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Abstract 
The formation of neurites is an important process affecting the cognitive abilities of an organism. Neurite 

growth requires the addition of new membranes, but the metabolic remodeling necessary to supply lipids 

for membrane expansion is poorly understood. Here, we show that synaptic activity, one of the most 

important inducers of neurite growth, transcriptionally regulates the expression of neuronal glucose 

transporter Glut3 and rate- limiting enzymes of glycolysis, resulting in enhanced glucose uptake and 

metabolism that is partly used for lipid synthesis. Mechanistically, CREB regulates the expression of Glut3 

and Siah2, the latter and LDH activity promoting the normoxic stabilization of HIF-1α that regulates the 

expression of rate-limiting genes of glycolysis. The expression of dominant-negative HIF-1α or Glut3 

knockdown blocks activity-dependent neurite growth in vitro while pharmacological inhibition of the 

glycolysis and specific ablation of HIF-1α in early postnatal mice impairs the neurite architecture. These 

results suggest that the manipulation of neuronal glucose metabolism could be used to treat some brain 

developmental disorders. 
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Introduction 
Early postnatal brain development is characterized by the massive outgrowth of dendrites and axons (Wong 

& Ghosh, 2002) (Silbereis et al). Among the different mechanisms affecting dendritic development, signaling 

from afferents is particularly important for dendritic growth (Groc et al, 2002; Konur & Ghosh; Rajan & Cline, 

1998; Wong & Ghosh, 2002). The most active phase of dendritic growth in the rat cerebral cortex is 

concurrent with the time of afferent innervations (Konur & Ghosh; Wong & Ghosh, 2002). Moreover, blocking 

neuronal activity in vivo alters dendritic development (Groc et al, 2002; Rajan & Cline, 1998), while increased 

neuronal activity by exposure to an enriched environment positively influences dendritic growth (Faherty et 

al, 2003). 

Activity-mediated calcium influx activates signaling events that influence dendritic architecture, modifiying 

cytoskeleton and activating transcriptional programs (Puram & Bonni, 2013; Wong & Ghosh, 2002). Several 

transcription factors and co-activators have been described to promote dendritic growth (Puram & Bonni, 

2013), such as CREB, a transcription factor strongly activated by synaptic activity. In addition to its roles in 

cell survival and synaptic function, CREB is one of the most important transcription factors mediating activity-

dependent dendritic morphogenesis in mammalian brain neurons (Lonze & Ginty; Puram & Bonni, 2013). 

Activation of CREB in cortical neurons induces dendritic growth and arborization, with dominant negative 

CREB suppressing activity-dependent neurite growth (Redmond et al). Furthermore, CREB knockout mice 

show impaired axonal growth and projections (Lonze et al). Despite the well-known function of CREB in 

regulating dendritic development, its target genes are not yet completely known. 

Neurite growth requires cytoskeletal reorganization and cell membrane extension. The latter requiring a 

supply of lipids. Given the impermeable nature of the blood brain barrier (BBB) most plasma lipoproteins 

cannot cross the BBB and lipids need to be synthesized in the brain. Studies investigating the incorporation 

of radiolabeled glycerol into lipids and their transport indicate that the bulk of lipid synthesis occurs in the 

cell body of neurons, with the lipids then exported in vesicles to the axon and dendrites for membrane 

expansion (Goldberg, 2003; Pfenninger, 2009). However, little is known on where the precursors necessary 

for lipid synthesis come from. The intermediates of glycolysis serve as lipid precursors (Vander Heiden et al, 

2009). Dihydroxyacetone phosphate (DHAP) is converted by glycerol-3-phosphate dehydrogenase 1 (GPD1) 

into glycerol-3-phosphate, which is then used for synthesizing glycerol-backbone lipids. Pyruvate, the end 

product of glycolysis, is transported to the mitochondria where it enters the tricarboxylic acid (TCA) cycle as 

citrate and is further metabolized or exported to the cytoplasm to be broken down by ATP-citrate lyase 

(ACLY) into oxaloacetate and acetyl-CoA, which serves as a precursor in lipid biosynthesis. Meta-analysis of 

brain and glucose consumption demonstrates that aerobic glycolysis increases in the human brain when 

synaptic growth rates are highest, suggesting that glycolysis provides biosynthetic support for neurite growth 
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(Goyal et al, 2014). However, it is unclear whether glycolysis is regulated by neuritogenic cues or is needed 

for neurite growth. 

Hypoxia inducible factor 1 (HIF-1) is a transcription factor regulating adaptive responses to hypoxia. It occurs 

as heterodimer composed of an unstable HIF-1α and a stable HIF-1β (also known as ARNT). The heterodimer 

binds hypoxia response elements (HRE) on target genes, which includes those associated with glucose 

transport and glycolysis genes, among others (Denko, 2008; Semenza et al, 1994). Normally, HIF-1α is 

ubiquitinated and degraded in normoxic conditions. Hydroxylation of Pro-402 and Pro-564 by prolyl 

hydroxylases (PHD) in the oxygen-dependent degradation domain (ODD) of human HIF-1α promotes 

interaction with the von Hippel-Lindau ubiquitin ligase complex (VHL) which targets HIF-1α for proteolysis 

(Ivan et al, 2001; Jaakkola et al, 2001; Maxwell et al, 1999). Another regulatory element of the PHD/VHL 

pathway is the E3 ubiquitin ligase Siah2, which contributes to HIF-1α stabilization (Li et al, 2017; Nakayama 

et al, 2004). Despite its generally short half-life in normoxia, HIF-1α can be stabilized in normoxia by growth 

factors, metabolite accumulation, the expression of oncogenes or ROS production (Denko, 2008). 

Although much is known on the molecular mechanisms mediating cytoskeletal remodeling and lipid transport 

to induce neurite growth, little is known about the metabolic adaptations required for neuronal membrane 

extension. Here, we show CREB activation by synaptic activity induces the expression of the glucose 

transporter Glut3 and promotes Siah2-mediated stabilization of HIF-1 that upregulates the expression of 

glycolysis genes. As a consequence, glucose metabolism is enhanced and part of it is used to provide the lipid 

precursors necessary for neurite growth. 

Results 
Glucose metabolism is necessary for activity-dependent neurite outgrowth 

Neuronal activity promotes neurite growth which requires a supply of lipids to enlarge membranes. 

Accordingly, using an established method of network disinhibition to enhance synaptic activity by applying 

the GABAA receptor antagonist bicuculline (Bic) and the K+ channel antagonist 4-aminopyridine (4AP)

(Hardingham et al, 2001), we observed that active neurons have increased levels of FASN and ACLY (Fig. 

EV1A-C), two key enzymes for the novo lipid synthesis. 

Glucose-derived acetyl-CoA is the main precursor for lipid biosynthesis (Divakaruni et al, 2017; Pietrocola et 

al, 2015). Thus, it was analyzed incorporation of radioactively labeled glucose into lipids in neurons that have 

experienced an episode of synaptic activity. After 48 hours of stimulation, active neurons showed increased 

glucose incorporation into lipids (Fig. 1A). This was impaired by knockdown of the glycolytic enzyme GPI (Fig. 
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1B and EV1D). Glutamine metabolism is another major source of lipogenic acetyl-CoA (Pietrocola et al, 2015), 

however synaptic activity did not increase glutamine incorporation into lipids (Fig EV1E). 

One molecule of glucose is converted to two molecules of pyruvate during glycolysis. Pyruvate enters the 

mitochondria, where it is decarboxylated to produce acetyl-CoA that then conjugates with oxaloacetate to 

produce citrate. Citrate can be further metabolized in the TCA cycle or exported to the cytoplasm, where it 

is converted into acetyl-CoA by ACLY to be used for fatty acid synthesis. Total and cytosolicic acetyl-CoA levels 

were also increased in active neurons (Fig. 1C and D), but not CoA levels (Fig EV1F), which was not observed 

when glycolysis was inhibited with 2-deoxy-D-glucose (Fig 1E), indicating a major role of glucose as a source 

of the increased amounts of acetyl-CoA. In agreement, knockdown of ACLY blocked activity- dependent 

enhanced glucose incorporation into lipids (Fig. 1F and EV1G and EV1H). 

In accordance with the need of glucose-derived lipid production to enlarge membranes for neurite growth, 

knockdown of Glut3 (Fig. 1G and H), the main glucose transporter in neurons, inhibition of glucose 

metabolism with 2-DG (Fig. EV1I), or knockdown of ACLY (Fig. EV1J) abolished activity-mediated neurite 

growth which at this developmental stage represents axonal growth. 

Synaptic activity stimulates neuronal glucose uptake and metabolism at the transcriptional 
level 

To investigate whether increased acetyl-CoA levels correlated with increased glucose uptake and 

metabolism, neurons were stimulated for 24 hours with Bic+4AP, and washed for 30 minutes to allow 

restoration of ion gradients before analyzing glucose uptake. Bic+4AP washing effectively blocked burst firing 

(Fig. EV2A and B). It was found that neurons that had experienced synaptic activity increased their glucose 

uptake (Fig. 2A and Fig. EV2C). Glycolysis- produced pyruvate is partially metabolized into lactate in a reaction 

that regenerates NAD+ that is necessary for glycolysis to continue. Glycolysis is the main source of lactate,

accounting for 82-90% on different types of cells (Zhang et al, 2017). Thus, lactate release into  the medium 

is a commonly used surrogate of glycolytic flux (TeSlaa & Teitell, 2014). Active neurons released 75% more 

lactate than resting ones (Fig. 2B). This was not due to the hyperglycemic medium used in this study, since 

culturing the neurons with physiological glucose concentration in rat brain (2.4 mM; (Silver & Erecinska, 

1994)) produced similar lactate release (Fig. VE2D). In another approach to demonstrate increased glycolysis 

in active  neurons, neurons were stimulated for 24 hours and washed for 30 minutes, to allow restoration of 

ionic gradients, before uncoupling the mitochondria with CCCP for 30 minutes. This drastically reduced ATP 

levels, which were less reduced in the stimulated neurons than unstimulated ones, but only when glucose 

was present in the medium (Fig. 2C), indicating that the increased glycolysis in active neurons can supply 

more ATP than in resting ones when the mitochondria are not functional. 
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Synaptic activity has been shown to mediate Glut3 translocation to the membrane (Ferreira et al, 2011). 

Moreover, synaptic activity is a potent regulator of gene expression programs (Bading, 2013; Greer & 

Greenberg, 2008). Thus, we aimed to determine whether activity- mediated glycolysis induction was 

mediated at the transcriptional or posttranslational level. Cycloheximide was used to inhibite mRNA 

translation. If glucose metabolism induction was mainly due to posttranslational modifications, the increase 

in glucose metabolism would not be affected by cycloheximide treatment; it would be affected by 

cycloheximide if de novo protein synthesis was involved. We found that cycloheximide abolished the glucose 

metabolism induced by synaptic activity, which was established by measuring lactate release (Fig. 2B). This 

was not consequence of reduced neuronal viability since cycloheximide treatment did not affect viability (Fig. 

EV2E). Next, we used qPCR to analyze the expression of Glut3, the main glucose transporter in neurons; HK2, 

PFK and PKM, the three regulating enzymes of the glycolysis; and PFKFB3, which produces fructose-2,6-

bisphosphate, a potent allosteric activator of PFK. There was an increase in the expression of all these genes 

except PFK (Fig. 2D). Strikingly, Glut3 showed a different expression pattern to these associated with 

glycolysis. Along with the increased mRNA levels, synaptic activity induced the protein expression of these 

genes (Fig. 2E and F). Interestingly, treatment of neurons with BDNF, a neurotrophic factor that induces 

neurite growth (Park & Poo, 2013), also induced the expression of glucose metabolism genes, as well as 

increased glucose uptake and lactate release (Fig. E2VF-H), although it cannot be excluded an indirect effect 

due to BDNF-induced enhanced neuronal activity (Li et al, 1998). 

Glial and neuronal metabolism is coupled (Bélanger et al). Around 2% of our primary cortical neuron cultures 

were glial cells (Fig. EV2I and J). Neuronal glucose uptake experiments were analyzed by cell imaging, but the 

lactate release and ATP production experiments were performed using the mixed cultures. Thus, we could 

not rule out the possibility that activity- dependent enhanced glycolysis occurred in the glial cells rather than 

neurons. To clarify this, we used two approaches. The mitosis inhibitor AraC is used in our cortical cultures 

to block glial proliferation. In a first approach, we prepared parallel cortical cultures that were treated with 

AraC or not to obtain cultures with different proportions of glial cells (Fig. EV2I and J). If the stimulation-

mediated increase in lactate release was due to changes in gene expression in glial cells rather than neurons, 

modifying the abundance of glial cells in the co-culture would elicit a corresponding increase in lactate 

release after stimulation. Although cultures not treated with AraC had around tenfold more astrocytes than 

AraC treated ones, these two types of cultures showed the same degree of lactate release when stimulated, 

confirming that the enhanced glucose metabolism, and, consequently the expression of glucose metabolism 

genes when stimulated occurred in neurons rather than astrocytes (Fig. EV2K). In the second approach, we 

used pure astrocyte cultures. Astrocytes express functional BDNF receptors (Ohira et al, 2005; Rose et al, 

2003), however BDNF did not increased lactate release in pure astrocyte cultures like it did in neuronal 
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cultures (Fig. EV2H and 2L). Thus, enhancement of glucose metabolism takes place in neurons when 

stimulated with neurite growth inducers. 

Activity-dependent induction of glycolysis genes depends on HIF-1a stabilization 

Next we investigated the transcription factor responsible for the induction of activity-mediated glucose 

metabolism genes. HIF-1α is a transcription factor that stimulates glycolysis by transactivating the genes 

involved in intracellular glucose transport and glycolysis (Denko, 2008; Semenza et al, 1994). Although HIF-

1α is typically unstable in normoxia, certain conditions enable its stabilization in normoxic conditions (Denko, 

2008). Thus, HIF-1α could be responsible for inducing glucose metabolism genes. We observed HIF-1α 

stabilization in active and BDNF treated neurons (Figs. 3A, 3B, and EV3A-C), but not HIF-2α (Fig EV2E and F), 

that correlated with increased HIF-1α transcriptional activation (Fig. 3C). Overexpression of HIF-DN, a 

dominant negative form of HIF-1α (HIF-DN) formed by the DNA binding domain of HIF-1α and lacking the 

prolyl hydroxylase and transactivation regions, completely blocked activity- mediated transcriptional 

activation of HIF-1α (Fig. 3C). Transduction with AAV-HIF-DN blocked activity-dependent induction of 

glycolysis genes, but had no effect on Glut3 gene expression (Fig. 3D). This was not completely surprising 

because the pattern of Glut3 expression was different to that of the glycolysis genes (Fig. 2D). All together, 

these results indicate that the activity-dependent induction of glycolysis genes depends on HIF-1α 

HIF-1α is stabilized by Siah2 and LDH activity 

HIF-1α regulation is mainly mediated by proteosomal degradation in normoxia. Hydroxylation of prolynes in 

the ODD domain of HIF-1α by PHDs promotes HIF-1α proteolysis (Ivan et al, 2001; Jaakkola et al, 2001; 

Maxwell et al, 1999). We studied whether synaptic activity decreased PHD activity. Neurons were transfected 

with a plasmid expressing firefly luciferase fused to the oxygen-dependent degradation domain of HIF-1α 

(ODD-Luc). Synaptic activity resulted in increased luciferase activity in ODD-Luc, but not wild type firefly 

luciferase (Luc) transfected neurons (Fig. 4A and 4B), indicating reduction in PHD activity. Siah2 is an E3 

ubiquitin ligase that promotes HIF-1α stabilization mainly by mediating proteasomal degradation of PHDs 

(Nakayama et al, 2004), although other mechanisms by which Siah2 promotes HIF-1α stabilization have been 

also described (Li et al, 2017). Siah2 mRNA and protein levels were induced by synaptic activity (Fig. 4C-E), 

with Siah1 being downregulated (Fig. EV4A), and BDNF (Fig. E3B and D and Fig EV4B), correlating with 

reduced PHD activity. To confirm the role of Siah2 in activity-dependent HIF-1α stabilization, we knocked 

down (KD) Siah2 by transducing the neurons with two AAV expressing different shRNAs targeting Siah2. Siah2 

KD neurons showed a strong reduction of activity-dependent HIF-1α accumulation (Fig. 4F-H and Fig EV4C-

G). Next, we checked the expression levels of PHD in active neurons and surprisingly we observed no changes 

in PHD1, PHD3 and FIH, and increased expression of PHD2 (Fig EV4H and I). One alternative mechanism by 

which Siah2 could HIF-1α is mediating degradation of the enzymes of the OGDHC, OGDH and DLST (Burr et 
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al, 2016; Intlekofer et al, 2017; Nadtochiy et al, 2016; Sun & Denko, 2014) , but we could not observe changes 

in protein levels of these enzymes (Fig. EV4H and I). However, a central role of Siah2 upregulation in the 

activity-mediated enhanced glucose metabolism was further confirmed by showing that Siah2 KD blocked 

activity-mediated lactate release (Fig 4I) and glucose incorporation into lipids (Fig. 4J). 

HIF-1α regulation is complex, with several regulators and mechanisms being involved. We tested whether 

other mechanisms different from the one mediated by Siah2 induction could participate as well in activity-

mediated HIF-1α stabilization. HIF-1α is anO2 sensitive transcription factor that mediates the primary 

response to hypoxic stress. Excessive O2 consumption in active neurons could generate transitory hypoxia 

that mediates HIF-1α stabilization. However, the use of a hypoxia sensor probe did not show hypoxia 

generation by synaptic activity (Fig. EV4J). Despite synaptic activity regulates a transcriptional program of 

defense against oxidative stress (Papadia et al, 2008), acute synaptic activity could boost mitochondrial 

metabolism and enhance ROS production which is involved in HIF-1α stabilization in normoxia, therefore we 

tested whether the use of antioxidants could block HIF-1α activation by synaptic activity, but it did not 

have any effect on activity-mediated HIF-1α stabilization (Fig EV4K and L). Increased HIF-1α levels in active 

neurons were not due to the transcriptional regulation of HIF-1α either (Fig. EV4M). Both rise in pyruvate 

and lactate levels stabilize HIF-1α (Lu et al, 2002). We inhibited LDH with oxamate, which produces 

accumulation of pyruvate and reduces lactate release (Lu et al, 2002). Oxamate treatment blocked activity-

mediated HIF-1α stabilization (Fig 4K and L). Since, both, Siah2 KD and LDH inhibition almost completely 

blocked activity-mediated HIF-1α  stabilization they may be part of the same regulatory pathway. 

Glut3 and Siah2 expression is regulated by CREB 

Since Glut3 expression in active neurons did not depend on HIF-1α activation, we explored which 

transcription factor could regulate it. CREB is a powerful regulator of synaptic activity-mediated gene 

expression (Bading, 2013; Greer & Greenberg, 2008), controls neurite outgrowth (Redmond et al) and is 

involved in metabolic regulation in different cell types (Altarejos & Montminy, 2011). CREB has been shown 

to regulate Glut3 expression (Rajakumar et al, 2004); thus, we tested whether CREB was involved in activity-

mediated Glut3 expression. Transduction of neurons with AAV expressing a dominant negative CREB (A-

CREB; (Ahn et al, 1998)) blocked activity-dependent Glut3 expression (Fig. 5A). 

Given that Glut3 and Siah2 showed a similar pattern of mRNA expression following synaptic activity, a high 

activation after four hours with the decay at 24 hours (Fig. 2D and 4C), we assesed whether Siah2 was also 

regulated by CREB. A-CREB blocked Siah2 induction (Fig. 5C and D) and, consequently, blocked the HIF-1α 

stabilization induced by synaptic activity (Fig. 5C and E). Furthermore, over-expression of the endogenous 

CREB inhibitor ICER (Molina et al, 1993) also blocked HIF-1α activity (Fig. 5F) but did not disturb the activity 
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of MEF2 (Fig EV5A), an activity-dependent transcription factor (Greer & Greenberg, 2008). Forskolin, adenylyl 

cyclase activator and hence CREB activator, was sufficient to induce Siah2 expression and HIF-1α stabilization 

and activation (Fig. 5G-J). In agreement with an indirect CREB-dependent activation of HIF-1α via increased 

Siah2 expression, we observed that CREB activation preceded HIF-1α activation (Fig. 5K). 

As expected, A-CREB expression blocked activity-dependent lactate release (Fig. 5L) and glucose 

incorporation into lipids (Fig. 5M). Forskolin also stimulated lactate release (Fig. EV5B) but had no effect on 

glucose incorporation into lipids (Fig. EV5C), in agreement with the fact that cAMP greatly potentiates 

neuritic growth in response to neurotrophic factors but does not promote growth by its own (Goldberg et al, 

2002). 

Defective glycolysis impairs neurite growth 

This and the previous results suggest that Siah2 and HIF-1α may be necessary for neurite growth through 

regulating glycolysis. Indeed, HIF-1α or Siah2 over-expression in DIV 3 immature cortical neurons increased 

neurite length (Fig 6A-C) that at this stage represents axonal growth (Dotti et al, 1988). While HIF-DN 

expression or Siah2 knockdown blocked activity-dependent neurite growth in DIV 10 cortical neurons (Fig. 

6D-G). 

The first three weeks after birth is when maximum neurite growth occurs in mice, being synaptic activity one 

of the effectors of this growth (Wong & Ghosh, 2002). In order to provide evidence about the in vivo role of 

glucose metabolism we administered PFKFB3 inhibitor 3PO (Schoors et al, 2014) for 5 days to rat pups 

that were 8 days old. Golgi staining showed reduced complexity of neuritic arbors in the cortex of 3PO 

administered rats (Fig. 6H-I). 

HIF-1α deletion in neural precursor cell progenitors leads to atrophy of the cerebral cortex, indicating an 

important role for HIF-1α in neuronal development in vivo (Tomita et al, 2003). Thus, we compared HIF-1α 

expression in the brains of mice that were 10 days and 3 months old. We observed a higher density of HIF-

1α positive cells and increased protein levels in 10 day-old mice compared to 3 month-old mice (Fig. 6J and 

Fig. EV6A and B). Expression of HIF-1α in 10 day-old mice brain was highest in cortex, hippocampus and 

corpus callosum (Fig. EV6C). Dual staining reveled colocalization of HIF1α with the neuronal marker NeuN, 

and complete absence in astrocytes expressing GFAP (Fig. 6K). 

In order to provide evidence about the in vivo role of HIF-1α in neurite growth, we deleted HIF-1α in 

tamoxifen inducible HIF-1α KO mice that were 3-5 days old, when gross anatomy of the brain resembles to 

that of the adult but is characterized by outgrowth of dendrites and axons. Once these animals reached 

adulthood (4-6 months), the neuronal architecture of the cortex of WT and HIF-1α KO mice was analyzed by 
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Golgi staining, which showed reduced complexity of neuritic arbors in the KO mice (Fig. 6L and M). Taken 

together, our results indicate that induction of glucose metabolism in neurons is required for proper neuronal 

development. 

Discussion 
Signaling from afferents plays an essential role in neurite growth (Groc et al, 2002; Rajan & Cline, 1998; Wong 

& Ghosh, 2002). Here, we show that activity-dependent neurite growth requires induction of glucose 

metabolism. Synaptic activity enhances glucose uptake and metabolism, some of which is diverted towards 

lipid synthesis that is required for cell membrane enlargement during outgrowth. The induction of glucose 

metabolism is mediated at the transcriptional level, CREB induces Glut3 and Siah2, the latter promoting the 

normoxic stabilization of HIF-1α that regulates the expression of the rate-limiting enzymes involved in 

glycolysis (Fig. 7). 

Most of the glucose in the brain is oxidized to supply the large amounts of ATP required for maintaining 

membrane ion gradients and processes regulating to synaptic transmission (Harris et al; Magistretti & 

Allaman, 2015; Rangaraju et al). However, measurements of human brain glucose and oxygen consumption 

reveal that the total amount of glucose consumed is in excess of oxygen consumption (Goyal et al, 2014; 

Vaishnavi et al, 2010). The utilization of aerobic glycolysis in the human brain differs across the 

developmental stages, with 35% of glucose being consumed aerobically after birth that falls to 10-12% in 

adulthood (Goyal et al, 2014). This increased aerobic glycolysis during infancy correlates with the period of 

maximal neurite growth (Goyal et al, 2014; Silbereis et al, 2016). Neuronal differentiation in vitro show 

increased expression levels of Glut3 and glycolysis enzymes, with 2-DG treatment of DIV1 cortical neurons 

blocking differentiation (Agostini et al, 2016). These data agree with our findings that activity-dependent 

aerobic glycolysis is used to meet the biosynthetic requirements for neurite growth. Highly proliferative 

cancer cells rely on aerobic glycolysis, which it is known as the Warburg effect (Vander Heiden et al, 2009). 

Despite aerobic glycolysis being a less efficient way of generating ATP it confers advantages to cancer cells 

such as the production of intermediates that support cell growth and division (Vander Heiden et al, 2009). 

Although postmitotic neurons do not divide, they undergo massive growth during differentiation. A neurite 

with a diameter of 1 µm elongating 0.55 µm per day must expand its surface at a rate of around 1µm2 per 

minute to reach 250,000 µm2 which is the typical neuron surface area, compared with 1,256 µm2 membrane 

surface of a spherical cell with 20 µm diameter (Pfenninger, 2009). 

Astrocytes and neurons are metabolically coupled. The astrocyte-neuron lactate shuttle (ANLS) hypothesis 

proposes that the lactate produced by astrocytes is released and taken up by neurons to produce energy 

(Pellerin & Magistretti, 1994). Although there is a lot of evidence supporting the ANLS there are also data 
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that oppose this hypothesis (Dienel, 2017; Lundgaard et al, 2015; Patel et al, 2014; Pellerin & Magistretti, 

2012). Here, we clearly demonstrate that synaptic activity boosts glucose uptake and metabolism in neurons, 

rather than glial cells, by upregulating Glut3 and glycolysis genes. Increasing the proportion of glial cells in 

our primary cultures did not result in increased lactate release after stimulation, neither BDNF treatment 

affected lactate release in astrocytes unlike the stimulatory effect in lactate release in neuronal cultures. 

Moreover, glucose uptake in neurons was observed by live-imaging, and HIF-1α activation measured with 

luciferase reporters is based in neuronal-specific transfection protocol which nearly the totality of 

transfected cells are neurons (Soriano et al, 2008). In accordance with our results, a very recent study (Bas-

Orth et al, 2017) showed synaptic activity caused an up-regulation of glycolytic genes with the subsequent 

increase in glycolytic metabolism. Isolating neurons by FACS allowed the authors to conclude that the 

induction of glycolytic genes was produced in neurons. Despite strong evidence indicating that glucose 

metabolism is activated by synaptic activity in neurons, these results do not oppose the ANLS, but supports 

the notion that neurons take up and metabolize through glycolysis in certain conditions (Ashrafi et al, 2017; 

Díaz-García et al, 2017; Jang et al; Lundgaard et al, 2015; Zala et al). Cell division, migration and neurite 

growth require extraordinary levels of energy that would explain why the supply of energy in neurons is not 

limited to the astrocytic lactate during pre- and postnatal stages. This is also seen in the support of cholesterol 

synthesis in neurons by astrocytes, which can supply sufficient levels of cholesterol to adult  neurons unable 

to synthesize cholesterol, but cannot do so during the phase of maximal membrane growth (Fünfschilling et 

al, 2012). 

Activity-mediated CREB activation plays a pivotal role in enhanced glucose metabolism. In neurons, CREB is 

a key transcription factor that regulates plasticity, cell survival and neurite growth (Bading, 2013; Greer & 

Greenberg; Lonze & Ginty, 2002; Redmond et al, 2002). In peripheral tissues, CREB has a major metabolic 

role, regulating glucose and lipid metabolism in insulin-sensitive tissues (Altarejos & Montminy, 2011). As 

previously described (Rajakumar et al, 2004), we observed CREB-mediated regulation of Glut3 gene 

expression, the main glucose transporter in neurons. In addition, CREB promoted Siah2 gene expression and, 

consequently, HIF-1α stabilization, which resulted in the increased gene expression of the rate-limiting 

enzymes involved in glycolysis. HIF-1α is best known as a transcription factor that mediates adaptation to 

hypoxia. Genes associated with glucose metabolism are the largest functional group regulated by HIF-1α 

(Denko, 2008; Semenza et al, 1994). HIF-1α KO leads to embryonic lethality at E11, producing cardiovascular 

and brain malformations (Iyer et al, 1998; Ryan et al, 1998). HIF-1α deletion in neuronal progenitors elicits 

cerebral cortex atrophy, defective brain development with fewer neural cells and impaired of spatial memory 

(Tomita et al, 2003) however HIF-1α deletion in mature neurons using CaMKII-CRE does not generate any 

evident major morphological defect (Helton et al, 2005). Here, we show that HIF-1α deletion in early 
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postnatal mice, a period of maximal afferent innervations and neurite growth, disturbs neurite architecture 

in the adult. 

HIF-1α activation is regulated at multiple levels. We observed that synaptic activity reduced PHD activity, 

while CREB upregulated the expression of the ubiquitin ligase Siah2, and that activity-dependent induction 

of Siah2 is necessary for stabilizing HIF-1α. Siah2 KO mice exhibit mild phenotypes and do not show obvious 

brain abnormalities (Frew et al, 2003). However, the presence of other Siah proteins (1a and 1b) may explain 

this lack of phenotype, given that double Siah1a/2 KO animals show a more severe phenotype regarding HIF-

1α activity than Siah2 KO mice (Nakayama et al, 2004). The first mechanism described by which Siah1 and 

2 proteins stabilize HIF-1α was by promoting proteasomal degradation of PHDs (Nakayama et al, 2004). 

However, we could not detect reduction in PHDs after synaptic activity. HIF-1α is known to interact with 

more than one hundred proteins (Semenza, 2017), most of them regulating HIF-1α stability. Among the 

interacting proteins some of them have been shown to be targeted by Siah2, such as Polo-like kinase 3 

(PLK3) that phosphorylates and destabilizes HIF-1α (Xu et al, 2010), and Siah2-mediated PLK3 degradation 

results in HIF-1α activation (Li et al, 2017). Sprouty2 promotes HIF-1α ubiquitination (Hicks & Patel, 2016), is 

regulated by Siah2 (Qi et al, 2008) and its downregulation promote axonal growth (Hausott et al, 2009; 

Hausott et al, 2012; Marvaldi et al, 2015), however the link between these three observations have not been 

established. We observed that both Siah2 knockdown or LDH inhibition almost completely blocked activity-

dependent HIF-1α stabilization, what indicates that they may share a common regulatory pathway. Acid pH 

and LDH promotes the noncanonical conversion of 2-oxoglutarate to L-2-HG which functions as a potent 

inhibitor of PHDs (Burr et al, 2016; Intlekofer et al, 2017; Nadtochiy et al, 2016). Disruption of OGDHC results 

in accumulation of oxoglutarate with the subsequent increase in L-2-HG and HIF-1α stabilization (Burr et al, 

2016). Siah2 has been reported to disrupt OGDHC complex (Habelhah et al, 2004; Sun & Denko, 2014) but 

acute synaptic activity did not affect protein levels of OGDHC. Future studies will be aimed to understand the 

interrelationship between Siah2 and LDH to promote activity-mediated HIF-1α stabilization. 

Disruption of dendritic development is the most consistent anatomical finding in mental retardation 

(Kaufmann & Moser, 2000). The role of abnormal cytoskeletal remodeling has been associated with mental 

retardation in some syndromes but further studies are required to determine how glucose metabolism is 

affected. Glut1 deficiency syndrome or chronic hypoglycemia (congenital or early infantile) causes the 

syndrome of glycopenia which is characterized by seizures, developmental delay and mental retardation 

(Pascual et al, 2007). Here, we have showed that activity-mediated neurite growth requires enhanced glucose 

metabolism to supply lipids for membrane enlargement. Further studies are required to determine how 

glucose metabolism is affected in intellectual development disorders. Those studies could lead to the 

possibility of manipulating glucose metabolism to treat of some forms of intellectual development disorders. 



13 

Material and methods 
Cell culture and stimulation 

Cortical neurons from E21 Sprague Dawley rats were cultured as described previously (Martorell-Riera et al, 

2015). See supplementary information. 

HIF-1α gene inactivation in vivo 

To study the in vivo role of HIF-1α in neuronal architecture, we used previously described HIF1α floxed UBC-

CRE-ERT2 mice (Soro-Arnaiz et al, 2016). These mice ubiquitously express a tamoxifen-inducible CRE 

recombinase (cre-ERT2) that allows global inactivation of HIF-1α locus flanked by two LoxP sites upon 4OH-

tamoxifen treatment. For HIF-1α gene inactivation, the newborn mice received tamoxifen via breast feeding 

from the mother. Weaning mothers were injected intraperitoneally with 4OH-tamoxifen daily for 5 days (2 

mg/day) starting 3-5 days postpartum. After this period females were returned to a standard mouse diet. 

Once newborns reached adulthood (4-6 months) neuronal architecture was analyzed. Mice were kept under 

specific pathogen-free conditions at the animal facility at the Autonomous University of Madrid (UAM). 

3PO administration 

See supplementary information 

Histology 

See supplementary information 

Transfection, plasmids and virus generation 

Neurons were transfected at DIV8 using Lipofectamine 2000 (Invitrogen). Transfection efficiency was 

approximately 5 % which nearly the totality of transfected cells are neurons (Soriano et al, 2008). 

Neurons were infected with rAAV at DIV4. Infection efficiencies were determined at DIV 10-11 by analyzing 

GFP fluorescence or immunocytochemical analysis and were observed to range from 70 to 85% of the viable 

neurons. See supplementary information 

Neurite length measurement 

Cortical neurons were transfected with a plasmid expressing GFP and neurons were fixed 48 hours later with 

4% paraformaldehyde, permeabilized, blocked and incubated over-night at 4°C with anti-GFP antibody 

(1:750, A11122, Life Technologies). Antibody binding was visualized using a biotinylated secondary antibody 
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(1:200, Jackson Immuno Research) and Cy3-conjugated streptavidin (1:500, Jackson Immuno Research). 

Preparations were mounted on VECTASHIELD Mounting Medium with DAPI (Vector Laboratories). 

Images were taken blindly at 4X magnification using an Olympus BX61 microscope equipped with an Olympus 

DP70 camera. Neurites were manually traced and analyzed using Simple Neurite Tracer software (Longair et 

al, 2011). 

Luciferase assays 

Cells were transfected with firefly luciferase-based reporter plasmid along with a Renilla expressing vector 

(pTK-RL; Promega), together with, where relevant, an HIF-DN or A-CREB expression vector. Luciferase assays 

were performed using the Dual Glo Luciferase Assay system (Promega) with firefly luciferase-based reporter 

gene activity normalized to the Renilla control (pTK-RL plasmid), except the CMV-ODD-Luc and CMV-Luc 

experiments that were normalized to CMV-Renilla. 

RNA isolation, RT-PCR and qPCR 

RNA was isolated using an PureLinkTM RNA mini kit (Life Technologies). For qPCR, cDNA was synthesized from 

RNA using the SuperScript® III First-Strand Synthesis SuperMix (Life Technologies) following the 

manufacturer’s instructions. qPCR was performed in a StepOne Real-Time PCR System (Applied Biosystem) 

using GoTaq qPCR Master Mix (Promega) according to the manufacturer’s instructions. See supplementary 

information 

Western blotting and antibodies 

See supplementary information 

Acetyl-CoA and CoA determination 

Acetyl-CoA and CoA levels were measured using the Acetyl-Coenzyme A and CoA Assay Kits, respectively 

(Sigma). See supplementary information. 

Glucose uptake measurements 

The uptake of 2-[N-(7-nitrobenze-2-oxa-1, 3 diazol-4-yl) amino]-2 deoxy-glucose (2-NBDG, Life Technologies), 

a fluorescent glucose analog, was used to measure glucose transport. Cortical neurons were rinsed 3 times 

with phenol-red free SGG medium with reduced glucose concentration (0.5 mM) and incubated with 100 µM 

2-NBDG in reduced glucose SGG medium for 30 minutes at 37ºC and 5% CO2. Cultures were washed three 

times with phenol-red free SGG medium to remove free 2-NBDG. Accumulation of intracellular 2-NBDG, 

measured using an excitation wavelength of 488 nm, was imaged under a Leica DMIRB microscope equipped 
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with a Leica DFC 550 camera at 40× magnification. ROIs of the same surface were drawn in the soma and 

fluorescence intensity was analyzed using ImageJ (Schneider et al, 2012). 

Imaging studies 

Neurons were visualized using a TCS SP2 Leica confocal laser scanning microscope (Leica Lasertechnick 

GmbH, Mannheim, Germany) adapted to an inverted Leitz DMIRBE microscope at 37°C in a controlled 5% 

CO2 atmosphere (Life Imaging Services). Pictures were acquired using a 40× (1.25-0.75 NA) Leitz Plan-

Apochromatic objective. Images were analyzed using ImageJ software. 

Cytoplasmic Ca2+ was monitored with Fluo-4 (Life Technologies). Neurons were loaded 2 μM Fluo-4 for 45 

min at room temperature in phenol-red free SGG medium with 10mM HEPES and 10mM glucose. After 3 

washes with phenol-red free SGG medium, neurons were de-esterified for 30 min at room temperature, 

excited at 488 nm and emission captured with a 516-nm filter. 

For hypoxia analysis, neurons were loaded with 10 µM Image-IT Hypoxia Reagent (Life Technologies) in HBSS 

medium, and placed in an incubator chamber attached to the microscope, which was flushed with 95% 

N2/5% CO2 at a flow rate of 20 l/min at 37°C for 30min. Non-hypoxic neurons were maintained in normoxic 

conditions during probe incubation. Neurons were excited at 490 nm, and emission was measured using a 

610-nm filter. 

Lactate measurement 

The culture medium was filtered using 10K Amicon Ultra-0.5 mL centrifugal filters (EMD Millipore). Then, 50 

µL of medium was incubated with 200 µL of reaction buffer (320 mM glycine, 320 mM hydrazine, 2.4 mM 

NAD+ and 2 U/mL of lactate dehydrogenase (LDH). After 30 minutes of incubation at room temperature, the 

lactate-dependent generation of NADH was measured at 340 nm using the Infinite 200 PRO multimode 

reader (Tecan). Lactate levels were normalized by total protein levels, quantified using Pierce BCA Protein 

Assay Kit (Thermo Scientific). 

Glucose and glutamine incorporation into lipids 

Neurons were grown on glass coverslips for 48 hours in a medium containing 0.8 µCi/ml 14C-U-glucose 

(Perkin-Elmer) or 2 µCi/ml L-3-4-3H(N)-glutamine (Perkin Elmer). Lipid isolation was performed as described 

previously by Folch et al. (Folch et al, 1957). See supplementary information. 
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ATP levels were measured using the ATPlite Luminescence Assay System (Perkin-Elmer) on the Infinite 200 

PRO multimode reader (TECAN) following the manufacteurer’s instructions. ATP levels were normalized by 

total protein levels, quantified using Pierce BCA Protein Assay Kit (Thermo Scientific). 

Statistical analysis 

Statistical analysis involved two-tailed Student’s t-tests. For any multiple comparisons within data sets, we 

used a one-way ANOVA followed by Tukey’s post-hoc test. All data are presented as the mean ± s.e.m. of at 

least three independent experiments (n). A p value less than 0.05 was considered statistically significant. 
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Figure legends 

Figure 1. Glucose uptake is necessary for activity-dependent neurite outgrowth. Untrunsduced (A) or AAV-
shGPI or AAV-sh-sc (control) (B) neurons were incubated with 14C-U- glucose were stimulated with bicuculline 
plus 4-AP (labeled Bic in this and subsequent figures) for 48 hours or left unstimulated (CT). Cellular lipids 
were extracted and radioactive counts measured (n= 4-7 independent experiments). Values represent mean 
± s.e.m. *p<0.05, two- tailed Student’s t-test  (A) and  ANOVA one-way ANOVA followed by Tukey’s post-hoc  
test (B). 

C) Cortical neurons were stimulated for 24 hours with Bic+4-AP in the presence of glucose (n= 8 independent
experiments). After 24 hours total acetyl-CoA levels were assayed. Values represent mean ± s.e.m. *p<0.05, 
two-tailed Student’s t-test. D) Determination of cytosolic acetyl-CoA levels after 24 hours of Bic+4-AP 
stimulation in the presence of glucose (n= 4 independent experiments). Values represent mean ± s.e.m. 
*p<0.05, two-tailed Student’s t-test. E) Acetyl-CoA levels in cortical neurons stimulated for 24 hours with
Bic+4-AP in the presence of 25 mM of the non-metabolizable glucose analog 2-DG (n= 4 independent 
experiments). F) 14C-U-glucose incorporation into lipids in neurons transduced with AAV expressing shRNA-
sc or targeting ACLY (sh-ACLY) after 48 hours stimulation with Bic+4-AP. (n=7 independent experiments). 
Values represent mean ± s.e.m. *p<0.05, one-way ANOVA followed by Tukey post-hoc test. G and H) Neurite 
length and representative tracings of the neuritic tree of control and Bic+4-AP stimulated neurons (for 48 
hours) after transfection with non-targeting (siC) or Glut3-targeting (siGlut3) siRNAs (n= 45-49 neurons from 
9 independent experiments). Scale bar, 500 µm. Values represent mean ± s.e.m. *p<0.05, one-way ANOVA 
followed by Tukey’s post-hoc test. 

ATP measurement
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Figure 2. Synaptic activity stimulates neuronal glucose uptake and metabolism at the transcriptional level. 
A) 2-NBDG uptake over 15 minutes in control or Bic+4-AP stimulated (for 24 h) neurons after washing and
medium replacement (n= 4 independent experiments). Values represent mean ± s.e.m. *p<0.05, two-tailed 
Student’s t-test. B) Neurons treated or not with cycloheximide (10 µM) were stimulated with Bic+4-AP (for 
24 h) before measuring the amount of lactate released into the medium (n= 4-7 independent experiments). 
Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-test. C) ATP levels in unstimulated neurons 
that were treated with CCCP (3 nM) following the indicated chronogram. + or – glucose indicates whether 
the fresh medium added after the wash step contained glucose or not. (n= 3-6 independent experiments). 
Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s t- test. D) Cortical neurons were stimulated 
with Bic+4-AP for 4 or 24 hours and mRNA expression of the indicated genes was determined by real-time 
qPCR (n= 3-6 independent experiments). Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-
test. E) Representative western blot and (F) densitometric analysis of protein samples from control and Bic+4-
AP-stimulated (24 hours) (n= 3-4 independent experiments). 

Figure 3. Activity-dependent induction of glycolysis genes depends on HIF-1a stabilization. A) Cortical 
neurons were stimulated with Bic+4-AP over  various time points and the HIF-1α protein was analyzed by 
western blotting (n= 5 independent experiments). B) Densitomeric analysis of HIF-1α expression. Values 
represent mean ± s.e.m. *p<0.05, two-tailed Student’s t- test. C) Luciferase-based HIF-1α activity in neurons 
expressing a control plasmid (globin) or a dominant negative HIF-1α (HIF-DN) and stimulated with Bic+4-AP 
for 8 hours (n= 4 independent experiments). Values represent mean ± s.e.m. *p<0.05, one-way ANOVA 
followed by Tukey post-hoc test. D) Cortical neurons were transduced with AAV expressing HIF-DN or control 
(GFP), stimulated for 4 or 24 hours with Bic+4-AP and the mRNA expression of the indicated genes was 
analyzed by qPCR (n= 5 independent experiments). Values represent mean ± s.e.m. *p<0.05, one-way 
ANOVA followed by Tukey post-hoc test. E) Lactate released into the medium by neurons transduced with 
AAV expressing HIF-DN or control (GFP) after 24 hours stimulation with Bic+4-AP. (n= 3 independent 
experiments). Values represent mean ± s.e.m. *p<0.05, one-way ANOVA followed by Tukey post-hoc test. F) 
14C-U-glucose incorporation into lipids in neurons transduced with with AAV expressing HIF-DN or control 
(GFP) and stimulated for 48 hours with Bic+4-AP. (n= 4 independent experiments). Values represent mean ± 
s.e.m. *p<0.05, one-way ANOVA followed by Tukey post-hoc test. 

Figure 4. HIF-1α is stabilized by Siah2 and LDH activity. A and B) PHD activity after Bic+4-AP stimulation was 
assayed measuring luciferase activity in neurons transfected with plasmids expressing luciferase fused to the 
ODD domain of HIF-1α. Non fused luciferase was used as control (n=4 independent experiments). Values 
represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-test. C) Cortical neurons were stimulated with Bic+4-
AP for 4 or 24 hours and Siah2 mRNA expression was determined by real-time qPCR (n= 4 independent 
experiments). Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-test. D) Cortical neurons were 
stimulated with Bic+4-AP over various time points and the indicated proteins were analyzed by western 
blotting (n= 3-5 independent experiments). E) Densitometric analysis of Siah2 protein levels. Values 
represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-test. F) AAV sh-sc (control) or sh-Siah2 transduced 
neurons were stimulated with Bic+4-AP for 4 hours before analyzing the expression of the indicated proteins 
(n= 5 independent experiments).G) and H) Densitometric analysis of the indicated proteins. Values represent 
mean ± s.e.m. *p<0.05, one- way ANOVA followed by Tukey post-hoc test. I) Lactate released into the 
medium by neurons transduced with AAV expressing shRNA-sc or targeting Siah2 (sh-Siah2) after 24 hours 
stimulation with Bic+4-AP. (n= 4 independent experiments). Values represent mean ± s.e.m. *p<0.05, one-
way ANOVA followed by Tukey post-hoc test. J) 14C-U-glucose incorporation into lipids in neurons transduced 
with AAV expressing shRNA-sc or targeting Siah2 (sh-Siah2) after 48 hours stimulation with Bic+4-AP. (n= 7 
independent experiments). Values represent mean ± s.e.m. *p<0.05, one-way ANOVA followed by Tukey 
post-hoc test. K) Representative western blot and (L) densitometric analysis of neurons stimulated for 4 
hours with Bic+4-AP in absence or presence of 40 mM oxamate (Oxam.). (n= 5 independent experiments). 
Values represent mean ± s.e.m. *p<0.05, one-way ANOVA followed by Tukey post-hoc test. 
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Figure 5. Glut3 and Siah2 expression is regulated by CREB. Cortical neurons transduced with AAV expressing 
GFP (control) or dominant negative A-CREB were stimulated with Bic+4-AP for 4 hours before analyzing the 
mRNA expression of (A) Glut3 and (B) Siah2 by qPCR (n= 5 independent experiments). Values represent mean 
± s.e.m. *p<0.05, one-way ANOVA followed by Tukey’s post-hoc test. C) Representative western blot and (D) 
and (E) densitometric analysis of the indicated proteins of neurons transduced with AAV expressing GFP or 
A-CREB and stimulated with Bic+4-AP for 4 hours (n= 3 independent experiments). Values represent mean 
± s.e.m. *p<0.05, one-way ANOVA followed by Tukey post-hoc test. F) Luciferase-based HIF-1α activity in 
neurons expressing a control plasmid (globin) or a CREB inhibitor ICER and stimulated with Bic+4-AP for 8 
hours (n= 5 independent experiments). Values represent mean ± s.e.m. *p<0.05, one-way ANOVA followed 
by Tukey’s post-hoc test. G) CREB activator forskolin (FSK) was sufficient to induce Siah2 expression and 
stabilize HIF-1α. Representative western blot and densitometric analysis (H and I) of neurons treated with 10 
µM forskolin for 4 hours (n= 3 independent experiments). *p<0.05, two-tailed Student’s t-test. J) Luciferase- 
based HIF-1α activity in neurons treated with forskolin for 8 hours (n= 4 independent experiments). Values 
represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-test. K) CREB activation temporally precedes HIF-1α 
activation. Luciferase-based CREB and HIF-1α activity at different time points after Bic+4-AP stimulation (n= 
4 independent experiments). Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s t-test. L) Lactate 
released into the medium by neurons transduced with AAV expressing A-CREB or control (GFP) after 24 hours 
stimulation with Bic+4-AP. (n= 5 independent experiments). Values represent mean ± s.e.m. *p<0.05, one-
way ANOVA followed by Tukey post-hoc test. M) 14C-U-glucose incorporation into  lipids  in  neurons  
transduced with with AAV expressing A-CREB or control  (GFP) and stimulated for 48 hours with Bic+4-AP. 
(n= 5 independent experiments). Values represent mean ± s.e.m. *p<0.05, one-way ANOVA followed by 
Tukey post-hoc test. 

Figure 6. Defective glycolysis impairs neurite growth. Analysis of neurite length of immature neurons 
transfected at DIV1 with GFP-expressing plasmids plus control plasmids (globin) or expressing HIF-1α (A), 
Siah2 (B) and analyzed 48 h after transfection and (C) representative tracings (n= 27-40 neurons from 6 
independent experiments). Scale bar, 100 µm. Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s 
t-test. Analysis of neurite length and representative tracings of neurons transfected at DIV8 with GFP 
expressing plus plasmids control (globin) or expressing HIF-DN (D and E) or a non targeting siRNA (siCT) or a 
pool of 4 siRNAs targetins Siah2 (F and G) and stimulated the day after with Bic+4-AP for 48 hours (n= 27-36 
neurons from 6 independent experiments). Scale bar, 500 µm. Values represent mean ± s.e.m. *p<0.05, one-
way ANOVA followed by Tukey’s post-hoc test. H) Sholl analysis and (I) representative tracings of Golgi-
stained cortical neurons of 14 days old rats administered with 3PO (50 mg/kg) for 5 days. (n= 15-20 neurons 
from 4 mice per condition). Scale bar, 100 µm. Values represent mean ± s.e.m. *p<0.05, two-tailed Student’s 
t-test. J) Immunohistochemical detection of HIF-1α in cortical sections from 10-day and 3-month old mice 
(n= 3 mice per condition). Scale bar, 50 µm. K) Immunfluorescence detection of HIF-1α, NeuN and GFAP in 
cortical sections from 10-day old mice (n= 3 mice per condition). Scale bar, 100 µm. L) Sholl analysis and (M) 
representative tracings of Golgi-stained cortical neurons of WT and early postnatal deleted HIF-1α mice. (n= 
16 neurons from 3 mice per condition). Scale bar, 100 µm. Values represent mean ± s.e.m. *p<0.05, two-
tailed Student’s t-test. 

Figure 7. Model for synaptic activity inducing glucose metabolism to supply lipids for neurite growth. A) 
Synaptic activity induce a transcriptional program by activating CREB and HIF-1α: Synaptic activity (1) induces 
Ca2+ transients (2) that activate the transcription factor CREB (3). CREB upregulates Glut3 expression to 
increase glucose uptake by neurons. CREB also increases Siah2 expression that together with LDH activity 
promote the stabilization and activation HIF-1α (4, 5), which in turn activates the expression of genes 
encoding the rate-limiting enzymes of glycolysis. B) Transcriptional changes induced by synaptic activity 
increase glucose uptake and enhance glycolytic flux. As a result, metabolites such as acetyl-CoA are 
generated and used for lipid synthesis necessary for membrane extension during neurite growth. Some 
graphics in the figure were obtained and modified from Smart Servier Medical 
Art (https://smart.servier.com/). 
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Material and methods 
Cell culture and stimulation 

Cortical neurons from E21 Sprague Dawley rats were cultured as described previously (Martorell-Riera et al, 

2015). Experiments were performed after a culturing period of 10–11 days during which cortical neurons 

develop a rich network of processes, express functional NMDA-type and AMPA/kainate-type glutamate 

receptors, and form synaptic contacts. Prior to stimulations and transfections, neurons were transferred 

from growth medium to a medium composed of 10% MEM (Invitrogen) and, 90% salt-glucose-glycine (SGG) 

medium (SGG: 114 mM NaCl,  0.219 %  NaHCO3,  5.292 mM KCl,  1 mM MgCl2,  2 mM CaCl2,  10 mM HEPES, 

1 mM glycine,  30  mM  glucose,  1  mM  glutamine,  0.5  mM  sodium  pyruvate,  0.1%  phenol  red; 

osmolarity 325 mosm/l). Bursts of action potential firing were induced by treating of neurons with 50 µM 

bicuculline (Sigma), and burst frequency was enhanced by adding of 250 µM 4-amino pyridine (Sigma). 

HIF-1α gene inactivation in vivo 

To study the in vivo role of HIF-1α in neuronal architecture, we used previously described HIF1α floxed UBC-

CRE-ERT2 mice (Soro-Arnaiz et al, 2016). These mice ubiquitously express a tamoxifen-inducible CRE 

recombinase (cre-ERT2) that allows global inactivation of HIF-1α locus flanked by two LoxP sites upon 4OH-

tamoxifen treatment. For HIF-1α gene inactivation, the newborn mice received tamoxifen via breast feeding 

from the mother. Weaning mothers were injected intraperitoneally with 4OH-tamoxifen daily for 5 days (2 

mg/day) starting 3-5 days postpartum. After this period females were returned to a standard mouse diet. 

Once newborns reached adulthood (4-6 months) neuronal architecture was analyzed. Mice were kept under 

specific pathogen-free conditions at the animal facility at the Autonomous University of Madrid (UAM). 

3PO administration 

P8 rat littermates were daily injected intraperitoneally for 5 days with 50 mg/kg PFKFB3 inhibitor 3PO 

(Merck) or DMSO (control). Six hours after the last injection, pups were sacrificed free conditions at the 

animal facility at the Barcelona University (UB). 

Histology 

PFA-fixed brain mice (10-days and 3-months old) coronary sections (30 µm thicknes) were blocked for 2 hours 

at room temperature with PBS containing 10% of normal goat serum (NGS), 0.2% of gelatin. Anti-HIF-1α 

antibody (1:250) was incubated overnight at 4 °C with PBS-5% NGS. Sequential incubation with biotinylated 

anti-rabbit secondary antibody for 2 hours at room temperature (1:200; 711-065-152. Jackson 
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Immunoresearch) followed with streptavidin- HRP incubation for 2 hours at room temperature temperature 

(1:400; Vectastain ABC kit, Vector Laboratories) was performed in PBS-5% NGS. Bound antibodies were 

visualized by reaction using DAB and H2O2 as peroxidase substrates (Vectastain ABC kit, Vector Laboratories). 

Finally, sections were dehydrated and mounted. 

For antigen immunodetection, sections were blocked for 2 h at RT with PBS-0.1% Triton-X-100 (PBST) 

containing 10% of fetal bovine serum (FBS), 0.2% of gelatin, and F(abʹ)2 fragment anti-mouse IgG (Jackson 

ImmunoResearch,1:300) when needed. Primary antibodies were incubated overnight at 4°C with PBS-5% 

FBS. 

Anti-NeuN (Millipore) and anti-GFAP (DAKO) antibodies, dye-labeled secondary antibodies (1:300) were 

incubated for 2 h at RT in PBST–5% FBS. For the immunohistofluorescent detection of HIF1-α (Abcam), 

sequential incubation with biotinylated secondary antibodies in PBST-5% FBS (1:300; 2 h at 4ºC) and 

streptavidin-HRP (VECTASTAIN® Elite® ABC-HRP Kit, Vector Laboratories) (2 h at 4ºC) was performed . Bound 

antibodies were visualized by counterstained with DAPI (Sigma, 5 μm), mounted in Fluoromont and stored 

at −4°C. 

For Golgi staining, impregnation was performed using Rapid Golgi Stain Kit (FD Neurotechnologies) following 

the manufacturer’s protocol. Brains were stored in impregnation solution for two weeks in the dark. Coronal 

brain sections (150 µm thick) were obtained by slicing frozen brains with a cryostat, mounted in gelatin-

coated slides and allowed to dry naturally at room temperature. Sections were then incubated during 10 

minutes with staining solution, dehydrated and mounted with Eukitt (Sigma). 

Transfection, plasmids and virus generation 

Neurons were transfected at DIV8 using Lipofectamine 2000 (Invitrogen). Transfection efficiency was 

approximately 5 % which nearly the totality of transfected cells are neurons (Soriano et al, 2008). For 

knockdown experiments 25 ng of rat Glut3 (D-090091-01), rat ACLY (M-098529-01-0005), rat Siah2 (L-

089773-02) or non-targeting control (D-001810-10-05) siRNA-SMART pool (Thermo scientific) containing a 

pool of 4 siRNAs were used. 

HRE-luciferase was a gift from Navdeep Chandel (Emerling et al, 2008) (Addgene plasmid # 26731); pCDNA3-

HA-HIF-1α a gift from H Frankling Bunn (Huang et al, 1998); ODD-Luciferase- pcDNA3 (Addgene plasmid # 

18965) and Luciferase-pcDNA3 (Addgene plasmid # 18964) were gifts from William Kaelin (Safran et al, 2006); 

CRE-luc and ICER were gifts from Giles Hardingham (Papadia et al, 2005). 
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The vectors used to construct and package recombinant adeno-associated viruses (rAAVs), pAAV-sh-sc, 

pAAV-GFP and pAAV-A-CREB were provided by Hilma Bading (Zhang et al, 2007). To construct pAAV-HIF-DN, 

the first 1,020 bp of the HIF-1α cDNA (from pCDNA3-HA-HIF-1α) were amplified using the following primers: 

forward 5’- AGA GGA TCC TAC CCA TAC GAT GTT CCA GAT -3’ and reverse 5’- AAG CGG ATA TCT AAT TCA CAC 

ATA CAA TGC ACTG -3’. The amplified product contains sequences with BamHI and EcoRV restriction sites at 

the 5’ and 3’ respectively (italics). GFP in the rAAV-GFP vector was removed by BamHI/EcoRV digestion and 

the HIF-DN PCR product was cloned into the rAAV vector to express the first 340 amino acids of the HIF-1α 

N-terminus, which contains the DNA binding and dimerization domains, but not the ODD and transactivation 

domains. rAAV for shRNA expression contains the U6 promoter for shRNA expression and a CMV/chicken 

beta-actin hybrid promoter driving hrGFP expression. rAAV-shRNA was made by swapping the sh-sc 

sequence of rAAV-sh-sc for the following sequences of the rat gene into the BamHI and HindIII restriction 

sites: shSiah2(1): 5’- ACA GAG AAA CCA GAG CAT GAA -3’; shSiah2(2): 5’- GCA AGC AAG CAG AGA ACT TTG-

3’; shGPI: 5’- GGA TTA CTC CAA GAA CCT TGT-3’; shACLY: 5’- GCA TCA AGC CTG GAT GCT TTA -3’. All newly 

generated constructs were confirmed by sequencing. 

Neurons were infected with rAAV at DIV4. Infection efficiencies were determined at DIV 10-11 by analyzing 

GFP fluorescence or immunocytochemical analysis and were observed to range from 70 to 85% of the viable 

neurons. 

Neurite length measurement 

Cortical neurons were transfected with a plasmid expressing GFP and neurons were fixed 48 hours later with 

4% paraformaldehyde, permeabilized, blocked and incubated over-night at 4°C with anti-GFP antibody 

(1:750, A11122, Life Technologies). Antibody binding was visualized using a biotinylated secondary antibody 

(1:200, Jackson Immuno Research) and Cy3-conjugated streptavidin (1:500, Jackson Immuno Research). 

Preparations were mounted on VECTASHIELD Mounting Medium with DAPI (Vector Laboratories). 

Images were taken blindly at 4X magnification using an Olympus BX61 microscope equipped with an Olympus 

DP70 camera. Neurites were manually traced and analyzed using Simple Neurite Tracer software (Longair et 

al, 2011). 

Luciferase assays 

Cells were transfected with firefly luciferase-based reporter plasmid along with a Renilla expressing vector 

(pTK-RL; Promega), together with, where relevant, an HIF-DN or A-CREB expression vector. Luciferase assays 

were performed using the Dual Glo Luciferase Assay system (Promega) with firefly luciferase-based reporter 
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gene activity normalized to the Renilla control (pTK-RL plasmid), except the CMV-ODD-Luc and CMV-Luc 

experiments that were normalized to CMV-Renilla. 

RNA isolation, RT-PCR and qPCR 

RNA was isolated using an PureLinkTM RNA mini kit (Life Technologies). For qPCR, cDNA was synthesized from 

RNA using the SuperScript® III First-Strand Synthesis SuperMix (Life Technologies) following the 

manufacturer’s instructions. qPCR was performed in a StepOne Real-Time PCR System (Applied Biosystem) 

using GoTaq qPCR Master Mix (Promega) according to the manufacturer’s instructions. The primers used 

were: 

Glut3 -F: 5’- CAT  CTC CGT TGT CCT CCA GT -3’, -R: 5’- GCT CCA ATC GTG GCA TAG AT  -3’;  HK2 -F: 5’- CCA 

GCA GAA CAG CCT AGA CC -3, -R: 5’- AGA TGC CTT GAA TCC CTT TG -3’; PFK –F: 5’- CTG GGA GAG CGT GTC 

CAT-3’, -R: 5’- CAT CGG GCA CTT CCA ATC -3’; PFKFB3 –F: 5’- ACA ATG AGG AGG CCA TGA GA -3’, -R: 5’- CTT 

TGT CAG GTA GCT TTT GAC G -3’; PKM –F: 5’- GCC GCC TGG ACA TTG ACT C -3’, -R: 5’- CCA TGA GAG AAA TTC 

AGC CGA G -3’; Siah2 –F: 5’- ATG CCG CCA GAA GTT GAG -3’, -R: 5’- GTA TGG TGT AGA GTC AGG GAA CAG -

3’; HIF-1α –F: 5’- AAC AGG ATG GAA TGG AGC AG -3’, -R: 5’- TGG TCA GCT GTG GTA ATC CA -3’; GPI –F: 5’- 

AGT ACA TGC ACC GCT TTG CT-3’, -R: 5’-ACT TTC CAT TGG ATT CCA TGT C-3’; Siah1 –F: 5’- 

TCTCCGCCCACAGAGATGAG -3’, -R: 5’- GTTGGATGCAGTTGTGCCAG -3’; 18S -F: 5’-GTG  GAG CGA  TTT GTC 

TGG TT-3’,  -R: 5’-CAA  GCT TAT GAC CCG CAC  TT-3’.   Expression of the gene  of interest was normalized to 

that of 18S rRNA, a commonly used control. 

Western blotting and antibodies 

Mice cortices were frozen with liquid nitrogen and homogenized by pipetting and passing through a 29G 

syringe in a lysis buffer containing 50 mM HEPES, 150 mM NaCl, 1.5 mM MgCl 1mM EDTA, 1% Triton X-100, 

1:00 Protease Inhibitor Cocktail Set III (EMD Milipore), 1:200 Phosphatase Inhibitor Cocktail II and III (Sigma) 

and 10 µM MG-132 (Sigma). Protein levels were quantified using Pierce BCA Protein Assay Kit (Thermo 

Scientific). 

Total cell lysates were boiled at 100°C for 5 minutes in 1.5x sample buffer (1.5 M Tris pH 6.8; 15% Glycerol; 

3% SDS; 7.5% β-mercaptoethanol; 0.0375% bromophenol blue). Gel electrophoresis was performed using 9% 

polyacrylamide gels. The gels were blotted onto PVDF membranes, that were then blocked for 1 hour at 

room temperature with 5% (w/v) non-fat dried milk in PBS with 0.05% Tween 20. The membranes were then 

incubated overnight at 4°C with the primary antibodies diluted in blocking solution as follows: anti- Glut3 

(1:750; ab191071, Abcam), PFKFB3 (1:1000, #13123, Cell Signaling Technology), PKM (1:750; #3190, Cell 

Signaling Technology), HK2 (1:500; sc-6521, Santa Cruz Biotechnology), HIF-1α (1:2000; ab179483, Abcam), 
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Siah2 (1:350; sc-5507, Santa Cruz Biotechnology), Actin (1:10000, A4700, Sigma), FASN (1:500; sc-48357, 

Santa Cruz Biotechnology), ACLY (1:1000; #4332, Cell Signaling Technology), HIF2α (1:1000; ab179825, 

Abcam), PHD1 (1:1000; ab113077, Abcam); PHD2 (1:200; sc-271835, Santa Cruz Biotechnology), PHD3 

(1:1000; NB100-139SS, Novus Biologicals), FIH-1 (1:500; sc-271780, Santa Cruz Biotechnology), OGDH (1:500; 

HPA020347, Sigma) and DLST (1:250; HPA003010, Sigma). To visualize western blots, HRP-based secondary 

antibodies were used followed by chemiluminescent detection on Kodak X-Omat film. 

Acetyl-CoA and CoA determination 

Acetyl-CoA and CoA levels were measured using the Acetyl-Coenzyme A and CoA Assay Kits, respectively 

(Sigma). Briefly, six well plates were used per condition (around 8 million neurons). Neurons were washed 

twice with PBS and scraped in PBS containing protease inhibitors (Inhibitor Cocktail Set III, EMD Millipore) 

and phosphatase inhibitors (Phosphatase Inhibitor Cocktail Set 1 and 3, Sigma). Neurons were pelleted, 

resuspended in 240 µl of lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton 

X-100, and protease and phosphatase inhibitors) and sonicated using a Diagenode Bioruptor (Liege, Belgium; 

30 seconds on at full power and 30 seconds off, in an ice bath for 5 minutes). After centrifugation the 

supernatant was deproteinized using 10K Amicon-Ultra-0.5 mL centrifugal filters (EMD Millipore). Reaction 

mixtures in triplicate were set up according the kit’s instructions. 

To determine cytoplasmic acetyl-CoA levels, pelleted neurons were resuspended in ice-cold buffer containing 

250 mM sucrose, 10 mM HEPES, pH 7.4, 1 mM EGTA, and protease and phospatase inhibitors. Neurons were 

homogenized using a Dounce homogenizer with a tight fitting Teflon pestle (15 strokes). The homogenates 

were centrifuged at 14,000 g for 10 minutes and the supernatant deproteinized and assayed following the 

kit’s instructions. Acetyl-CoA levels were normalized by total protein levels, quantified using Pierce BCA 

Protein Assay Kit (Thermo Scientific). 

Glucose uptake measurements 

The uptake of 2-[N-(7-nitrobenze-2-oxa-1, 3 diazol-4-yl) amino]-2 deoxy-glucose (2-NBDG, Life Technologies), 

a fluorescent glucose analog, was used to measure glucose transport. Cortical neurons were rinsed 3 times 

with phenol-red free SGG medium with reduced glucose concentration (0.5 mM) and incubated with 100 µM 

2-NBDG in reduced glucose SGG medium for 30 minutes at 37ºC and 5% CO2. Cultures were washed three 

times with phenol-red free SGG medium to remove free 2-NBDG. Accumulation of intracellular 2-NBDG, 

measured using an excitation wavelength of 488 nm, was imaged under a Leica DMIRB microscope equipped 

with a Leica DFC 550 camera at 40× magnification. ROIs of the same surface were drawn in the soma and 

fluorescence intensity was analyzed using ImageJ (Schneider et al, 2012). 
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Imaging studies 

Neurons were visualized using a TCS SP2 Leica confocal laser scanning microscope (Leica Lasertechnick 

GmbH, Mannheim, Germany) adapted to an inverted Leitz DMIRBE microscope at 37°C in a controlled 5% 

CO2 atmosphere (Life Imaging Services). Pictures were acquired using a 40× (1.25-0.75 NA) Leitz Plan-

Apochromatic objective. Images were analyzed using ImageJ software. 

Cytoplasmic Ca2+ was monitored with Fluo-4 (Life Technologies). Neurons were loaded with 2 µM Fluo-4 for 

45 min at room temperature in phenol-red free SGG medium with 10mM HEPES and 10mM glucose. After 3 

washes with phenol-red free SGG medium, neurons were de-esterified for 30 min at room temperature, 

excited at 488 nm and emission captured with a 516-nm filter. 

For hypoxia analysis, neurons were loaded with 10 µM Image-IT Hypoxia Reagent (Life Technologies) in HBSS 

medium, and placed in an incubator chamber attached to the microscope, which was flushed with 95% 

N2/5% CO2 at a flow rate of 20 l/min at 37°C for 30min. Non-hypoxic neurons were maintained in normoxic 

conditions during probe incubation. Neurons were excited at 490 nm, and emission was measured using a 

610-nm filter. 

Lactate measurement 

The culture medium was filtered using 10K Amicon Ultra-0.5 mL centrifugal filters (EMD Millipore). Then, 50 

µL of medium was incubated with 200 µL of reaction buffer (320 mM glycine, 320 mM hydrazine, 2.4 mM 

NAD+ and 2 U/mL of lactate dehydrogenase (LDH).  After 30 minutes of incubation at room temperature, the 

lactate-dependent generation of NADH was measured at 340 nm using the Infinite 200 PRO multimode 

reader (Tecan). Lactate levels  were normalized by total protein levels, quantified using Pierce BCA Protein 

Assay Kit (Thermo Scientific). 

Glucose and glutamine incorporation into lipids 

Neurons were grown on glass coverslips for 48 hours in a medium containing 0.8 µCi/ml 14C-U-glucose 

(Perkin-Elmer) or 2 µCi/ml L-3-4-3H(N)-glutamine (Perkin Elmer). Lipid  isolation was performed  as  described 

previously  by  Folch  et  al.  (Folch  et  al,  1957).  Briefly,  lipids were separated by submerging the coverslips 

in solution of methanol and chloroform 2:1 (vol:vol), and shaked for 20 minutes at room temperature. After 

adding one fifth of the volume of 0.154 M NaCl, the samples were centrifuged at 500 x g for 10 minutes at 

room temperature. 80% of the lower nonpolar phase containing the lipids was added to scintillation liquid 

and desintigration per minute was determined by scintillation counting. The values were normalized by 

protein that was quantified from the polar phase using Pierce BCA Protein Assay Kit (Thermo Scientific). 
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ATP measurement 

ATP levels were measured using the ATPlite Luminescence Assay System (Perkin-Elmer) on the Infinite 200 

PRO multimode reader (TECAN) following the manufacteurer’s instructions. ATP levels were normalized by 

total protein levels, quantified using Pierce BCA Protein Assay Kit (Thermo Scientific). 

Statistical analysis 

Statistical analysis involved two-tailed Student’s t-tests. For any multiple comparisons within data sets, we 

used a one-way ANOVA followed by Tukey’s post-hoc test. All data are presented as the mean ± s.e.m. of at 

least three independent experiments (n). A p value less than 0.05 was considered statistically significant. 
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