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Abstract 

Background: Antibodies targeting malaria blood-stage antigens are important targets of naturally acquired immu-
nity, and may act as valuable biomarkers of malaria exposure.

Methods: Six-hundred and one young Malawian children from a randomized trial of prenatal nutrient supplemen-
tation with iron and folic acid or pre- and postnatal multiple micronutrients or lipid-based nutrient supplements 
were followed up weekly at home and febrile episodes were investigated for malaria from birth to 18 months of age. 
Antibodies were measured for 601 children against merozoite surface proteins (MSP1 19kD, MSP2), erythrocyte bind-
ing antigen 175 (EBA175), reticulocyte binding protein homologue 2 (Rh2A9), schizont extract and variant surface 
antigens expressed by Plasmodium falciparum-infected erythrocytes (IE) at 18 months of age. The antibody measure-
ment data was related to concurrent malaria infection and to documented episodes of clinical malaria.

Results: At 18 months of age, antibodies were significantly higher among parasitaemic than aparasitaemic children. 
Antibody levels against MSP1 19kD, MSP2, schizont extract, and IE variant surface antigens were significantly higher 
in children who had documented episodes of malaria than in children who did not. Antibody levels did not differ 
between children with single or multiple malaria episodes before 18 months, nor between children who had malaria 
before 6 months of age or between 6 and 18 months.

Conclusions: Antibodies to merozoite and IE surface antigens increased following infection in early childhood, but 
neither age at first infection nor number of malaria episodes substantially affected antibody acquisition. These find-
ings have implications for malaria surveillance during early childhood in the context of elimination.
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Background
Malaria is one of the leading causes of childhood morbid-
ity and mortality, and Plasmodium falciparum infection 
is responsible for nearly all malaria deaths. The World 
Health Organization estimated that in 2017 there were 
435,000 deaths due to malaria of which around 61% were 
in children below 5 years of age [1]. Children in malaria-
endemic areas become most vulnerable to malarial infec-
tion at 4 to 6  months of age as maternally transferred 
antibodies wane [2] and they then begin to acquire their 
own antibodies in response to repeated infection. Natu-
rally acquired immunity to malaria develops over time 
with continuous exposure to infection [3].

Antibodies play a crucial role in mediating acquired 
immunity to malaria. Blood stage merozoite antigens 
and variant surface antigens (VSA) expressed on infected 
erythrocytes (IE) are important targets of this protective 
immunity. Antibodies to merozoite antigens inhibit inva-
sion of red blood cells (RBCs), prevent intra-erythrocytic 
growth [4], and promote opsonization for phagocytic 
clearance [5] and complement fixation [6]. Antibodies to 
merozoite antigens of sufficient magnitude and function 
appear to contribute to immunity [7]. In young children 
or those with limited malaria exposure, they may instead 
act as biomarkers of malaria exposure [8, 9], with poten-
tial to inform surveillance and control activities [10]. 
Among the tested antigens, merozoite surface protein 1 
(MSP1) is the most copious protein found on the surface 
of the merozoite [11]. Crucial for the primary interaction 
between merozoites and RBCs in parasite invasion [12], 
MSP1 is a major target of opsonizing following natural 
exposure [13]. MSP2 is another abundant, GPI-anchored 
surface protein necessary for merozoite invasion. 
Increased IgG level against MSP2 was associated with 
increasing age, higher haemoglobin level and reduced 
parasitaemia suggesting its protective effect [14]. Eryth-
rocyte binding antigen 175 (EBA175) is released from 
micronemes [15] and aggregates at the apical region of 
the merozoite surface. Antibodies to the RIII-V region of 
EBA175 have also been associated with protection from 
malaria [16–18]. Rhoptry-derived Rh2A9 help binding to 
the RBC receptors after the primary interaction between 
the RBC and merozoite surface proteins is completed. 
The level of IgG against Rh2A9 in children (5–14 years) 
was associated with lower risk of malaria [19].

Antibodies to VSA diminish malaria risk by obstruct-
ing cytoadhesion to different host receptors [20, 21] and 
initiating phagocytic clearance of IE [22]. Several studies 
have reported associations between levels of anti-VSA 
antibodies and protection against symptomatic malaria 
[23–26] but few studies have examined the dynamics of 
naturally occurring anti-VSA IgG in infants in a malaria-
endemic setting [27, 28]. In one study [27], children up 

to 24  months of age did not acquire antibodies to VSA 
but in a high-transmission area of Tanzania [29], chil-
dren had dramatic increases in antibodies to VSA from 
1 to 2 years of age. Recent studies in Papua New Guinea 
suggest that acquired antibodies to VSA play an earlier 
role in immunity to malaria than antibodies to merozo-
ite antigens [30]. These contradictory findings indicate 
the need for further studies to investigate the dynamics 
of naturally acquired immunity targeting both merozoite 
antigens and VSA in very young children.

This study examines the dynamics of antibody acqui-
sition to multiple merozoite antigens, schizont extract 
and VSA in young children in response to ongoing 
exposure to malaria. The study was part of the Interna-
tional Lipid-based Nutrient Supplement (iLiNS) Project 
DYAD-Malawi randomized controlled trial (clinicaltri-
als.gov registration number NCT01239693). The origi-
nal study reported that nutrient supplementation did not 
have any significant impact on anthropometric indices 
in 18 months old children [31]. Another sub-study from 
the same cohort [32] reported that malaria antibody 
acquisition (against the same antigens reported here) in 
early infancy was not improved by additional lipid-based 
nutrient supplementation. For this report, malaria anti-
body measurement at 18  months of age was related to 
concurrent malaria infection and to documented epi-
sodes of clinical malaria during early childhood to under-
stand the impact of exposure on antibody acquisition.

Methods
Study location and participants
The study participants were 601 infants of 18  months 
of age from rural Malawi, participants in the iLiNS Pro-
ject DYAD-Malawi trial. Detailed description of the trial 
design and supplements has been published elsewhere 
[33]. Briefly, pregnant women were randomly allocated 
to supplementation groups that received either iron and 
folic acid (IFA), multiple micronutrients (MMN) or 20 g 
of lipid based nutrient supplements (LNS) daily. After 
delivery, women in the IFA group received placebo, 
whereas MMN and LNS supplementation was sustained 
for 6 months post-partum. From 6 to 18 months of age, 
children in the LNS group received 10 g LNS twice daily.

Detection of malaria
Children were followed up weekly at home and febrile 
episodes were investigated for malaria. Clinical malaria 
was defined as fever with axillary temperature above 
37.5  °C and parasitaemia was confirmed by microscopy 
or rapid diagnostic test (RDT). For microscopy, slides 
were examined under 100× magnification and parasites 
were counted against 200 leucocytes. The RDT was the 
 Clearview® Malaria Combo (British Biocell International 
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Ltd, Dundee, UK) which detects the proteins P. falcipa-
rum lactate dehydrogenase and histidine-rich protein 2.

Preparation of plasma samples
Blood from participants was collected at the 18-month 
study visit. Plasma was separated by centrifugation and 
stored at − 80  °C prior to shipping on dry ice to Aus-
tralia. Samples were thawed, heat inactivated at 57 °C for 
45 min, and were stored at − 80 °C until assayed.

Maintenance of parasite culture
Three P. falciparum lines were cultured as previously 
described [34]. The E8B-ICAM line binds to ICAM-1 
and CD36 [35], and expresses group B/C var genes [36]. 
Rosetting line R29 expresses var genes from group A 
[37]. A 3D7-derived line had a group A var gene as its 
dominant transcript, but its binding phenotype was 
not defined [30]. Cultures were synchronized by hypo-
tonic lysis using 5% sorbitol, and by regular gelatin flo-
tation [38]. To select R29 for high levels of rosetting, it 
was subject to two rounds of gelatin flotation. After the 
first round, the pellet was collected and resuspended 
in gelatin with heparin lithium salt, (0.05  mg/ml Sigma 
Aldrich), added to disrupt rosettes, and the supernatant 
was collected.

Measurement of IgG to merozoite antigens and schizont 
extract
Merozoite antigens MSP119kD, MSP2 (FC27 clone), EBA 
175, and P. falciparum reticulocyte binding protein hom-
ologue 2 (Rh2A9) were expressed and purified as previ-
ously described [16, 19, 32, 39, 40], and schizont extract 
was prepared as previously described [41]. ELISAs were 
performed as previously described [32].

Measurement of IgG levels against VSA
IgG antibody levels against VSA were measured by flow 
cytometry as previously described [32], and flow cytom-
etry data were analysed as described [42].

Data analysis
Data were analysed using Stata version 13.0 (StataCorp, 
Texas, USA) and graphed using GraphPad Prism version 
5 (La Jolla, CA, USA). Antibody levels were measured as 
optical density (OD) for schizont and merozoite antigens, 
or as geometric mean fluorescence intensity (MFI) for 
VSA. They were expressed relative to the positive control 
which was a pooled plasma sample from malaria exposed 
individuals from Africa.

Seroprevalence was specified as the percentage of 
children whose relative antibody level was greater than 
the mean plus three standard deviations of the nega-
tive controls’ antibody levels. Negative controls were a 

panel of malaria-naïve Melbourne blood donors. Socio-
economic status (SES) was derived from an inventory 
of key household assets (HHA) adapted from [43]. Chi 
squared tests were performed to test the differences in 
seropositivity. Mann–Whitney tests were performed 
for comparing antibody levels between two groups and 
Kruskal–Wallis tests were performed to compare the 
antibody levels among more than two groups.

The association between malaria episodes and anti-
body seroprevalence in 18  months old children was 
investigated using logistic regression, and linear regres-
sion was performed to study the association of malaria 
episodes with antibody levels. Linear regression was 
done by transforming antibody levels to their natural 
logarithm; these were back transformed for reporting 
descriptive results. Multivariate regression adjusted 
for the covariates duration of gestation, HIV infection, 
gender of the child and maternal anaemia.

Results
Study population characteristics
A total of 601 samples from 18  months old children 
were tested (48.8% male and 51.2% female). The nutri-
ent supplements received by their mothers were IFA 
in 33.6%, MMN in 33.4%, and 32.9% received LNS. 
The mean haemoglobin level was 10.8 ± 1.5  g/dl with 
a prevalence of anaemia (haemoglobin level ≤ 10.9  g/
dl) of 46.3%. The percentage of children having P. falci-
parum parasitaemia at the 18-month visit was 6.5% by 
microscopy and 9.9% by RDT (Table 1).

Table 1 Study population characteristics

a Anaemia defined as Hb ≤ 10.9 g/dl
b Rapid diagnostic test

Characteristics of the participants Number 
(%) 
[n = 601]

Female 308 (51.2)

Blood haemoglobin concentration, mean ± SD, g/dl 10.8 ± 1.5

Anaemiaa 278 (46.3)

Parasitaemia by microscopy 39 (6.5)

Parasitaemia by  RDTb 60 (9.9)

Number of children with malarial episodes 144 (23.9)

Single episode 119 (19.8)

Multiple episodes 25 (4.2)

Low socio-economic status 357 (59.4)

Mother’s education below median 321 (53.4)
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Magnitude and prevalence of antibodies and IgG 
responses in parasitaemic and aparasitaemic children 
at 18 months
Antibody seroprevalence against merozoite antigens, 
schizont extract and VSA was measured for all the 
tested children (Table 2). The seropositivity was highest 
for MSP1 (54.4%), followed by schizont extract (54.1%). 
However, IgG against VSA for all the tested parasite lines 
were very low and few children were seropositive.

Children who were parasitaemic (n = 60) by RDT 
(9.9%) at the time of sample collection at 18 months had 
higher antibody levels than aparasitaemic children, and 
differences were statistically significant for all the tested 
antigens except Rh2A9. The seroprevalence data were 
also in accordance with the antibody level data and para-
sitaemic children were more frequently seropositive for 
all the antigens than the aparasitaemic children (Table 2). 
Children who were parasitaemic at 6  months (n = 57) 
were somewhat more likely to experience malarial epi-
sodes from 6 to 18 months of age; 14 out of 57 (24.6%) 

parasitaemic children at 6 months had episodes between 
6 to 18 months compared to 99 out of 544 (18.2%) apara-
sitaemic children (p = 0.24, Chi square).

Association of previous malaria episodes with antibody 
seroprevalence in 18 months old children
One-hundred and forty-four children (23.9%) had one or 
more malaria episodes before 18 months of age. Antibody 
seroprevalence was higher in the children with previous 
clinical malaria episodes than those without malaria for 
all the tested antigens, and differences were statistically 
significant for MSP1, MSP2 and schizont extract and IgG 
against E8B VSA (Table 3).

To determine whether the percentage of seropositiv-
ity at 18 months of age varies according to the number of 
malaria episodes, children were divided into groups hav-
ing either a single episode of malaria or more than one 
episode of malaria (detected by RDT). One-hundred and 
nineteen children had single episodes of malaria whereas 
25 children had multiple episodes recorded. Antibody 

Table 2 Magnitude and  prevalence of  antibodies and  IgG responses in  parasitaemic and  aparasitaemic children 
at 18 months

Significant p value in italic format
a Antibody levels expressed as units relative to positive control
b Interquartile range
c Samples defined as antibody positive if levels greater than mean + 3SD of negative controls
d p value between parasitaemic and aparasitaemic children calculated by Mann–Whitney test or Chi squared test for antibody level or seropositivity, respectively
e Merozoite surface protein 1
f Merozoite surface protein 2
g Erythrocyte binding antigen 175
h Reticulocyte binding protein homologue 2A
i Variant surface antigen antibody responses

Antigen tested/parasite 
isolate

Median antibody  levela  (IQRb)
Number of  seropositivec children (%)

p  valued

All children; (n = 601) Parasitaemic children; 
(n = 60)

Aparasitaemic children; 
(n = 541)

MSP1  19kDe 2.80 (0.65, 7.09) 12.31 (4.38, 28.79) 2.37 (0.56, 6.08) < 0.0001

327 (54.4) 53 (88.3) 274 (50.7) < 0.0001

MSP2f 2.91 (0.87, 9.04) 15.14 (3.47, 35.16) 2.62 (0.79, 7.28) < 0.0001

162 (26.9) 36 (60.0) 126 (23.3) < 0.0001

EBA175g 3.38 (1.95, 16.09) 5.89 (2.89, 21.37) 3.24 (1.92, 15.89) 0.0228

69 (11.5) 15 (25.0) 54 (9.9) 0.001

Rh2A9h 7.17 (2.1, 25.3) 8.59 (3.28, 19.24) 7.11 (4.05, 13.27) 0.5630

151 (25.1) 23 (38.3) 128 (23.7) 0.013

Schizont 3.30 (1.27, 8.09) 17.31 (5.22, 48.66) 2.95 (1.09, 6.98) < 0.0001

325 (54.1) 58 (96.7) 267 (49.4) < 0.0001

E8Bi 0 (0, 0.20) 0.15 (0, 0.86) 0 (0, 0.16) < 0.0001

43 (7.2) 9 (15.0) 34 (6.3) 0.013

R29i 0 (0, 0.07) 0 (0, 1.12) 0 (0, 0.002) < 0.0001

21 (3.5) 9 (15.0) 12 (2.2) < 0.0001

3D7i 0 (0, 0.35) 0.30 (0, 2.08) 0 (0, 0.29) < 0.0001

50 (8.3) 17 (28.3) 33 (6.1) < 0.0001
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seroprevalence was higher in children having a single epi-
sode or multiple episodes than those without any episode 
detected. For a single episode, differences in prevalence 
were statistically significant for MSP1, schizont extract 
(p ≤ 0.051) and IgG against VSA expressed by the E8B 
parasite line (p = 0.001). In the smaller number of chil-
dren having multiple episodes, prevalence of antibody 
to MSP1 (0.003), EBA175 (0.047) and schizont extract 
(0.023) was significantly higher than in children without 
malaria. There were no significant differences in antibody 
seroprevalence between those with single or multiple 
episodes.

Logistic regression revealed that children with any epi-
sode of malaria from birth to 18 months of age had sig-
nificantly higher odds of being seropositive for MSP1, 

MSP2, schizont extract and VSA against E8B parasite 
line in both unadjusted (p ≤ 0.034) and adjusted analysis 
(p ≤ 0.049) than children without any episode.

Association of previous malaria episodes with levels 
of antibodies in 18 months old children
The levels of antibody to malaria antigens were com-
pared between infants who did and did not have previous 
malaria episodes (Figs. 1, 2). As observed with antibody 
seropositivity, children having malaria episodes had 
higher levels of antibodies to several antigens when com-
pared to children without malaria history, and this was 
significant for MSP1, MSP2 and schizont extract. How-
ever, there were no significant differences between the 
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antibody levels of children with single or multiple epi-
sodes for any antigen. 

Levels of IgG against VSA were significantly higher 
for all the tested parasite lines in children having single 
malaria episode than those who had none (p value 0.038 
for E8B, 0.028 for R29 and < 0.0001 for 3D7).

Linear regression (Table 4) indicated that having single 
or multiple episodes of malaria from birth to 18 months 
of age was associated with significantly higher antibody 
levels for MSP1, MSP2 and schizont extract in unad-
justed analysis (p ≤ 0.047) and for MSP1 and schizont 
extract in adjusted analysis (p < 0.0001) for 18 months old 
children.

Association of age at the time of malaria episode 
on antibody levels and seroprevalence in 18 months old 
children
To investigate whether age at the time of clinical 
malaria affected antibody levels or seroprevalence at 
18  months, antibody levels and seroprevalence were 
compared between children who had malarial episodes 
prior to 6  months and those who had them between 6 
and 18 months of age (Table 5). Both children who had 
malaria episodes before 6 months of age and those who 
had malaria episodes from 6 to 18  months had higher 
antibody levels and seropositivity to multiple antigens 
compared to those without any history of clinical malaria. 
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However, antibody level or seroprevalence for all of the 
tested antigens did not differ between children who had 
malaria before 6 months or from 6 to 18 months.

Discussion
Naturally acquired immunity to malaria is achieved with 
ongoing exposure to infections and subsequent acquisi-
tion of anti-malarial antibodies. Antibodies against mer-
ozoite antigens and VSA are thought to play key roles in 
conferring immunity against malaria [26, 44]. The aim of 
this study was to examine how asymptomatic parasitae-
mia at the time of blood sampling and episodes of clinical 
malaria in young children affect the early development 
of antibodies against merozoite antigens and VSA. This 
study investigated whether the number of episodes in 
early life, or the age at which they occurred, influenced 
the development of antibody. The study found that at 
18  months of age children who were parasitaemic had 
significantly higher levels of antibodies and seropreva-
lence to all the tested VSA and merozoite antigens than 
the aparasitaemic children, with the exception of anti-
body to Rh2A9. Children who had experienced clinical 
malaria episodes before 18  months of age had higher 
antibody levels and seroprevalence for the tested antigens 

Table 4 Association between number of malaria episodes 
and antibody level in 18 months old children

Significant p value in italic format
a p-value derived from linear regression of antibody levels and reported as 
coefficient and 95% confidence intervals (CI)
b p-value calculated using multivariate linear regression of antibody levels 
reporting coefficient and 95% confidence intervals (CI) while adjusting for 
duration of gestation, HIV infection, gender of the child, maternal anaemia
c Merozoite surface protein 1
d Merozoite surface protein 2
e Erythrocyte binding antigen 175
f Reticulocyte binding protein homologue 2A
g Variant surface antigen antibody responses

Antigen 
tested/
parasite 
isolate

Unadjusted 
coefficient 
(95% CI)

p  valuea Adjusted 
coefficient 
(95% CI)

p  valueb

MSP1 19  kDc 1.85 (1.43, 2.41) < 0.0001 1.83 (1.41, 2.37) < 0.0001

MSP2d 1.28 (1.00, 1.63) 0.047 1.26 (0.99, 1.61) 0.057

EBA175e 0.92 (0.75, 1.11) 0.399 0.91 (0.76, 1.10) 0.378

Rh2A9f 1.14 (0.98, 1.33) 0.074 1.14 (0.98, 1.33) 0.082

Schizont 1.52 (1.21, 1.91) < 0.0001 1.50 (1.19, 1.87) < 0.0001

E8Bg 1.06 (0.75, 1.50) 0.719 1.03 (0.73, 1.46) 0.826

R29h 1.33 (0.79, 2.24) 0.267 1.39 (0.81, 2.40) 0.222

3D7h 1.16 (0.79, 1.72) 0.434 1.13 (0.77, 1.67) 0.508

Table 5 Association between age at the time of malaria episode and antibody levels and seroprevalence in 18 months 
old children

Significant p value in italic format
a For each antigen represented, row 1: median antibody level (interquartile range); row 2: number of seropositive children (%)
b p value calculated by Mann–Whitney test or Chi squared test for antibody level or seropositivity, respectively
c Merozoite surface protein 1
d Merozoite surface protein 2
e Erythrocyte binding antigen 175
f Reticulocyte binding protein homologue 2A
g Variant surface antigen antibody responses

Antigen tested/
parasite isolate

No  episodea (n = 457) ≥ 1 episode 
before 6 months of  agea 
(n = 31)

p  valueb ≥ 1 episode between 6 
and 18 months of  agea (n = 113)

p  valueb

MSP1 19  kDc 2.36 (0.51, 5.73) 6.16 (1.92, 11.16) 0.0071 4.71 (1.43, 21.25) < 0.0001

224 (49.0) 24 (77.5) 0.002 79 (69.9) < 0.0001

MSP2d 2.76 (0.79, 8.23) 5.76 (1.01, 10.55) 0.1043 3.06 (1.06, 13.97) 0.3165

113 (24.7) 12 (38.8) 0.084 37 (32.7) 0.083

EBA175e 3.49 (1.96, 17.05) 3.25 (1.89, 8.79) 0.5785 3.19 (1.93, 9.91) 0.3753

50 (10.9) 3 (9.7) 0.827 16 (14.2) 0.338

Rh2A9f 7.03 (3.97, 13.13) 8.24 (4.41, 17.32) 0.3790 7.92 (4.12, 15.87) 0.2223

108 (23.6) 10 (32.3) 0.278 33 (29.2) 0.219

Schizont 2.95 (1.02, 7.24) 7.40 (2.24, 13.97) 0.0211 4.70 (1.77, 14.87) 0.0018

222 (48.6) 23 (74.2) 0.006 80 (70.8) < 0.0001

E8Bg 0 (0, 0.15) 0.03 (0, 1.11) 0.0177 0 (0, 0.26) 0.0967

24 (5.3) 10 (32.3) < 0.0001 9 (7.9) 0.269

R29g 0 (0, 0.002) 0 (0, 0.43) 0.0424 0 (0, 0.24) 0.2341

13 (2.8) 5 (16.2) < 0.0001 3 (2.6) 0.913

3D7g 0 (0, 0.33) 0.01 (0, 0.37) 0.4718 0 (0, 0.42) 0.8673

36 (7.9) 4 (12.9) 0.324 10 (8.9) 0.734
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than children who did not have any episode, and the lev-
els and seroprevalence of antibodies at 18 months of age 
did not differ depending on the age of the child at the 
time of malaria episodes. This knowledge is relevant to 
informing vaccine development and strategies for sero-
surveillance of malaria [10].

Previous studies have shown that newborn babies and 
young infants are relatively protected from symptomatic 
malaria [45, 46], and this has been attributed mainly to 
maternally transferred antibodies present in the first 
few months of life [2, 47]. Young children become most 
susceptible to infection as maternally derived antibod-
ies wane, and then gradually begin to acquire antibody 
in response to infections, thus developing naturally 
acquired immunity to malaria [2, 3].

The present study examined the effect of clinical 
malaria episodes and parasitaemia on acquisition of 
antibodies by 18 months of age. At this time, little or no 
placentally transferred antibody remains, so antibodies 
elicited are likely to reflect naturally acquired immunity 
[47]. Antibody levels against all the tested antigens were 
relatively low, in agreement with earlier studies showing 
the age dependent acquisition of antibody [48, 49]. The 
proportion of children with detectable antibodies was 
highest for MSP1 (54.4%) and schizont extract (54.1%) 
perhaps because schizont extract acts as a crude marker 
of blood stage malaria infection whereas MSP1 is the 
most abundant merozoite surface protein [11]. Antibod-
ies to VSA expressed by IE predominantly consist of anti-
bodies to PfEMP1, the main antigen on the IE surface 
[50]. Antibodies to VSA are largely strain-specific and 
repeated exposure leads to the acquisition of a repertoire 
of antibodies to different variants [51]. Slow acquisition 
of variant-specific antibody, and possible lack of infection 
with variants similar to those tested, could explain the 
very low prevalence of detected antibodies to VSA.

Children who were parasitaemic at the time of sample 
collection at 18 months had significantly higher levels of 
antibodies and seroprevalence to all the tested VSA and 
merozoite antigens (except Rh2A9) than the aparasitae-
mic children. This finding is consistent with studies from 
Kenya in which antibodies to VSA [52] and to merozo-
ite antigens [53] were higher in currently parasitaemic 
individuals. In the latter study, there were more dramatic 
differences in IgG levels between parasitaemic and apara-
sitaemic children, than between parasitaemic and apara-
sitaemic adults. Over two time periods of higher and 
lower transmission, parasitaemia was strongly associated 
with higher antibody levels for MSP2 and Rh2A9 (and to 
other antigens including AMA1 and MSP4), and weakly 
with antibody to MSP1, EBA175 and schizont extract 
[53]. In Malawi, by contrast, antibodies to all tested 
antigens except Rh2A9 were strongly associated with 

parasitaemia. However, it is possible that some infected 
children may have been missed because parasitaemia 
was detected using RDT, which may miss low density 
infections. Selecting antibody targets for surveillance of 
malaria exposure [10] will require evaluation in multiple 
populations and age groups.

The relationship between antibody levels or seropreva-
lence and history of clinical malaria infections was also 
investigated. Both measures were higher in children 
who had experienced clinical malaria episodes before 
18 months of age than children who did not, and the dif-
ferences were significant for MSP1 19 kd, MSP2, schizont 
extract, and (for antibody levels, but not seroprevalence) 
for IgG against all tested parasite lines. This is in accord-
ance with other studies that report antibody boosting 
following exposure to clinical malaria [9, 27, 53–55], and 
suggests that merozoite (and VSA) antibodies act primar-
ily as biomarkers of exposure in very young children [8, 
9]. Some children with no malaria episodes detected did 
have antibodies; this likely reflects the occurrence of low-
density asymptomatic infections that were not detected 
during follow up and were sufficient to generate antibod-
ies to some antigens.

When the cohort was divided into children with single 
or multiple malaria episodes, those with single malaria 
episodes had significantly higher levels of antibody 
against MSP1, MSP2, schizont extract (≤ 0.0015) and IgG 
against VSA for all three tested parasite lines (≤ 0.028) 
compared to those without episodes. Fewer children had 
multiple episodes, limiting statistical power, but these 
children also had significantly higher antibody levels 
against MSP1, MSP2 and schizont extract (≤ 0.0418) than 
those who did not have malaria. There was no relation-
ship between the number of clinical episodes and either 
antibody levels or prevalence. These findings suggested 
that antibodies to MSP1, MSP2 or schizont extract were 
useful markers of history of clinical malaria, but antibod-
ies to EBA175 and Rh2A9 were not. In Kenyan children 
1–8 years old, MSP1, MSP2, Rh2A9 and schizont extract 
also showed moderate induction following malaria epi-
sodes in the previous year, while EBA175 did not [53]. 
In sum, antibodies to MSP1, MSP2 and schizont protein 
extract may serve as good biomarkers for sero-surveil-
lance of malaria [10, 56], although other antigens such as 
AMA1 and MSP4 [53] warrant further evaluation.

Infants’ immune systems are rapidly developing, and 
responses to infection may differ between younger and 
older children in magnitude or longevity. To investi-
gate this, antibody levels and prevalence at 18 months 
were compared between children having malaria before 
6 months of age, or from 6 to 18 months. Symptomatic 
malaria is uncommon in very young infants [3], and 
only 31 participants (5.15%) had clinical malaria before 
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6 months of age, whereas 113 (18.8%) had malaria from 
6 to 18 months of age. The levels and seroprevalence of 
antibodies at 18  months of age did not differ between 
these two groups, and both children with malaria 
before 6 months of age and children with malaria from 
6 to 18  months had higher levels of antibody (except 
to EBA175) than children with no malaria. This is in 
keeping with observations suggesting that the time of 
first exposure to malaria or previous malaria episodes 
have no effect on the acquisition of antibodies to MSP1, 
EBA175 and VSA [27, 28], although an earlier longi-
tudinal study of antibody to MSP1 in infants showed 
highly dynamic antibody responses, with generally 
short-lived IgG peaks that correlated with symptomatic 
or asymptomatic infection [47]. Development and 
persistence of malaria antibody responses in infancy 
require further exploration.

The strengths of this study include the longitudinal 
design, with home-based monitoring of children with 
weekly home visits to 18  months of age and prompt 
detection and diagnosis of clinical malaria, and the 
number of antibody assays performed in a large group 
of over 600 well-characterized infants. The study pro-
vides unique insight into the development of antibody 
responses to VSA in relation to clinical malaria in 
infancy. Possible study weaknesses include the infre-
quent blood sampling of asymptomatic children, which 
gave only limited insights into the relationship between 
asymptomatic infection and antibody acquisition.

Conclusions
The study provides a considerable insight on the acqui-
sition of antibodies in early infancy in response to con-
current parasitaemia and clinical malaria. This study 
found that antibodies to tested merozoite and IE sur-
face antigens increased following infection in early 
childhood and in response to concurrent parasitaemia 
at 18  months of age, but neither age at first infection 
nor number of malaria episodes substantially affected 
the antibody acquisition. The result provides strong 
evidence that antibodies to blood stage malaria anti-
gens may be biomarkers of infection in early life and 
this knowledge is relevant to informing vaccine devel-
opment and strategies for sero-surveillance of malaria.
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