e.g., ventricular or atrial cells cannot be dis-
tinguished from each other. However, despite these problems, our
machine learning procedure was successful to differentiate control CMs
from diseased CMs, suggesting the presence of characteristics of healthy
or diseased cells already in the fatal state and common for all types of

CMs.

Due to above mentioned problems with iPSC-derived CM, control
cells also included abnormal Ca®” transients. In our study, 12.6% of
control cells presented various types of abnormalities. However, the
amount of abnormal transient signals was much greater (54.6%) in CMs
carrying any mutation for various genetic cardiac diseases including
genetic arrhythmias and cardiomyopathies. We demonstrated earlier
[23] that it is possible to differentiate genetic cardiac diseases from
each other based on machine learning techniques. In the current study,
the aim was to collect more transient signals of control CMs, to decrease
the difference between the smaller signal number of control CMS and
the greater signal number of diseased CMs compared to the earlier si-
tuation [23], and pool all diseased ones as one group, to analyze
whether this could be separated from control cells containing also both
abnormally and normally beating cells. Using different algorithms and
methods for machine learning, we were able to produce paradigms with
high a classification accuracy of up to 87.4%, suggesting that this
procedure could have potential use in clinical applications in the future.

7. Conclusions

Genetic cardiac diseases are clinically often problematic. First, the
disease phenotype is variable even within a single family [45]. Ad-
ditionally, it is still common despite advances in molecular genetics that
the mutation causing the disease in the family is not known. In this
situation, it is impossible to distinguish those who are potentially at risk
of developing the disease phenotype, which family members should be
regularly checked clinically, and who should be advised for lifestyle
restrictions or preventive medication. The results obtained in this study
are potentially promising to identify individuals at risk. iPSC-derived
CMs carrying a disease causing mutation can accurately be separated
from cells derived from healthy individuals, and thus potentially iPSC-
derived cardiomyocytes combined with machine learning algorithms
could in the future be used also clinically to identify individuals at risk,

Table 3

More classification results of k nearest neighbor (kNN) searching, with different metrics or measures with the best k value.
Classification method True positive rates of diseases % True negative rates of controls % Accuracy %
kNN with Euclidean metric and equal weighting, k = 1 89.1 74.4 83.8
kNN with Euclidean metric and inverse weighting, k = 1 89.1 74.4 84.1
kNN with Euclidean metric and squared inverse weighting, k = 5 90.1 73.4 84.5
kNN with Mahalanobis metric and equal weighting, k = 1 90.9 71.4 84.3
kNN with Mahalanobis metric and inverse weighting, k = 1 90.9 71.4 84.3
kNN with Mahalanobis metric and squared inverse weighting, k = 1 90.9 71.4 84.3
kNN with standardized Euclidean metric and equal weighting. k = 1 89.1 74.4 84.1
kNN with standardized Euclidean metric and inverse weighting, k = 1 89.1 74.4 84.1
kNN with standardized Euclidean metric and squared inverse weighting, k = 5 89.8 73.4 84.3
kNN with Spearman measure and equal weighting, k = 1 88.6 66.3 81.1
kNN with Spearman measure and inverse weighting, k = 5 89.6 69.3 82.8
kNN with Spearman measure and squared inverse weighting, k = 5 90.4 69.3 83.3
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Table 4
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Results of discriminant analysis, decision tree, multinomial logistic regression, naive Bayes, random forest and least square (LS) support vector machines (SVM).

Classification method

True positive rates of diseases %

True positive rates of controls % Accuracy %

Linear discriminant analysis 78.4
Mahalanobis discriminant analysis 33.0
Quadratic discriminant analysis 76.1
Decision tree 89.1
Multinomial logistic regression 77.7
Naive Bayes with normal distribution 71.8
Naive Bayes with normal kernel 68.0
Naive Bayes with box kernel 66.5
Naive Bayes with Epanechnikov kernel 67.5
Naive Bayes with triangle kernel 68.8
Random forest, number of trees 18 92.4
LS-SVM with linear kernel, C = 274 69.3
LS-SVM with quadratic kernel, C = 1 74.6
LS-SVM with cubic kernel, C = 27° 79.4
LS-SVM with RBF kernel, C = 2'', 6 = 2 91.6

62.3 73.0
94.0 53.5
59.3 70.5
74.4 84.1
62.8 72.7
67.8 70.5
78.4 71.5
79.4 70.8
78.9 71.3
78.9 72.2
77.4 87.4
76.4 71.7
77.9 75.7
78.4 79.1
70.9 84.7

and make it possible to focus preventive actions on those, and relieve
the disease burden from those without any signs of disease at the cel-
lular level.

The high accuracy obtained with our best machine learning algo-
rithm suggests that iPSC technology combined with machine learning
could be used even for diagnostic purposes in the future. We will
continue to collect more Ca*" transient signals of CMs derived from a
larger collection of iPS cell lines carrying different mutations and pa-
tient populations, as well as signals of healthy controls, and also from
isogenic lines, and thus to improve these methods to make them more
suitable for clinical purposes.
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