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ABSTRACT 

Diagnosis of otoneurological diseases can be challenging due to similar kind of and 
overlapping symptoms that can also vary over time. Thus, systems to support and 
aid diagnosis of vertiginous patients are considered beneficial. This study continues 
refinement of an otoneurological decision support system ONE and its knowledge 
base. The aim of the study is to improve the classification accuracy of nine 
otoneurological diseases in real world situations by applying machine learning 
methods to knowledge discovery in the otoneurological domain. 

The phases of the dissertation is divided into three parts: fitness value formation 
for attribute values, attribute weighting and classification task redefinition. The first 
phase concentrates on the knowledge update of the ONE with the domain experts 
and on the knowledge discovery method that forms the fitness values for the values 
of the attributes. The knowledge base of the ONE needed update due to changes 
made to data collection questionnaire. The effect of machine learnt fitness values on 
classification are examined and classification results are compared to the knowledge 
set by the experts and their combinations. Classification performance of nearest 
pattern method of the ONE is compared to k-nearest neighbour method (k-NN) 
and Naïve Bayes (NB). The second phase concentrates on the attribute weighting. 
Scatter method and instance-based learning algorithms IB4 and IB1w are applied in 
the attribute weighting. These machine learnt attribute weights in addition to the 
weights defined by the domain experts and equal weighting are tested with the 
classification method of the ONE and attribute weighted k-NN with One-vs-All 
classifiers (wk-NN OVA). Genetic algorithm (GA) approach is examined in the 
attribute weighting. The machine learnt weight sets are utilized as a starting point 
with the GA. Populations (the weight sets) are evaluated with the classification 
method of the ONE, the wk-NN OVA and attribute weighted k-NN using 
neighbour’s class-based attribute weighting (cwk-NN). In the third phase, the effect 
of the classification task redefinition is examined. The multi-class classification task 
is separated into several binary classification tasks. The binary classification is studied 
without attribute weighting with the k-NN and support vector machines (SVM). 

Keywords: Machine learning, knowledge discovery, decision support system, 
attribute weighting, otoneurological data, vertigo. 
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1 INTRODUCTION 

Domain knowledge is in a key role in decision making. Decisions can concern, for 
example, diagnosis and treatment of patients, selection of certain products into 
production, support of students in their studies or ways to enhance customer 
satisfaction. Whenever there is enough data collected from the domain, it is possible 
to utilize machine learning (ML) methods [Mitchell, 1997] in finding regularities, 
rules and/or patterns from the data that can support the decision making. For 
example, medical diagnostic knowledge can be derived from patients’ medical history 
automatically with machine learning methods and then utilized to assist physician in 
the diagnosis of new patients in order to improve the diagnostic accuracy, reliability 
and/or speed [Kononenko et al., 1998]. 

Knowledge-based systems are based on the knowledge obtained from the domain 
[Waterman, 1986]. The development of the knowledge-based systems was started 
already in the mid-1960s [Turban, 1993]. One of the first medical knowledge-based 
systems was MYCIN [Shortliffe, 1976], which aim was to assist physicians with 
clinical decisions concerning the selection of appropriate therapy for patients with 
infectious blood diseases. Decision support systems (DSS) are knowledge-based 
systems that are utilized to assist decision makers in complex decision making and 
problem solving [Turban, 1993; Shim et al., 2002] whereas as expert systems (ES) are 
referred knowledge-based systems that imitate the reasoning process of human 
experts and use domain-specific knowledge in solving specific problems in a 
bounded domain of expertise [Turban, 1993; Liou, 1998; Metaxiotis and Samouilidis, 
2000]. Decision support systems utilizing artificial intelligence techniques, like 
machine learning, to enhance support for the decision maker are nowadays referred 
as intelligent decision support systems (IDSS) [Phillips-Wren, 2013]. Medical diagno-
sis systems applying machine learning are meant to be helpful tools that can improve 
the physicians’ decision making, not to replace them [Kononenko et al., 1998].  

The development of an OtoNeurological Expert system (ONE) to support 
diagnosis of diseases involving vertigo and to work as an educational tool for medical 
students was started in the 1990s [Kentala, 1996b; Kentala et al., 1996; Auramo, 
1999]. In this dissertation and in the publications, the ONE is referred as 
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otoneurological decision support system instead of the expert system due to its main 
purpose to support decision making of the domain experts. Before the ONE, there 
existed two expert systems for vertiginous patients, Vertigo [Schmid et al., 1987] and 
Carnisel [Gavilán et al., 1990]. The Vertigo was a rule-based expert system applying 
Bayesian approach that was meant to be used in a clinical and educational 
environment as a diagnostic aid for the classification and diagnosis of vestibular 
disorders [Schmid et al., 1987]. It could classify 32 vertiginous syndromes. The 
Carnisel was a rule-based expert system made with Prolog: it contained rules and 
metarules to use in inference but it needed complete information in order to work, 
it gave only the certified diagnosis [Gavilán et al., 1990]. Recently, an EU-funded 
EMBalance project has been started. Its aim is to develop a web-based diagnostic 
decision support system to provide decision support for general practitioners and 
experts in the diagnosis of 12 balance disorders [Exarchos et al., 2016] and advise on 
efficient treatment of the patient [Rammazzo et al. 2016]. Another aim is to provide 
a recommendation tool able to guide physicians in requesting the appropriate 
information of the patient for reaching the diagnosis. The EMBalance decision 
support system is based on decision trees (C4.5 algorithm [Quinlan, 1993] and 
ADABOOST [Freund and Schapire, 1997]). It consists of two different modules, 
one for expert use and another for general practitioners. The EMBalance DSS was 
evaluated with 985 patients from 12 different balance disorder classes: The 
classification accuracies varied with diseases from 59.3% to 89.8% with the general 
practitioner module and from 74.3% to 92.1% with the expert module [Exarchos et 
al., 2016]. In addition, an intelligent clinical decision making system to support 
diagnostics of 22 vertigo diseases have been developed [Dong et al., 2014]. The 
system is based on dynamic uncertain causality graphs. Its total classification 
accuracy with 60 vertigo cases from 18 disease classes with incomplete data was 
81.7% and with complete data 88.3% whereas the physicians classified correctly 
53.3%–73.3% of the cases with incomplete data and 70.0%–88.3% with the 
complete data [Dong et al., 2014]. 

In the otoneurological domain, several machine learning methods have been 
applied in classification and knowledge formation, for example, Bayesian 
probabilistic models [Miettinen and Juhola, 2010], decision tree induction [Viikki, 
2002; Exarchos et al., 2016], dynamic uncertain causality graphs [Dong et al., 2014], 
fuzzy rules induction [Boháĉik and Juhola, 2008], genetic algorithms to discover 
diagnostic rules [Laurikkala et al., 2001], linear discriminant analysis and k-means 
clustering [Juhola, 2008], neural networks [Juhola et al., 2001; Siermala and Juhola, 
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2006; Autio et al., 2007] and support vector machines [Joutsijoki et al., 2013]. In addi-
tion, statistical methods have been experimented in attribute weighting [Syed, 2014]. 

The inference of the ONE was evaluated by comparing its inference results to 
the Vertigo with 365 cases [Auramo and Juhola, 1995]. The Vertigo could give valid 
diagnosis for 32.3% of the cases whereas the ONE gave valid diagnoses to 78.9% of 
the cases, thus, demonstrating and having better reasoning result than the Vertigo. 
The decision making ability of the ONE was also compared to the diagnoses of six 
physicians of otolaryngology with 23 cases [Kentala et al., 1998]. With the same 
information about the patients in use, the ONE diagnosed 65.2% of the cases 
correctly, whereas, the physicians diagnosed on average 54% of the cases correctly. 
Typically, machine learnt diagnostic rules outperform slightly the diagnostic accuracy 
of physicians when having exactly the same information in use [Kononenko et al., 
1998]. When the physicians had the patients’ full medical history in use, they 
diagnosed about 69% of the cases correctly. It was noticed that the incorrectly 
classified test cases had confounding symptoms (for example, noise-induced hearing 
loss or symptoms caused by another disease), which affected the classification results 
also with the ONE [Kentala et al., 1998]. Thus, the knowledge of the ONE was 
shown to need further refinement in order to work properly in real world situations 
with the cases having confounding symptoms. 

The suitability of the ML methods for refining and expanding the knowledge for 
the six largest vertigo disease classes in the database of the ONE was examined in 
the dissertation of Viikki [Viikki, 2002]. Special attention in Viikki’s study was given 
to the acquisition of diagnostic knowledge and data pre-processing, especially the 
feature subset selection. The main ML method applied in Viikki’s study was decision 
tree induction [Quinlan, 1993]. Viikki’s research showed that the knowledge 
acquisition process can be eased with ML methods by replacing time-consuming 
manual knowledge extraction with easier tasks. For example, learning the fitness 
values for disease descriptions of the ONE from data was shown useful: The 
knowledge learnt from data produced a knowledge base that performed better with 
real world cases with confounding values [Viikki and Juhola, 2001]. Methods for 
weight definition based on data were seen beneficial to implement in the future, not 
forgetting the need for human experts in the knowledge acquisition process [Viikki 
and Juhola, 2001]. An equal attribute weighting can, for example, lower the 
classification accuracy due to noisy, redundant or irrelevant attributes taken into 
account during the classification [Lee et al., 2007].  

This study continues the refinement of the ONE and its knowledge base started 
in [Viikki and Juhola, 2001; Viikki, 2002]. In the dissertation, machine learning 
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methods are applied to the knowledge discovery in the otoneurological domain. The 
aim of the study is to improve the classification accuracy of the decision support 
system in real world situations with patients having also confounding symptoms. 
The phases of the dissertation can be divided into three parts: fitness value formation 
for attribute values, attribute weighting and classification task redefinition (Figure 1). 

In the first phase, it is concentrated on the knowledge update of the ONE with 
the domain experts [I] and on the knowledge discovery method that forms the fitness 
values for the values of the attributes [I; II]. The knowledge of the ONE needed 
update due to the update process of data collection questionnaire: New questions 
were added into the questionnaire and changes were made to answer alternatives of 
categorical questions and, therefore, the otoneurological paper questionnaire and the 
decision support system needed to be harmonized and the knowledge base of the 
ONE updated, if necessary. The effect of the machine learnt fitness values on 
classification are examined and classification results are compared to the knowledge 
set by the domain experts and their combinations. In addition, the classification 
performance of the inference method of the ONE is compared to other classifica- 

Figure 1. The phases of the dissertation 

Phases of Dissertation 

Attribute weighting 

III ML methods for attribute weighting 

IV Evolutionary attribute weighting 

I Knowledge update with the experts, fitness values 
for attribute values with ML method 

II ML method for fitness value formation 

Fitness value formation for attribute values 

V Splitting the multi-class problem into multiple 
binary problems 

Classification task redefinition 
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tion methods (to k-nearest neighbour method (k-NN) [Cover and Hart, 1967] and 
Naïve Bayes (NB) [Mitchell, 1997]) [II]. An expanded otoneurological data set and a 
totally new otoneurological data set are utilized in the study.  

The second phase concentrates on the attribute weighting [III; IV]. Different 
machine learning methods (Scatter method [Juhola and Siermala, 2012] and instance-
based learning algorithms IB4 [Aha, 1992] and IB1w (combination of IB1 [Aha et al., 
1991] and IB4 methods) are applied in the attribute weighting. These machine learnt 
attribute weights in addition to the weights defined by the domain experts and equal 
weighting (all weights set to 1) are tested with different classification methods (with 
a nearest pattern method of the ONE and an attribute weighted k-NN with One-vs-
All other (OVA) [Rifkin and Klautau, 2004] classifiers (wk-NN OVA)) [III]. An 
evolutionary approach (genetic algorithm (GA) [Michalewicz, 1992]) is examined in 
the attribute weighting [IV]. The machine learnt weight sets formed in Publication 
III are utilized as a starting point with the GA. During the GA runs, the populations 
are evaluated with the nearest pattern method of the ONE, with the wk-NN OVA 
and with an attribute weighted k-NN using neighbour’s class-based attribute 
weighting (cwk-NN).  

In the third phase, the effect of the classification task redefinition is examined 
[V]. The multi-class classification task is separated into several binary classification 
tasks with OVA and One-vs-One (OVO) [Fürnkranz, 2001] classifiers. In this study, 
the classification is examined without the attribute weighting with the basic k-NN 
and support vector machines (SVM) [Cortes and Vapnik, 1995]. 

This thesis consists of the present introductory part and five original publications. 
The remainder of the introductory part of the dissertation is divided as follows. 
Chapter 2 gives a brief overview of the otoneurological domain and difficulties 
confronted there in discrimination of the otoneurological diseases. In addition, it 
presents shortly the otoneurological decision support system ONE. In the end of 
the Chapter 2, the otoneurological data utilized in the research is described in detail. 
Chapter 3 presents shortly the machine learning methods and the result evaluation 
measures utilized in Publications I–V. Machine learning methods are divided into 
the classification and knowledge discovery methods depending on their role in the 
research. Overviews and results from the individual publications are introduced in 
Chapter 4. Discussion and conclusions of the dissertation are presented in Chapter 
5.
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2 OTONEUROLOGICAL DOMAIN 

2.1 Otoneurological Diseases 

Vertigo, dizziness and balance disorders are amongst the most common reasons for 
visiting a physician [Rammazzo et al. 2016], even the single most common complaint 
among patients older than 75 years [Chawla and Olshaker, 2006]. Vertigo affects 
approximately 20–30% of the general population at any age [Dong et al., 2014] 
whereas dizziness and balance disorders affect up to 30–40% of the population by 
60 years of age [Rammazzo et al. 2016]. Dizziness and balance disorders can lead to 
falls and related fractures causing also other complications and loss of function 
[Chawla and Olshaker, 2006; Exarchos et al., 2016]. Vertigo, dizziness and balance 
disorders can be symptoms of many different diseases [Kentala, 1996b]. The 
characteristics of vertigo usually vary depending on the disease [Baloh, 1995]. The 
reason for vertigo can be, for example, the vestibular organ, migraine, tumour, 
infection, head or neck injury, syphilis, medication or chronic alcoholism [Kentala, 
1996b; Chawla and Olshaker, 2006]. The causes of vertigo involve hundreds of 
diseases, which aetiology is associated with otology, neurology and general medicine 
[Dong et al., 2014]. Thus, the evaluation of the vertiginous patient can be 
overwhelming for any physician [Chawla and Olshaker, 2006] and, therefore, systems 
to support and aid diagnosis of vertiginous patients are considered beneficial by the 
physicians [Aalto, 2005]. Medical history is essential in evaluating the patient’s vertigo 
and in the assessment of the vertiginous patient [Chawla and Olshaker, 2006]. 
Appropriate clinical examinations based on a patient and symptoms specifically are 
in a key role with a systematic history taking in forming the diagnosis [Chawla and 
Olshaker, 2006; Exarchos et al., 2016]. When the symptoms are indistinguishable, 
clinical tests are needed to confirm the disease [Kentala, 1996b]. For example, 
acoustic neurinoma can be confirmed with computerized tomography or magnetic 
resonance imaging [Kentala and Pyykkö, 2000]. 

In the dissertation, classification and support for the diagnosis of nine 
otoneurological diseases are concentrated on: acoustic neurinoma (ANE, tumour), 
benign positional vertigo (BPV), Menière’s disease (MEN), sudden deafness (SUD), 
traumatic vertigo (TRA), vestibular neuritis (VNE), benign recurrent vertigo (BRV), 
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vestibulopatia (VES) and central lesion (CL). Characteristics of the six first 
mentioned diseases are presented in [Kentala, 1996a, Kentala, 1996b]. The data of 
vertiginous patients were collected at the Department of Otorhinolaryngology at 
Helsinki University Central Hospital, Finland (HUCH) and at the Department of 
Otolaryngology at Tampere University Hospital, Finland (TAUH). Most of these 
vertiginous patients were not common cases, rather, they offered diagnostic 
difficulties for the referring physicians and, therefore, were remitted to more 
thorough investigations into the departments of otorhinolaryngology [Kentala et al., 
1998]. Apparent cases of vestibular neuritis and benign positional vertigo were 
possible to diagnose already by the general practitioners [Kentala, 1996b] and, thus, 
seldom occur in the current collected data. The difficulty of the distinguishing the 
diseases can be seen in the research of Kentala [Kentala, 1996a]: 1167 patients filled 
out an otoneurological questionnaire but definite diagnosis was possible to give only 
for 872 patients. Also in [Kentala et al., 1998], ten patients from the original 33 
patients were excluded from the research because even the experienced 
otoneurological experts could not confirm their diagnoses. 

Distinguishing different otoneurological diseases causing vertigo from each other 
can be challenging because there can occur similar kind of and overlapping 
symptoms with different diseases and, with some diseases, the symptoms can vary 
over time making recognition difficult [Kentala, 1996b, Havia, 2004]. Some diseases 
can be said to simulate each other. For example, the main symptoms of acoustic 
neurinoma are hearing loss and tinnitus but about half of the acoustic neurinoma 
patients experience also vertigo [Kentala and Pyykkö, 2001]. In the research of 
Kentala and Pyykkö [Kentala and Pyykkö, 2000], over third of the acoustic 
neurinoma patients had the full triad of vertigo, hearing loss and tinnitus that are 
characteristic for the Menière’s disease. From these acoustic neurinoma patients, 
14% reported their vertigo to mimic the vertigo encountered in Menière’s disease. 
The vertigo of acoustic neurinoma patient can also be similar to benign positional 
vertigo. In addition, the hearing loss of acoustic neurinoma patients can mimic 
sudden deafness or it can fluctuate like in Menière’s disease. Sudden deafness and 
Menière’s disease can have similar kind of symptoms in the beginning and only a 
follow-up will reveal, which disease is in question [Kentala et al., 1998]. When the 
Menière’s disease progresses, almost half of the patients develop bilateral auditory 
symptoms and vertigo attacks occur more frequently and are more severe than in 
the beginning of the disease [Chawla and Olshaker, 2006]. Also, traumatic vertigo 
patients can have symptoms typical of Menière’s disease [Havia, 2004] or they can 
mimic symptoms of benign positional vertigo [Kentala, 1996a]. Moreover, the actual 
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disease can change over the course of time [Kentala et al., 1998]. For example, after 
8.5 years follow-up of benign recurrent vertigo patients, 14.0% of cases had evolved 
BRV to typical Menière’s disease, 8.0% had benign positional vertigo, 10.0% has still 
active benign recurrent vertigo and 62.0% had no vertigo anymore [Rutka and 
Barber, 1986]. Also, 6.0% of vestibular neuritis patients have been reported to 
develop benign positional vertigo during the recovery period [Kentala, 1996b] and 
up to 22.0% of acoustic neurinoma cases have had sudden deafness [Kentala, 1996a]. 
In addition, patients can have symptoms and signs that are not related to the current 
disease, so-called confounding symptoms, that makes the diagnosis even more 
demanding [Kentala, 1996b]. Confounding symptoms can be, for example, noise-
induced or age-related hearing loss, medication or chronic disease causing additional 
symptoms.  

The most important questions in discriminating between the six most common 
otoneurological diseases were the occurrence (frequency) and duration of the vertigo 
attacks, the duration of hearing loss, the duration of vertigo and the occurrence of 
head injury [Kentala, 1996a]. These attributes were also within the most important 
attributes defined by the decision tree [Viikki, 2002]. Baloh considered the most 
important questions for evaluating a dizzy patient the duration and occurrence of 
vertigo, the symptoms aggravated by head movement and the auditory or neurologic 
symptoms associated with it [Baloh, 1995]. The value distributions of attributes 
‘ATT_OFTEN: occurrence of stronger vertigo attacks’ and ‘ATT_LAST: duration 
of vertigo attacks’ by the disease classes within the HUCH data containing nine 
disease classes are presented in Figures 2 and 3. Even though these two attributes 
are considered the most important questions in distinguishing the vertigo diseases, 
it can be seen that there are similar kind of distributions with different diseases, 
which makes it difficult to separate them from each other.  

In order to understand the difficulty of the differentiation of otoneurological 
diseases better, a principal component analysis (PCA) was made to the 
otoneurological data collected at HUCH containing all nine disease classes during 
the dissertation study. The PCA was made with SPSS Statistics software. The PCA 
reveals if there exists components that are useful for representing the whole data 
[Duda et al., 2001]. The PCA generates a new set of attributes, principal components 
that are linear combinations of the original attributes. Thus, it is possible to reduce 
the dimensionality of the data set [Duda et al., 2001]. The otoneurological data is 
high-dimensional with 94 attributes. The total variance explained by the first 
principal component was 12.5%, by the second principal component 9.2% and by 
the third principal component 4.5%. Thus, the two main principal components  
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Figure 2. The value distribution of attribute ‘ATT_OFTEN: occurrence of stronger vertigo attacks’ 
within augmented HUCH data containing nine disease classes 

Figure 3. The value distribution of attribute ‘ATT_LAST: duration of vertigo attacks’ within 
augmented HUCH data containing nine disease classes 
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explained only 21.7% of the total variance. The augmented HUCH data projected 
onto the first and the second main principal components are visualized in Figure 4. 

As it can be seen from the projection, most of the disease classes are extensively 
overlapping with each other. Most of the acoustic neurinoma cases are obviously 
separate from the other disease classes except sudden deafness. This forms the first 
cluster. Some of the sudden deafness cases are mixing with the Menière’s disease 
cases that form the basis of the next cluster. Almost a half of the traumatic vertigo, 
vestibulopatia, benign positional vertigo and central lesion cases are overlapping with 
Menière’s disease. Also, some of the vestibular neuritis cases can be found from this 
cluster. The third overlapping cluster is mostly separate from Menière’s disease, 
acoustic neurinoma and sudden deafness: Vestibular neuritis, benign positional 
vertigo, benign recurrent vertigo, traumatic vertigo, vestibulopatia and central lesion 
cases are overlapping with each other. The strong overlap with the disease classes 
makes the separation of them challenging.  

In order to understand the result of the PCA better, a closer look of the principal 
components was taken. The first main principal component can be called a hearing 
disorder component because it concentrated on hearing loss and tinnitus in addition 
to audiometry measurements. The highest principal component coefficients within 
the first principal component were achieved with the attributes ‘LAT_KA: bi- or 
unilateral hearing loss’, ‘NONLAT_KA: normal hearing’ (negative influence), 
‘SYM_HEARLOSS: do you have hearing loss’, ‘AGE_HL_SYM: age of hearing 
loss’, ‘HL_TYPE: type of hearing loss’ and ‘HL_SIDE: side of hearing loss’. The 
second main principal component concentrated on vertigo, vertigo attacks and 
headache during them. The highest principal component coefficients were achieved 
with the attributes ‘VERTIGO: true vertigo containing feeling of rotation or 
floating’, ‘SYM_VERT: do you have vertigo’, ‘BILATERAL: bilateral hearing loss/ 
tinnitus/ hyperacusis/ pressure feeling in the ear’, ‘UNILATERAL: unilateral 
hearing loss/ tinnitus/ hyperacusis/pressure feeling in the ear’ (negative influence), 
‘LIGHTHEAD: do you have feeling of unreality’ and ‘ATT_OFTEN: occurrence 
of stronger vertigo attacks’. The third main principal component concentrated on 
ear and head trauma. The highest principal component coefficients were achieved 
with the attributes ‘TRAUMA: serious trauma of the head’, ‘HEAD_TRAUMA: 
direct trauma to the head or neck associated with the beginning of the vertigo 
symptoms (occurred within 6 months)’, ‘INJURY: head or ear trauma, noise injury’ 
and ‘CONCUSSION: brain concussion with unconsciousness lasting less than 2 
hours’. 
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Figure 4. Nine disease classes of augmented HUCH data projected onto two main principal 
components defined by the principal component analysis. The first principal component 
concentrated on hearing disorders and the second on vertigo disorders. 
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2.2 Otoneurological Decision Support System ONE 

As previous chapter presented, otoneurological diseases can be difficult to separate 
from each other because of their overlapping and similar kinds of symptoms. 
Therefore, the development of the otoneurological decision support system ONE 
[Kentala, 1996b; Auramo, 1999] was started in the 1990s. The ONE was targeted to 
general practitioners to assist the diagnosis of vertigo, to specialists for collecting 
information on vertiginous patients and to medical students to work as an 
educational tool [Kentala, 1996b]. Inference of the ONE is based on patient history, 
occurring symptoms and results of the clinical tests [Kentala et al., 1996]. The 
knowledge utilized in decision making of the ONE is presented in its knowledge 
base by disease-wise descriptions in the form of weights for the attributes and fitness 
values for the values of the attributes [Auramo et al., 1993]. The weights describe the 
significance of the attributes for the disease. This kind of knowledge representation 
model for the ONE was selected due to its intelligibility: It was wanted that the 
knowledge representation would be in a form that could be easily understood by 
humans and the knowledge should be easily fixed or tuned in the future, for example, 
with machine learning methods [Auramo, 1999]. The original knowledge base of the 
ONE was constructed with the help of experienced otoneurologists and on the data 
obtained from the literature [Kentala et al., 1998]. It included both central and 
peripheral vertigo diseases, at total 18 disease descriptions. 

The first version of the ONE was made in C++-language. Already Auramo 
acknowledged the need to transfer the ONE to Windows environment due to MS-
DOS memory limitations [Auramo, 1999]. The upgrade process of the ONE was 
started in the 2000s by Tapani [Tapani, 2008] by transferring the ONE to the Java 
environment. Tapani further developed the graphical user interface of the ONE, 
added a batch processing possibility to run in the Windows command prompt with 
parameters and programmed the k-nearest neighbour method [Mitchell, 1997] into 
the ONE. The upgrade and refinement process of the ONE was continued by the 
author with addition of MySQL database functionality into the system and update 
of the questionnaire [Varpa, 2005, I]. The more detailed description of the upgrade 
and refinement process and the state of the ONE after the process is given in 
Chapter 4.1. 

The ONE consists of separate components: a graphical user interface, a query 
base, an answer database, a knowledge base and an inference engine (Figure 5). The 
graphical user interface is created on the basis of the query base. The query base 
contains information about the questions to be shown at the same view in the user  
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Figure 5. Main components of the otoneurological decision support system ONE [I] 

interface, the type of questions and the possible answer alternatives for the questions. 
The views in the query base are divided into symptoms, medical history, clinical 
findings and life quality. In the symptoms part, questions concern, for example, 
vertigo, gait difficulties, hearing loss, tinnitus and hyperacusis. The medical history 
contains questions about drug usage, head and ear injury, ear operations and other 
diseases. In the clinical findings, the results of different otoneurologic, audiologic 
and imaging tests are given. The answer database stores the data about the patient in 
the MySQL database. The tables of the database can be created on the basis of the 
query base (one view corresponds to one table). The knowledge base contains 
descriptions (patterns) of deducible classes in the form of attribute weight values and 
fitness values for the values of the attributes (Figure 6). The weight value of the 
attribute expresses the significance of the attribute for the class and the fitness values 
show what attribute values fit for the class. The weight values vary from zero to a 
chosen maximum, where zero means that the attribute does not concern the class at 

(a) <attribute name> <weight value> <attribute type> 
   <minimum value> <maximum value> 
   <value 1> < fitness value 1> 

… 

   <value n> < fitness value n> 
   END 
. 

(b) ATT_OFTEN 4 V 
        0.0 5.0 
        0.0 0.0 
        1.0 1.12 
        2.0 23.60 
        3.0 19.10 
        4.0 43.82 
        5.0 100.0 
        END 
. 

Figure 6. (a) General form of  an attribute pattern in the knowledge base of the ONE and (b) an 
example attribute description ‘ATT_OFTEN: frequency of vertigo attacks’ with benign 
positional vertigo [III] 
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all. The greater the weight value, the more important the attribute is for the class. 
Fitness values can have values between zero and 100. 

The fitness value zero means that the attribute value does not fit the class whereas 
the fitness value 100 shows that the value is the most typical for the class. Each 
attribute in the knowledge base refers to a sign, a symptom or a measurement data 
from a clinical test. In the otoneurological domain, the descriptions in the knowledge 
base can be considered as a profile of a disease class, which describes symptoms and 
signs related to the disease. It matches partly the clinical picture of the disease but, 
in the description, it is possible to take into account also unusual symptoms and signs 
that a patient may have. The inference engine uses the weights and the fitness values 
given in the knowledge base in its inference. The inference engine resembles the 
nearest neighbour method [Mitchell, 1997] but, instead of the nearest case, it 
searches for the nearest pattern from the knowledge base [Auramo and Juhola, 
1996]. Therefore, the inference engine of the ONE is referred to the nearest pattern 
method within the dissertation and in the publications.  

In addition, the ONE contains an explanation facility that informs the user if 
some answers do or do not fit for the class or if some crucial information is missing 
in order to make the diagnosis. Explanations are based on the information given in 
the knowledge base, for attribute type. Some attributes are defined as necessary (V) 
and others supporting (T). Originally, necessary attributes were definitely required in 
the case of the disease: If a patient did not have a symptom described as necessary, 
the disease was inferred to be impossible [Auramo et al., 1993]. At that time, the 
disease patterns in the knowledge base of the ONE were considered as clinical 
pictures of the diaseses and, therefore, only the symptoms related on the disease at 
hand were taken into account. Later, the patterns were expanded to take into account 
also symptoms relating to other diseases and confounding symptoms. The use of 
necessary attribute values in the original way could reject the correct diagnosis due 
to the unfitting necessary attribute values [Viikki, 2002]. This weakened especially 
the classification of the BPV and VNE. Therefore, necessary attribute values 
attached to certain disease descriptions in the knowledge base of the ONE were not 
applied to reject disease in the inference of the ONE anymore in [Viikki and Juhola, 
2001] and later in the studies in Publications I–IV. However, these necessary 
attribute values are still utilized in the explanation facility of the ONE to show the 
user how the ONE ended up for its classification results, which symptoms do or do 
not fit for the class. 

The graphical user interface, the inference engine and the explanation facility of 
the ONE form an expert system shell that is possible to take into use in different 
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domains. The query base and the knowledge base need to be adjusted into the new 
domain. The help of domain experts is needed for data collection and domain 
knowledge. After the collection of domain data, it is possible to utilize machine 
learning methods presented in the dissertation in creation of the domain knowledge 
for the knowledge base. 

2.3 Otoneurological Data 

Gathering of HUCH data set was started during the development of ONE in the 
beginning of the 1990s [Kentala et al., 1995] and it continued over a decade [Viikki, 
2002]. The first collected data set (564 cases) included only the cases that had no 
confounding symptoms from six major patient groups: acoustic neurinoma (aka 
vestibular schwannoma), benign positional vertigo, Menière’s disease, sudden 
deafness, traumatic vertigo and vestibular neuritis [Kentala, 1996b]. This data set was 
utilized to study more, which symptoms and findings were characteristic for these 
six disease classes. Four data sets containing also cases with confounding values were 
added into the HUCH data during the years, thus, forming the current augmented 
data set of 1030 cases. The more detailed description of the distributions of the 
disease classes within the first four otoneurological data sets can be found from 
[Viikki, 2002]. Before collecting otoneurological data in the TAUH, a refinement of 
the otoneurological questionnaire was made with the domain experts [I]. The TAUH 
data set was gathered during the years 2004 and 2005. 

Table 1. The frequency distributions of the disease classes in the HUCH and TAUH data 

HUCH data TAUH data 
Disease name Abbreviation n % n % 
1 Acoustic Neurinoma ANE 131 12.7 
2 Benign Positional Vertigo BPV 173 16.8 80 31.6 
3 Menière's Disease MEN 350 34.0 128 50.6 
4 Sudden Deafness SUD 47 4.6 
5 Traumatic Vertigo TRA 73 7.1 
6 Vestibular Neuritis VNE 157 15.2 20 7.9 
7 Benign Recurrent Vertigo BRV 20 1.9 
8 Vestibulopatia VES 55 5.3 25 9.9 
9 Central Lesion CL 24 2.3 

1030 100.0 253 100.0 
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At total, the utilized augmented HUCH data set contained information and 
diagnoses on 1030 patients from nine otoneurological disease classes and the TAUH 
data set on 253 patients from four otoneurological disease classes (Table 1). Each 
case was a patient who had informed to have vertigo or gait difficulties and was 
diagnosed to have one of the listed otoneurological diseases. Patients filled out an 
otoneurological questionnaire with 105 questions concerning their symptoms and 
medical history. The diagnoses of the patients were confirmed by the experienced 
specialists [Kentala, 1996b] who could use patient records in addition to the 
otoneurological questionnaire in making a diagnosis of a patient. 

The frequency distributions of the disease classes were imbalanced with both the 
data sets. Majority of the cases belonged to the class Menière’s disease: Over third 
of the cases in the HUCH data set (34.0%, 350 cases) and over half of thecases in 
the TAUH data set (50.6%, 128 cases) belonged to this class. One reason for the 
large number of Menière’s disease cases in the TAUH data was that there was a co-
operation project on peer-support going on with the Finnish Menière Federation at 
that time. The smallest disease classes used in the studies contained only 20 cases. 
Due to the small number of disease classes and the highly imbalanced class 
distribution, TAUH data set was used only in Publication II. 

In Publications II, III and V, the HUCH data set was used with all 1030 cases 
from nine disease classes within the classification runs using only the machine learnt 
knowledge. During the classification runs in Publications I, II, III and IV where the 
experts’ knowledge was compared with the machine learnt knowledge, the HUCH 
data set with 951 cases from seven disease classes were used. The experts could 
define the attribute weights and fitness values only for seven disease classes: Two 
classes (vestibulopatia and central lesion) were found to be too complex to be 
described with the attribute weights and fitness values at our disposal. 

2.3.1 Attributes 

The otoneurologic questionnaire contained 105 questions about the patient’s 
symptoms and medical history, for example, about vertigo, gait difficulties, hearing 
loss, tinnitus, hyperacusis, drug usage, head and ear injuries and other diseases. The 
refined questionnaire [I] can be found from the Appendix I. It included also 
questions about family history of vertigo and hearing loss and fifteen questions about 
the health-related quality of life (15D HRQoL) questionnaire [Sintonen, 2001], but, 
these questions were only answered by the TAUH patients. Therefore, we did not 
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include these new attributes in the research. In addition to the otoneurological 
questionnaire, the decision support system contained 72 questions concerning 
otoneurologic, audiologic and imaging tests, for example, audiometry frequencies 
and posturography, and attributes derived from the answers from the questionnaire 
and the clinical tests. The clinical tests were not performed on each patient and, 
therefore, values of the attributes were missing in several test results. Especially in 
the HUCH data, no clinical examinations were made solely in order to collect data 
for the study, only the necessary examinations for the patients were ordered by the 
physician in charge [Kentala, 1996b]. In total, there were 177 questions related to a 
HUCH patient and 192 questions related to a TAUH patient. In earlier 
otoneurological studies, 38 attributes were defined central by the domain experts 
[Kentala et al., 1999]. 

Attributes with low frequencies of available values were discarded from the data 
set. In Publications I and II, any attribute was discarded if it had over 30% values 
missing and in Publications III, IV and V any attribute was discarded if it had over 
35% values missing. There was one exception for this: The attribute ‘HL_TYPE: 
type of hearing loss’ was kept in the data set even it had 52.8% of its values missing 
in total. This attribute is essential in the recognition of sudden deafness [Kentala, 
1996a] and, therefore, it could not be discarded from the data set. One reason for 
the high rate of missing attribute values for the attribute hearing loss type can be that 
this question was not asked in the original paper questionnaire, only in the decision 
support system. With other diseases, hearing loss usually starts during several months 
but with sudden deafness the hearing loss starts suddenly. The value distributions of 
hearing loss type within disease classes are presented in Figure 7. The values of 
attribute HL_TYPE were missing mainly from the patients suffering from other 
diseases than sudden deafness and, thus, the values were not missing totally at 
random. After discarding the attributes with low frequencies of available values, 89 
attributes were used in Publications I and II and 94 attributes in Publications III, IV 
and V. From these 94 attributes, almost half (48.9%, 46 attributes) had less than 5% 
missing values and 77.7% (73 attributes) had less than 10% missing values. 

In Publications I and II, the continuous attributes were discretized into equal-
width intervals and, thus, all the 89 attributes were of the ordinal type. Discretization 
of continuous attributes was done in order to have similar kind of attribute handling 
with all machine learning methods used in Publication II. In Publications III, IV and 
V, 17 attributes were quantitative (integer or real value) and 77 attributes were 
qualitative (from which 54 were binary (yes/no), 20 were ordinal and 3 were 
nominal). 



33 

Figure 7. The value distribution of attribute ‘HL_TYPE: type of hearing loss’ within HUCH data 
containing nine disease classes 

The augmented HUCH data set with missing attribute values was utilized in the 
fitness value calculations and in the classification runs in Publications I, II, III and 
IV. Due to the Scatter method [Siermala et al., 2007; Juhola and Siermala, 2012] and
the support vector machines [Cortes and Vapnik, 1995], the data was necessary to 
impute (replace missing values) because these methods require complete input data 
in order to work properly. There were only 22 complete cases (2.1%) in the 
augmented HUCH data set when 94 attributes were considered and, thus, the 
training set would have been too small without imputation. The small percentage of 
missing attribute values (9.8%) allowed the use of imputation. The imputation was 
done class-wise on the basis of the whole data set prior to data division into training 
and testing sets. The missing values of the attributes were imputed (substituted) with 
the class modes of the qualitative attributes (binary and nominal) and with the class 
medians of the quantitative attributes (ordinal, interval scale and ratio scale). 
Laurikkala et al. [2000] showed that these simple imputation methods were adequate 
enough for otoneurological data. The imputed data was used with the attribute 
weighting methods in Publication III and with the classification methods in 
Publication V. 
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3 MACHINE LEARNING 

In this chapter, the machine learning methods utilized in the dissertation are 
presented shortly. Before that, some key concepts of the dissertation from the 
machine learning area are defined. The utilized ML methods are divided into 
classification methods and knowledge discovery methods depending on their role in 
the research. In the end of the chapter, measures used for result evaluation in the 
research are presented. 

3.1 Definitions 

Machine learning (ML) can be broadly defined as “any computer program that 
improves its performance at some task through experience” [Mitchell, 1997]. The 
objective in ML is to develop computational methods that would implement 
different ways of learning to induce knowledge from data [Kubat et al., 1998]. In 
other words, ML is about algorithms that infer structure from data and ways to 
validate that structure; it is a technology for mining knowledge from data [Witten et 
al., 2011].  

Knowledge discovery (KD) can be defined as “a process of discovering 
meaningful patterns in data automatically (or semi-automatically), which help to 
explain something in data” [Witten et al., 2001]. This can be called also data mining. 
The patterns are considered meaningful when they lead to some advantage, usually 
an economic one [Witten et al., 2001]. Meaningful pattern can contain, for example, 
important regularities occurring in data, it can show the characteristics of the class 
or other useful information about the domain and relationships occurring there. In 
the dissertation, ML methods utilized in forming the fitness values for the attribute 
values and the weight sets for the attributes from the otoneurological data are 
referred to as knowledge discovery methods.  

The classification methods can be defined as ML methods that are utilized in 
classifying example cases into one of a discrete set of possible categories when each 
case is described with a vector of attribute values [Mitchell, 1997]. Classification can 
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be described as “predicting a label from the predefined set of classes for the 
unknown objects” [Joutsijoki, 2012]. 

Attribute weighting is needed to grade the relevancy and usefulness of the 
attributes: In worst case, noisy, redundant and/or irrelevant attributes may reduce 
the classification accuracy when treating all attributes as equally important (with 
unweighted attributes) [Lee et al., 2007]. 

3.2 Classification Methods 

3.2.1 Nearest Pattern Method of the ONE 

The main classification method used within the research was the nearest pattern 
method of the decision support system ONE, which classification performance was 
studied with different fitness values of the attribute values [I; II] and attribute weight 
sets [III; IV]. The nearest pattern method of the ONE [Auramo and Juhola, 1996] 
searches for the best fitting pattern (class) from its knowledge base. It calculates 
scores for the patterns from the attribute weight values and fitness values of the 
attribute values. The score S(c) for a class c is calculated in the following way: 

, (1) 

where  A(c) is the number of the attributes associated with the class c, 
x(a) is 1 if the value of the attribute a is known and otherwise 0, 
w(c,a) is the weight of the attribute a for the class c and  
fv(c,a,v) is the fitness value for the value v of the attribute a for the class c. 

In the case of quantitative attributes, the fitness values are interpolated by using the 
attribute values in the knowledge base as interpolation points. The fitness values are 
altered to the range of 0 to 1 during the inference process. The class pattern having 
the highest score is the best diagnosis suggestion. In addition to the scores calculated 
from the known information, minimum and maximum scores for the patterns are 
calculated using the lowest and the highest fitness values of the attribute values with 
the attributes having missing values. With the minimum and maximum scores, the 
ONE handles uncertainty caused by the missing attribute values. The closer the 
minimum and maximum scores are to each other, the more reliable the inference is. 
The diagnosis suggestions of the ONE are ordered primarily by the score and 
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secondarily by the difference of the minimum and maximum scores. If the patterns 
have the same score but one pattern has a smaller difference between the minimum 
and maximum scores than the others, the pattern having the smallest difference is 
placed as a higher diagnosis suggestion. If the patterns have the same score and the 
minimum and maximum score difference, their order is selected randomly. 
However, this situation occurs rarely. 

In Publication  I, the classification runs with the ONE using the knowledge bases 
containing machine learnt fitness values were processed manually in the Windows 
command prompt where it was possible to make batch processing with more than 
one patient case. Data sets and knowledge combinations utilized within the 
classification were input manually to the ONE and started separately in the 
command prompt. This was the reason why the 10-fold cross-validation (CV) was 
repeated only once. Afterwards, a batch file (script file) was created by the author to 
help the classification runs of the ONE (both the nearest pattern method and the k-
NN implemented into the ONE system) in order to avoid input errors and to speed 
up the runs by allowing the continuous processing of CV runs. Thus, in Publication 
II it was possible to repeat the 10-fold CV runs three times with the ONE using 
machine learnt knowledge bases (KB2–KB5) and with the k-nearest neighbour 
method. Later, the nearest pattern method of the ONE, the basic k-NN and the 
attribute weighted k-nearest neighbour with OVA classifier (wk-NN OVA) were 
transferred to the Matlab by the author. The classification runs of the ONE in 
Publications III and IV were run in the Matlab, thus, allowing to repeat the 10-fold 
CV 10 times and even 100 times during the GA runs. 

3.2.2 k-Nearest Neighbour Method 

The nearest pattern method resembles the nearest neighbour method and, thus, it 
was natural to compare it to the k-nearest neighbour method (k-NN) [Cover, Hart, 
1967]. The k-NN is simple to compute because it is an instance-based (case-based) 
learning method [Mitchell, 1997]. The k-NN explains its inference by showing the k 
nearest cases. This is analogous to the way how domain experts make diagnosis on 
the basis of previously known similar cases [Kononenko et al., 1998]. The k-NN 
searches for the k most similar (nearest) cases from the training set and classifies a 
new case into the most frequent (majority) class of these k training cases (Figure 8). 
If there is more than one majority class, the predicted class is selected randomly from 
the majority classes. 
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Figure 8. In the k-nearest neighbour method, the k most similar cases from the training set are 
searched for and the new case X is classified into the most frequent class of these k 
training cases. 

The most similar (the nearest) cases are solved with a distance measure in the k-NN. 
In Publication II, the Value Difference Metric (VDM) [Wilson and Martinez, 1997] 
was used as a distance measure whereas, otherwise, the Heterogeneous Value 
Difference Metric (HVDM) [Wilson and Martinez, 1997] was used. The VDM can 
handle only qualitative attributes whereas the HVDM handles both qualitative and 
quantitative attributes in the data set. The HVDM is defined as 

, (2) 

where  n is the number of the attributes and 
da(xa,ya) is the distance between the values xa and ya for the attribute a. 

The distance function da(xa,ya) is defined as 

. (3) 

Because HVDM computes distances to the qualitative and other attributes with 
different measurement ranges, it is necessary to scale their results into approximately 
the same range in order to give each attribute a similar influence on the overall 
distance (normalize results). The normalized distance to the qualitative attribute is 
calculated as 
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, (4) 

where  C is the number of output classes in the problem domain, 
Na,x(y),c is the number of cases that have the value x (or the value y) for the 
attribute a and the output class c and 
Na,x(y) is the number of cases that have the value x (or the value y) for the 
attribute a  

and to the quantitative attribute as 

, (5) 

where  σa is the standard deviation of the numeric values of the attribute a in the 
training set of the current classifier (Wilson and Martinez, 1997). 

The basic k-NN with unweighted distance measures were utilized in Publications II 
and V. The classification runs were made with the basic k-NN implemented with 
Java (the k-NN included in the ONE made by Tapani) and, thus, the runs were 
driven in Windows command prompt with the batch file made by the author. Later, 
the k-NN was transferred to the Matlab by the author. 

3.2.3 Naïve Bayes 

The Naïve Bayes (NB) classifier [Witten et al., 2011; Mitchell, 1997] was selected to 
be used in comparison of the ONE in Publication II because the NB classifier is 
simple, efficient and robust to noisy data [Yang, Webb, 2002]. In addition, its 
performance has been shown to be comparable to decision tree learning and neural 
networks in some domains [Mitchell, 1997; Kononenko et al., 1998]. Also, physicians 
have estimated the knowledge presentation of the NB good; the conditional 
probabilities interests physicians [Kononenko et al., 1998]. 

The NB classifier has a probabilistic approach to the classification: A new case is 
classified into the class with maximal calculated probability. In probability ratio 
calculations, only occurring attribute values of a training case are taken into account 
in frequency counting; attributes with missing values are omitted [Witten et al., 2011]. 
The NB classifier assumes that the attribute values are conditionally independent for 
the given class.  

The Laplace-estimate [Cestnik, 1990] was used for estimation of prior 
probabilities and the M-estimate for estimation of conditional probabilities [Cestnik, 
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1990; Mitchell, 1997]. In order to avoid the normal distribution assumption for the 
continuous attributes of the NB, the continuous attributes were discretized [Witten 
et al., 2011] into equal-width intervals [Yang and Webb, 2002] in the research in 
Publication II.  

The Naïve Bayes was implemented with the Matlab by Kati Iltanen. 

3.2.4 Attribute Weighted k-Nearest Neighbour Method with OVA classifiers 

In the machine learnt attribute weighting research [III], the distance measure of the 
k-NN was extended to take into account the attribute weights in its distance 
calculation [Kelly and Davis, 1991]. The attribute weighting was added into the 
HVDM: 

, (6)

where  n is the number of the attributes and 
 is the weight of the attribute a in the class c and

da(xa, ya) is the distance between the values xa and ya for the attribute a 
(described in Equation 3). 

The weighted HVDM can handle both qualitative and quantitative attributes. 
In order to utilize the same class-wise attribute weight sets in the classification as 

the nearest pattern method of the ONE, One-vs-All other (OVA, aka 1-vs-All, one-
against-all or one-vs-the rest) [Rifkin and Klautau, 2004] binarization was applied 
with the attribute weighted k-NN. In OVA binarization, a multi-class classification 
task is converted into multiple binary classifiers [Galar et al., 2011]: One classifier is 
learnt for each deducible class by discriminating that class against the remaining 
classes (Figure 9). In other words, each OVA classifier is trained to separate a class 
from all the other classes by marking the cases of this one class as member cases and 
the cases of the other classes as non-member cases in the training set. The number 
of classifiers is the number of deducible classes.  

The method combining the attribute weighted k-NN and the OVA classifiers is 
called an attribute weighted k-nearest neighbour method with OVA classifiers (wk-
NN OVA). The wk-NN OVA searches for the k most similar cases of a new case 
from each classifier separately. Each classifier gives a vote for the new case being a 
member or non-member of the class based on the majority class of the k neighbours. 
If there is only one classifier suggesting a member of the class, the final class of the 
new case is assigned from the classifier suggesting the case being a member of the  
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Figure 9. There are two different ways to split a multi-class classifier into multiple binary classifiers:  
One-vs-All other (OVA) and One-vs-One (OVO) binarization 

class (winner-takes-all rule). If there are more than one classifier suggesting it to be 
a member of the class (a tie situation), the class of the new case is determined by 
searching the most similar member case from the member voting classifiers (the case 
with the minimum distance to the new case). However, there can occur also a 
situation when all the classifiers vote the new case to be the other class, a non-
member of all the classifiers. In this case, the class of the new case is determined 
with the basic 1-NN using the whole training data containing the original disease 
classes of the cases. In Publication III and IV the attribute weighted 1-NN and in 
Publication V the unweighted basic 1-NN was used in search for the nearest case. 

The attribute weighted k-NN with the OVA classifiers was utilized in 
Publications III and IV. The classification runs were made with the wk-NN OVA 
implemented with Java (with batch files and the k-NN included in the ONE) for the 
Publication III and implemented with the Matlab by the author for the Publication 
IV.
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3.2.5 Attribute Weighted k-Nearest Neighbour Method Using Neighbour’s 
Class-Based Attribute Weighting 

Since the nearest pattern method of the ONE and the wk-NN OVA handled the 
attribute weight sets separately for each class, it was necessary to take in use a 
classification method that could handle the class-wise attribute weights at the same 
time in order to evolve and mutate the whole weight set at a time during genetic 
algorithm runs. Therefore, for the population evaluation in Publication IV, an 
attribute weighted k-nearest neighbour method using neighbour’s class-based 
attribute weighting (cwk-NN) was developed based on a similar kind of class-
dependent attribute weighted k-NN [Lee et al., 2007].  

As with the wk-NN OVA, the cwk-NN uses the attribute weighted distance 
measure, the HVDM [Wilson and Martinez, 1997] expanded with the attribute 
weighting (Equation 6). The difference between the wk-NN OVA and the cwk-NN 
is that the cwk-NN resembles more the basic k-NN: It uses only one classifier instead 
of multiple classifiers in the classification. The attribute weights to be utilized in the 
distance calculation between a new case and the training case depend on the class of 
the training case (i.e. the neighbour case). Thus, different sets of attribute weights are 
used with the training cases belonging to the different classes. There are as many 
attribute weight sets as there are classes.  

The cwk-NN was implemented with the Matlab by the author. 

3.2.6 Unweighted k-Nearest Neighbour Method with OVA and OVO 
Classifiers 

Another approach besides the attribute weighting to improve the classification 
accuracy might be the classification task redefinition where multi-class classification 
task is separated into multiple binary classification tasks. With the multiple binary 
classifiers, it is possible to achieve better understanding about the relationships and 
differences of the classes and, thus, enhance the understanding of the data and 
domain at hand [Friedman, 1996; Allwein et al., 2000]. There are two commonly used 
approaches for splitting a multi-class classification task into multiple binary 
problems, One-vs-All other (OVA) [Rifkin and Klautau, 2004] and One-vs-One 
(OVO, aka 1-vs-1, round robin or pair-wise) [Fürnkranz, 2001] binarization. With 
the OVA classifiers, it is possible to distinguish a separable class from the other 
classes, if there exist any. Also, the OVO classifiers aid to find out distinguishable 
classes from the other classes. In Fürnkranz's research [Fürnkranz, 2001], the OVO 
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classifiers yielded significant improvements in the predictive classification accuracy 
compared to the OVA classifiers. 

In order to examine whether the separation of a multi-class classification task into 
multiple binary classification tasks affects the classification results, it was necessary 
to take in use the unweighted versions of the classification methods. Thus, an 
unweighted k-nearest neighbour method with OVA and OVO classifiers (k-NN 
OVA and k-NN OVO) were utilized in Publication V. It used the unweighted 
HVDM (Equation 2) as a distance measure. The basic idea of the OVA classifiers 
are described in Chapter 3.2.4 Attribute Weighted k-Nearest Neighbour Method 
with OVA classifiers. 

In the OVO binarization, one classifier is learnt for each pair of classes. The 
number of classifiers is the number of all pairs of the classes (equation given in Figure 
9). The k-NN OVO searches for the k most similar cases of a new case from each 
pair-wise classifier separately. Each classifier suggests (gives a vote) a class for the 
new case. The final class of the new case is chosen by the max-wins rule: A class 
gaining majority of the votes is set for the new case. If there are several class 
suggestions with the same number of votes (a tie situation), the class of the new case 
is solved by searching for the nearest case from the classifiers belonging to the tied 
classes and giving the class of the nearest case (the class with minimum distance) to 
the new case.  

The classification runs were made with the k-NN implemented with Java (the k-
NN included in the ONE). The classification runs were driven in Windows 
command prompt with batch files made by the author. 

3.2.7 Support Vector Machine 

The binary classifiers OVA and OVO (Figure 9) were applied also with support 
vector machines (SVM, also called maximum margin classifier) [Cortes and Vapnik, 
1995] in Publication V. The SVM is originally developed to separate only two classes 
from each other, but, it has been extended for the multi-class classification tasks by 
constructing and combining multiple binary classifiers [Hsu, Lin, 2002; Joutsijoki, 
2012]. Thus, it is necessary to use the OVA or the OVO classifiers with the SVM in 
order to utilize it in the multi-class classification. With the SVM OVA, a winner-
takes-all rule was applied if there was only one classifier suggesting a class. If all OVA 
classifiers suggested the other class, then the basic 1-NN was applied to get the class 
for the new case. In the SVM OVO, each classifier suggested a class for the new 
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case. The final class was chosen by the max-wins rule: A class gaining majority of the 
votes was set for the new case. If there occurred a tie situation with the SVM OVO, 
the class was solved also with the 1-NN. 

The SVM is a kernel-based classification method that generates a hyperplane (a 
linear decision function) to divide an input space so that the distance (the margin) 
between the separating hyperplane and the closest members of both classes is 
maximized [Cortes and Vapnik, 1995] (Figure 10). The closest members are called 
support vectors.  

The binary SVM implementation of Bioinformatics Toolbox of the Matlab with 
the Least-Square method was used as a basis for the multi-class extensions. The SVM 
classification runs were made with linear, polynomial (d=2,3,4,5), Multilayer 
Perceptron (MLP) (scale к in [0.2,10]; bias δ in [-10,-0.2]) and Gaussian Radial Basis 
Function (RBF) (scaling factor σ in [0.2,10] kernels with box constraints [0.2,10] (к, 
δ and σ with intervals 0.2) with the Matlab by Henry Joutsijoki. The results of the 
best kernel functions (linear and RBF) were selected into comparison with the k-NN 
in Publication V. 

Figure 10. Support vector machines generate a hyperplane that separates two classes with the 
maximum margin 
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3.3 Knowledge Discovery Methods 

3.3.1 Fitness Value Formation Method 

In the fitness value formation for the attribute values, a machine learning method 
that learns the fitness values from the domain data was used [I; II]. The fitness value 
calculation method is based on the frequency distribution of the attribute values 
presented originally in [Viikki and Juhola, 2001]. It was shown to be useful in 
knowledge base refining. The fitness values are calculated separately for each 
attribute in different patterns from training cases belonging to the pattern. The 
fitness values can be defined as values that show how often values of an attribute 
occur in a certain pattern. The most frequently occurring attribute value fits the best 
for the pattern and, thus, for this attribute value is given the fitness value 100. If 
attribute value does not exist in the frequency distribution, its fitness value is set to 
0. For the other attribute values, the fitness values are calculated by relating their
frequencies to the frequency of the most frequently occurring value: 

, (7) 

where fv(c,a,v) is the fitness value of the value v of the attribute a in the class c, 
fr(c,a,v) is the frequency of the value v of the attribute a in the class c and 
fr(c,a,f) is the highest frequency given by f in the distribution of the attribute 
a in the class c.  

The machine learning method is presented in more detail and an example for 
forming the fitness values are given in Publication II.  

The fitness values were calculated with the fitness value method in Publications 
I, II, III and IV and the effect of fitness values for the classification was examined 
in Publications I and II. The fitness value formation method was implemented with 
the Matlab by Kati Iltanen. 

3.3.2 Scatter Method 

The first knowledge discovery method applied in the attribute weighting in 
Publication III was the Scatter method [Siermala et al., 2007; Juhola and Siermala, 
2012]. The Scatter method can be utilized, for example, to evaluate the importance 
and separation power of attributes and to map the overlap of the classes in the 
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attribute space. It evaluates a measure for attribute separability and it has been 
applied in attribute subset selection. 

The Scatter method is based on traversing through a data set by seeking the 
nearest unvisited case one at a time and concurrently counting the class changes 
between cases [Juhola and Siermala, 2012]. The nearest case is searched for with the 
Euclidean distance measure. If there are several cases with exactly the same distance, 
the nearest case is selected randomly from these nearest unvisited cases. A scatter 
value is computed based on the current number and theoretical maximum number 
of class changes during the data set traversing. The scatter value expresses the 
attributes’ power to separate classes in the data set, the overlap of the classes within 
the attribute values: The closer the scatter value is to zero, the better the attribute 
differentiates the classes. The Scatter algorithm is described in more detail in [Juhola 
and Siermala, 2012; III].  

The Scatter algorithm does not have any prerequisites for the class distributions. 
However, it needs complete input data to work properly and, therefore, the 
otoneurological data was necessary to be imputed before the scatter value 
calculation. In addition, the attribute values needed to be normalized into the same 
scale [0,1]. In Publication III, the scatter value was calculated for each attribute 
within each ‘class versus all the other classes’ situations in order to study each 
attribute’s power to separate a class from the other classes. In addition, the scatter 
values were necessary to calculate from the whole training data set having the original 
classes in order to use the weights with the weighted 1-NN when all the wk-NN 
OVA classifiers voted a case to be a non-member.  

In order to apply the scatter value as an attribute weight, it was necessary to take 
the inverse of it: The attribute weight value describes the opposite of the scatter 
value - the greater the attribute weight value is, the more important the attribute is.  

The Scatter based weights were computed during research of Publication III and 
applied also in Publication IV. The scatter values were computed by the Markku 
Siermala and also with the Scatter method program1 and the inversed scatter values 
were calculated with the Matlab by the author. 

1 You can find the Scatter method software by Markku Siermala and instructions how to use it from 
page http://www.uta.fi/sis/cis/research_groups/darg/publications.html. In the page, search for the 
year 2012 and find the second article (M. Juhola and M. Siermala: A scatter method for data and 
variable importance evaluation. Integrated Computer-aided Engineering 19, 137-149, 2012). 
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3.3.3 Instance-Based Learning Algorithms IB4 and IB1w 

The second knowledge discovery method applied in the attribute weighting in 
Publication III was a weight calculation method from an incremental instance-based 
learning algorithm IB4 [Aha, 1992]. The IB4 is said to handle skewed class 
distributions and to tolerate irrelevant attributes by learning attribute relevancies 
(weights for attributes) independently for each class [Aha, 1992]. The attribute 
weights reflect the relative relevancies of the attributes in the class. In the IB4 
method, each class is described with a separate class description and a set of attribute 
weights. A classification record (number of correct and incorrect classification 
predictions in the past) is maintained for each saved case in the class description. 
These classification records are used to detect noisy cases, statistically non-
acceptable cases that are discarded from the class description. Statistically acceptable 
cases are used in the subsequent classification tasks. The weights are adjusted after 
the classification of each training case with a simple performance feedback algorithm 
that alters the class-wise weights based on the classification results: The weights of 
the attributes are increased when they correctly predict the classification and are 
otherwise decreased [Aha, 1992]. The feedback algorithm is presented in detail in 
[Aha, 1992; III]. 

The effect of irrelevant attributes on the classification is decreased by using class-
wise attribute weights in a similarity function. Similarity is calculated with a negative 
attribute-weighted Euclidean distance measure. The attribute values are normalized 
to the range [0,1] in order to have the same (maximal) effect with each attribute. The 
IB4 can handle missing attribute values but, due to the Scatter method, the data was 
necessary to impute and to keep them comparable, the imputed data was utilized 
also with the IB4 weight calculation method and its variant IB1w. The IB1w is based 
on an IB1 method [Aha et al., 1991] that combines the attribute weight algorithm 
from the IB4. The IB1 method usually handles all the classes at the same time with 
one classifier so, it was necessary to expand the IB1 to handle multiple disease 
classes. The weight calculation method from the IB4 was altered to the IB1w method 
by leaving out the case discarding, in other words, the IB1w keeps all cases in the 
class description during the process.  

The attribute weights with the IB4 and the IB1w methods were computed in the 
research of Publication III and applied also in Publication IV. The IB4 and the IB1w 
were implemented with the Matlab by the author. 
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3.3.4 Genetic Algorithm 

In the research of Kelly and Davis [Kelly and Davis, 1991], the results of the k-NN 
could be improved with the help of an adaptive weight calculation method. Thus, 
the attribute weighting was continued with evolutionary algorithms [Michalewicz, 
1992] in order to study if the performance of the classification methods could be 
improved with an evolutionary algorithm adjusting the attribute weights. Genetic 
algorithms (GA) [Goldberg, 1989; Mitchell, 1996] and other evolution algorithms 
have been utilized in many different optimization and simulation tasks successfully 
because of their powerful search and optimization capabilities. The search method 
of the GA is a combination of directed and stochastic search and the search can be 
done multidirectionally because the GA maintain a population of potential solutions 
from the search space [Michalewicz, 1992].  

In the beginning of the GA, a population of individuals is formed either randomly 
or with information about the domain. In each generation, the individuals are 
evaluated with an objective evaluation function that calculates each individual a 
fitness rate. Some individuals are randomly selected to reproduction where they 
either are crossovered or mutated. In the crossover, the information of two 
individuals is swapped in their corresponding elements. Mutations alter one or more 
elements of the individual arbitrarily. A selection method is utilized to find the fittest 
individuals for a new population. Elitism can be used in order to preserve the high-
performance individual unchanged in the population [De Jong, 1975]. The GA ends 
after a fixed number of generations or if no further improvement is observed.  

In Publication IV, the machine learnt weight sets of the Scatter, the IB4 and the 
IB1w methods together with three weight sets defined by the domain experts were 
utilized as a basis in the GA. From each of these weight sets were formed two 
different modifications by mutating the weight set with 50% probability and, in 
addition, three totally random individuals were generated in order to have a starting 
population consisting of 21 individuals. The weight sets were normalized before the 
GA runs. Each individual in the population contained real-valued weight sets for 94 
attributes in seven disease classes. The GA runs were done separately with the ONE, 
the wk-NN OVA and the cwk-NN methods applied in population evaluation. With 
the ONE and the cwk-NN, the total classification accuracy was used as a fitness rate 
to an individual whereas, with the wk-NN OVA, the TPR of 7-NN (except with the 
disease class BRV that used 3-NN) was used as a fitness rate. The wk-NN OVA 
handled only one disease class (and its weight set) at a time whereas the ONE and 
the cwk-NN classified all seven disease classes at the same time.  
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A roulette-wheel selection was used in parent selection. The crossover was done 
in 80% probability and the crossover points were selected randomly and 
independently for each gene. Mutation was done in 1.0% probability for the gene: A 
random value was selected from the range [0, 1]. Elitism was applied in order to keep 
the best individual unchanged within the population during the evaluation. 
Otherwise, a survivor selection was utilized to maintain the population in 21 
individuals in each generation: Individuals were ordered by their fitness rate and the 
individuals with the lowest fitness rates were discarded from the population. The 
GA ended after 20 generations or if the best fitness rate stayed the same during 10 
successive generations. The GA with the ONE as the evalution method was tested 
also with 100 generations.  

The more detailed description of the utilized GA and its pseudocode are 
presented in Publication IV. The GA and its evaluation methods were implemented 
with the Matlab by the author. 

3.4 Evaluation 

3.4.1 10-Fold Cross-Validation 

The method of 10-fold cross-validation (CV) [Mitchell, 1997; Witten et al., 2011] was 
used within the studies using the HUCH data with the machine learning methods to 
estimate the predictive classification performance of the methods. In the 10-fold 
cross-validation, each HUCH data subset was once utilized as the testing set while 
the other nine subsets formed the training set. The HUCH data set was randomly 
divided into 10 subsets of approximately equal size. The HUCH data division was 
made in a stratified manner to ensure that the class distribution of each subset 
resembled the skewed class distribution of the entire data set and that each subset 
contained data from each collection time. Thus, a stratified 10-fold cross-validation 
was applied. Therefore, the number of cases in different cross-validation subsets 
varied from 99 to 107 cases instead of 103 cases. The data subset divisions in the 10-
fold cross-validation runs were little different within the studies, thus, having 
different training and testing sets used. In Publications III, IV and V, the data subset 
divisions were the same, thus, having comparable results to each other.  

In Publication I, the 10-fold CV was repeated only once with the ONE using 
machine learnt fitness values due the implemention of the ONE of the time (manual 
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classification runs in the command prompt). The same 10-fold CV division was used 
with the fitness value formation method than with the classification method. In 
Publication II, the 10-fold CV was repeated three times with the ONE using machine 
learnt knowledge bases (KB2–KB5) and with the k-nearest neighbour method and 
the Naïve Bayes classifier. In Publication III, the 10-fold CV was repeated 10 times 
with the ONE and the attribute weighted k-nearest neighbour with OVA classifier 
(wk-NN OVA). Besides the classification methods, the cross-validation was taken 
into account also with the attribute weighting methods that repeated weighting runs 
ten times. In Publication IV, the GA runs using the nearest pattern method of the 
ONE and the attribute weighted k-nearest neighbour method using neighbour’s 
class-based attribute weighting (cwk-NN) repeated the 10-fold CV 10 times. Instead, 
the GA runs using the wk-NN OVA as an evaluation method repeated the 10-fold 
CV only five times due to its huge computation time: The evaluation of one training 
data set (21 individuals) within one GA run using the wk-NN OVA in evaluation 
lasted from 5 h to 21 h depending on the used computer. In Publication V, the 10-
fold CV was also repeated 10 times with the basic k-NN and the support vector 
machines and their variants using the OVA and the OVO classifiers 

In the GA, the 10-fold cross-validation was applied a little bit different manner 
than with the other studies of the dissertation. During the GA runs, one cross-
validation subset was left aside to be used in testing the individual having the highest 
fitness rate after the GA and nine cross-validation subsets were used during  the GA 
runs. In the GA, six cross-validation subsets were used in training and three cross-
validation subsets were used in testing the evaluation method. Thus, within the 
evaluation methods of the GA 60%–30% data division was used. The fitness values 
for the ONE were calculated from this 60% training data (six cross-validation 
subsets).  

Because the TAUH data set contained only cases from four disease classes and 
its class distribution was badly skewed, we decided not to use the 10-fold CV with 
it. Instead, in Publication II, we used the TAUH data set as a testing set while using 
the whole HUCH data set as a training set. With the classification runs using only 
the machine learnt knowledge, the TAUH data set with 253 cases from four disease 
classes was used and with the classification runs using also the expert’s knowledge, 
the TAUH data set with 228 cases from three disease classes was used in testing. 



51 

3.4.2 Evaluation Measures 

The performance of the classification methods were evaluated mainly with two 
measurements: with a class-wise true positive rate (TPR) and a total classification 
accuracy (ACC). The TPR is calculated as a percentage of correctly inferred cases in 
the class: 

, (8) 

where   is the number of correctly classified cases in the class c and
 is the number of all cases in the class c.

The ACC describes the overall success rate of the classification method within the 
data set, it gives the percentage of all correctly classified cases in the data set: 

, (9) 

where  tpos is the total number of cases correctly classified in all classes and 
ncases is the total number of cases used in the classification. 

The TPRs and ACCs presented in the result tables are given as mean values of the 
10-fold cross-validations, except with the runs with the pure experts’ knowledge. 

Error bars (with 99% confidence intervals) were used in Publications II and III 
to show if there were significant differences with the results of used classification 
methods. Error bars were used to show the differences with the total classification 
accuracies and the median true positive rates of the three CV-runs between the first 
diagnosis suggestion of the ONE with different knowledge base combinations and 
between the classification methods (the ONE, the k-NN and the NB) using the 
augmented HUCH and TAUH data in Publication II. In Publication III, the error 
bars from the mean total classification accuracies, mean median TPRs and mean 
Cohen’s kappa values from the 10 times repeated 10-fold cross-validation runs were 
shown with different ‘machine learning - weight set’ combinations. 

In order to take into account also the effect of chance in the classification, a 
Cohen’s kappa (K) [Cohen, 1960; Ben-David, 2007] (also called Kappa statistics 
[Witten et al., 2011]) was utilized in the evaluation of the results in Publication III. 
The Cohen’s kappa measures the agreement between predicted and observed 
classifications in the data set [Witten et al., 2011], in this case, the pair-wise agreement 
between the classification method and human expert classification. 
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, (10) 

where  Po is the total agreement probability (i.e. the accuracy) and 
Pc describes the ‘agreement’ probability that can be attributed to chance 
alone (kappa chance value) [Ben-David, 2007].  

Kappa can get values from range [-1, 1], where -1 means total disagreement (worse 
than random performance), 0 means a random or majority-based classification and 
1 means perfect agreement. When the kappa value is higher than 0.81, the pair is 
considered to have almost perfect agreement [Landis and Koch, 1977]. In 
Publication III, the Cohen’s kappa was calculated separately for each ‘classification 
method - weight set’ combination to estimate the degree of agreement between their 
classification results and the actual class labels. It was also applied to evaluate the 
pair-wise agreement between the compared combinations. In addition to the kappa 
value, a probability of predicting the correct class due to chance (Pc) was presented 
in results of Publication III. 
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4 RESULTS 

4.1 Publication I: Refinement of the Decision Support System 

Publication I described the state of the otoneurological decision support system 
ONE after the upgrade and refinement process. A transformation of the ONE from 
C++ program running under MS-DOS to Java program was started in the beginning 
of the 2000s by Tapani [Tapani, 2008]. During the transformation, the program was 
modernized in many ways, for example, the graphical user interface was further 
developed to be more user-friendly (the navigation tree was added in the user 
interface) and another inference method (the k-NN) was added into the system. 
After the programming environment change, the answer database of the ONE was 
transferred from the Paradox database first into a basic text file and later by the 
author into a MySQL database. Before taking the MySQL database in use, it was 
checked that the paper data collection questionnaire and the query base of the ONE 
corresponded to each other (they utilized the same attributes). A few differences 
were noticed: Some questions were asked in the questionnaire but not in the ONE 
and vice versa. In addition, the otoneurological questionnaire was updated: A few 
totally new questions were added into the questionnaire and changes were made to 
answer alternatives of categorical questions to have the same amount of answer 
alternatives. Domain experts decided that a smaller amount of answer alternatives 
was adequate in describing the diseases. For the most of the categorical attributes 
this meant the decrease of answer alternatives. Decrease was done with the help of 
the domain experts by combining the answer alternatives together. Due to found 
differences and changes made to the questionnaire, the otoneurological paper 
questionnaire and the query base of the ONE were harmonized and it was necessary 
to go through the disease patterns in the knowledge base of the ONE with the 
otoneurological experts and update the weights and fitness values of the attribute 
values, if necessary. The updated questionnaire can be found from Appendix 1. 

In addition to the manual update of the knowledge base with the experts, a 
machine learning method was utilized to refine the fitness values in the knowledge 
base. This fitness value formation method was based on the frequency distribution 
of the attributes [Viikki and Juhola, 2001]. The experimental results had shown its 
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usefulness in the knowledge base refining. The machine learning method computed 
the class-wise fitness values for the values of the attributes from the HUCH data. 
The fitness values were computed also for the binary type attributes (no/yes) 
whereas the experts’ knowledge bases handled the binary attributes either existing 
(yes) or non-existing (no) (i.e. if the patient had answered “yes” to the current 
question, the weight of the attribute was added into the score calculation of the ONE 
and otherwise left unnoticed). Because some of the symptoms were not 
characteristic for the disease, there were attributes with negative weight values in the 
experts’ knowledge base, thus, meaning that the attribute did not fit for the disease. 
Due to the fitness value addition into the binary attributes, it was possible to discard 
the negative attribute weight values and, instead, describe with the fitness values of 
the attribute values what was characteristic or uncharacteristic for the disease. For 
example, hearing loss is not usually related to vestibular neuritis, but, nevertheless, 
almost 20% of vestibular neuritis cases in this data set have hearing loss. 

During the upgrade process, data transfer methods were developed in order to 
ease the data transfer into the decision support system and to ensure the quality of 
data. Previously, all answers were input manually into the system by clicking the 
given answer in the equivalent question in the system. Manual input was very time 
consuming, laborious and vulnerable for errors. Therefore, the paper questionnaire 
was altered to a scannable version. The harmonized questionnaire was changed from 
a basic Word document to a questionnaire in Snap Survey Software (Snap). The 
answers from the questionnaire were possible to read into the Snap with a text 
scanner. Naturally, someone still needed to check that the answers were read 
correctly into the system and, also, to input all free text fields by hand. Another 
solution for the data transfer was a web questionnaire that a patient could fill in 
beforehand [Mäkiranta, 2005]. With the web questionnaire, the patient information 
could have been in use for the ONE in real time because it used the same database 
as the ONE and, thus, the answers would have been in the correct form. 
Unfortunately, it was not yet then possible to take the web questionnaire in use due 
to the strict data security policies of the Finnish laws. 

The classification runs were made with 951 cases from seven disease classes of 
the HUCH data with the ONE using the original knowledge base defined by the 
experts, the refined knowledge base defined by the experts, the knowledge base 
containing the machine learnt fitness values and the weights set to one and the 
knowledge base containing the machine learnt fitness values and the weights set by 
the experts. It was noticed after the results were published that the knowledge bases 
of the original and the updated experts’ knowledge contained all 15 disease patterns 
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whereas the other knowledge bases contained patterns for nine disease classes. This 
made the classification a bit harder for the original and the refined expert knowledge 
bases. 

The fitness value formation from the data for the values of the attributes seemed 
to work because the highest total classification accuracy (67.4%) when looking at the 
first diagnosis suggestion of the ONE was yielded with the knowledge base having 
the machine learnt fitness values with all weight values set to one. This knowledge 
base classified cases 27.0% better than the updated experts’ knowledge base and 
7.1% better than the knowledge base combining the experts’ weights and the 
machine learnt fitness values. However, the combination of the machine learnt 
fitness values and the experts’ weight values classified the cases best (91.8%) when 
looking the first, second and third diagnosis suggestions of the ONE. Its total 
classification accuracy was 9.0% better than the updated experts’ knowledge base 
and 5.8% better than the machine learnt fitness values with the weights set to one.  

The results of Publication I showed the benefits of the knowledge base 
refinement. The machine learnt fitness values improved the total classification 
accuracy compared to the pure domain experts’ knowledge. However, there still 
seemed to be difficulties in disease separation. For example, BPV and BRV were 
recognized better with the refined pure experts’ knowledge than with the knowledge 
base combining the machine learnt fitness values and the experts’ weights (TPR of 
BPV was 56.7.% and BRV 70.0% with the refined expert knowledge and 50.3% and 
50.0% with the knowledge base combining the experts’ and ML knowledge). Also 
ANE cases was recognized worse with the knowledge combining the experts’ 
attribute weights and the machine learnt fitness values: Only 16.8% of the cases were 
found as the first diagnosis suggestions and 71.8% when looking the three first 
diagnosis suggestions. ANE cases were found the best with the knowledge base 
containing the machine learnt fitness values and all weights set to one: 66.4% was 
found as the first and 87.0% with the three first suggestions. 

4.2 Publication II: Machine Learning Method for the Fitness 
Value Formation 

In Publication II, the machine learning method for the fitness value formation was 
presented and examined in more detail because the preliminary results of the method 
were promising in Publication I. First, the fitness value calculation method was 
utilized with the HUCH data with seven disease classes (951 cases). Five different 
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knowledge base combinations were tested: the refined pure experts’ knowledge 
(KB1), the machine learnt fitness values with the weights set to one (KB2), the 
machine learnt fitness values with the experts’ weights (KB3), the machine learnt 
fitness values with the experts’ weights while the weights of ANE were set to one 
(KB4) and the machine learnt fitness values with the experts’ weights while the 
weights of ANE and MEN were set to one (KB5). Second, the fitness values were 
calculated from the HUCH data set for three disease classes (BPV, MEN, VNE) and 
tested with the TAUH data set (228 cases). Third, the results of the nearest pattern 
method of the ONE with the knowledge base containing the machine learnt fitness 
values and the weights set to one were compared with the results of the k-nearest 
neighbour method and the Naïve Bayes classifier. The HUCH data with nine disease 
classes (1030 cases) was used. The methods were tested also with the TAUH data 
with four disease classes (253 cases) while the HUCH data was used as the training 
data. Due to the Naïve Bayes classifier, continuous attributes were discretized in all 
data sets used Publication II. 

The results of the HUCH data with seven disease classes showed that the 
machine learnt fitness values for the attribute values improved the classification of 
the nearest pattern method of the ONE. The knowledge base containing the 
machine learnt fitness values with the weights set by the experts’ (KB3) improved 
the total classification accuracy 14.9% compared with the pure experts’ knowledge 
(KB1) when looking at the first diagnosis suggestion of the ONE. The total accuracy 
of the KB3 was 57.3%. However, the results showed that combining the fitness 
values and the attribute weights was difficult. When using the machine learnt fitness 
values and the experts’ weights, the true positive rates (TPR) of disease classes 
decreased about for the half of the disease classes. Especially, acoustic neurinoma 
cases were recognized poorly (15.5%) with the machine learnt fitness values and the 
experts’ weights (KB3) as the first diagnosis suggestion. Instead, cases of Menière’s 
disease and vestibular neuritis were recognized better with the KB3 than with the 
pure experts’ knowledge (KB1). When using the machine learnt fitness values for 
the attribute values with the weights set to one (KB2), the total classification accuracy 
improved almost 20% compared with the pure experts’ knowledge (KB1) when 
looking at the first diagnosis suggestion of the ONE. The total classification accuracy 
of the KB2 was 62.1%. The total classification accuracies of the KB2 and the KB3 
were closer to each other: The total accuracy of the KB2 was 4.8% better than with 
the KB3 as the first diagnosis suggestion. Acoustic neurinoma, Menière’s disease and 
traumatic vertigo cases were recognized better with the weights set to one (KB2) 
than the weights set by the experts (KB3). Therefore, two variations of the 
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knowledge base KB3 were made. First, the attribute weights of acoustic neurinoma 
were set to one whereas the other diseases used the attribute weights defined by the 
experts’ (KB4). Second, the attribute weights of Menière’s disease were set to one 
besides the acoustic neurinoma (KB5). Interestingly, acoustic neurinoma cases were 
recognized the best (69.7%) when it was the only disease class with the weights set 
to one. When also the attribute weights of Menière’s disease were one, the 
recognition of acoustic neurinoma decreased to 62.1% However, the cases of 
Menière’s disease were recognized the best (91.5%) then. Also, the highest total 
classification accuracy (67.7%) was achieved when the weights of acoustic 
neurinoma and Menière’s disease were set to one (KB5). However, when comparing 
the error bars with 99% confidence intervals for the total classification accuracies of 
each cross-validation within different knowledge bases, it could be seen that the 
accuracies did not differ significantly. Only the accuracy of the KB5 was significantly 
higher than with the KB3 in the cross-validation runs 1 and 2. Similarly, the error 
bars of the median TPRs did not reveal any significant differences.  

The TAUH data with three disease classes was tested with the fitness values 
formed from the HUCH data. When looking at the first diagnosis suggestion, it 
seemed that the machine learnt fitness values improved the classification. With the 
experts’ knowledge base, 23.2% of the cases were recognized whereas the other 
knowledge bases recognized from 42.5% to 53.5% of cases. However, when looking 
at the first, second and third diagnosis suggestions, the experts’ knowledge base 
(KB1) yielded better results (total accuracy 71.9%) than the machine learnt fitness 
values with the weights set to one (KB2; total accuracy 59.2%). Still, better total 
classification accuracies (from 79.8% with the KB5 to 86.0% with the KB3) were 
achieved when the experts’ weights were combined with the machine learnt fitness 
values. The results revealed that the knowledge transfer is not an easy task: The 
knowledge discovery from the data collected elsewhere does not necessarily solve 
the problem. Medical diagnosis is subjective and it can differ significantly depending 
on the physician doing it and even with the same person at different times 
[Kononenko et al., 1998]. In additon, the HUCH and the TAUH data were collected 
with slightly different questionnaires at different institutes in Finland at different 
times. Unfortunately, the TAUH data set was so small and imbalanced that these 
results could be regarded only preliminary ones.  

The classification results of the ONE, the k-NN and the NB were compared with 
each other with the HUCH data using nine disease classes and the TAUH data using 
four disease classes. The ONE had the lowest total classification accuracy with the 
HUCH data (60.2%) but it recognized three disease classes (SUD, VES, CL) better 
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than the other methods. The 5-nearest neighbour method (5-NN) had the highest 
total classification accuracy with both data sets (75.0% in the HUCH and 51.0% in 
the TAUH) and it had the highest true positive rates also with three disease classes 
(BPV, MEN, VNE) in the HUCH data. But, when looking at the error bars with the 
99% confidence intervals for the total classification accuracies of each cross-
validation made with the HUCH data, it could be seen that the 5-NN did not differ 
significantly from the 1-nearest neighbour method (1-NN) or the Naïve Bayes. On 
the contrary, the total accuracy of the ONE with the HUCH data was significantly 
lower than with the other methods. However, there were no significant differences 
in the median true positive rates of the methods based on the error bars. With the 
TAUH data, each classification method had the highest TPR with one of the four 
disease classes. The total classification accuracies with the TAUH data varied from 
38.3% (1-NN) to 51.0% (5-NN), thus, expressing the difficulty of the domain. 

In Publication II, a need for aid in the attribute weighting was shown. With the 
machine learnt fitness values for the values of the attributes it was possible to 
improve classification results but the fitness values alone were not adequate enough 
in separating classes from each other. Especially, BPV and BRV cases were confused 
with other diseases without weight values (equal weighting). The attribute weights 
set by the experts were preliminary tested with the machine learnt fitness values. 
However, this combination did not work well with all disease classes. The 
classification accuracy within the first diagnosis suggestion of the ONE was 4.8% 
better with the equal weighting than with the experts’ weights but, when looking at 
the results of the two and three first diagnosis suggestions of the ONE, the experts’ 
weights improved the classification accuracy compared with the equal weighting 
(6.3% and 6.8%, respectively). Interestingly, the best total classification accuracy was 
achieved with the knowledge base where the weights of the attributes in the classes 
acoustic neurinoma and Menière’s disease were set to one and with the other classes 
were used the weights set by the experts (KB5). Its total classification accuracy was 
67.7% when looking at the first diagnosis suggestions and 92.8% when looking at 
the three first diagnosis suggestions. Methods to find proper weights for the 
attributes to combine with the machine learnt fitness values for the attribute values 
are needed. 



59 

4.3 Publication III: Attribute Weighting with the Scatter and 
Instance-Based Learning Methods 

Publication III concentrated on the class-wise attribute weight calculation. The class-
wise attribute weighting was needed due to the inference engine of the ONE. The 
disease patterns are described separately in the knowledge base of the ONE and, 
thus, each disease class needs its own attribute weights. Therefore, it was necessary 
to use weighting methods that could learn weights for the attributes separately for 
each class and could express the relevance of a single attribute. The methods fulfilling 
these requirements were the Scatter method for the attribute importance evaluation 
[Juhola and Siermala, 2012; Siermala et al., 2007] and the weight calculation method 
of the incremental instance-based learning algorithm IB4 [Aha, 1992]. The 
performance of the machine learnt attribute weights were compared with the 
performance of the weights set by the experts and the weights set to one (equal 
weighting). The attribute weighting was tested with two different classification 
methods, with the nearest pattern method of the ONE and with the attribute 
weighted k-nearest neighbour method using One-vs-All (OVA) classifiers (wk-NN 
OVA). The OVA classifiers were used with the weighted k-NN in order to keep the 
classification methods comparable to each other (i.e. the methods used the same 
attribute weights). The classification runs were made with the HUCH data using 
seven and nine disease classes. Seven disease classes were used within the runs where 
the results were compared with the experts’ weights and nine disease classes within 
the runs using the machine learnt weights. 

The highest classification accuracy (79.7%) with seven disease classes was yielded 
with the weighted 5-NN OVA using the Scatter based weights (wscat 5-NN OVA). 
It had also the highest Cohen’s kappa value (0.73) and median of TPR (75.2%). The 
best total classification accuracy with the ONE (74.6%) was achieved also with the 
Scatter based weights (ONE wscat). Instead, with the 1-NN OVA, the highest total 
accuracy (74.7%) was achieved with the weights set by the experts (we 1-NN OVA). 
The total classification accuracy with the ONE using the pure experts’ knowledge 
was 43.3% and with the machine learnt fitness values and the experts’ weights 57.6%. 
The equal weighting worked well with the ONE because of the valid fitness values 
formed by the machine learning method in Publication II: The ONE with the 
weights set to one had the total classification accuracy 73.8%. However, with the wk-
NN OVA, better results were achieved with the experts’ weights than with the equal 
weighting: The 1-NN OVA classified cases 3.2% better with the experts’ weights 
than with the equal weighting and the 5-NN OVA 2.7% better with the experts’ 
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weights. With seven disease classes, the Scatter based weights improved the total 
classification accuracy compared with the weights set to one and the expert defined 
weights both with the ONE and the attribute weighted 5-NN OVA. The IB4 and 
IB1w weights worked better with the ONE than the experts’ weights but the experts’ 
weights worked better with the 1- and 5-NN OVA than the IB4 and IB1w weights. 

Even though the ONE and the 5-NN OVA using the Scatter based weights and 
the 1-NN OVA using the weights set by the experts had the highest classification 
accuracies, they had the highest TPRs only with one or two disease classes when 
looking the TPRs method-wise: the ONE wscat with MEN (91.9%), the we 1-NN 
OVA with VNE (74.4%) and the wscat 5-NN OVA with SUD (84.3%) and TRA 
(86.6%). Otherwise, the weight sets and the methods achieving the highest TPRs 
varied; even the equal weighting yielded the highest TPRs with the k-NN OVA 
(95.4% of MEN cases were recognized with the 5-NN OVA using the equal 
weighting but then SUD cases were lost, TPR of SUD was then 29.4%). Especially, 
the TPR of SUD cases increased 54.9% (!) when using the Scatter based weights with 
the 5-NN OVA instead of the equal weighting, thus, SUD having TPR 84.3%. The 
attribute weighting affected also the results of the 1-NN OVA: 23.0% more of SUD 
cases and 17.5% more of TRA cases were found with the Scatter based attribute 
weights than with the equal weighting (TPR of SUD was 68.7% and TRA was 
80.8%). With the ONE, the IB4 weights improved the recognition of traumatic 
vertigo cases 15.5% compared to the equal weighting, thus, having TPR of 94.5%.  

The effect of the machine learnt fitness values on the classification of the ONE 
can be seen when comparing the results of the equal weighting (ONE w1) with the 
pure knowledge set by the experts (ONE experts). The TPRs of VNE, MEN and 
ANE cases increased notably (even 51.9%, 49.7% and 41.2%, respectively) when 
using the machine learnt fitness values. Also, TRA cases were recognized 11.9% 
better. However, the recognition of BRV and BPV cases decreased -28.5% and 
11.2% with the equal weighting. When adding different weight sets with the 

machine learnt fitness values, the results stayed quite near the results of the equal 
weighting. Except, when the machine learnt fitness values were combined with the 
experts’ weights, ANE cases were totally lost: Only 16.7% of ANE cases were 
classified correctly as the first diagnosis suggestion with the ONE we.  

The best total classification accuracy (73.3%) with nine disease classes was 
achieved with the weighted 5-NN OVA using the Scatter based weights, like with 
seven disease classes. It had also the highest kappa value (0.66) but the highest 
median of TPR was achieved with the ONE using the IB4 weights (65.7%). 
However, the best total accuracy with the ONE (62.4%) was achieved with the 
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Scatter based weights. With all methods (the ONE, the 1- and the 5-NN OVA), the 
best total accuracy was achieved with the Scatter based weights. The equal weighting 
achieved better results than the IB4 and the IB1w weighting with the ONE and with 
the 5-NN OVA. With the 1-NN OVA, the IB4 and the IB1w weights had similar 
level total classification accuracies with the equal weighting. 

With the nine disease classes, the highest median TPRs were achieved with the 
ONE using the Scatter based weights only for one disease class (VNE 64.9%). The 
Scatter based weights yielded best TPRs for four classes with the 1-NN OVA (TRA 
73.8%, VNE 65.8%, SUD 61.5% and VES 36.9%) and for four classes with the 5-
NN OVA (TRA 85.2%, SUD 81.5%, VNE 75.4% and BPV 65.1%). Interestingly, 
the IB4 weights worked well with the ONE: 95.6% of TRA cases (26.0% better than 
the ONE w1), 89.2% of CL cases (42.5% better than the ONE w1!), 76.2% of SUD 
cases (14.9% better than the ONE1 w1) and 47.5% of VES cases (7.3% better than 
the ONE w1) were classified correctly. Instead, it did not recognize well cases of 
MEN (-15.6% compared to the ONE w1) and BPV (-7.5% compared to the ONE 
w1) why its total classification accuracy was lower than with the equal weighting or 
the Scatter based weights. The ONE with the Scatter based weights improved also 
the recognition of SUD and TRA cases compared to the equal weighting (increase 
7.6% and 6.7%, respectively). The 1-NN OVA with the IB1 weights had the highest 
median TPR 86.0% with MEN (7.6% better than with the equal weighting). 

The addition of two difficult disease classes into the classification (VES and CL) 
decreased the true positive rates of other seven disease classes. The effect of addition 
can be noticed especially from the disease class BRV, whose recognition decreased 
dramatically after adding vestibulopatia and central lesion into the knowledge base 
of the ONE. With seven disease classes, different knowledge base combinations with 
the ONE found correctly 23.5–65.0% of BRV cases but with nine disease classes 
only 3.0–20.5% of the cases. However, there were only 20 cases in the class of BRV 
and, thus, wrong classification of one case had a big influence on the TPR. The TPR 
of BPV and MEN cases decreased especially with the ONE after adding two disease 
classes into classification: 47.8–65.9% of BPV cases and 42.0–91.9% of MEN cases 
were found with seven diseases classes whereas with nine disease classes the TPRs 
varied with BPV 25.1–32.6% and with MEN 65.7–81.3%. Small decrease in the 
TPRs after the two class addition can be seen also in the results of the 1- and 5-NN 
OVA. 

The mean confusion matrices of the ONE, the 1-NN and the 5-NN OVA 
showed that with the ML methods using machine learnt knowledge all disease classes 
were mixed up with Menière’s disease both with seven and nine disease classes, 
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especially sudden deafness (from 11.3% to 53.6%), central lesion (from 16.7% to 
44.2%), vestibulopatia (from 21.8% to 34.5%) and acoustic neurinoma (from 19.7% 
to 34.0%). Instead, the ONE with the knowledge base purely defined by the experts 
misclassified cases from the seven classes mainly as BRV (47.1% of VNE cases, 
30.9% of MEN cases and 20.8% of BPV cases) or BPV (30.0% of BRV cases, 24.8% 
of VNE cases and 24.7% of TRA cases). However, ANE cases were misclassified 
with the ONE using the experts’ knowledge to SUD cases (48.1%) whereas other 
methods confused it to Menière’s disease. BRV cases were mixed up with VES cases 
(from 28.0% to 62.0%), BPV cases (from 9.0% to 44.5%) and MEN cases (from 
12.0% to 24.0%) with the machine learnt knowledge bases. With the nearest 
neighbour methods using nine disease classes, CL and VES were misclassified also 
to BPV cases (from 21.7% to 31.2% and from 21.5% to 28.5%, respectively) besides 
MEN. With all ML methods, CL cases were also mixed up with VES cases (from 
19.2% to 28.3%) and some VES cases to CL cases (from 4.4% to 23.1%).  

As Publication III showed, the attribute weighting is demanding. The extent of 
the effect the attribute weighting had on the classification depended on the used 
classification method and on the disease classes to be classified. The Scatter based 
weights improved the total classification accuracies and median true positive rates 
compared to the equal weighting with the nearest pattern method of the ONE and 
the wk-NN OVA both with seven and nine disease classes whereas the IB4 and IB1w 
weights had a slight decreasing effect on the total classification accuracies. With the 
ONE, the machine learnt attribute weights yielded better classification accuracies 
than the attribute weights defined by the experts whereas with the wk-NN OVA the 
weights defined by the experts worked well. To find the right combination of the 
attribute weights and the fitness values for the attributes is a difficult task. 

4.4 Publication IV: Genetic Algorithm Based Attribute Weighting 

In Publication IV, the genetic algorithm (GA) [Mitchell, 1996] was utilized in the 
evolution of the attribute weight values. The machine learnt weight sets gained as 
results with the Scatter, the IB4 and the IB1w methods in Publication III in addition 
to the weight sets defined by the experts, modifications of these weight sets and few 
random weight sets were utilized as a starting point in the GA runs, thus, forming a 
population containing at total 21 individuals. Each individual in the population 
contained a real-valued weight sets for 94 attributes in seven disease classes. 
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The evaluation of the individuals in the population was made with three different 
methods separately. The individuals were evaluated with the nearest pattern method 
of the ONE, with the wk-NN OVA and with the attribute weighted k-nearest 
neighbour method using neighbour’s class-based attribute weighting (cwk-NN). The 
cwk-NN used class-dependent weights with one classifier. Thus, it was possible to 
use and modify all weight sets at the same time with the cwk-NN. The evaluation 
methods calculated for each individual a fitness rate: With the ONE and the cwk-NN 
the fitness rate was the individual’s total classification accuracy and with the wk-NN 
OVA the true positive rate of the individual with 7-NN (except with the disease class 
BRV was used the TPR of 3-NN due to its small number of cases). During the GA 
runs, elitism [De Jong, 1975] was applied. The current fittest individual was kept 
unchanged in the population in order to avoid missing the high-performance 
individual during the evolution. The other individuals were exposed to the roulette-
wheel selection (selection of individuals into a mating pool), crossover (offspring 
creation, 80.0% probability) and mutation (1.0% probability). 

The GA runs were made with the HUCH data using seven disease classes. The 
highest total classification accuracy (79.1%) and median true positive rate (73.6%) 
were achieved with the GA using the weighted 5-NN OVA as population evaluation 
method. Also, the weighted 1-NN OVA worked quite well with the GA: Its total 
classification accuracy was 76.2% and median TPR 71.5%. The GA using the ONE 
as the evaluation method yielded a bit lower results: Its classification accuracy was 
73.8% and median TPR 66.2%. However, the GA ONE worked better than the GA 
cwk-NN: It classified only 61.1% of the cases correctly with the cw1-NN and 67.4% 
with the cw5-NN. The GA weighted 5-NN had the highest TPRs with three disease 
classes (MEN 92.2%, VNE 79.2% and SUD 77.0%), the GA weighted 1-NN OVA 
with two disease classes (BPV 74,1% and ANE 71.5%) and the GA ONE with two 
disease classes (TRA 83.0% and BRV 31.5%). Sudden deafness cases were badly lost 
with the GA cwk-NN, the GA cw5-NN recognized only 23.2% of the cases. 

The best improvement between the starting and the ending population within 20 
generations lasting GA was achieved with the GA using the cwk-NN in the 
evaluation. The best total accuracy in the starting population was 63.6% and in the 
ending population 68.3% whereas the worst total accuracies were 27.9% and 56.2%, 
respectively. The worst mean accuracies increased also within the GA ONE (from 
49.8% to 61.4%) and the GA wk-NN OVA (from 75.3% to 78.7%). Otherwise, the 
effect of the GA generated weights on the classification was quite small and in some 
cases even decreasing with these two methods. With the cwk-NN, the GA improved 
the recognition of especially two disease classes, acoustic neurinoma and traumatic 
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vertigo. In the beginning, less than 50 % of ANE cases and less than 60% of TRA 
cases were found, but, after the GA runs, almost 71% of ANE cases and 72% of 
TRA cases were recognized correctly. The best total classification accuracy in the 
starting population (79.6%) within the evaluation methods was achieved with the 
weighted 5-NN OVA and in the ending population (79.5%) with the weighted 3-
NN OVA. 

The GA runs ended if the evolution lasted 20 generations or the highest fitness 
rate did not change during 10 generations. Most of the GA runs using the cwk-NN 
(82.0%) as an evaluation method lasted 20 generations whereas most of the GA runs 
using the ONE (75.0%) or the weighted k-NN with the OVA classifiers (82.9%) as 
the evaluation method ended before the 20th generation due to having the fitness 
rate unchanged for 10 rounds. Interestingly, the GA runs with the ONE ended after 
10 rounds in 48.0% and with the wk-NN OVA in 54.9% of the runs which meant 
that there were no changes in the highest fitness rate during the GA run. Probably 
the reason for this was the elitism. All cross-validation runs of the disease class 
traumatic vertigo and most of the CV runs of sudden deafness (96.0%) and benign 
recurrent vertigo (94.0%) ended after 10th round during the GA runs using the wk-
NN OVA in the evaluation. This explains why there were no big changes in the 
mean best total classification accuracies between the starting and the ending 
population with the ONE or the wk-NN OVA utilized in the evaluation. As a matter 
of fact, the best mean accuracy of the population did not change even if the GA runs 
with the ONE were run 100 times. Within the 100 round GA, the run was ended if 
the fitness rate did not change during 50 generations. This happened during 12.0% 
of the runs. Otherwise, 39.0% of the GA runs ended before the 100th generation.  

In Publication IV, the genetic algorithm was utilized in the evolution of attribute 
weighting. The starting point was the weights of the attributes set by the domain 
experts and computed with the machine learning methods from the domain data and 
their mutations. Majority of the weight sets in the starting population were based on 
the domain knowledge and data, and, thus, were already more or less optimized on 
the problem at hand. Therefore, all the GA generated result weight sets did not 
improve the classification results. 
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4.5 Publication V: Multi-Class Classification Task Redefinition 
into Multiple Binary Problems 

The effect of splitting a multi-class classification task into multiple binary 
classification tasks was examined in Publication V. Two commonly used approaches 
for splitting a multi-class task into multiple binary tasks, One-vs-All other (OVA) 
[Rifkin and Klautau, 2004] and One-vs-One (OVO) [Fürnkranz, 2001] classifiers 
were used. In experimental research of Fürnkranz [Fürnkranz, 2001], the use of 
OVO classifiers yielded significant improvements in the predictive accuracy 
compared with the OVA classifiers. The OVA and the OVO classifiers were tested 
with the basic unweighted k-NN and support vector machines (SVM) [Cortes and 
Vapnik, 1995] with different kernels. The basic k-NN was used as a baseline because 
it does multi-class classification with one classifier. In addition, it had the highest 
total classification accuracy in Publication II. 

The HUCH data with nine disease classes were used in the classification. Due to 
the calculation of the SVM, the imputed data set was used with all classification 
methods in Publication V. With nine deducible disease classes, there were 9 class-
wise classifiers in use with the OVA classifiers and 36 pair-wise classifiers with the 
OVO classifiers (Figure 9). The results of the best kernels (linear and RBF) of the 
SVM were reported in the publication besides the 1-NN and 5-NN methods. 

The results of Publication V supported Fürnkranz’s [2001] observation: The 5-
nearest neighbour method using the OVO classifiers (82.4%) and the SVM with 
linear kernel using the OVO classifiers (77.4%) yielded better classification 
accuracies compared with results of the OVA classifiers (5-NN OVA 78.8% and 
SVM linear OVA 76.8%). The 5-NN with the OVO classifiers yielded also better 
classification accuracy than the basic 5-NN with the multi-class classifier (79.8%). 
However, the OVA classifiers worked a little bit better (1.2%) than the OVO 
classifiers with the SVM using the RBF kernel. 

The 5-NN with the OVO classifiers had the highest TPR with six disease classes. 
Especially, the sudden deafness (SUD) was recognized better with the multiple 
binary classifiers than with one multi-class classifier. The basic 5-NN classified 
77.5% of SUD cases correctly whereas the 5-NN OVA classified 87.5% and the 5-
NN OVO 94.3% of the cases correctly. Traumatic vertigo (TRA) cases were 
recognized best with the SVM linear using OVO classifiers (99.9%). The 5-NN 
OVO recognized 96.2% of TRA cases, which was better than with the basic 5-NN 
(89.6%). Instead, the OVA classifiers decreased the recognition of traumatic vertigo 
both with the 5-NN (to 77.7%) and the SVM linear (to 79.9%). 
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The mean percentage of the occurring tie situations within the OVO classifiers 
was notably smaller than within the OVA classifiers. For example, the 5-NN using 
the OVO classifiers had tie situations only with 2.0% of cases whereas the 5-NN 
with the OVA classifiers had tie situations with 16.2% of cases. All the tie situations 
with the 5-NN OVA occurred when the classifiers voted the case to be a non-
member of the classifiers. Instead, the tie situations with the 5-NN OVO occurred 
mainly with two or three disease classes: The cases of benign positional vertigo, 
Menière’s disease and vestibulopatia were difficult to distinguish from each other 
because of their similar kinds of symptoms. 

In this study, the attribute weighting was left aside in order to see the effect of 
multi-class classification task redefinition into multiple binary classification tasks on 
the classification results. Publication V showed that the use of the OVO classifiers 
improved the classification accuracies both with the 5-nearest neighbour method 
and the support vector machines using linear kernel. 

4.6 Results Comparison 

Because the data set divisions and validation methods in Publications I and II 
differed from the methods utilized in Publications III, IV and V, it is not possible to 
compare their results directly to each other. The continuous attributes were 
discretized in [I] and [II]. Furthermore, the different number of disease classes was 
used within the classification runs of [IV] and [V] and, therefore, only the results of 
[III] and [IV] and the results of [III] and [V] can be compared to each other. Within 
the research of Publication III was repeated the classification runs with the nearest 
pattern method of the ONE using the refined pure experts’ knowledge (ONE1 
experts in the [III] corresponds to KB1 in [II]), the machine learnt fitness values 
with the weights set to one (ONE1 w1 in [III] corresponds to KB2 in [II]) and the 
machine learnt fitness values with the weights defined by the domain experts (ONE1 
we in [III] corresponds to KB3 in [II]) and, thus, the effect of methods presented in 
[II] can be taken into comparison through results in [III]. 

The best classification results of seven disease classes within the classification 
methods from Publications III and IV in addition to the results of three equivalent 
classification runs of Publication II are shown in Table 2. The highest total 
classification accuracy (79.7%) and the highest median true positive rate (75.2%) 
were achieved with the 5-NN using the Scatter based attribute weights and the OVA 
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Table 2. The best classification results within classification methods in Publications III and IV. 
Seven disease classes utilized in the classification. Results of ONE1 experts, ONE1 w1 and 
ONE1 we equivalent to methods in Publication II are added for comparison. 

[III]: [IV]: 

Disease Cases 
ONE1 

experts 
ONE1 

w1 
ONE1 

we 
ONE1 
wscat 

we 
1-NN OVA 

wscat 
5-NN 
OVA 

GA 
ONE1 

GA 
cw5-NN 

GA 
w5-NN 
OVA 

ANE 131 24.4 65.6 16.7 62.3 67.6 63.1 63.5 70.5 70.4 
BPV 173 65.9 54.7 47.8 55.6 69.3 70.9 55.4 56.1 73.6 
MEN 350 42.0 91.7 75.8 91.9 87.2 93.7 90.8 81.5 92.2 
SUD 47 68.1 62.6 85.5 71.9 45.3 84.3 66.2 23.2 77.0 
TRA 73 67.1 79.0 40.1 83.2 74.8 86.6 83.0 71.9 63.6 
VNE 157 15.9 67.8 66.1 67.8 74.4 75.2 68.0 63.8 79.2 
BRV 20 65.0 36.5 23.5 43.0 19.0 18.5 31.5 12.0 14.0 
Median of TPR 65.0 65.6 47.8 67.8 69.3 75.2 66.2 63.8 73.6 
Total ACC 951 43.3 73.8 57.6 74.6 74.7 79.7 73.8 67.4 79.1 

classifiers (wscat 5-NN OVA). The highest total classification accuracy with the 
ONE (74.6%) was achieved also with the Scatter based weights. 

In the first phase of the study, it was concentrated on the knowledge base 
refinement and the fitness value formation. The effect of the fitness value formation 
for the attribute values can be seen from the results of the ONE with the refined 
pure experts’s knowledge (ONE1 experts) and from the ONE using machine learnt 
fitness values and weights set to one (ONE1 w1). The classification accuracy 
increased notably (30.5%) when using the machine learnt fitness values in the 
knowledge base of the ONE. In addition, cases of VNE, MEN and ANE were 
recognized much better when using the machine learnt fitness values (TPR increased 
51.9%, 49.7% and 41.2%, respectively). However, BRV and BPV were recognized 
better with the pure experts’ knowledge (28.5% and 11.2% better, respectively). 
Notice that BRV was a small disease class (only 20 cases) and, thus, one case had 
quite big influence on the TPR. The knowledge discovery method formed the fitness 
values also for the binary type attributes, which made it possible to take into account 
confounding symptoms of the cases. 

The combination of the machine learnt fitness values and the weights set by the 
domain experts (ONE1 we) improved the classification accuracy (14.3%) compared 
to the ONE with the pure experts’ knowledge. However, compared to the ONE1 
w1, the total classification accuracy of the ONE we was -16.2% lower. Only SUD 
cases were recognized better with the ONE1 we than with the ONE1 experts 
(increase 17.4.%) or the ONE w1 (increase 22.9%) but, instead, ANE, BRV and 
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TRA cases were lost with the ONE1 we: Only 16.7% of ANE, 23.5% of BPV and 
40.1% of TRA cases were recognized. 

In the second phase, the effect of the machine learnt attribute weights was 
examined. The Scatter based attribute weights yielded a bit higher total classification 
accuracies than the equal weighting with the ONE (0.8% higher) and with the 1- and 
5-NN OVA (1.3% and 3.5% higher, respectively). The TPRs of SUD and TRA 
increased with all three methods when using the Scatter based weights instead of the 
equal weighting, especially with the 5-NN OVA (SUD increased 54.9% (!) and TRA 
18.7%). Otherwise, the machine learnt attribute weights had a slight decreasing effect 
on the classification: With the equal weighting in the wk-NN OVA was achieved a 
little bit higher classification accuracies (the total accuracy was 71.5% with the w1 1-
NN OVA and 76.2% with the w1 5-NN OVA) than with the IB4 and the IB1w 
weights [III]. Also, with the ONE the IB4 weights decreased the total accuracy 
3.8% compared to the equal weighting whereas the IB1w weights had almost the

same total accuracy (73.9%) as with the equal weighting. Interestingly, the ONE with 
the IB4 weights improved the TPR of TRA 15.5% compared to the equal weighting, 
thus, recognizing 94.5% of TRA cases correctly. Instead, with the IB1w weights, 
TRA cases were lost both with the 1- and 5-NN OVA compared to the equal 
weighting (-12.8% and -13.5%, respectively). With the 1-NN OVA, TPR of SUD 
decreased both with the IB4 (-17.6%) and the IB1w (-18.3%) weights. 

With the weights defined by the domain experts a bit higher classification 
accuracies were achieved than with the equal weighting with the 1- and 5-NN OVA 
methods (3.2% and 2.7%, respectively) whereas with the ONE, the total 
classification accuracy decreased -16.2% with the experts’ weights. The machine 
learnt weights improved the total classification accuracies of the ONE (the Scatter 
based weights 17.0%, the IB4 12.4% and the IB1w 16.3%) compared to the ONE1 
we whereas with the 1-NN OVA the best result was achieved with weights set by 
the experts. Only the Scatter based weights improved the total accuracy of the 5-NN 
OVA compared to the experts’ weights. Still, the ONE using the weights set by the 
experts found SUD cases better than the ONE using the machine learnt weights 
whereas with the 1- and 5-NN OVA the Scatter based weights improved the TPR 
of SUD (23.4% and 32.4%) compared to the experts’ weights.  

The evolutionary approach was applied in the attribute weighting [IV]. The 
weight sets generated with the ML methods in Publication III were used in the 
starting population of the genetic algorithm. The populations were evaluated within 
the GA with the ONE (GA ONE), with the wk-NN using the OVA classifiers (GA 
wk-NN OVA) and with the attribute weighted k-NN using the neighbour’s class-
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based attribute weighting (GA cwk-NN). The GA ONE1 had the same total 
classification accuracy than the ONE with the equal weighting and, thus, it was a 
little weaker than the ONE with the Scatter based weights. The total classification 
accuracy of the GA weighted 5-NN OVA did not improve either compared to the 
wscat 5-NN OVA, but the use of the GA generated weights improved a bit the 
recognition of ANE (7.3%) and VNE cases (4.0%) but, instead, it lost TRA cases 
(TPR decreased -23.0%). The GA 1-NN OVA improved the total classification 
accuracy a bit (1.5%) compared to the 1-NN OVA we and,  especially, the TPR of 
SUD (21.9%). With the GA cwk-NN was possible to test the evolution of all weights 
at the same time, but this classification method did not achieve good results: The 
total classification accuracies of the GA cw1-NN was 61.1% and with the GA cw5-
NN 67.4%. Thus, it had better classification result than the ONE with the pure 
experts’ knowledge or the ONE with the machine learnt fitness values and weights 
set by the experts but lower than the ONE with the equal weighting or the Scatter 
based weights. Only the TPR of ANE increased (7.9%) with the GA cw1-NN 
compared to the ONE1 wscat, otherwise the TPRs decreased (from -5.6% to 
-

The best classification results of nine disease classes within the classification 
methods from Publications III and V in addition to the result ONE w1 equivalent 
of Publication II are shown in Table 3. The highest classification accuracy (82.4%) 
and the highest median true positive rate (88.2%) were achieved with the unweighted 
5-NN OVO. Overall, the total classification accuracies and median of TPRs 
achieved in [V] were higher than the ones in [III]. However, the imputed data was 
utilized within the classification runs in [V] whereas in [III], the imputed data were 
used only in the attribute weight calculation, not during the classification. Therefore, 
the classification results of [V] are not after all directly comparable to the results of 
[III] even though they have used the same cross-validation sets in data. Nevertheless, 
the cases of VES and CL were recognized notably better with the ONE (with all 
weight sets) using the data with missing values than with the 5-NN or the SVM with 
different classifiers using the imputed data. Especially, the ONE IB4 recognized CL 
cases: Even 89.2% of the cases were classified correctly. In addition, the ONE IB4 
recognized better VES (47.5%) and well TRA cases (95.6%). BRV was difficult for 
all the methods. 

The second phase analysis of the effect of machine learnt attribute weights on 
the total classifcation accuracies was possible to do also with the nine disease classes. 
The machine learnt attribute weights affected the total classification accuracies quite 
similarly with the nine disease classes as they affected seven disease classes. 
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Table 3. The best classification results within different methods in Publications III and V. Nine 
disease classes utilized in the classification. Result of ONE1 w1 equivalent to method in 
Publication II is added for comparison. 

[III]: [V]: 

Disease Cases 
ONE1 

w1 
ONE1 
wscat 

wscat 
1-NN 
OVA 

wscat 
5-NN 
OVA 

5-
NN 

5-NN 
OVA 

SVM 
RBF 
OVA 

5-NN 
OVO 

SVM 
RBF 
OVO 

ANE 131 65.6 62.7 60.6 60.0 89.5 90.2 90.7 95.0 87.2 
BPV 173 32.6 31.4 57.5 65.1 77.9 77.6 78.6 79.0 67.0 
MEN 350 81.3 80.2 77.3 93.1 92.4 89.8 91.5 93.1 90.1 
SUD 47 61.3 68.9 61.5 81.5 77.5 87.4 58.1 94.3 79.4 
TRA 73 69.6 77.3 73.8 85.2 89.6 77.7 96.7 96.2 99.3 
VNE 157 63.9 64.9 65.8 75.4 87.7 85.0 84.3 88.2 81.4 
BRV 20 4.0 4.0 19.0 14.5 3.0 8.0 8.0 4.0 16.5 
VES 55 40.2 41.3 36.9 26.7 9.6 15.8 13.5 14.0 22.8 
CL 24 46.7 46.7 22.9 7.5 5.0 15.0 15.8 2.1 28.5 
Median of TPR 61.3 62.7 60.6 65.1 77.9 77.7 78.6 88.2 79.4 
Total ACC 1030 62.2 62.4 64.6 73.3 79.8 78.8 79.4 82.4 78.2 

The Scatter based weights slightly improved the classification accuracies compared 
to the 1-NN OVA (1.7%) and 5-NN OVA (3.2%) with the equal weighting whereas 
the results with the ONE were almost the same (difference only 0.2%) [III]. The 
TPRs of SUD and TRA increased again with all three methods when using the 
Scatter based weights instead of the equal weighting, especially SUD (53.2%) with 
the 5-NN OVA and TRA (14.6%) with the 1-NN OVA.   

Compared to the equal weighting, the IB4 and the IB1w weights decreased the 
total classification accuracy of the ONE (-3.1% and -0.3%, respectively) and the 5-
NN OVA (-0.9% and -3.5%, respectively). They did not affect the total 
classification accuracy of the 1-NN OVA. However, with the ONE, the IB4 
weights improved the TPR of CL 42.5%, TRA 26.0% and SUD 14.9% and 
decreased the TPR of MEN -15.6% and the IB1w weights improved the TPR of 
TRA 9.7%. Again, TPR of TRA decreased both with the 1- and 5-NN OVA using 
the IB1w weights (-11.8% and 17.9%, respectively) and TPR of SUD decreased
with the 1-NN OVA using the IB4 (-16.8%) and the IB1w (-13.0%) weights 
compared to the equal weighting. 

In the third phase was concentrated on the classification task redefinition. The 
multi-class classification task was separated into several binary classification tasks. 
When comparing the different variations of the unweighted 5-nearest neighbour 
method, the OVO classifiers yielded the highest total accuracy (82.4%) and the 
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classification accuracy (78.8%) than the basic 5-NN (79.8%). As can be seen from 
the Table 3, it depends on the used classification method, which classifier 
combination worked the best. With the unweighted 5-NN and the SVM using 
linear kernel, the OVO classifiers worked the best but with the SVM using RBF 
kernel the OVA classifiers separated the cases the best. However, the difference 
was quite moderate between the classifiers. 

The total classification accuracies decreased with the ONE and the weighted k-
NN with the OVA classifiers when using nine disease classes instead of seven 
classes in the classification (Tables 2 and 3). With the Scatter based weights, the 
decrease in the total accuracies was -12.2% with the ONE, -8.2% with the 1-NN 
OVA and 6.4% with the 5-NN OVA. Addition of two difficult disease classes
with similar kind of symptoms decreased the classification of all disease classes. 
Especially, with the ONE, the TPRs decreased the most with the disease classes 
BRV (from -22.5% to -39.0%), BPV (from -22.1% to -25.2%) and MEN (from 
-10.4% to -15.7%). With the wk-NN OVA, the decrease was lower: The worst 
decreases in TPRs were with BPV (from -9.8% to -12.2% with the 1-NN OVA and 
from -5.8% to -8.5% with the 5-NN OVA) and with the 1-NN OVA in TPRs of 
BRV (from -6.0% to -7.0%), SUD (from -3.4% to -8.7%), TRA (from -3.1% to 
7.0%) and VNE (from -4.1% to -6.1%). 
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5 DISCUSSION AND CONCLUSIONS 

In the dissertation, the machine learning methods were applied to the knowledge 
discovery in the otoneurological domain in order to refine the knowledge of the 
decision support system and to improve the classification accuracy of the system in 
real world situations. The phases of the dissertation were divided into three parts: 
fitness value formation for the attribute values, attribute weighting and classification 
task redefinition (Figure 1). In the first phase, it was concentrated on the knowledge 
refinement of the ONE with the domain experts [I] and on knowledge discovery 
method forming the fitness values for the values of the attributes [II]. The knowledge 
base of the ONE needed refining due to the harmonization of the otoneurological 
paper data collection questionnaire and the decision support system and due to 
changes made to the questionnaire, for example, changes made to answer alternatives 
of categorical questions. In the beginning, the refinement of the knowledge base was 
made manually with the domain experts and later with the machine learning 
methods. In Publication I, the effects of the manual refinement of the knowledge 
base made with the domain experts were examined and the fitness value formation 
method was preliminary tested with the otoneurological data. The refinement 
process enhanced the decision support system and its classification results. In 
Publication II, the fitness value formation method was presented in detail and the 
classification performance of the nearest pattern method of the ONE using the 
machine learnt fitness values was compared to the performances of the k-nearest 
neighbour method and the Naïve Bayes method. The machine learnt fitness values 
improved the classification accuracy of the ONE, which inference mechanism was 
shown comparable to the k-nearest neighbour and Naïve Bayes methods. 

The second phase concentrated on the attribute weighting. In Publication III, the 
attribute weights were calculated with three different machine learning methods: 
with the Scatter, the IB4 and the IB1w methods. These machine learnt attribute 
weights were tested with the nearest pattern method of the ONE and the attribute 
weighted k-NN using the OVA classifiers (wk-NN OVA). Also, the weights defined 
by the domain experts and equal weighting (all weights set to one) were tested with 
the classification methods. The extent how much attribute weighting affected the 
classification results depended on the used classification method and the disease 
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classes to be classified. With the nearest pattern method of the ONE, the machine 
learnt attribute weights yielded better classification accuracies than the knowledge 
base using the attribute weights and fitness values set by the experts. The Scatter 
based weights improved the classification accuracy compared to the equal weighting 
both with the ONE and the wk-NN OVA when using seven or nine disease classes. 

The result weight sets of the ML methods from Publication III and the weight 
sets defined by the domain experts in addition their mutations and three random 
weight sets were utilized as a starting point in the evolutionary approach on the 
attribute weighting in Publication IV. The populations (the weight sets) were 
evaluated within the GA with the nearest pattern method of the ONE, with the 
attribute weighted k-NN using the neighbour’s class-based attribute weighting and 
with the wk-NN using the OVA classifiers. The genetic algorithm approach in the 
attribute weighting did not improve the classification results as hoped. The total 
classification accuracies with the weight sets generated by the GA were quite near 
the results of the ONE and the weighted k-NN OVA with the machine learnt weight 
sets in Publication III. Only with the weighted 1-NN OVA, the GA generated 
weights improved the total classification accuracy a bit. The best classification 
accuracies within the starting and the ending population were quite near each other 
with different GA evaluation methods, but, instead, with the weights generated by 
the GA the worst total accuracies in the ending population compared to the starting 
population were improved. With the otoneurological data, the GA approach in 
attribute weighting did not affect the classification results so much maybe due to 
used weight sets in the starting population. The weight sets utilized in the starting 
population were based on the domain knowledge (the weight sets defined by the 
domain experts) and data (the machine learnt weights), and, thus, they were already 
more or less optimized on the problem at hand. With a totally random weight sets 
in the starting population improvement might have been more obvious after the GA. 

In the third phase, the effect of the classification task redefinition was tested by 
separating the multi-class classification task into multiple binary classification tasks 
[V]. The attribute weighting was left aside in order to see the effect of classification 
task redefinition on the classification results. During the research, the OVA and 
OVO classifiers were utilized with the unweighted k-NN and with the support 
vector machines using different kernels. The results showed that the use of the OVO 
classifiers improved the classification accuracies both with the 5-nearest neighbour 
method and the support vector machines using linear kernel. Thus, the OVO 
classifier approach is worth testing also with the attribute weighting and with other 
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machine learning methods. In the future, the OVA and the OVO classifiers should 
be experimented also with the nearest pattern method of the ONE. 

The results of the whole study support the statement of Kentala [Kentala, 1996b] 
that different otoneurological diseases can be challenging to differentiate from each 
other due to similar kind and overlapping symptoms. The value distributions of the 
occurrence and duration of the vertigo attacks and type of hearing loss (Figure 2, 3 
and 7) showed the similarities with different disease classes even though these 
questions were considered good ones to separate diseases from each other [Baloh, 
1995; Kentala, 1996a]. In addition, the principal component analysis showed that 
most of the disease classes were extensively overlapping with each other when 
examining the projection of the two main principal components, hearing and vertigo 
disorders (Figure 4). These two main principal components explained only 21.7% of 
the total variance. The mean confusion matrices of the ONE and the 1- and 5-NN 
OVA having the highest total accuracy in Publication III showed that all disease 
classes were mixed up with Menière’s disease when using the machine learnt 
knowledge. This happened when using either seven or nine disease classes in the 
classification. Especially with nine disease classes, sudden deafness (at worst 53.6% 
with the 5-NN OVA wscat) and central lesion (at worst 44.2% with the 5-NN OVA 
wscat) cases were confused to Menière’s disease. The ONE using pure experts’ 
knowledge mainly misclassified cases as benign recurrent vertigo (at worst 47.1% 
VNE cases) or benign positional vertigo (at worst 30.0% of BRV cases) but acoustic 
neurinoma cases were misclassified as sudden deafness (48.1%). The results of 
Publication V supported also the difficulty of separating the disease classes. With the 
5-NN OVA, there occurred tie situations in class voting with 16.2% of the cases. All 
the tie situations occurred when the classifiers voted the case to be a non-member 
of the OVA classifiers, in other words, the case’s disease class was not separable. 
With the 5-NN OVO, tie situations occurred only with 2.0% of the cases: The cases 
of benign positional vertigo, Menière’s disease and vestibulopatia were difficult to 
distinguish from each other. The strong overlap with the disease classes makes the 
separation of the disease classes challenging even for the machine learning methods. 

Due to the difficulty of the otoneurological domain and to the reason that patient 
can actually have two diseases present at the same time [Kentala et al., 1996], it might 
be good to check more than one diagnosis suggestions of the ONE to support the 
diagnosis of a new patient. In the end, the final diagnosis is made by the physician 
based on the given information on all alternative diseases [Kentala et al., 1996]. The 
ONE utilizing the equal weighting had 90 cases with the same score and score 
difference within the first and second diagnosis suggestions and even 12 cases with 
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the same score and score difference within the first, second and third diagnosis 
suggestions [II]. The order of suggestions having the same score and score difference 
was selected randomly and, thus, the first diagnosis suggestion actually could have 
been any of these two or three suggestions. The total classification accuracies within 
the three first diagnosis suggestions of the ONE varied from 86.2% (ONE123 
experts) to 94.4% (ONE123 wscat) with seven disease classes and from 81.7% 
(ONE123 wIB4) to 85.0% (ONE123 wscat) with nine disease classes whereas the 
accuracies with the first diagnosis suggestion varied from 43.3% (ONE1 experts) to 
74.6% (ONE1 wscat) with seven disease classes and from 59.1% (ONE1 wIB4) to 
62.4% (ONE1 wscat) [III]. Even though in the dissertation was concentrated on the 
comparison and improvement of the results of the first diagnosis suggestion of the 
nearest pattern method of the ONE, it is recommended to verify the diagnosis of 
more than one diagnosis suggestions and their explanations. 

A research limitation is recognized. In Publication I, the classification run of the 
ONE using the original pure experts’ knowledge was done with the knowledge base 
containing descriptions of 15 disease classes. This made the classification harder for 
the ONE with this knowledge base and partly explains the low classification results 
with the original pure experts’ knowledge. Each knowledge base should have 
included the same number of disease classes. For the following classification runs, 
the number of disease classes within the knowledge bases was the same.  

As was mentioned in the Chapter 2.2, the graphical user interface, the inference 
engine and the explanation facility of the ONE form expert system shell that is 
possible to take in use in new domains. Thus, only the query base and the knowledge 
base need to be tailored into the new domain. Domain experts are in a key role in 
tailoring the query and the knowledge bases in use into new domain: Their expertise 
is needed in defining the questions to be used in data collection and in the class 
descriptions and later in evaluating the knowledge formed with the machine learning 
methods. Help of domain experts is needed also in collecting domain data. At first, 
it is possible to use the ONE to collect data without the knowledge base. When 
enough data has been collected, it is possible to form the knowledge base with the 
help of the fitness value formation method and with the attribute weighting methods, 
for example, with the Scatter method [Juhola and Siermala, 2012]. The expert system 
shell was preliminary tested with hereditary primary immunodeficiencies to build a 
Primary ImmunoDeficiency expert system (PIDexpert) [Samarghitean et al., 2008]. 
The PIDexpert was designed to give a diagnostic picture of these hereditary primary 
immunodeficiencies based on symptoms, signs, medical history, physical  findings  
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and  laboratory  tests [Samarghitean and Vihinen, 2008]. In the future, it would be 
good to test the expert system shell also with data from different domains.   

The inference engine and the knowledge base of the ONE is nowadays applied 
within the Internet-based peer-support program for Menière’s disease to verify and 
assess the diagnosis of person using the peer-support system [Rasku et al., 2015]. The 
otoneurological questionnaire is used as a basis on the questionnaire of the Menière’s 
disease that includes more questions about the activity limitations, participation 
restrictions, the International Classification of Functioning, Disability, and Health 
(ICF) -based problem classification, personality traits (sense of coherence), positive 
aspects and post-traumatic growth inventory. In the peer-support system, the ONE 
contains descriptions of 14 different conditions. If the Menière’s disease is given by 
the ONE as the principal diagnosis (the first diagnosis suggestion) and its score is 
more than 0.43, the person is allowed to attend the peer-support program [Rasku et 
al., 2015]. Other selection criteria are also given. The peer-support given by the 
system can be tailored to meet individual needs by the answers given by the user. 

One future research plan, in addition to the OVA and the OVO classifiers 
approach with the ONE, is to divide the current knowledge description of the 
Menière’s disease in the ONE to two or more descriptions. It is acknowledged that 
the symptoms vary depending of the phase of the disease and, thus, it would be 
logical to divide it in the early stage Menière’s disease and (progressed) Menière’s 
disease to separate the characteristics of them to different descriptions instead of 
one wide description. For example, as the Menière’s disease progresses, vertigo 
attacks occur more frequently and are more severe than in the beginning of the 
disease and, also, unilateral auditory symptoms develop in time to bilateral symptoms 
with almost half of the patients [Chawla and Olshaker, 2006]. The AAO-HNS has 
proposed to define Menière’s disease as “possible Menière’s disease”, “probable 
Menière’s disease” and “definite Menière’s disease” [AAO-HNS, 1995]. However, 
“certain Menière’s disease” needs histological verification of endolymphatic hydrops 
in the inner ear and, thus, does not help to define the condition clinically [Rasku et 
al., 2015]. The partition of the current Menière’s disease description into two 
different stage descriptions might also help the recognition of other diseases when 
description of the Menière’s disease would not have such a broad definition. 

In the dissertation, different machine learning methods were applied in the 
classification of the otoneurological data. At the moment, the ONE contains two 
inference methods, the nearest pattern and the k-nearest neighbour methods. 
Unfortunately, they are not currently applicable at the same time. It would be good 
to upgrade the ONE as a hybrid decision support system that can utilize different 
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machine learning methods at the same time to give more support for decision 
making. In Kononenko et al.’s research, physicians felt that the reliability and the 
comprehensibility of the system was much better when there were utilized more than 
one machine learning method to support decision making (a multistrategy approach 
was used) [Kononenko et al., 1998]. The possibilities offered by integrated 
approaches for multicriteria decision aid [Doumpos and Zopounidis, 2013] should 
be explored to enhance the classification of the otoneurological diseases and to form 
an intelligent otoneurological decision support system. 
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8 APPENDICES 

Appendix I 

The otoneurological questionnaire (14 pages) 
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Otoneurological survey

All your answers are confidential and belong to data protection of case record. It is important for
research that you would try to answer to all questions with care.

Personal data

1. Social security number:

2. Name:

3. Address:

4. Phone number:

5. Gender:
Female Male

6. Preliminary diagnosis

Please mark the answer that best describes your health. If you don't have these particular symptoms
nowadays, please answer the questions based on the situation when you previously had the symptoms.

7. What symptoms do you have? (choose one or several options)
vertigo gait difficulties hearing loss tinnitus headache

Onset of symptoms

8. If you have or have previously had vertigo, hearing loss or tinnitus, with what symptoms did your disease
start? (choose one or several options)

vertigo hearing loss tinnitus
pressure feeling in the

ear gait difficulties

9. How old were you when the symptoms began?

If you don't have vertigo, please move on to the question 22.
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10. If you have or have previously had vertigo and hearing loss, was there time difference between vertigo
and hearing loss? (choose only one option)

1 = they started at the
same time 2 = less than a year 3 = 1 - 4 years 4 = 5 - 10 years 5 = more than 10 years

Vertigo

With vertigo attacks is defined temporary vertigo spells which has little or no symptoms between
vertiginous spells.

Constant vertigo means continuous gait difficulties or continuous sensation of vertigo in the head.

11. Do you have these symptoms? (choose one or several options)
feeling of rotation  feeling of floating tend to fall instability when moving blackouts

12. When did the first vertigo symptoms occur? (choose one option)
 1 = less than a month 2 = less than a year 3 = 1 - 4 years 4 = 5 - 10 years 5 = more than 10 years

13. What kind of vertigo you have?
1 = constant 2 = spells 3 = both

If you have constant vertigo, please move on to the question 19.

14. How often stronger spells of vertigo occur?
1 = less than once a

year
2 = less than once a

month 3 = monthly 4 = weekly 5 = daily

15. If you have vertigo attacks, how long do stronger vertigo attacks last?

1 = 1 - 15 seconds
2 = 15 seconds - 5

minutes 3 = 5 minutes - 4 hours 4 = 4 hours -  24 hours 5 = more than a day

16. How severe the vertigo attacks are usually?

1 = mild (does not affect
chores at all)

2 = weak (affects but
can continue working

normally)
3 = moderate (have to

stop working) 4 = strong (must rest)
5 = very strong

(difficulties despite rest)

17. Does vertigo attack include nausea and/or vomiting?
0 = no 1 = weak 2 = moderate 3 = strong 4 = very strong vomiting

18. Do you have sudden and strong second or two lasting drop attacks or slips?

0 = no 1 = rarely
2 = less than once a

week 3 = weekly 4 = daily
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19. Does changes in position induce vertigo?
0 = no 1 = weakly 2 = moderately 3 = strongly 4 = very strongly (falls)

20. Does changes in aerobaric pressure or barotrauma (eg. flying, diving, blowing or sneezing) induce
vertigo or balance difficulties?

0 = no 1 = weakly 2 = moderately 3 = strongly 4 = very strongly (falls)

21. Does physical strain (eg. weight lifting) induce vertigo or balance difficulties?
0 = no 1 = weakly 2 = moderately 3 = strongly 4 = very strongly (falls)

Mobility

22. Do you have balance or gait difficulties (outside vertigo attacks)?

0 = no 1 = rarely
2 = less than once a

week 3 = weekly 4 = constantly

23. If you have constant unsteadiness (outside vertigo attacks), how strong do you experience those?
0 = no handicap 1 = weak 2 = moderate 3 = strong 4 = very strong (falls)

24. Walking

0 = l can walk normally
1 = I can walk with little

difficulties
2 = I can walk with
notable difficulties 3 = I can walk only little 4 = I am unable to walk

25. Standing up from the chair
0 = normally without

hands
1 = with occasional help

by hands
2 = always with help by

hands 3 = with help from others 4 = I cannot get up

Hearing loss

26. Has your hearing weakened because of your disease?

0 = no
1 = in the right
ear 2 = in the left ear 3 = in both ears

If you don't have hearing loss, please move on to the question 30.

27. If you feel your hearing weakened, how much time has passed from the beginning of hearing loss?
1 = less than a month 2 = less than a year 3 = 1 - 4 years 4 = 5 - 10 years 5 = more than 10 years
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28. Does your hearing fluctuate during the vertigo attacks?
0 = no 1 = yes

29. How did your hearing loss commence?
1 = suddenly
(in few days)

2 = during few
months

3 = during
several years

Tinnitus and hyperacusis

With tinnitus is meant different sounds (eg. hum, pulsating sound etc.) occuring in the ear/head.
Hyperacusis means that moderately loud sound induces pain in the ear or is sensed very loud.

30. In which ear you have tinnitus?

0 = I have no tinnitus 1 = in the right ear 2 = in the left ear 3 = bilateral
4 = tinnitus is in the

head

If you don't have tinnitus, please move on to the question 34.

31. When did tinnitus first occur?
 1 = less than a month 2 = less than a year 3 = 1 - 4 years 4 = 5 - 10 years 5 = more than 10 years

32. How much handicap does tinnitus cause for your life?

0 = no handicap
1 = slight handicap (can

do normal chores)

2 = moderate handicap
(affects, but can live

normally)
3 = severe handicap
(has to stop chores)

4 = very severe
handicap (constant
sleeping disorders)

33.  What is the type of tinnitus? (choose one option)

1 = hum 2 = ring 3 = pulse 4 = buzz, hiss, stir
5  = other / several

voices

34. Do strong voices hurt (hyperacusis)?

0 = no
1 = in the right
ear 2 = in the left ear 3 = in both ears

35. Handicap of hyperacusis
0 = no handicap 1 = weak 2 = moderate 3 = strong 4 = very strong

36.  Do you have pressure feeling in the ear?

0 = no
1 = in the right
ear 2 = in the left ear 3 = in both ears
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Other symptoms

37. Do you have other symptoms? (choose one or several options)

0 = no other symptoms 1 = feeling of faint
2 = sensation of

drunkenness
3 = blurring of eyes,

growing black 4 = feeling of unreality

38. Handicap of above symptoms (choose one alternative)
0 = no handicap 1 = weak 2 = moderate 3 = strong 4 = very strong

39. Does vertigo, hearing loss or tinnitus cause anxiety, tension or nervousness?
0 = no 1 = weakly 2 = moderately 3 = strongly 4 = very strongly

40. Vitality

0 = I feel myself healthy
 1 = I am somewhat

weary or feeble
 2 = I feel moderately

weary or feeble
3 = I feel very weary or

feeble
4 = I feel totally

exhausted

Headache

If you do have vertigo spells, please answer next questions based on the headache occurring outside the
vertigo spells. Otherwise, answer based on the common situation.

41. Do you have headache and if you do, how long does headache last?

0 = no headache
1 = less than 2
hours

2 = 2 hours - 24
hours

3 = constant
headache

If you don't have headache (outside vertigo attacks), please move on to the question 44.

42. How often does headache occur?
1 = less than once a

year
2 = less than once a

month 3 = monthly 4 = weekly 5 = daily

43. Do you have headache during the vertigo attacks?
0 = no 1 = slightly 2 = moderately 3 = much 4 = very much

Neurological symptoms

44. Do you suffer from fainting (causing unconsciousness)?
0 = no 1 = yes

55

Other symptoms

37. Do you have other symptoms? (choose one or several options)

0 = no other symptoms 1 = feeling of faint
2 = sensation of

drunkenness
3 = blurring of eyes,

growing black 4 = feeling of unreality

38. Handicap of above symptoms (choose one alternative)
0 = no handicap 1 = weak 2 = moderate 3 = strong 4 = very strong

39. Does vertigo, hearing loss or tinnitus cause anxiety, tension or nervousness?
0 = no 1 = weakly 2 = moderately 3 = strongly 4 = very strongly

40. Vitality

0 = I feel myself healthy
 1 = I am somewhat

weary or feeble
 2 = I feel moderately

weary or feeble
3 = I feel very weary or

feeble
4 = I feel totally

exhausted

Headache

If you do have vertigo spells, please answer next questions based on the headache occurring outside the
vertigo spells. Otherwise, answer based on the common situation.

41. Do you have headache and if you do, how long does headache last?

0 = no headache
1 = less than 2
hours

2 = 2 hours - 24
hours

3 = constant
headache

If you don't have headache (outside vertigo attacks), please move on to the question 44.

42. How often does headache occur?
1 = less than once a

year
2 = less than once a

month 3 = monthly 4 = weekly 5 = daily

43. Do you have headache during the vertigo attacks?
0 = no 1 = slightly 2 = moderately 3 = much 4 = very much

Neurological symptoms

44. Do you suffer from fainting (causing unconsciousness)?
0 = no 1 = yes



6666

45. Do you suffer from visual blurring or double vision during vertigo attacks?
0 = no 1 = yes

46. Do you experience weakness of voice, speech stuttering or entangling (dysarthria) during vertigo
attacks?

0 = no 1 = yes

47. Do you have difficulties in swallowing (cranial nerve palsy)?
0 = no 1 = yes

48. Do you have touch sensation disturbances in the face (paresthesia in face)?
0 = no 1 = yes

49. Do you have migraine which is diagnosed by physician?
0 = no 1 = yes

Alcohol

50. How many restaurant portions of alcohol do you consume in a week?

0 =  I don't use alcohol 1 = less than 4 portions 2 = 5 - 9 portions 3 = 10 - 20 portions
4 = more than 20

portions

Oto- and vestibulotoxic drugs

51. Do you use diuretics or heart medicin?
0 = no 1 = yes

52. Have you got tubercular or other intravenous medicine (aminoglycocides)?
0 = no 1 = yes

53. Do you use strong pain killer?
0 = no 1 = occasionally 2 = weekly 3 = daily

54. Have you been treated for malignant tumours?
0 = no 1 = yes
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55. Do you have antidepressive treatment?
0 = no 1 = yes

56. Do you use other drug treatment for psychiatric disorder?
0 = no 1 = yes

57. Do you use sleeping pills?
0 = no 1 = yes

Possible damages of internal ear

58. Have you got any direct trauma to the head or neck, or ear infection, which would have been associated
with the beginning of the vertigo symptoms? (symptoms occured within 6 months of the event)

0 = no 1 = yes

59. Have you had any brain concussion with unconsciousness lasting less than 2 hours?
0 = no ...............................................................................................................................................................................

1 = yes, ............................................................................................................................................................................

in what year?

60. Have you had any head injury causing unconsciousness lasting more than 2 hours?
0 = no ...............................................................................................................................................................................

1 = yes, ............................................................................................................................................................................

in what year?

61. Have you had any whiplash injury in the neck?
0 = no ...............................................................................................................................................................................

1 = yes, ............................................................................................................................................................................

in what year?

62. Have you had prolonged (over three months) ear discharge / running ear caused by inflammatio?
0 = no 1 = yes

63. Have you had any direct trauma to the ear, acute noise injury, bleeding from the ear which would have
caused hearing loss or tinnitus?

0 = no ...............................................................................................................................................................................

1 = yes, ............................................................................................................................................................................

in what year?
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64. Have you been exposed at work to loud noise (noise level exceeding 85 dB) more than 5 years?
0 = no 1 = yes

Ear surgery

65. Has your ear(s) been operated?
0 = no 1 = I don't know 2 = yes

If you haven't been in ear operations, please move on to the question 68.

66. Which ear has been operated?
1 = the right ear 2 = the left ear 3 = both ears 4 = I don't know

If you know what has been operated, please answer to following question. If you don't know, please move
on to the question 68.

67. Have you been at the ear surgery because of the vertigo?
0 = no ...............................................................................................................................................................................

1 = yes, ............................................................................................................................................................................

in what surgery?

in what year?

Other diseases

68. Do you have coronary heart disease?
0 = no 1 = yes

69. Do you have hypertension?
0 = no 1 = yes

70. Do you have arteriosclerosis?
0 = no 1 = yes

71. Do you have any symptoms of cerebral or brain stem ischemia?
0 = no 1 = yes

72. Do you have kidney insufficiency/renal failure ?
0 = no 1 = yes
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73. Do you have diabetes mellitus?
0 = no 1 = yes

74. Do you have thyroid gland over- or underproduction?
0 = no 1 = yes

75. Have you ever suffered from meningitis or sequelae of mumps?
0 = no ...............................................................................................................................................................................

1 = yes, ............................................................................................................................................................................

what?

in what year?

Family history

76. Does your father or mother have had vertigo or early onset of hearing loss before age 65?
0 = no 1 = I don't know 2 = yes

77. Do your siblings have vertigo or early onset of hearing loss before age 65?
0 = no 1 = I don't know 2 = yes

78. Do your children have hearing loss?
0 = no 1 = I don't know 2 = yes

79. If yes, do you know the reason for vertigo or hearing loss?
1 = I don't know ................................................................................................................................................................

2 = yes, ............................................................................................................................................................................

what?

80. How many siblings do you have?
0 = none 1 = one 2 = two 3 = three 4 = more than three

81. From which county or city are your mother's mother from?
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QUALITY OF LIFE QUESTIONNAIRE (15D©)

Please read through all the alternative responses to each question before placing a cross (x)
against the alternative which best describes your present status. Continue through all 15 questions
in this manner, giving only one answer to each.

Question 1. Mobility

1. I am able to walk normally (without difficulty) indoors, outdoors and on stairs.

2. I am able to walk without difficulty indoors, but outdoors and/or on stairs I have slight difficulties.

3. I am able to walk without help indoors (with or without an appliance), but outdoors and/or on stairs
only with considerable difficulty or with help from others.

4. I am able to walk indoors only with help from others.

5. I am completely bed-ridden and unable to move about.

Question 2. Vision

1. I see normally, i.e. I can read newspapers and TV text without difficulty (with or without glasses).

2. I can read papers and/or TV text with slight difficulty (with or without glasses).

3. I can read papers and/or TV text with considerable difficulty (with or without glasses).

4. I cannot read papers or TV text either with glasses or without, but I can see enough to walk about
without guidance.

5. I cannot see enough to walk about without a guide, i.e. I am almost or completely blind.

Question 3. Hearing

1. I can hear normally, i.e. normal speech (with or without a hearing aid).

2. I hear normal speech with a little difficulty.

3. I hear normal speech with considerable difficulty; in conversation I need voices to be louder than
normal.

4. I hear even loud voices poorly; I am almost deaf.

5. I am completely deaf.

Question 4. Breathing

1. I am able to breathe normally, i.e. with no shortness of breath or other breathing difficulty.

2. I have shortness of breath during heavy work or sports, or when walking briskly on flat ground or
slightly uphill.

3. I have shortness of breath when walking on flat ground at the same speed as others my age.

4. I get shortness of breath even after light activity, e.g. washing or dressing myself.

5. I have breathing difficulties almost all the time, even when resting.
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Question 5. Sleeping

1. I am able to sleep normally, i.e. I have no problems with sleeping.

2. I have slight problems with sleeping, e.g. difficulty in falling asleep, or sometimes waking at night.

3. I have moderate problems with sleeping, e.g. disturbed sleep, or feeling I have not slept enough.

4. I have great problems with sleeping, e.g. having to use sleeping pills often or routinely, or usually
waking at night and/or too early in the morning.

5. I suffer severe sleeplessness, e.g. sleep is almost impossible even with full use of sleeping pills, or
staying awake most of the night.

Question 6. Eating

1. I am able to eat normally, i.e. with no help from others.

2. I am able to eat by myself with minor difficulty (e.g. slowly, clumsily, shakily, or with special
appliances).

3. I need some help from another person in eating.

4. I am unable to eat by myself at all, so I must be fed by another person.

5. I am unable to eat at all, so I am fed either by tube or intravenously.

Question 7. Speech

1. I am able to speak normally, i.e. clearly, audibly and fluently.

2. I have slight speech difficulties, e.g. occasional fumbling for words, mumbling, or changes of pitch.

3. I can make myself understood, but my speech is e.g. disjointed, faltering, stuttering or stammering.

4. Most people have great difficulty understanding my speech.

5. I can only make myself understood by gestures

Question 8. Excretion

1. My bladder and bowel work normally and without problems.

2. I have slight problems with my bladder and/or bowel function, e.g. difficulties with urination, or loose
or hard bowels.

3. I have marked problems with my bladder and/or bowel function, e.g. occasional `accidents', or
severe constipation or diarrhea.

4. I have serious problems with my bladder and/or bowel function, e.g. routine `accidents', or need of
catheterization or enemas.

5. I have no control over my bladder and/or bowel function.
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Question 9. Usual activities

1. I am able to perform my usual activities (e.g. employment, studying, housework, free-time activities)
without difficulty.

2. I am able to perform my usual activities slightly less effectively or with minor difficulty.

3. I am able to perform my usual activities much less effectively, with considerable difficulty, or not
completely.

4. I can only manage a small proportion of my previously usual activities.

5. I am unable to manage any of my previously usual activities.

Question 10. Mental function

1. I am able to think clearly and logically, and my memory functions well

2. I have slight difficulties in thinking clearly and logically, or my memory sometimes fails me.

3. I have marked difficulties in thinking clearly and logically, or my memory is somewhat impaired.

4. I have great difficulties in thinking clearly and logically, or my memory is seriously impaired.

5. I am permanently confused and disoriented in place and time.

Question 11. Discomfort and symptoms

1. I have no physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

2. I have mild physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

3. I have marked physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

4. I have severe physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

5. I have unbearable physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

Question 12. Depression

1. I do not feel at all sad, melancholic or depressed.

2. I feel slightly sad, melancholic or depressed.

3. I feel moderately sad, melancholic or depressed.

4. I feel very sad, melancholic or depressed.

5. I feel extremely sad, melancholic or depressed.

Question 13. Distress

1. I do not feel at all anxious, stressed or nervous.

2. I feel slightly anxious, stressed or nervous.

3. I feel moderately anxious, stressed or nervous.

4. I feel very anxious, stressed or nervous.

5. I feel extremely anxious, stressed or nervous.
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1. I am able to think clearly and logically, and my memory functions well

2. I have slight difficulties in thinking clearly and logically, or my memory sometimes fails me.

3. I have marked difficulties in thinking clearly and logically, or my memory is somewhat impaired.

4. I have great difficulties in thinking clearly and logically, or my memory is seriously impaired.

5. I am permanently confused and disoriented in place and time.

Question 11. Discomfort and symptoms

1. I have no physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

2. I have mild physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

3. I have marked physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

4. I have severe physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

5. I have unbearable physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.

Question 12. Depression

1. I do not feel at all sad, melancholic or depressed.

2. I feel slightly sad, melancholic or depressed.

3. I feel moderately sad, melancholic or depressed.

4. I feel very sad, melancholic or depressed.

5. I feel extremely sad, melancholic or depressed.

Question 13. Distress

1. I do not feel at all anxious, stressed or nervous.

2. I feel slightly anxious, stressed or nervous.

3. I feel moderately anxious, stressed or nervous.

4. I feel very anxious, stressed or nervous.

5. I feel extremely anxious, stressed or nervous.
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Question 14. Vitality

1. I feel healthy and energetic

2. I feel slightly weary, tired or feeble.

3. I feel moderately weary, tired or feeble.

4. I feel very weary, tired or feeble, almost exhausted.

5. I feel extremely weary, tired or feeble, totally exhausted.

Question 15. Sexual activity

1. My state of health has no adverse effect on my sexual activity.

2. My state of health has a slight effect on my sexual activity.

3. My state of health has a considerable effect on my sexual activity.

4. My state of health makes sexual activity almost impossible.

5. My state of health makes sexual activity impossible.
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FOOTNOTES (please refer to questionnaire questions with numbers):

If you have been at posturography or audiometry, could you please add the copy with this questionnaire, thank you.
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Appendix II 

Utilized attributes in the HUCH data. Class-wise minimum and maximum values 
and percent of missing values. 

* Number of corresponding question in the otoneurological questionnaire (App. I).

* Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
7a. SYM_VERT Min 0 1 1 0 1 1 1 0 1 0 

Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7b. SYM_MOVDIF Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 1.7 1.1 2.1 0.0 1.3 0.0 0.0 0.0 1.0 

7c. SYM_HEARLOSS Min 0 0 0 1 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 0.6 0.0 2.1 1.4 0.0 0.0 0.0 0.0 0.3 

7d. SYM_TINNITUS Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 0.6 0.0 0.0 1.4 0.6 0.0 0.0 0.0 0.3 

7e. SYM_HEADACHE Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 4.6 0.6 6.6 4.3 1.4 1.9 0.0 0.0 0.0 3.5 

9. SYM_AGE Min 13 10 11 24 4 8 12 9 11 4 
Max 73 80 79 82 72 73 59 76 80 82 
Missing % 5.3 0.6 1.4 19.1 1.4 1.3 0.0 5.5 8.3 2.9 

11a. ROTATION Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 3.1 11.0 8.9 14.9 8.2 8.3 5.0 12.7 8.3 8.7 

11b. FLOATING Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 3.1 34.1 8.6 12.8 6.8 31.2 5.0 18.2 8.3 16.1 

12. AGE_SYMPTOMS Min 0 1 1 0 1 1 1 0 1 0 
Max 4 4 4 4 4 4 4 4 4 4 
Missing % 0.8 1.2 1.1 0.0 4.1 2.5 0.0 1.8 4.2 1.6 

14. ATT_OFTEN Min 0 1 1 0 1 1 1 0 1 0 
Max 5 5 5 5 5 5 5 5 5 5 
Missing % 20.6 3.5 3.1 8.5 4.1 0.6 0.0 3.6 8.3 5.4 

15. ATT_LAST Min 0 1 0 0 1 1 1 0 1 0 
Max 5 5 5 5 5 5 5 5 5 5 
Missing % 22.1 0.0 4.9 8.5 5.5 5.7 10.0 12.7 29.2 7.7 



Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
16. ATT_INTE Min 0 2 0 0 2 2 3 0 2 0 

Max 5 5 5 5 5 5 5 5 5 5 
Missing % 3.1 2.9 1.1 4.3 4.1 5.1 5.0 3.6 16.7 3.2 

17. NAUSEA Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 3 3 3 3 3 3 3 
Missing % 0.8 0.6 1.4 2.1 4.1 1.3 0.0 3.6 8.3 1.7 

18. SLIPSFALLS Min 0 0 0 0 0 0 0 0 0 0 
Max 3 4 4 3 4 4 3 4 4 4 
Missing % 0.0 4.0 1.7 0.0 1.4 3.8 10.0 3.6 8.3 2.5 

19. PROV_POSIT Min 0 0 0 0 0 0 0 0 0 0 
Max 4 4 4 4 4 4 4 4 4 4 
Missing % 0.8 4.6 3.1 4.3 5.5 5.7 5.0 7.3 0.0 3.9 

20. PROV_PRESS Min 0 0 0 0 0 0 0 0 0 0 
Max 3 4 4 4 4 4 3 4 4 4 
Missing % 1.5 4.6 1.7 6.4 2.7 6.4 0.0 7.3 4.2 3.5 

21. PROV_PHYSIC Min 0 0 0 0 0 0 0 0 0 0 
Max 4 4 4 4 4 4 3 4 4 4 
Missing % 1.5 3.5 4.0 2.1 2.7 8.9 0.0 5.5 4.2 4.2 

22. UNSTEADINESS Min 0 0 0 0 0 0 0 0 0 0 
Max 4 3 4 1 3 4 3 4 4 4 
Missing % 6.9 3.5 8.6 46.8 5.5 4.5 0.0 0.0 0.0 7.6 

26. HL_SIDE Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 3 3 3 3 3 3 3 
Missing % 2.3 6.4 4.9 6.4 12.3 7.0 0.0 0.0 0.0 5.2 

27. AGE_HL_SYM Min 0 0 0 1 0 0 0 0 0 0 
Max 4 4 4 4 4 4 4 4 4 4 
Missing % 6.1 8.7 2.0 4.3 5.5 7.0 0.0 5.5 0.0 4.9 

28. HL_FLUCT Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 4.6 9.8 12.0 19.1 12.3 7.0 0.0 1.8 0.0 9.2 

29. HL_TYPE Min 0 0 0 1 0 0 0 0 0 0 
Max 2 2 2 1 2 2 2 2 2 2 
Missing % 87.8 54.3 58.6 14.9 34.2 62.4 0.0 1.8 4.2 53.0 

30. TINNI_LOC Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 3 3 3 3 3 3 3 
Missing % 1.5 7.5 2.0 2.1 5.5 8.9 5.0 1.8 8.3 4.4 

31. AGE_TIN_SYM Min 0 0 0 0 0 0 0 0 0 0 
Max 4 4 4 4 4 4 4 4 4 4 
Missing % 6.9 10.4 2.6 8.5 2.7 12.7 5.0 3.6 16.7 6.7 

32. TINNITUS Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 3 3 3 1 3 3 3 
Missing % 0.0 2.9 1.1 0.0 0.0 6.4 0.0 0.0 0.0 1.8 

37e. LIGHTHEAD Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 1.2 0.3 2.1 0.0 1.3 0.0 0.0 0.0 0.6 



Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
38. OTHER_HARM Min 0 0 0 0 0 0 0 0 0 0 

Max 4 4 4 3 4 4 4 4 4 4 
Missing % 1.5 5.8 3.7 8.5 6.8 5.1 0.0 5.5 0.0 4.4 

39. ANXIETY Min 0 0 0 0 0 0 0 0 0 0 
Max 3 2 3 3 2 3 2 3 2 3 
Missing % 6.9 6.4 6.9 6.4 6.8 3.8 0.0 0.0 4.2 5.7 

42. HA_OCCUR Min 0 0 0 0 0 0 0 0 0 0 
Max 5 5 5 5 5 5 5 5 5 5 
Missing % 13.0 6.4 17.7 8.5 13.7 6.4 0.0 0.0 0.0 11.1 

43. NEUR_HA Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 3 3 3 3 3 3 3 
Missing % 2.3 4.0 4.3 6.4 8.2 3.8 0.0 3.6 4.2 4.2 

44. NEUR_SYNCOPE Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 0 1 1 1 1 1 1 
Missing % 0.8 6.4 9.7 4.3 4.1 8.3 0.0 1.8 4.2 6.4 

45. NEUR_VISUAL Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.8 13.3 7.7 51.1 8.2 7.0 5.0 7.3 8.3 9.6 

46. NEUR_DYSA Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 10.4 6.6 8.5 6.8 10.2 0.0 3.6 8.3 6.8 

47. NEUR_CNP Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 1.5 11.6 4.3 51.1 8.2 7.6 5.0 5.5 16.7 8.4 

48. NEUR_PARES Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.0 11.0 4.6 8.5 9.6 7.6 5.0 5.5 12.5 6.3 

50. ALCOHOL Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 3 3 3 2 3 3 3 
Missing % 68.7 0.6 3.4 2.1 4.1 3.2 0.0 0.0 0.0 10.9 

51. OTO_DIUR Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 1.5 0.6 2.9 2.1 2.7 3.8 0.0 0.0 0.0 2.1 

52. OTO_AMINO Min 0 0 0 0 0 0 0 0 0 0 
Max 0 0 1 0 0 0 0 0 0 1 
Missing % 1.5 0.6 4.9 2.1 4.1 3.2 0.0 0.0 0.0 2.8 

53. OTO_NSAD Min 0 0 0 0 0 0 0 0 0 0 
Max 3 3 3 1 3 3 2 3 1 3 
Missing % 1.5 2.3 6.6 44.7 8.2 4.5 0.0 3.6 12.5 6.6 

54. OTO_CYTO Min 0 0 0 0 0 0 0 0 0 0 
Max 0 1 1 0 0 0 0 1 0 1 
Missing % 0.8 1.2 4.0 6.4 5.5 3.2 0.0 0.0 0.0 2.8 

55. TRICY_ANTID Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 0 1 0 0 1 1 1 
Missing % 1.5 3.5 6.0 2.1 9.6 6.4 0.0 0.0 0.0 4.6 



Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
56. KLORPROMAZIN Min 0 0 0 0 0 0 0 0 0 0 

Max 1 1 1 0 1 1 0 0 0 1 
Missing % 1.5 4.0 6.3 2.1 9.6 6.4 0.0 0.0 0.0 4.8 

57. BARBITURATE Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 0 0 0 0 1 
Missing % 1.5 3.5 6.6 2.1 9.6 6.4 0.0 0.0 0.0 4.8 

58. HEAD_TRAUMA Min 0 0 0 0 0 0 0 0 0 0 
Max 0 1 1 0 1 1 0 0 1 1 
Missing % 3.1 4.6 3.4 4.3 1.4 5.1 0.0 0.0 0.0 3.4 

59. CONCUSSION Min 0 0 0 0 0 0 0 0 0 0 
Max 0 1 1 1 1 1 0 0 0 1 
Missing % 0.8 4.0 4.0 6.4 0.0 5.1 0.0 0.0 0.0 3.2 

60. CONTUSION Min 0 0 0 0 0 0 0 0 0 0 
Max 0 0 0 0 1 0 0 1 1 1 
Missing % 0.8 4.6 3.4 6.4 0.0 5.1 0.0 0.0 0.0 3.1 

61. WHIP_INJ Min 0 0 0 0 0 0 0 0 0 0 
Max 0 1 1 0 1 1 0 0 0 1 
Missing % 0.8 4.0 3.4 6.4 1.4 5.1 0.0 0.0 0.0 3.1 

62. EAR_HIST Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 0 1 1 1 
Missing % 4.6 6.4 8.9 4.3 11.0 7.0 0.0 0.0 0.0 6.7 

63. EARTRAUMA Min 0 0 0 0 0 0 0 0 0 0 
Max 0 1 1 0 1 0 1 0 0 1 
Missing % 4.6 5.2 7.4 4.3 5.5 5.7 0.0 0.0 0.0 5.4 

64. NOISEEXP Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 4.6 4.6 7.4 4.3 5.5 5.7 0.0 0.0 0.0 5.3 

65. EO_DONE Min 0 0 0 0 0 0 0 0 0 0 
Max 2 2 2 2 2 2 2 2 2 2 
Missing % 77.1 3.5 7.1 2.1 4.1 1.9 0.0 0.0 0.0 13.5 

68. HEART_ISH Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 0 1 1 1 1 1 
Missing % 1.5 8.1 5.4 6.4 5.5 8.9 0.0 1.8 4.2 5.6 

69. HYPERTEN Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 1 1 1 1 1 1 1 
Missing % 0.8 5.2 4.3 8.5 4.1 7.0 5.0 0.0 0.0 4.3 

70. ANTER_SCL Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 0 0 1 0 1 1 1 
Missing % 2.3 6.4 4.6 46.8 4.1 8.9 0.0 0.0 0.0 6.7 

71. BRAIN_ISH Min 0 0 0 0 0 0 0 0 0 0 
Max 1 1 1 0 1 1 0 1 1 1 
Missing % 0.8 10.4 8.3 51.1 8.2 10.8 0.0 18.2 4.2 10.3 

72. KIDNEY_INS Min 0 0 0 0 0 0 0 0 0 0 
Max 0 0 1 0 0 1 1 1 0 1 
Missing % 0.8 6.9 5.1 10.6 4.1 6.4 0.0 0.0 0.0 4.8 



Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
73. DIABETES Min 0 0 0 0 0 0 0 0 0 0 

Max 1 1 1 1 1 1 0 0 0 1 
Missing % 0.8 5.8 4.3 10.6 4.1 6.4 0.0 0.0 0.0 4.3 

74. THYROID Min 0 0 0 0 0 0 0 0 0 0 
Max 0 1 1 0 0 1 1 1 1 1 
Missing % 1.5 7.5 5.4 48.9 4.1 7.0 0.0 0.0 0.0 6.9 

Clinical test results 
Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
SP_NYST Min 0 0 0 0 0 0 0 0 0 0 
spontanic Max 1 1 1 1 1 1 1 1 0 1 
 nystagmus Missing % 19.8 42.8 29.4 34.0 30.1 29.9 25.0 5.5 20.8 29.2 
HEAD_SHAK Min 0 0 0 0 0 0 0 0 0 0 
head shaking Max 1 1 1 1 1 1 1 1 1 1 
 nystagmus Missing % 20.6 43.9 31.1 36.2 32.9 26.1 25.0 7.3 20.8 29.9 
FING_NOSE Min 0 0 0 0 0 0 0 0 0 0 
abnormal Max 1 0 1 1 1 0 0 0 1 1 
 finger-nose test Missing % 19.8 44.5 33.7 38.3 38.4 20.4 25.0 20.0 33.3 31.4 
DIADOCHOKIN Min 0 0 0 0 0 0 0 0 0 0 
abnormal Max 1 0 0 0 0 0 0 1 0 1 
 diadochokinesis Missing % 24.4 46.8 40.6 38.3 41.1 22.3 35.0 27.3 37.5 35.8 
POST_OPEN Min 0.8 0.7 0.5 0.9 0.6 0.7 1.1 0.8 1 0.5 
posturography Max 10 3.2 4.2 2.9 4.25 4.1 2.8 6.7 6 10.0 
 eyes open Missing % 24.4 28.9 32.6 36.2 23.3 33.1 55.0 50.9 54.2 32.4 
POST_CLOSE Min 1 0.7 0.75 1.1 1 0.9 1 0.9 1.2 0.7 
posturography Max 10.1 10 10 4.2 5.2 7.2 4.9 9.7 7.2 10.1 
 eyes closed Missing % 23.7 29.5 32.6 38.3 23.3 33.1 55.0 52.7 54.2 32.6 
CAL_SP_NYST Min 0 0 0 0 0 0 0 0 0 0 
ENG  spontanic Max 6 7 10 8 9 10 3 9 5 10 
 nystagmus Missing % 19.8 10.4 12.9 14.9 13.7 8.3 10.0 12.7 8.3 12.6 
CAL_ASYM Min 2 0 0 0 0 0 2 0 0 0 
ENG caloric Max 100 98 100 100 100 100 100 100 32 100 
 asymmetry Missing % 13.0 10.4 10.9 10.6 6.8 3.8 15.0 14.5 4.2 9.8 
CAL_44R Min 0 0 0 0 0 0 0 0 8 0 
ENG response with Max 50 50 50 50 44 50 38 50 42 50 
 44°C right Missing % 67.2 7.5 9.4 8.5 4.1 2.5 15.0 16.4 8.3 15.4 
CAL_44L Min 0 0 0 0 0 0 4 0 6 0 
ENG response with Max 50 50 50 50 50 50 32 50 50 50 
 44°C left Missing % 69.5 7.5 9.4 8.5 4.1 4.5 20.0 14.5 8.3 16.0 
AUD_500R Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 120 80 120 100 80 100 20 100 35 120 
 500 Hz right Missing % 2.3 3.5 3.7 6.4 5.5 0.6 5.0 1.8 4.2 3.2 
AUD_1000R Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 120 100 120 95 95 100 20 100 45 120 
 1000 Hz right Missing % 3.1 3.5 3.7 6.4 5.5 0.6 5.0 1.8 4.2 3.3 



Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
AUD_2000R Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 120 100 120 95 100 100 45 100 55 120 
 2000 Hz right Missing % 2.3 3.5 3.7 6.4 5.5 0.6 5.0 1.8 4.2 3.2 
AUD_4000R Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 90 100 100 100 100 100 80 100 65 100 
 4000 Hz right Missing % 84.7 17.9 28.0 19.1 20.5 23.6 5.0 1.8 4.2 29.5 
AUD_8000R Min 0 0 0 0 0 0 0 0 5 0 
audiometry at Max 95 100 100 100 100 100 75 100 85 100 
 8000 Hz right Missing % 84.7 17.9 28.0 19.1 20.5 23.6 5.0 1.8 4.2 29.5 
AUD_500L Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 120 110 100 110 100 90 25 100 85 120 
 500 Hz left Missing % 3.8 4.0 4.3 2.1 5.5 0.6 5.0 1.8 4.2 3.5 
AUD_1000L Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 120 120 100 120 100 95 30 100 70 120 
 1000 Hz left Missing % 2.3 3.5 4.3 2.1 5.5 0.6 5.0 1.8 4.2 3.2 
AUD_2000L Min 0 0 0 0 0 0 0 0 0 0 
audiometry at Max 120 120 105 120 100 80 40 100 80 120 
 2000 Hz left Missing % 2.3 3.5 4.3 2.1 5.5 0.6 5.0 1.8 4.2 3.2 
AUD_4000L Min 5 0 0 5 0 0 0 0 0 0 
audiometry at Max 100 100 100 100 100 75 70 100 100 100 
 4000 Hz left Missing % 84.7 18.5 28.3 14.9 20.5 23.6 5.0 1.8 4.2 29.5 
AUD_8000L Min 0 0 0 10 0 0 0 0 0 0 
audiometry at Max 100 100 100 100 100 85 75 100 100 100 
 8000 Hz left Missing % 84.7 17.9 28.3 14.9 21.9 23.6 5.0 1.8 4.2 29.5 

Derived attributes 
Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
CNS_SYMPTOMS Min 0 0 0 0 0 0 0 0 0 0 
neurological  Max 1 1 1 1 1 1 1 1 1 1 
 symptoms Missing % 1.5 2.9 4.9 6.4 4.1 2.5 0.0 3.6 0.0 3.5 
OTO_HABIT_DRUGS Min 0 0 0 0 0 0 0 0 0 0 
use of oto- and vesti- Max 1 1 1 1 1 1 1 1 1 1 
bulotoxic drugs Missing % 3.8 1.2 4.6 2.1 4.1 1.3 0.0 1.8 4.2 3.0 
INJURY Min 0 0 0 0 1 0 0 0 0 0 
head or ear trauma,  Max 0 1 1 1 1 1 1 1 1 1 
 noise injury Missing % 0.0 1.2 5.4 0.0 0.0 1.3 0.0 0.0 0.0 2.2 
EAR_ILLNESS Min 0 0 0 0 0 0 0 0 0 0 
Ear infections Max 1 1 1 1 1 1 0 1 1 1 

Missing % 4.6 3.5 6.0 2.1 5.5 1.3 0.0 0.0 0.0 3.9 
GEN_ILLNESS Min 0 0 0 0 0 0 0 0 0 0 
disease provoking Max 1 1 1 1 1 1 1 1 1 1 
 vertigo Missing % 0.0 4.0 3.4 12.8 4.1 0.6 0.0 9.1 0.0 3.3 
BILATERAL Min 0 0 0 0 0 0 0 0 0 0 
bilateral hearing loss Max 1 1 1 1 1 1 1 1 1 1 
/tinnitus/hyperacusis / 
pressure feeling in the ear 

Missing % 0.  .      5.0  0.0 .3 



Attribute name ANE BPV MEN SUD TRA VNE BRV VES CL Total 
UNILATERAL Min 0 0 0 0 0 0 0 0 0 0 
unilateral hearing loss Max 1 1 1 1 1 1 1 1 1 1 
/tinnitus/hyperacusis / 
pressure feeling in the ear 

Missing %       5.0  0.0 .3 

BILAT_KA Min 0 0 0 0 0 0 0 0 0 0 
bilateral hearing loss Max 1 1 1 1 1 1 1 1 1 1 

Missing % 3.8 8.7 8.0 10.6 17.8 7.0 5.0 1.8 4.2 7.8 
UNILAT_KA Min 0 0 0 0 0 0 0 0 0 0 
unilateral  hearing loss Max 1 1 1 1 1 1 1 1 1 1 

Missing % 3.8 8.7 8.0 10.6 17.8 7.0 5.0 1.8 4.2 7.8 
LAT_KA Min 0 0 0 0 0 0 0 0 0 0 
bi- or unilateral Max 1 1 1 1 1 1 1 1 1 1 
 hearing loss Missing % 1.5 8.7 4.3 4.3 16.4 7.0 5.0 1.8 0.0 5.7 
NONLAT_KA Min 0 0 0 0 0 0 0 0 0 0 
normal hearing Max 1 1 1 1 1 1 1 1 1 1 

Missing % 1.5 8.7 4.3 4.3 16.4 7.0 5.0 1.8 0.0 5.7 
VERTIGO Min 0 1 0 0 0 1 1 0 1 0 
true vertigo Max 1 1 1 1 1 1 1 1 1 1 

Missing % 3.1 12.1 7.4 12.8 6.8 9.6 0.0 12.7 8.3 8.3 
HL_MEN Min 0 0 0 0 0 0 0 0 0 0 
hearing side difference Max 1 1 1 1 1 1 1 1 1 1 
15 dB in 500 Hz, 1000 Hz 
or 2000 Hz 

Missing % 2.3 3.5 4.6 6.4 5.5 0.6 5.0 1.8 4.2 3.5 

HL_ANE Min 0 0 0 0 0 0 0 0 0 0 
hearing side difference Max 1 1 1 1 1 1 1 1 1 1 
15 dB in any  frequency Missing % 2.3 3.5 4.6 6.4 5.5 0.6 5.0 1.8 4.2 3.5 
TRAUMA Min 0 0 0 0 1 0 0 0 0 0 
serious trauma of Max 0 1 1 1 1 1 0 1 1 1 
 head Missing % 3.1 4.0 4.3 6.4 0.0 5.1 0.0 0.0 0.0 3.6 
AGES_SAME Min 0 0 0 0 0 0 0 0 0 0 
vertigo, hearing loss  Max 1 1 1 1 1 1 1 1 1 1 
and tinnitus started   Missing % 5.3 5.8 2.9 8.5 5.5 9.6 0.0 5.5 4.2 5.2 
at the same time 
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Abstract. In this paper, we present an otoneurological decision support system 
ONE and describe its state after upgrade process. Upgrade involved further 
development of user interface, creation of methods for data transfer and 
refinement of knowledge base. First we asked physicians to update the knowledge 
base of the system. For knowledge refinement we developed also a machine 
learning method that discovers knowledge from data. Refined knowledge bases 
were tested with otoneurological data. Test results showed that experts’ knowledge 
combined with machine learnt knowledge had the best classification accuracy. The 
result of the upgrade process is a more usable decision support system. 
Keywords: Clinical Decision Support Systems, Otoneurology, Machine Learning. 

1. Introduction 

Vertigo can be a symptom of many different diseases. In the general population of 
Finland, 29 % of people reported having an experience of vertigo together with a 
moving sensation [1]. During one year, 5 % of the general population was diagnosed to 
suffer from vestibular vertigo [2]. Separation of vertigo diseases from each other can be 
difficult because of their similar symptoms. Also the diagnostic work-up for vertigo is 
extensive falling into different specialties and, therefore, requiring a vast amount of 
knowledge to be successful. A decision support system eases the management of 
information necessary for the work-up. It ensures that all the crucial questions are 
asked, and, thus, a diagnosis is not based only on partial information. A correct 
diagnosis is essential for the choice of a proper treatment, which is in some cases even 
a destructive surgery.  
We have been interested in developing a decision support system for the field of 
otoneurology since the beginning of the 1990s. An Otoneurological Expert System 
ONE [3] is an academic software tool developed to support decision making and data 
gathering for diseases involving vertigo. ONE has been shown to be competitive to 
experts [4] and another otoneurological expert system [5]. It is currently used at 
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medical education in Helsinki University Central Hospital. Furthermore, we have 
collected data of 1478 vertiginous patients with the help of ONE. The vertigo data have 
been utilised in medical analysis and in various experiments (e.g. [6]) concerning 
machine learning methods [7] such as decision tree induction, genetic algorithms, 
nearest neighbour classification and neural networks. 

Experiences gained from using ONE in medical education, data collection and 
machine learning research showed that the system needs and is worthwhile of further 
development. During the upgrade process we built more user-friendly graphical user 
interface containing navigation tree, restructured database enabling patient history, 
refined knowledge base with experts and machine learning method, and made tools for 
data collection ensuring data quality [8]. In this paper, we present the state of the 
system after these upgrades. 

2. Description of ONE 

ONE is implemented in the Java programming language. The main components of the 
system are the graphical user interface, inference engine, knowledge base, query base 
and answer database (Figure 1). The query base contains instructions to create the user 
interface. The instructions tell what questions are shown at the same time in the query 
panel, what kind of questions a user is dealing with, and what are the possible answers 
to the questions. There are 192 questions in the query base concerning symptoms, 
medical history, clinical findings and life quality. In the symptoms part, questions 
concern, for example, vertigo, gait difficulties, hearing loss and tinnitus. The medical 
history contains questions about drug usage, head and ear injury, ear operations and 
other diseases. In the clinical findings, the results of different tests (i.e. otoneurologic, 
audiologic and imaging tests) are given. 

Figure 1. Main components of the otoneurological decision support system One. 

The graphical user interface is divided into two different parts: an upper panel and 
a lower panel. In the upper panel personal information is asked about the patient and 
the three best diagnosis suggestions by ONE are shown. The lower panel contains a 
navigation tree and a query panel. The navigation tree shows in which part of the 
questionnaire the user is. The user can easily see from the leaf symbols of the 
navigation tree which parts of the questionnaire require more attention: A leaf 
containing question mark shows that there are unanswered questions in that part of the 
query. An exclamation mark tells that a patient has answered positively some of the 
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questions. If the leaf is empty, the patient has not answered positively in any of the 
questions in the section, in other words, she does not have the symptoms at issue. 

The system stores users’ answers to a MySQL database. The database contains 35 
tables. One table of the database corresponds to one subject of matter in the 
questionnaire, for example hearing loss or tinnitus. Usually one query view of the 
system is one table in the database. The database is planned to minimize the number of 
missing values and to avoid redundancy of data. The database also allows saving the 
patient’s history so that it is possible to follow the evolution of patient’s symptoms and 
to trace the changes in those. 

The knowledge base contains a description or a pattern for each disease in the form 
of fitness values and weights. The current version covers 15 diseases and disorders: 
acoustic neurinoma, autoimmune disease, benign positional vertigo, benign paroxysmal 
vertigo of childhood, benign recurrent vertigo, borreliosis, brain stem ischemia, central 
nervous system (cns) tumour, Menière’s disease, ototoxicity, perilymphatic fistula, 
sudden deafness, traumatic vertigo, vertebrobasilar insufficiency and vestibular 
neuritis. A weight value assigned to an attribute expresses the significance of the 
attribute for a disease. Fitness values set to attribute values express the correspondence 
between these values and the disease. The number of relevant attributes varies 
according to the diseases: Some diseases can be inferred with few attributes, other 
diseases require a larger number of attributes. In addition to basic attributes, the disease 
patterns contain derived attributes computed from the original attributes by logical and 
arithmetical operations.  

The inference method resembles the nearest neighbour method [7], but instead of 
the nearest neighbour, it searches the nearest patterns (diseases). Furthermore, ONE 
uses rules concerning necessary attribute values defined for diseases. If a case being 
classified does not conform to these values, the system tells this for the user through 
explanation facility. The system tells also if some crucial information is missing. The 
inference engine counts scores for all the diseases based on the answers given by the 
user. The diseases with the highest scores are the best fits and suggested by ONE. The 
engine also counts minimum and maximum scores for diseases taking into account all 
of the questions, also the ones that the patient has not answered. For the minimum 
score the inference engine takes into account the lowest fitness values of the 
unanswered attributes in addition to answered questions and, for the maximum score, 
the highest fitness values of unanswered questions. 

3. Data transfer 

Reliable transfer of patient information from the otoneurological questionnaire to the 
database is important because it affects the quality of the data that, in its turn, has an 
effect on the results of machine learning methods. Automatic data transfer ensures the 
quality of data by minimizing the input errors that can occur when a manual input is 
used. The manual input takes quite a long time, because there are nearly a hundred 
questions in a questionnaire. Physicians perceive manual data transmission 
problematic, because there are simply no resources in organisations to do that [9]. In 
order to ease the data transmission into the system, we developed two different 
methods to do that.  

A way to ease the data transfer is scannable paper questionnaires. The 
questionnaires are made with Snap Survey Software (SNAP), and paper forms filled by 
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patients are scanned in it with a text scanner. Scannable questionnaires improve the 
transmission of information to electronic form. However, scanning cannot be done 
without personnel. Someone has to input the questionnaires into the scanner and also 
check that it has read answers correctly. She also has to alter the data collected with 
SNAP to the right value ranges before transferring it into the database of ONE. 

The other solution for the data transmission is a web questionnaire. Web form uses 
the same database as ONE, and, thus, collected information can be used in real time. 
Web form is a better solution than scannable questionnaires, because it does not require 
data alteration: Data is in the right form from the beginning. 

4. Knowledge refinement  

A part of the upgrade process of the otoneurological decision support system was the 
refinement of its knowledge base [8]. First we updated original knowledge base with 
the help of otoneurological experts. They went through the patterns of diseases and 
updated the weights and fitness values of the attributes, if necessary. After the experts’ 
update process we used a machine learning method [10] to formulate the fitness values 
for different diseases. The machine learning method is based on the frequency 
distributions of the attributes. It was possible to create patterns only for the seven most 
frequent diseases that had enough example cases for the knowledge calculation. We 
also combined weight values given by the experts to fitness values calculated from the 
patient data. 

After formulating different knowledge base combinations, we tested the 
knowledge bases with originally collected patient data. Results of the three test drives 
with original data are shown in Table 1. The results show the classification accuracies 
of the knowledge bases within the first diagnosis suggestion and the three first 
diagnosis suggestions.  

Table 1. Classification accuracies of different knowledge bases. 

1. Diagnosis Suggestion  [%] 1., 2. and 3. Diagnosis Suggestion [%] 

Disease Cases 

Old

Know-

ledge

New 

Expert

Know-

ledge

ML

Know

ledge

Expert

and

ML

Know-

ledge

Old

Know-

ledge

New 

Expert

Know-

ledge

ML

Know-

ledge

Expert

and

ML

Know-

ledge

Acoustic Neurinoma 131 8,4 31,3 66,4 16,8 32,1 68,7 87 71,8 

Benign Positional Vertigo 173 5,2 56,7 35,3 50,3 50,9 93,6 64,2 89,0 

Menière's Disease 350 22,3 36,0 83,1 77,1 72,9 76,0 96,9 98,3 

Sudden Deafness 47 48,9 72,3 74,5 87,2 91,5 93,6 97,9 100,0 

Traumatic Vertigo 73 65,8 65,8 78,1 52,1 95,9 98,6 98,6 94,5 

Vestibular Neuritis 157 6,4 14,7 65 66,9 84,7 84,7 75,8 93,0 

Benign Recurrent Vertigo 20 20,0 70,0 40 50,0 95,0 100,0 85 95,0 

Sum 951 19,2 40,4 67,4 60,3 68,4 82,8 86,0 91,8 
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It can be seen clearly that the update of the knowledge of ONE was necessary. The 
updated knowledge bases classified cases notably better than the original knowledge 
used by ONE. The classification accuracy of the original knowledge base as the first 
diagnosis suggestion was 19.2 %, when the updated knowledge bases classified 40.4– 
67.4 % of cases correctly. The knowledge base combining expert and machine learning 
knowledge was generally better than the new knowledge base using only expert 
knowledge. The classification accuracy with combined knowledge was 60.3 % and 
with experts’ knowledge 40.4 %, when looking at the first diagnosis suggestions. When 
examining the three diagnosis suggestions, it can be seen that the combined knowledge 
base is also better than the knowledge base formed only with the machine learning 
method. 

5. Results

The result of the upgrade process of the decision support system is a more user-friendly 
system. Its graphical user interface, especially the navigation tree, helps the user to 
easily notice parts of the questionnaire that require extra attention. The user does not 
have to go through the whole questionnaire any more to form a picture of a patient’s 
symptoms.  Instead, she just has to look at the navigation tree. 

Data transfer has been altered to a more automatic form, which makes the system 
also more usable. Patient information from paper questionnaires can be transferred to 
electronic form more easily with text scanners. This still requires data alteration. When 
the web questionnaire saves data to the database of the decision support system, data 
can be used at real time, and, thus, the system can offer more support for physicians 
when they are diagnosing the case. 

The knowledge refinement affected positively to the inference capability of the 
system. Experts’ knowledge update doubled the mean classification accuracy and 
machine learning (ML) improved it more than treble when looking at the first 
diagnosis. Experts’ attribute selection and weighting is necessary. Generally, 
combining weights set by the experts to the fitness values calculated by the machine 
learning method resulted in the best classification results.  

6. Discussion 

Vertigo diseases can be difficult to separate from each other because of their similar 
symptoms. Therefore, physicians see systems that help making diagnosis very useful 
[9]. ONE is planned to support physicians’ diagnostic process. It infers a patient’s 
possible diagnoses on the basis of information given about the patient. It also tries to 
explain why inferred diseases are possible and informs if something important 
information is missing. Physicians can use it as an assistant when diagnosing patients. 
With the help of ONE it is possible to collect data systematically for medical research. 
Collected data can also be utilised in machine learning research which produces 
methods for finding models describing an application area. 

In this study, the combination of experts’ knowledge and machine learnt 
knowledge yielded the best classification accuracies. However, the accuracies of the 
first diagnosis suggestions are still quite low. A reason for this might be the difficulty 
of the application area. Some cases are especially difficult to diagnose because of the 
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phase of the disease. In order to overcome this problem, the knowledge refinement 
process will continue with the development of a knowledge acquisition tool containing 
machine learning capabilities. During the upgrade process, we developed a method for 
formulating fitness values from the data. Later we are going to add weight calculation 
to the machine learning method. The architecture of ONE with the separate query base, 
patient database, knowledge base and inference mechanism enables its customising for 
different institutions in the field of otoneurology and even in different application 
areas. The knowledge acquisition tool will also help in the adaptation of the system to 
other institutions. 
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a b s t r a c t

We have been interested in developing an otoneurological decision support system that

supports diagnostics of vertigo diseases. In this study, we concentrate on testing its infer-

ence mechanism and knowledge discovery method. Knowledge is presented as patterns

of classes. Each pattern includes attributes with weight and fitness values concerning the

class. With the knowledge discovery method it is possible to form fitness values from data.

Knowledge formation is based on frequency distributions of attributes. Knowledge formed

by the knowledge discovery method is tested with two vertigo data sets and compared to

experts’ knowledge. The experts’ and machine learnt knowledge are also combined in vari-

ous ways in order to examine effects of weights on classification accuracy. The classification

accuracy of knowledge discovery method is compared to 1- and 5-nearest neighbour method

and Naive–Bayes classifier. The results showed that knowledge bases combining machine

learnt knowledge with the experts’ knowledge yielded the best classification accuracies.

Further, attribute weighting had an important effect on the classification capability of the

system. When considering different diseases in the used data sets, the performance of the

knowledge discovery method and the inference method is comparable to other methods

employed in this study.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In the general population of Southern Finland, 29% of peo-
ple reported having an experience of vertigo together with a
moving sensation [1]. In Germany, 5% of the general popula-
tion was diagnosed to have vestibular vertigo within a year
[2]. Because vertigo is the principal symptom in most of the
otoneurological disorders having also other similar symptoms
[3,4], it is difficult to separate disorders from each other. A
correct diagnosis and treatment of a disorder can prevent
a patient to be isolated and handicapped, at best avoid a
destructive surgery or even a death caused by falling [3]. We
have been developing an otoneurological decision support
system ONE [5–9] during the last decade in order to support

∗ Corresponding author.
E-mail address: Kirsi.Varpa@cs.uta.fi (K. Varpa).

diagnostics of vertigo diseases. Its purpose is to aid a deci-
sion maker by offering diagnosis suggestions inferred from
the information gathered on a patient.

The architecture of the decision support system ONE is sep-
arate: it consists of different components connected together
[5]. The components are the query base, graphical user inter-
face, knowledge base, answer database, inference mechanism,
and explanation facility. The separate architecture of ONE
enables its customizing for different institutes relatively eas-
ily, because only the query base, knowledge base and answer
base have to be tailored. Its graphical user interface, inference
method and explanation facility form a kind of expert sys-
tem shell that can be used as a basis in creating new decision
support systems even for different application domains.

0169-2607/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2008.03.003
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The knowledge base of ONE was originally formed by
domain experts [6]. There occurred some problems in the
separation of disease classes when using this knowledge in
inference and, therefore, the refinement of the knowledge
base was started [7] and a machine learning (ML) method, that
creates knowledge by analysing domain data, was developed
[7]. In [7], an otoneurological data set of 815 cases collected
in the Department of Otorhinolaryngology at Helsinki Uni-
versity Central Hospital in Finland was used. Gathering this
data set was started for the development of ONE in the begin-
ning of 1990s and it continued during the decade [8]. The
cases of the data set belong to the diagnostic groups of acous-
tic neurinoma, Ménière’s disease, benign positional vertigo
(BPV), sudden deafness, traumatic vertigo, and vestibular neu-
ritis. Results of [7] suggested that knowledge learnt from data
was useful when refining the knowledge base. However, there
were some limitations in the study. One limitation was the
approach used to estimate the predictive performance of ONE
with the knowledge learnt from the data: the knowledge was
learnt from 70% of cases and it was tested with the rest
30% of the cases. Other limitation was the lack of compari-
son methods, i.e., the method was not compared to other ML
methods.

The decision support system ONE was upgraded in order
to achieve a more user-friendly graphical user interface, to
restructure its database and to make data transferring tools
ensuring data quality [9]. During the renewal process, ONE’s
query and knowledge bases were upgraded. Some new impor-
tant questions were added into the query base and some of
the old questions and their answer alternatives were modi-
fied to make them more understandable. The upgrade of the
knowledge base was first done manually with otoneurological
experts who updated the disease patterns when necessary.
The experts used their knowledge and experience as the basis
when updating the knowledge base. They had also a possibil-
ity to compare their assumptions about the diseases with the
collected data. After that, another knowledge base was formed
with the ML method [7]. Further, a combination of experts’ and
machine learnt knowledge was created for preliminary test-
ing. Results showed that knowledge upgrade was necessary
and enhanced notably the classification accuracy of the deci-
sion support system. Still, there seemed to be some difficulties
in recognition of certain disease classes (acoustic neurinoma
and Ménière’s disease).

In this paper, we describe the ML method developed in [7]
and test its functionality with ONE’s inference. We compare
classification accuracies of the knowledge created by the ML
method to the experts’ knowledge and to various combina-
tions of expert and machine learnt knowledge. To estimate
the predictive performance of machine learnt knowledge, we
use the 10-fold cross-validation [10], which is a more sophis-
ticated evaluation method than the pure training set/test set
division and gives more reliable results with data sets of a
small or moderate size [11]. In the test, we use an augmented
vertigo data set of 1030 cases, which has additional cases
collected at Helsinki University Central Hospital in the begin-
ning of the 2000s. In addition to cases from the previously
mentioned six classes, the extension has cases from three
new classes: benign recurrent vertigo (BRV), vestibulopatia and
central lesion. Further, a totally new data set of 253 cases col-

lected at Tampere University Hospital in Finland is used to
evaluate the knowledge learnt from data. Finally, we compare
results of ONE’s inference to results of the k-nearest neighbour
(k-NN) method [10] and Naive–Bayes (NB) classifier [10,12] to
test its general functionality.

2. Machine learning

ML methods [10] can be used in knowledge refinement and
knowledge discovery if there is enough data collected from a
domain. For example, with ML methods it is possible to try to
discover hidden patterns or rules occurring in data. Some of
the methods can give explanations about the way of achiev-
ing results, thus, enabling the user to evaluate the formed
results [5]. Generally used knowledge discovery methods are
decision tree induction [13], k-nearest neighbour method [10],
NB classifier [12,10], and neural networks (NNs) [10].

Decision tree algorithms use inductive inference: they try
to build general models from the example cases using heuris-
tics, e.g., ID3 [13], C4.5 [11]. Each path from the root node of
the decision tree to a leaf node can be regarded as a rule
that leads to a certain class through different attribute tests
(nodes). Decision trees are quite easy to understand and,
maybe because of this, they have been used widely in differ-
ent domains. Decision trees have been applied in medicine,
e.g., in oncology to manage decision protocols [14], to create
classification patterns of metabolic disorders [15], to acquire
knowledge about otoneurological diseases [8], in data mining
of diabetes [16,17], and to distinguish the severity of dementia
[18].

The k-nearest neighbour method is an example of
instance-based learning [10]. It tries to find the most similar
cases of the new case from the learning data (example cases)
by using some distance metric. The number of k tells how
many neighbours (similar cases) are searched. The class of the
new case is the class being in the majority among the k-nearest
cases. The k-nearest neighbour method has been used, e.g., in
generating a system for evidence-based medicine in oncology
[19], in medical information retrieval [20], in bioinformatics
to predict the protein �-turn [21] and in gene selection from
microarray data [22], and in texture analysis in breast tissue
analysis and characterization [23].

The NB classifier is a classification method that is based on
probability calculation [10,12]. It assumes that all the attribute
values are conditionally independent, which simplifies its
calculation. A new case is classified into the class having
the highest calculated probability. The NB classifier has been
utilised, e.g., in feature selection and classification model con-
struction of diabetes data [16], for classifying oncology [24], for
predicting microRNA genes [25] and target [26], and predicting
survival rate of cirrhotic patients [27].

NNs consist of processing units, neurons that are con-
nected together in input, hidden and output layers [10]. They
try to determine the proper weights on the interconnections
between neurons in order to achieve correct output. NNs have
been used in medicine, for example, in diagnosing heart mur-
murs in paediatrics [28] and unbalance with acoustic signals
[29], classifying otoneurological patients by eye movement sig-
nals [30] and in bioinformatics to predict solvent accessibility
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of amino acid residues in proteins [31], and sequence of TP53
gene [32].

3. Description of inference mechanism and
knowledge discovery method

The decision support system ONE infers diagnosis sugges-
tions about the given information of the subject [5]. Its
inference mechanism resembles pattern recognition meth-
ods, especially the weighted k-nearest neighbour method [33].
Inference is based on the weight and fitness values set for
attributes, which are referred to as the knowledge of the sys-
tem.

3.1. Knowledge base

The knowledge base of ONE contains a description or a pat-
tern for each deducible class (disease) in the form of fitness
values and weights [5]. A weight value assigned to an attribute
expresses the significance of the attribute for the class. Weight
values vary from 0 to chosen maximum, where 0 means that
the attribute does not concern the class at all. The greater

Fig. 1 – Part of knowledge pattern for benign positional
vertigo. Meaning of attributes: ATT OFTEN = frequency of
vertigo attacks, ATT LAST = length of the vertigo attacks,
ATT INTE = severity of vertigo attacks, ROTATION = feeling
of rotation, SLIPSFALLS = frequency of Tumarkin-type drop
attacks, PROV POSIT = severity of position induced vertigo,
AGE TIN SYM = occurrence of tinnitus,
TINNITUS = handicap caused by tinnitus,
NEUR VISUAL = visual blurring or double vision during
vertigo attacks, HEAD TRAUMA = direct injury of the head or
neck associated with the beginning of vertigo symptoms,
POST OPEN = posturography base line, eyes open (cm/s),
POST CLOSE = posturography base line, eyes closed (cm/s).

Fig. 2 – Example of an unusual characteristic taken into
account in disease pattern of benign positional vertigo.
According to the clinical picture of the benign positional
vertigo, hearing loss is not typical for this disease. However,
many patients do have, e.g., age-related hearing loss.

the weight value is, the more important the attribute is for
the class. Fitness values set to attribute values express the
correspondence between these values and the class. In the
knowledge base, fitness values are set from 0 to 100. The fit-
ness value 0 means that the attribute value does not fit the
class whereas the fitness value 100 shows that the value at
issue fits best the class. Fig. 1 presents an example of a disease
pattern.

In the knowledge base each pattern corresponds to one
vertigo disease (class). Disease patterns can be considered as
profiles of diseases. These patterns match partly the clinical
pictures of diseases. However, in the patterns it is possi-
ble to take into account also unusual characteristics that
a patient may have. For instance, a patient suffering BPV
can have hearing loss because of his age although hearing
loss is not normally a symptom of this disease. An exam-
ple of this is shown in Fig. 2. Due to fitness values, it is
possible to take into account this kind of uncharacteristic
symptoms.

3.2. Inference

The inference method of ONE resembles weighted k-nearest
neighbour methods of pattern recognition [33]. Instead of
searching the nearest neighbours it searches the fittest disease
classes. It calculates scores for the classes from the weight and
fitness values of attributes. The score S(d) for the disease d is
calculated in the following way

S(d) =
∑A(d)

a=1x(a)w(d, a)f (d, a, j)
∑A(d)

a=1x(a)w(d, a)
, (1)

where A(d) is the number of the attributes associated to dis-
ease d, x(a) is 1, if the value of attribute a for the disease d
is known, otherwise 0, w(d,a) is the weight of the attribute a
for the disease d, and f(d,a,j) is the fitness value for the value
j of the attribute a for the disease d. In the case of quanti-
tative attributes, the fitness values are interpolated by using
attribute values in the knowledge base as interpolation points.
The fitness values are altered to the range of 0–1 during the
inference process.

The disease class having the highest score is the best
diagnosis suggestion. ONE also counts the minimum and max-
imum scores for the classes using the lowest and the highest
fitness values for the attributes having missing values. With
the minimum and maximum scores ONE tries to handle uncer-
tainty caused by missing values. The closer the minimum and
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maximum scores are to each other, the more reliable the infer-
ence is.

The diagnosis suggestions of ONE are ordered primarily by
the score and secondarily by the difference of the minimum
and maximum score. If the classes have the same score but
one class has a smaller difference between the minimum and
maximum scores than the others, the class having the small-
est difference is placed as a higher diagnosis suggestion. If the
classes have the same score and the minimum and maximum
score difference, their order is selected randomly.

In addition to diagnosis suggestions, ONE can explain why
a class may not be possible on the basis of its knowledge. In
the knowledge base, some attributes are marked as necessary
attributes. (The type “V” in a knowledge pattern means that
an attribute is a necessary one. For ordinary attributes, the
type is “T”.) If a patient does not have a certain value for a
necessary attribute, the system informs the user about this.
Due to necessary attributes, ONE can inform if some crucial
information about the patient is missing.

3.3. Learning fitness values from data

Weights and fitness values in the original knowledge base
were set by domain experts on the basis of their experience
and knowledge [6]. The weight values varied typically from 0 to
5 but there were also some larger values. The number of rele-
vant attributes in the patterns varied according to the classes:
some classes can be inferred with few attributes, other classes
require a larger number of attributes.

If the number of diseases and attributes is large, the man-
ual definition of the knowledge base is difficult and tedious.
With the knowledge base defined by experts, acoustic neuri-
noma, BPV, Ménière’s disease and vestibular neuritis were not
recognized as well as expected [34]. We developed the knowl-
edge discovery method [7] that calculates fitness values for
values of attributes from domain data. Fitness values can be
perceived as values that show how often values of an attribute
occur in a certain class. Fitness values are calculated for every
class separately from example cases belonging to it. On the
basis of these cases, a frequency distribution is formed for
each attribute defined relevant for the class.

The frequency distributions form the basis of the knowl-
edge discovery method. The most frequently occurring
attribute value fits best the class. Thus, the fitness value for
the attribute value with the highest frequency is set to 100.
Fitness values for the other attribute values are formed by
relating their frequencies to the frequency of the most fre-
quently occurring value:

fv(d, a, j) = fr(d, a, j)
fr(d, a, h)

× 100, (2)

where fv(d,a,j) is the fitness value of the value j of the attribute
a in class d, fr(d,a,j) is the frequency of the value j of the
attribute a in class d and fr(d,a,h) is the highest frequency in
the distribution of the attribute a in class d.

The method gets as an input a list of all possible values
of qualitative attributes occurring in the domain. If there are
attribute values that do not occur in the frequency distribution
under consideration, their fitness values are set to 0. Quanti-

Table 1 – Frequency distribution of severity of vertigo
attacks in benign positional vertigo including machine
learnt fitness values

Value Frequency % Fitness value

0 = no vertigo attacks 0 0 0.0
1 = mild 0 0 0.0
2 = weak 34 19.7 42.5
3 = moderate 80 46.2 100.0
4 = strong 36 20.8 45.0
5 = very strong 18 10.4 22.5
Valid 168 97.1
Missing 5 2.9
Total 173 100.0

tative attributes have to be discretised in order to calculate
the fitness values. In the inference, values of new cases can be
discretised or fitness values for new cases can be interpolated
by using mid-points of discretised intervals as interpolation
points.

Let us use cases of BPV and an attribute severity of the ver-
tigo attacks (att inte) as an example of the use of the knowledge
discovery method. There are 173 patients diagnosed to have
this disease. The frequency distribution of the severity of the
vertigo attacks in the class BPV is shown in Table 1. It can
be seen that value 3 (moderate) has the highest frequency of
80, so, it fits best the disease. Therefore, its fitness value is
set to 100 in the knowledge base. Other fitness values are
calculated by the Eq. (2). For example, the frequency of the
attribute value “4 = strong” is 36, and, thus, its fitness value is
(36/80) × 100 = 45.0. The attribute severity of vertigo attacks has
actually six possible attribute values but the first two values
“0 = no vertigo attacks” and “1 = mild” do not occur in the fre-
quency distribution under consideration, and, therefore, their
fitness values are set to 0.

4. Results of the knowledge discovery
method and inference method of ONE

For this study, we formed knowledge bases with the help of
the knowledge discovery method besides the experts. At the
moment, the method can calculate only the fitness values for
attribute values and sets all the weight values to one. Fur-
ther, we combined the knowledge of the experts with the
knowledge formed by the knowledge discovery method into
a knowledge base where weight values are set by the experts
and fitness values are calculated from the domain data. The
previous study [9] showed that there seemed to be some
difficulties in recognition of certain disease classes (acous-
tic neurinoma and Ménière’s disease) when using experts’
attribute weighting. Therefore, we tested also how changing
the weight values to one affected classification of these dis-
eases. Within this study five different knowledge bases were
used:

KB1 = Fitness and weight values were set by the experts.
Weight values were set from 0 to 10, where 0 means that
an attribute does not concern the class at all and, therefore,
it was not taken into account in inference.
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KB2 = All weight values were set to 1 and fitness values were
calculated from data by the knowledge discovery method.
KB3 = Weight values were set by the experts and fitness val-
ues were calculated from data by the knowledge discovery
method.
KB4 = As KB3 but weight values of acoustic neurinoma were
set to 1 in order to see influence of the weight values in
classification on acoustic cases.
KB5 = As KB4 but weight values of Ménière’s disease were also
set to 1.

The knowledge bases were tested with the augmented ver-
tigo data and with the new vertigo data. To characterize the
performance of the knowledge bases, true positive rates (TPRs)
and total classification accuracies were calculated. For each
disease class, a TPR is calculated as the percentage of correctly
inferred cases in the class:

TPR (%) = 100
tpos

ncases
, (3)

where tpos is the number of correctly classified cases in the
class and ncases is the number of all cases in the disease class.
For each knowledge base, a total classification accuracy (ACC)
is calculated:

ACC (%) = 100
t

n
, (4)

where t is the number of cases correctly classified in all dis-
ease classes and n is the total number of vertigo cases used in
classification.

4.1. Results with the augmented data

For testing the knowledge discovery method, the augmented
otoneurological data containing 1030 vertigo cases is used.
The augmented data contains cases of nine vertigo diseases:

1. acoustic neurinoma (nane = 131; 12.7%),
2. benign positional vertigo (nbpv = 173; 16.8%),
3. Ménière’s disease (nmen = 350; 34.0%),
4. sudden deafness (nsud = 47; 4.6%),
5. traumatic vertigo (ntra = 73; 7.1%),
6. vestibular neuritis (nvne = 157; 15.2%),
7. benign recurrent vertigo (nbrv = 20; 1.9%),
8. vestibulopatia (nves = 55; 5.3%) and
9. central lesion (ncl = 24; 2.3%).

Each case is a patient who has informed to have vertigo
or gait difficulties and is diagnosed to have one of the listed
vertigo diseases. Patients have filled out an otoneurological
questionnaire, which has 105 questions concerning symp-
toms and medical history. Furthermore, there are 72 questions
(attributes)1 about otoneurologic, audiologic and imaging tests
in the query base. The tests are not done to every patient,
and, thus, for most of the patients there are no answers
concerning test results. Attributes with low frequencies of

1 A question can be thought as an attribute, and, thus, we use
the term attribute instead of question henceforth.

available values are not used in testing knowledge discovery
method. In tests, 89 attributes are used: 83 basic attributes
and 6 attributes derived from the basic attributes. Quantita-
tive attributes, e.g., age when the symptoms started, results
of caloric tests, posturography and audiometry frequency and
speech, are discretised into equal-width intervals in order to
guarantee a similar way of their handling in all the ML meth-
ods used in this study. Thus, all of the attributes used in this
study are qualitative. For most of the attributes, the percent-
age of missing values is about 10. Ten attributes have about
30% of their values missing, and for one important attribute
even 53% of values are missing.

The renewal process of the decision support system
included update of the otoneurological query base. Some new
important questions, e.g., vertigo type, hyperacusis and its
handicap, were added into the query base. Some of the old
questions and their answer alternatives were modified in
order to simplify them and make them easier to answer. Mod-
ification concerned mainly the answer alternatives: answer
scales were limited to five alternatives. In some cases this
meant limitation of alternatives but in other cases new alter-
natives were added. In order to test knowledge bases with
the augmented and the new data, the augmented data had
to be transformed into a form matching the new query base.
Also, some of the answer alternatives of the new data had to
be combined into one option because there were no similar
alternatives in the augmented data.

In order to get estimates for the predictive performance of
the knowledge bases KB2–KB5 created from the augmented
data, a 10-fold cross-validation [10] was used. The augmented
data containing 1030 cases was divided into 10 subsets. A
knowledge base was created on the basis of nine subsets and
its validity was tested with the remaining subset. For example,
cases of Ménière’s disease (350) were divided into 10 subsets
each containing 35 cases. Thus, the pattern of Ménière’s dis-
ease in the knowledge base was created on the basis of 315
cases and tested with 35 cases. This was repeated 10 times
altogether. The classification suggestions for each test set
were output into one file, and TPRs and total classification
accuracies were calculated directly from correctly classified
cases. The 10-fold cross-validation was done three times using
three different random data divisions. For all the knowledge
bases, the same three data divisions were used for the sake of
comparability.

There were approximately 10 cases with the same scores
and score differences in the results yielded by most of the
knowledge bases. Most of the cases with the same scores and
differences occurred in the results of the KB2 where weight
values were equal to 1: the first and second diagnosis sug-
gestions had the same score and score difference in 90 cases,
and 12 cases had the same score and score difference even
in first, second and third diagnosis suggestions. The order of
the three first diagnosis suggestions having the same score
and score difference was selected randomly likewise in the
case of two diagnosis suggestions having the same score and
difference.

In the result Tables 2–4, mean TPRs and classification accu-
racies of the three 10-fold cross-validations for knowledge
bases KB2, KB3, KB4 and KB5 are presented. Error bars (99%
confidence intervals) for the results of each cross-validation



c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 154–164 159

Table 2 – True positive rates of disease classes and total
classification accuracies of knowledge bases within the
first diagnosis suggestion in percents in augmented data

Disease name Cases KB1 KB2 KB3 KB4 KB5

Acoustic neurinoma 131 31.3 63.4 15.5 69.7 62.1
Benign positional vertigo 173 59.5 27.4 44.1 44.5 40.3
Ménière’s disease 350 38.3 80.7 76.7 74.2 91.5
Sudden deafness 47 72.3 66.0 84.4 84.4 75.2
Traumatic vertigo 73 68.5 66.2 41.6 41.6 42.0
Vestibular neuritis 157 18.5 61.8 66.2 66.9 65.2
Benign recurrent vertigo 20 60.0 10.0 30.0 30.0 21.7

Median of TPR 59.5 63.4 44.1 66.9 62.1
Total accuracy 951 42.4 62.1 57.3 64.0 67.7

are shown in Figs. 3 and 4. When looking at the total classifi-
cation accuracies of the first diagnosis suggestions (Table 2), it
can be seen that the knowledge bases using machine learnt
knowledge classify cases more accurately than the knowl-
edge base defined by experts (42.4%). The best ACC (67.7%)
is gained by KB5 that combines the knowledge formed by
the discovery method with experts’ knowledge, in which
weight values of acoustic neurinoma and Ménière’s disease
are set to 1. Overall, accuracies do not differ significantly
on the basis of the error bars of Fig. 3. However, the accu-
racy of KB5 is significantly higher than the accuracy of KB3
in the cross-validations 1 and 2. On the basis of the total

Table 3 – True positive rates of disease classes and total
classification accuracies of knowledge bases within the
first and second diagnosis suggestions in percents in
augmented data

Disease name Cases KB1 KB2 KB3 KB4 KB5

Acoustic neurinoma 131 45.8 74.6 64.4 90.3 84.2
Benign positional vertigo 173 87.3 47.0 71.1 69.2 65.9
Ménière’s disease 350 60.3 94.5 94.0 91.6 97.6
Sudden deafness 47 85.1 86.5 97.9 96.5 94.3
Traumatic vertigo 73 91.8 84.0 79.9 79.9 77.2
Vestibular neuritis 157 52.9 68.4 84.3 83.0 80.9
Benign recurrent vertigo 20 95.0 30.0 60.0 60.0 60.0

Median of TPR 85.1 74.6 79.9 83.0 80.9
Total accuracy 951 66.4 76.2 82.5 84.6 84.7

Table 4 – True positive rates of disease classes and total
classification accuracies of knowledge bases within the
first, second and third diagnosis suggestions in percents
in augmented data

Disease name Cases KB1 KB2 KB3 KB4 KB5

Acoustic neurinoma 131 68.7 85.5 71.0 95.2 94.7
Benign positional vertigo 173 94.8 62.4 88.1 84.8 81.7
Ménière’s disease 350 76.3 97.0 97.9 97.2 99.8
Sudden deafness 47 93.6 92.9 99.3 97.9 97.9
Traumatic vertigo 73 98.6 95.0 94.5 94.5 93.6
Vestibular neuritis 157 87.9 75.4 92.6 88.7 88.5
Benign recurrent vertigo 20 100.0 46.7 75.0 75.0 75.0

Median of TPR 93.6 85.5 92.6 94.5 93.6
Total accuracy 951 83.6 84.1 90.9 92.6 92.8

Fig. 3 – Error bars (99% confidence intervals) for total
accuracies of each cross-validation with different
knowledge bases within the first diagnosis suggestions in
augmented data.

classification accuracies of the first and second diagnosis sug-
gestions (Table 3) and of the first, second and third suggestions
(Table 4), the knowledge bases combining the machine learnt
knowledge and the experts’ knowledge classify cases more
accurately than the bases completely formed by the experts
or the ML method. Within the first and second suggestions,
82.5–84.7% of cases are classified correctly with the knowl-
edge combinations and within the first, second and third
suggestions, 90.9–92.8% of cases. With the experts’ knowl-
edge, the former classification accuracy is 66.4% and the latter
83.6%.

In spite of the lowest ACC, the knowledge base KB1 using
only the experts’ knowledge has remarkably better TPRs in

Fig. 4 – Error bars (99% confidence intervals) for median
true positive rates of each cross-validation with different
knowledge bases within the first diagnosis suggestions in
augmented data.
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two disease classes, BPV and BRV. For example, the TPR of BPV
within the first diagnosis suggestion is 59.5% and within the
first, second and third suggestions 94.8%, when in the other
knowledge bases the corresponding rates are 27.4–44.5% and
62.4–88.1%, respectively. The knowledge bases using machine
learnt knowledge and experts’ knowledge do still have some
difficulties in separating especially these two classes from
others. Traumatic vertigo is also identified better with the
pure experts’ knowledge. Instead, with other disease classes,
especially acoustic neurinoma and Ménière’s disease, there
seem to be problems in classifying with KB1. When looking at
the first diagnosis suggestion, KB1 classifies cases of acoustic
neurinoma (31.3%), Ménière’s disease (38.3%) and vestibular
neuritis (18.5%) remarkably worse than KB2 containing weight
values 1 and fitness values calculated from data classify cases
(63.4%, 80.7%, 61.8%, respectively). This indicates that there
are some problems in experts’ setting of weight or fitness val-
ues.

The appropriate fitness values are crucial in classification
and, as can be seen in Tables 2–4, they alone can improve the
classification accuracies. The combination of proper weight
and fitness values can improve the classification even more.
Therefore, we combined the weight values from the knowl-
edge base KB1 with the fitness values from the knowledge
base KB2 and got as a result the knowledge base KB3. The
combination did not work as well as expected. The TPR of
acoustic neurinoma decreased from 63.4% (KB2) to 15.5% when
considering the first diagnosis suggestion and from 74.6%
(KB2) to 64.4% within the first and second suggestions. For
sudden deafness and vestibular neuritis, the combination
improved the TPR but, instead, identification of traumatic ver-
tigo decreased.

In order to find out whether there were really problems
in weight values set by the experts, the weight values of
acoustic neurinoma were changed to 1 in KB4. The weight
alteration improved the TPR of acoustic neurinoma. As the
first suggestion, 69.7% of cases are correctly recognized and
even 90.3% of cases when looking at the first and second
diagnosis suggestion. Because Ménière’s disease was not rec-
ognized with the experts’ weights as well as in knowledge
base KB2, we also made the weight alterations to the weights
of Ménière’s disease (KB5). With KB5, 91.5% of Ménière cases
were identified correctly as the first diagnosis suggestion and

99.8% within the first, second and third diagnosis sugges-
tion. The ACC was also the highest in KB5. On the basis of
the median TPRs of the first diagnosis suggestion, the per-
formance of KB3 is worst (44.1%) in comparison with the
other knowledge bases having machine learnt fitness val-
ues. KB4 has the best median TPR (66.9%). However, the
error bars of Fig. 4 do not reveal any significant differ-
ences.

4.2. Results with the new data

The knowledge bases formed from the augmented data were
tested also with a totally new test data that contains 310
cases. The test data was gathered during 2004–2005 at Tam-
pere University Hospital. In some disease classes the number
of cases was so small that we could not test their classifica-
tion. Hence, the classes containing over 20 cases were selected
to test drives: BPV (nbpv = 80), Ménière’s disease (nmen = 128),
vestibular neuritis (nvne = 20) and vestibulopatia (nves = 20). We
could not use vestibulopatia in all the test drives because there
was not a knowledge pattern for it in the knowledge base
KB1.

The TPRs and total classification accuracies within the
new data are shown in Table 5. The best ACC of the first
diagnosis suggestion is in KB5. It classifies 53.5% of cases cor-
rectly when the other bases get 23.2–46.1% of cases correctly.
When looking at the two and three first diagnosis sugges-
tions, KB3 has the highest ACC. It classifies 68.9% and 86.0% of
cases correctly when the total classification accuracies for the
other knowledge bases are 51.8–68.0% and 59.2–80.3%, respec-
tively. It seems to be that the knowledge bases combining the
experts’ knowledge and machine learnt knowledge are also
more appropriate for the new data. Within the three diagno-
sis suggestions these knowledge combining bases classify over
79.8% of cases correctly when with the pure experts’ knowl-
edge the accuracy is 71.9% and with the pure machine learnt
knowledge 59.2%.

From the TPRs of the disease classes in Table 5, it can
be seen that the pure experts’ knowledge in KB1 does not
work with the new data as well as with the augmented data.
Especially, BPV cases are difficult to recognize. Only 13.8% of
BPV cases are classified correctly as the first diagnosis sug-
gestion and 67.5% as the first, second or third suggestion.

Table 5 – True positive rates of disease classes and total classification accuracies of knowledge bases in percents in new
data

Disease name Cases KB1 KB2 KB3 KB4 KB5

First diagnosis
suggestion

Benign positional vertigo 80 13.8 1.3 12.5 10.0 12.5
Ménière’s disease 128 29.7 78.9 68.8 65.6 83.6
Vestibular neuritis 20 20.0 15.0 30.0 25.0 25.0
Total 1. accuracy 228 23.2 46.1 45.6 42.5 53.5

First or second
diagnosis
suggestion

Benign positional vertigo 80 41.3 5.0 42.5 42.5 35.0
Ménière’s disease 128 60.2 85.9 88.3 82.0 93.0
Vestibular neuritis 20 50.0 20.0 50.0 45.0 40.0
Total 1.–2. accuracy 228 52.6 51.8 68.9 64.9 68.0

First, second or
third diagnosis
suggestion

Benign positional vertigo 80 67.5 15.0 73.8 62.5 57.5
Ménière’s disease 128 73.4 89.8 96.1 94.5 97.7
Vestibular neuritis 20 80.0 40.0 70.0 60.0 55.0
Total 1.–3. accuracy 228 71.9 59.2 86.0 80.3 79.8
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Anyhow, this is still much better than with the knowledge
formed by ML method in KB2 (1.3% and 15.0%, respectively).
With the experts’ knowledge, vestibular neuritis cases are also
classified more accurately than with KB2. Instead, Ménière’s
disease is classified notably better by the knowledge formed
by the knowledge discovery method. With the knowledge
base KB2, 78.9% of cases are recognized as the first sugges-
tion and 89.8% as the first, second and third suggestions,
when the corresponding values are 29.7% and 73.4% using
the pure experts’ knowledge. In general, the combination of
the experts’ and machine learnt knowledge (KB3) is better
than the pure experts’ knowledge or the knowledge from the
discovery method. Setting weights of acoustic neurinoma to
one in KB4 does not enhance classification. Instead, setting
also the weights of Ménière’s disease to one does improve the
recognition of Ménière’s cases.

The difference between the total classification accuracies
of the augmented and the new data with different knowledge
bases ranges between 8.2% and 24.6% when classifying dis-
ease classes BPV, Ménière’s disease and vestibular neuritis.
The knowledge fits better to the augmented data. The mean
TPRs of BPV and vestibular neuritis with the different knowl-
edge bases are almost 30% higher with the augmented data
compared to the new data. There seem to be some problems
with both data in the recognition of BPV cases as the first
diagnosis suggestion.

5. Comparison of ONE’s inference with the
k-nearest neighbour method and the NB
classifier

To test the classification capability of ONE, its first diagno-
sis suggestions gained with the knowledge base KB2 were
compared to the classifications given by the 1- and 5-nearest
neighbour methods and the NB classifier. The k-nearest
neighbour method and the NB classifier somewhat resemble
ONE’s inference mechanism. All these methods are simple
to compute and easy to interpret. They treat attributes as
independent of each other; we used the k-nearest neighbour
method with the unweighted version of the Value Difference
Metric [35]. The theoretical error rate of NB classifier is mini-
mal compared to all other classifiers [10]. In practical domains,
the assumption of class conditional independency, for exam-
ple, is usually violated, and, thus, the performance of NB has
been found to be comparable to decision trees and NNs in var-
ious empirical studies [10]. This has been shown, for instance,
in the study of Kononenko et al. [36]. The error rate of the k-
nearest neighbour method approaches the Bayes error, when
the size of the training data and k both approach infinity
[10].

The knowledge base KB2 was used in the comparisons
because the weights were not used either in distance cal-
culation of the k-nearest neighbour methods or in NB
classification. In NB classification, the Laplace-estimate [37]
was used for estimation of prior probabilities and the M-
estimate [10,37] for estimation of conditional probabilities. In
the 5-nearest neighbour (5-NN) method, the predicted class
was selected randomly if there were more than one majority
class within the 5-nearest cases. This is similar to the random

Table 6 – True positive rates of disease classes and total
classification accuracies of ONE for KB2, k-nearest
neighbour methods and Naive–Bayes classifier in
percents in augmented data

Disease name Cases ONE (KB2) 1-NN 5-NN NB

Acoustic neurinoma 131 63.4 75.8 75.6 78.9
Benign positional vertigo 173 27.4 64.5 64.9 58.6
Ménière’s disease 350 80.7 88.1 95.9 89.0
Sudden deafness 47 66.0 61.7 51.8 63.8
Traumatic vertigo 73 66.2 80.4 79.0 77.6
Vestibular neuritis 157 61.8 80.0 80.5 78.1
Benign recurrent vertigo 20 10.0 15.0 6.7 11.7
Vestibulopatia 55 37.0 23.6 26.1 9.1
Central lesion 24 37.5 5.6 5.6 22.2
Median of TPR 61.8 64.5 64.9 63.8
Total accuracy 1030 60.2 72.8 75.0 71.7

way in which ONE’s inference selects the order of the classes
if they have the same score and score difference. In differ-
ent cross-validation drives with 5-NN, there were 58–60 cases
which had two majority classes and 9–12 cases which had five
majority classes.

The methods were tested with the augmented and new
data. In the test drives with the augmented data, nine disease
classes were used whereas with the new data it was possi-
ble to use only four disease classes because there were not
enough cases in other classes. In the tests with the augmented
data, 10-fold cross validation was employed three times. Mean
results of the test drives with the augmented data are shown
in Table 6. Error bars (99% confidence intervals) for the results
of each cross validation with the augmented data and differ-
ent ML methods are shown in Figs. 5 and 6. In the test with the
new data, the augmented data was used as a learning set and
the new data as a test set. The TPRs and total classification
accuracies with the new data are shown in Table 7.

The highest total classification accuracies were gained
by the 5-nearest neighbour method. It classifies 75.0% of

Fig. 5 – Error bars (99% confidence intervals) for total
accuracies of each cross-validation with different machine
learning methods. The results were obtained with
augmented data.
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Fig. 6 – Error bars (99% confidence intervals) for the median
true positive rates of each cross-validation with different
machine learning methods. The results were obtained with
augmented data.

the cases correctly in the augmented data and 51.0% in the
new data. The 1-nearest neighbour (1-NN) method has bet-
ter ACC (72.8%) than ONE (60.2%) in the augmented data
whereas ONE is better (45.5%) than 1-NN (38.3%) in the
new data. In comparison to ONE, the NB classifier yields
better accuracies in both data (71.7% and 46.6% in the aug-
mented and new data, respectively). On the basis of the
error bars of Fig. 5, the accuracy of ONE is significantly lower
than the accuracies of other methods in the augmented
data.

In the augmented data set, ONE and 5-NN have the high-
est TPRs for three classes, 1-NN for two classes and NB for
one class. Cases of BPV seem to be especially difficult for
ONE. The nearest neighbour methods recognize over 64% of
the BPV cases and NB 78.9% of the cases whereas ONE recog-
nizes only 27.4% of the cases as the first diagnosis suggestion.
BRV is tricky for all the three methods, only 6.7–15.0% of cases
are classified correctly. Vestibulopatia is difficult for the NB
classifier. Central lesion is recognized especially weakly with
the nearest neighbour methods. The median TPRs of the four
methods vary from 61.8% (ONE) to 64.9% (5-NN). No significant

Table 7 – True positive rates of disease classes and total
classification accuracies of ONE for KB2, k-nearest
neighbour methods and Naive–Bayes classifier in
percents in new data

Disease name Cases ONE (KB2) 1-NN 5-NN NB

Benign positional vertigo 80 1.3 12.5 16.3 23.8
Ménière’s disease 128 78.9 58.6 82.8 68.8
Vestibular neuritis 20 15.0 35.0 30.0 30.0
Vestibulopatia 25 40.0 20.0 16.0 20.0
Median of TPR 27.5 27.5 23.2 26.9
Total accuracy 253 45.5 38.3 51.0 46.6

differences in the median TPRs were found when considering
the error bars of Fig. 6.

With the new data, each method has the highest TPR for
one of the four diseases: ONE for vestibulopatia, 1-NN for
vestibular neuritis, 5-NN for Ménière’s disease, and NB for
BPV. BPV cases are difficult for all the methods: at best only
23.8% of the BPV cases are classified correctly. ONE and 1-
NN share the best median TPR of 27.5%. For NB and 5-NN
the corresponding medians are 26.9% and 23.2%, respectively.
According to McNemar’s test (with the Bonferroni corrected
significance level 0.008) there are significant differences only
in the classifications of NN-1 and NN-5.

6. Discussion

Recognition of different otoneurological disorders can be dif-
ficult even for specialists because these disorders have similar
kind of symptoms that can vary in different phases of the dis-
ease, for example, the beginning of the Ménière’s disease can
resemble BPV and vice versa. The reason for vertigo can be,
for instance, abnormalities in vestibular organ, tension neck,
low blood pressure or even tumour [3,38]. Sometimes clini-
cal tests are needed in order to discover the distinguishable
signs or reasons for symptoms. Many general practitioners
do not encounter frequently patients with vertigo and, there-
fore, they do not have routine in distinguishing diseases [38].
These practitioners regard all systems supporting diagnostics
very useful [38]. The decision support system ONE can be a
big help for these physicians: they can use ONE as an assisting
tool that shows them questions to ask from a patient and tests
needed to be done [3]. It gives also diagnosis suggestions based
on the information given about the patient. Currently, ONE is
used as an educational tool for medical students at Helsinki
University Hospital. It demonstrates diagnostics of vertigi-
nous patients and teaches characteristics of otoneurological
disorders, for example, symptoms and clinical tests that are
relevant in diagnosing [3,5]. ONE is also used by specialists
as a data gathering system for diseases involving vertigo and
as a tool supporting decision making with demanding vertigo
cases.

Even though the previous studies dealing with ONE have
shown its utility, they have revealed topics for further study.
In this study, effects of weights on classification performance
were a target of our special attention. Further, we wanted to
compare ONE’s inference to other ML methods.

The results of this study show that there is a need for
aid in knowledge discovery. With the experts’ knowledge it
is possible to get good results but in some classes cases are
recognized quite weakly. The reason can be improper weight
and/or fitness values set for attributes. With the knowledge
discovery method, it is possible to set appropriate fitness val-
ues for attributes. However, the fitness values are not adequate
enough in separating classes from each other. Particularly,
BPV and BRV do get confused with other diseases without
weight values. Combining the calculated fitness values with
the weight values set by the experts does help classification
in certain classes. Still, there are problems especially with the
weight values of acoustic neurinoma and Ménière’s disease.
These classes are recognized better with the weight values
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1 and the fitness values calculated from data than using the
attribute weighting set by the experts. The results show that
there is a need for further development of the knowledge
discovery method. It should contain a method for forming pre-
liminary weight values for attributes besides the calculation
of fitness values. For weight setting we will test a scatter-
ing method [39,40] and methods of feature selection [41,42].
The scattering method was originally developed for studying
location of classes in an attribute space and effects of single
attributes on classifications.

When the cases of the new data are classified on the
knowledge learnt from the augmented data, the classifica-
tion accuracies are notably weaker than the cross-validation
results of the augmented data. The augmented data and the
new data were collected with slightly different questionnaires
at different institutes in Finland at different times. The differ-
ence between these two questionnaires is a consequence of
the enhancement of the query base of ONE during 2003–2004.
Even though the augmented data was altered to correspond
the refined query base, there still exist significant differences
in distributions of these two data sets. One reason for the
differences can be the data collection with slightly differ-
ent questionnaires, other the collection at different institutes.
Moreover, otoneurological cases are often complex and find-
ing the right diagnosis can be challenging. As it is remarked in
[36], medical diagnosis is subjective and, therefore, it can dif-
fer significantly depending on the physician doing it and even
with the same person at different times.

None of the ML methods can be said to be superior to
others: different methods work better for different data [35].
This can be seen also from the results of this study. None
of the compared methods, the inference method of ONE, the
NB classifier or the 1- or 5-nearest neighbour methods was
remarkably superior to others when considering different dis-
eases in both data sets. In the future, our aim is to study
more thoroughly classification capabilities of these methods
in order to create a hybrid method combining strengths of
these methods.

In future research, we will develop a knowledge acqui-
sition tool that can create domain knowledge from domain
data and, thus, create a preliminary knowledge base for a
new system by using the knowledge discovery method of
this study. In order to take advantage of the experts’ knowl-
edge with the knowledge discovery method, we are going
to make a graphical interface for the knowledge acquisition
tool. The graphical interface allows the visualization of the
knowledge and makes it easier for experts to make required
alterations to knowledge patterns. Combining ONE’s expert
system shell with this knowledge acquisition tool makes it
easier to take the decision support system in use in new insti-
tutes and even in totally new domains. Future work will also
focus on testing the presented knowledge discovery method
and inference mechanism with data from different domains
in order to study applicability of the system for various
fields.
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1 Introduction 

Treating all attributes as equally important during classification can have a negative effect 
on the results by giving noisy, redundant and/or irrelevant attributes a higher influence on 
the results than they should have. This can, for example, reduce the accuracy of the 
classification (Lee et al., 2007). With instance-based learning methods, such as the k-
nearest neighbour method (k-NN) (Cover and Hart, 1967), that utilise all available 
attributes in the distance calculation, the noisy and irrelevant attributes may dominate the 
results (Wettschereck and Aha, 1995). With equal weighting, the noisy, redundant and/or 
irrelevant attributes have as much effect on the distance calculations as the relevant ones 
have. Therefore, the attribute weighting and selection is needed to grade the relevancy 
and usefulness of the attributes - in some domains even class-dependently. 
 There are two extremes in the emphasis of classification methods on focusing on 
relevant attributes: at one extreme there are the methods that use all available attributes in 
the classification and at the other there are the classification and attribute subset selection 
methods that explicitly attempt to select relevant attributes and reject the irrelevant and 
redundant ones (Blum and Langley, 1997). Between these extremes there are attribute 
weighting methods that aim to achieve good scaling behaviour without explicitly 
selecting subsets of attributes.  
 Some of the attributes can be discarded during the data pre-processing based on 
the abundant missing values or the value being constant with all classes. Statistical and 
attribute selection methods are needed in order to find irrelevant and redundant attributes. 
The attribute types occurring in the data set determine which methods to apply. Certain 
methods can be used only with quantitative attributes, whereas some are suitable only for 
qualitative attributes.  
 The attribute selection methods can be organised into three categories depending 
on how they combine the attribute selection search with the construction of the 
classification model: filter, wrapper and embedded methods (Blum and Langley, 1997; 
Kohavi and John, 1997; Saeys et al., 2007). Filter methods are independent of the 
classification models. They use attribute selection to filter attributes to the classification 
(Blum and Langley, 1997). Filter methods assess the relevance of the attributes by 
looking only at the intrinsic properties of the data set. Most filter methods calculate an 
attribute relevance score based on which attributes with a high scoring are kept and 
attributes with a low scoring are discarded. A subset of attributes with high relevance 
scores is given to the classifier. The methods used in attribute filtering are, for example, 
statistical tests for independence (e.g., X2 test), measures of association with their 
significance tests (e.g., Pearson correlation coefficient), information gain, regression and 
principal component analysis (Blum and Langley, 1997; Saeys et al., 2007). 
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Wrapper methods wrap the attribute selection around the classification process: 
the classifier itself is used as part of the function evaluating attribute subsets during the 
search for a good attribute subset (Blum and Langley, 1997; Kohavi and John, 1997). A 
search in the space between possible attribute subsets (e.g., forward selection, backward 
elimination or hill climbing) is defined: various subsets of attributes are generated and 
evaluated with the classification method (Saeys et al., 2007). The attribute subset with the 
highest evaluation is chosen as the final subset (Kohavi and John, 1997). Wrapper 
methods have the ability to take into account of attribute dependencies and the interaction 
between the data and the classifier. Wrapper methods are utilised with, for instance, 
nearest neighbour methods and case-based reasoning (Blum and Langley, 1997). 

Embedded methods embed the attribute selection within the classifier: the search 
for an optimal attribute subset is already built into the classifier construction (Saeys et al., 
2007). Thus, embedded methods are specific to a given learning algorithm. Examples of 
embedded methods are decision trees and weighted Naïve Bayes (Blum and Langley, 
1997; Saeys et al., 2007). 

Heuristic search is a common technique in attribute selection (Blum and 
Langley, 1997). It is utilised to guide the search for an optimal attribute subset (Saeys et 
al., 2007), especially with wrapper methods. Heuristic search can be started with an 
empty attribute subset and continued by successively adding attributes (forward selection) 
or it can be started with all attributes in the attribute subset and continued by successively 
removing them (backward elimination). There exist also variations combining forward 
selection and backward elimination, for instance, stepwise forward–backward selection 
that adds a given number of attributes into the attribute subset and removes another given 
number of attributes from the subset in each step (Schulerud and Albregtsen, 2004). 
Filter, wrapper and embedded methods can be utilised in heuristic search.  

The attribute weighting methods can be distinguished in a five-dimensional 
framework: they can be separated into feedback, weight space, representation, generality 
and knowledge dimensions (Wettschereck and Aha, 1995). The feedback dimension can 
be divided by the way the attribute weighting methods assign weights to performance 
feedback and to ignorant methods. The performance feedback methods, as incremental 
hill climbers (e.g., the incremental instance-based learning method IB4 (Aha, 1992) and 
Relief (Kira and Rendell, 1992)) and continuous optimizers (e.g., the genetic algorithm 
combining its optimisation  capabilities with the classification capabilities of the weighted 
k-nearest neighbour algorithm GA-WKNN (Kelly and Davis, 1991)), modify the weights 
to increase the similarity of case x with the nearby cases of the same class and to reduce 
the similarity with the cases of the other classes. With the ignorant methods, the attribute 
weights are assigned with pre-existing models, such as conditional probability, class 
projection or mutual information (Wettschereck and Aha, 1995). The weight space 
dimension defines the size of the search space of the weights and differentiates attribute 
selection from attribute weighting methods; during attribute selection the search space is 
usually constrained to binary values (0 or 1), whereas attribute weighting uses continuous 
values (Wettschereck et al., 1997). In the representation dimension, the methods are 
distinguished by the way they handle an attribute set: is the set used as it was given or is it 
transformed before weighting. The generality dimension divides the methods into global 
and local weight setting methods. In global setting it is assumed that a single weight set 
can describe the whole domain, whereas in local setting the weights can differ among the 
values of the attributes and even be case-specific (Wettschereck and Aha, 1995). The 
knowledge dimension separates the attribute weighting methods into knowledge-poor and 
knowledge-intensive methods, depending on how they employ domain-specific 
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knowledge in the weighting. The above-mentioned dimensions with different weighting 
methods are explored in more detail in Wettschereck et al. (1997).  

Machine learning (ML) and statistical methods have been utilised in setting 
weights for attributes needed in other machine learning methods. For example, the 
properties of a decision tree have been applied to set weights to the Naïve Bayes classifier 
(the minimum depth of the attribute) (Hall, 2007) and the k-nearest neighbour method 
(path-specific information gain) (Cardie and Howe, 1997), the attribute weights for the k-
nearest neighbour method have been calculated with a genetic algorithm (Kelly and 
Davis, 1991; Lee et al., 2007) and from a score based on the X2 test statistic (Vivencio et 
al., 2007) and neural network (Zeng and Martinez, 2004) (strength of related links in the 
neural network), and weights for the attributes have been computed from a collaborative 
social network using regression analysis (Debnath et al., 2008). Also, the perceptron 
updating rule can be considered an attribute weighting method in addition to the least-
mean squares algorithm and the back-propagation method (Blum and Langley, 1997). 
Filter, wrapper and embedded approaches have been applied in attribute weighting: the X2 
statistical test is a filter method (Vivencio et al., 2007), IB4 (Aha, 1992) is an embedded 
method and the genetic algorithm is a wrapper method (Kelly and Davis, 1991). 

We are interested in the onward development of an otoneurological decision 
support system ONE (Auramo et al., 1993) that supports the diagnostics of vertigo 
diseases. Diagnosis of the otoneurological disorders is demanding because the diseases 
can simulate each other with symptoms of a similar kind and the symptoms can vary over 
time, making recognition difficult (Havia, 2004; Kentala, 1996). The system gives 
diagnosis suggestions for new cases with an inference method utilizing the class-wise 
weights and fitness values given to the attributes and their values in a knowledge base. 
Each attribute refers to a sign, a symptom or a measurement data from a clinical test 
(Auramo et al., 1993). The attribute value indicates, for example, whether the patient has 
a hearing loss (yes/no), how long the vertigo attacks last (no attacks, less than 1 min, 1 
min to 20 min, 20 min to 4 h, 4 to 24 h or more than 1 day) or what the audiometry value 
is at 2000 Hz (-10–140 dB). The attribute weights and fitness values of the attribute 
values describe the symptoms, signs and measurement results related to the class; the 
attribute weight expresses the significance of the attribute for the class, whereas the 
fitness value describes which attribute values fit the class.  

An earlier study showed the need for further enhancement of the knowledge 
discovery method of ONE (Varpa et al., 2008). Previously, the fitness values for the 
attribute values were computed by a machine learning method, but all the attributes were 
equally weighted (each attribute had the weight 1). This alone enhanced the classification 
accuracy compared with the knowledge descriptions defined purely by the domain 
experts, but there were still difficulties in the recognition of certain disease classes. The 
attribute weights defined by the experts were tested with the machine-learnt fitness 
values, but this combination did not improve the classification as hoped. Therefore, in this 
study, machine learning methods for attribute weight calculation are applied in order to 
improve the classification of vertigo diseases. 

The methods used for attribute weighting in this research are the Scatter method 
for attribute importance evaluation (Juhola and Siermala, 2012; Siermala et al., 2007) and 
the weight calculation method of the incremental instance-based learning algorithm IB4 
(Aha, 1992). These methods were selected because they can express the relevance of a 
single attribute and can learn attribute weights separately for each class. The Scatter 
method does not have any prerequisites for the class distributions (Juhola and Siermala, 
2012). It can be used in attribute filtering, for example, by applying the scatter values in 
attribute weighting or in the attribute subset selection. The Scatter method is based on 
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traversing through a data set by seeking the nearest case one at a time and concurrently 
counting the class changes between cases. A scatter value expresses the attributes’ power 
to separate classes in the data set (Juhola and Siermala, 2012). In this study, the scatter 
values are calculated for each attribute in a different class versus other classes’ situations. 
The results of the Scatter method were promising in earlier studies (Juhola and Siermala, 
2012), so, it was used in this study. The weight calculation method of the IB4 
classification method computes attribute weights independently for each class with a 
simple performance feedback algorithm (Aha, 1992). The attribute weights of IB4 reflect 
the relative relevancies of the attributes in the class. The methods are described in more 
detail in section 3.2. The Scatter and IB4 methods both use a continuous weight space and 
a given representation, calculate local weight settings and do not employ specific domain 
knowledge in attribute weight setting. They both use pure data in weight setting. Scatter 
and IB4 differ in the way they handle feedback: IB4 is a performance feedback method 
that alters the weights based on the classification results during processing, whereas 
Scatter creates weights based on the pre-existing model and ignores the classification 
results during the runs.  

Machine-learnt attribute weights are utilised with the inference mechanism of 
the otoneurological decision support system ONE and with the attribute weighted k-
nearest neighbour method (wk-NN) (Kelly and Davis, 1991; Mitchell, 1997) using One-
vs-All (OVA) classifiers (Rifkin and Klautau, 2004). Otoneurology is a difficult domain 
by itself, and with small disease classes and classes containing cases with confounding 
symptoms included in the data classification of the vertigo diseases it is even more 
challenging. Therefore, it is good to test the attribute weights with two machine learning 
methods that have different approaches to the classification: with ONE, that searches for 
the most compatible class pattern for the case, and with the attribute weighted k-NN 
OVA, which classifies cases based on their nearest instances. The selected methods 
resemble each other in the way they handle classes separately. The classification 
accuracies yielded by the different attribute weight and fitness value combinations are 
compared with each other and with the accuracies of the knowledge formed purely by the 
experts. In addition, the pair-wise agreement between the machine and human expert 
classifications is examined using Cohen’s kappa (Cohen, 1960). 

 
 

2 Material 

In this study, otoneurological data having 1030 cases from nine different vertigo diseases 
(classes) was used (Table 1). The data was collected over a decade starting from the 
1990s in the Department of Otorhinolaryngology at Helsinki University Central Hospital, 
Finland, where experienced specialists confirmed all the diagnoses. The class distribution 
of the data is imbalanced: over one-third of the cases belong to the Menière’s disease 
class, whereas the smallest groups have only around 2 % of the cases. 

The data set includes 176 attributes concerning a patient’s health status: 
occurring symptoms, medical history and clinical findings in otoneurologic, audiologic 
and imaging tests (Kentala et al., 1995; Viikki, 2002), from which 38 attributes are central 
(Siermala et al., 2007). Clinical tests were not done for each patient and the values of the 
attributes are missing in several test results. Attributes with low frequencies of available 
values were not used in this research. After leaving out the attributes having over 35% 
missing values, 94 attributes remained to be used in this research: 17 quantitative (integer 
or real value) and 77 qualitative attributes (of which 54 were binary (yes/no), 20 were 
ordinal and 3 nominal). Almost half of the remaining 94 attributes (46) have less than 5% 
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missing values and 73 (77.7%) have less than 10% missing values. Only one attribute has 
information from all cases. Thirteen attributes, all concerning clinical findings, have over 
29% of their values missing, and for one important attribute (type of hearing loss) even 
53% of the values were missing. The type of hearing loss is crucial in the recognition of 
sudden deafness and could not be excluded from the data set. 

 
Table 1 The frequency distribution of vertigo disease classes 

Disease name Abbreviation Frequency %
1 Acoustic neurinoma ANE 131 12.7 
2 Benign positional vertigo BPV 173 16.8 
3 Menière's disease MEN 350 34.0 
4 Sudden deafness SUD 47 4.6 
5 Traumatic vertigo TRA 73 7.1 
6 Vestibular neuritis VNE 157 15.2 
7 Benign recurrent vertigo BRV 20 1.9 

8 Vestibulopatia VES 55 5.3 
9 Central lesion CL 24 2.3 
 Total  1030 100 

 
The original data with missing attribute values was used in the classification runs 

of ONE and the attribute weighted k-nearest neighbour method, and in the fitness value 
computation. It was necessary to impute the data for the attribute weight computation 
because the Scatter method needs complete input data to work properly. The IB4 method 
can handle missing attribute values, but, in order to keep it comparable with the Scatter 
method, the imputed data was also used in its weight calculation. If only the complete 
cases in the original data had been used, the training set would have been too small. With 
94 attributes, there were only 22 complete cases (2.1 %). The number of missing attribute 
values (9.8 %) allowed the use of imputation. The imputation was done class-wise on the 
basis of the whole data prior to data division into training and testing sets. The missing 
values of the attributes were imputed (substituted) with the class modes of the qualitative 
and the class medians of the quantitative attributes. These simple imputation methods 
have been proven to be adequate enough for this otoneurological data (Laurikkala et al., 
2000).  

 
 

3 Methods  

3.1 Weight utilizing methods 

3.1.1 Nearest pattern method of ONE 
 
The inference mechanism of the otoneurological decision support system ONE resembles 
the nearest neighbour methods of pattern recognition (Auramo and Juhola, 1996). Instead 
of looking for the nearest case, it looks for the most fitting class for a new case in its 
knowledge base. In the knowledge base of ONE, a pattern is given to each class that 
corresponds to one vertigo disease. The pattern can be considered a profile of a disease as 
it describes its related symptoms and signs. Confounding symptoms are also 
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acknowledged in the pattern, such as age-related hearing loss and other symptoms not 
usually related to the disease.  

Each class in the knowledge base is described with a set of attributes with weight 
values expressing their significance for the class. In addition, a fitness value for each 
attribute value is given to describe how it fits the class (Figure 1). 
 
(a) <attribute name> <attribute weight> <attribute type> 
   <minimum value> <maximum value> 
   <value 1> < fitness value 1> 
 
 … 
 
   <value n> < fitness value n> 
   END 
. 

(b) ATT_OFTEN 4 V 
        0.0 5.0 
        0.0 0.0 
        1.0 1.12 
        2.0 23.60 
        3.0 19.10 
        4.0 43.82 
        5.0 100.0 
        END 
.

Figure 1  (a) The general form of an attribute pattern in the knowledge base of ONE and (b) 
an example attribute description ATT_OFTEN (frequency of vertigo attacks with 
benign positional vertigo) 

 
The weight values vary from 0 to a chosen maximum, where 0 means that the attribute 
does not concern the class at all. The greater the weight value, the more important the 
attribute is for the class. Fitness values can have values between 0 and 100. The fitness 
value 0 means that the attribute value does not fit the class, whereas the fitness value 100 
shows that the value fits the class perfectly. 

The inference mechanism of ONE (Auramo and Juhola, 1996) searches for the 
best fitting class in its knowledge base. It calculates scores for the classes from the weight 
and fitness values of the attributes. The score S(c) for a class c is calculated in the 
following way 

)(

1

)(

1

),()(

),,(),()(
)( cA

a

cA

a

acwax

jacfacwax
cS ,    (1) 

where  A(c) is the number of the attributes associated with the class c,  
x(a) is 1 if the value of attribute a is known and otherwise 0,  
w(c,a) is the weight of the attribute a for the class c and  
f(c,a,j) is the fitness value for the value j of the attribute a for the class c

(Auramo and Juhola, 1996). In the case of quantitative attributes, the fitness values are 
interpolated by using the attribute values in the knowledge base as interpolation points. 
The fitness values are altered to the range of 0 to 1 during the inference process. The class 
pattern having the highest score is the best diagnosis suggestion.  

In order to handle uncertainty caused by the missing attribute values, ONE 
calculates the minimum and maximum scores for the classes using the lowest and the 
highest fitness values for the attributes having missing values. The closer the minimum 
and maximum scores are to each other, the more reliable the inference result is. There can 
be diagnosis suggestions having exactly the same highest score (and minimum and 
maximum score and their difference). In that case, the order of the suggestions having the 
same score is randomized and the first class is randomly selected from the tied diagnosis 
suggestions. 
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if x or y is unknown 

if a is qualitative 

otherwise 

3.1.2 Attribute weighted k-nearest neighbour method with One-vs-All classifiers 
 
The other method utilizing the weighting schemes is the attribute weighted k-nearest 
neighbour method with One-vs-All classifiers (wk-NN OVA). The distance measure of 
the basic k-nearest neighbour method (Cover and Hart, 1967) was expanded to take the 
attribute weighting into account (Kelly and Davis, 1991; Mitchell, 1997). In addition, in 
order to keep ONE and the k-nearest neighbour method comparable, we decided to 
convert the multi-class classification problem into multiple binary classifiers - i.e., to 
divide the m class problem into m binary problems by using One-vs-All classifiers with 
the k-nearest neighbour method (Galar et al., 2011). Thus, the OVA classifiers and ONE 
both handle class-wise information, from which the class of a new case is predicted. Each 
binary OVA classifier was trained to separate a class from all the other classes by 
marking the cases of this one class as member cases and the cases of the other classes as 
non-member cases in the training set. 

The attribute weighted k-NN OVA is an instance-based learning method that 
searches for the k most similar cases (neighbours) of a new case from each classifier 
separately. There is one classifier per each class and each classifier gives a vote for the 
case being a member or non-member of the class based on the majority class of the k
neighbours. The final class of the new case is assigned from a classifier suggesting the 
case being a member of a class. There can be a situation in which the new case gets more 
than one member of a class vote (a tie situation) or all of the classifiers vote for the other 
class (the case to be a non-member of all the classes). In a tie situation, the class of the 
new case is determined by searching for the most similar member case from the member 
voting classifiers. The case gets the class of the member case with the shortest distance to 
it. When all the classifiers vote for the case to be a non-member, the basic attribute 
weighted 1-nearest neighbour classifier using the whole training data containing the 
original disease classes is employed to find the most similar case (and its class) for the 
new case. 

The similarity between the new case and the training cases within the classifiers 
is calculated with a distance measure. In this study, the distance measure used in the 
attribute weighted k-nearest neighbour method was the Heterogeneous Value Difference 
Metric (HVDM) (Wilson and Martinez, 1997) with attribute weighting, which can handle 
both qualitative and quantitative attributes in the data set. The attribute weighted HVDM 
is defined as 

weighted_HVDM (x,y) = 
m

a
aaac yxdw

a
1

2),( ,   (2)

where  m is the number of attributes,

acw  is the weight of the attribute a in class c and  
da(xa,ya) is the distance between the values xa and ya for attribute a.  

The distance function da(xa,ya) is defined as  

),( aaa yxd =

),,(_
),,(_

,1

aaa

aaa

yxdiffnormalized
yxvdmnormalized       (3) 

Because HVDM computes distances to qualitative and other attributes with different 
measurement ranges, it is necessary to scale their results into approximately the same 
range in order to give each attribute a similar influence on the overall distance. Thus, the 
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measurements are normalized (Wilson and Martinez, 1997). The normalized distance to a 
quantitative attribute is calculated with Equation 4 

 
a

aa
aaa

yx
yxdiffnormalized

4
||

),(_ ,    (4) 

where a  is the standard deviation of the numeric values of attribute a in the training 
set of the current classifier, and to a qualitative attribute with Equation 5 
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where  C is the number of output classes in the problem domain (in this case C=2: the 
data in the training set T of the classifier is divided into the member and non-
member classes),  
Na,x(y),c is the number of cases in T that have a value x (or a value y) for attribute 
a and the output class c, and  
Na,x(y) is the number of cases in T that have a value x (or a value y) for attribute a

(Wilson and Martinez, 1997). In other words, we are calculating the conditional 
probabilities to have the output class c when having attribute a with the value x (or the 
value y).

 
3.2 Attribute weight setting methods 

3.2.1 Domain experts 
 
The original attribute weights and fitness values of attribute values for the knowledge 
base of the decision support system ONE was defined by a group of experienced 
otoneurological physicians in the 1990s (Kentala et al., 1998). A decade later, the 
knowledge base of ONE was updated by two specialists during the upgrade process of the 
decision support system (Varpa et al., 2006), when new attributes were added into its 
knowledge base. The fitness values were not yet in use with the binary type attributes 
then, and, therefore, the experts did not define fitness values for them. 
 The original weighting was done on the basis of the experts’ knowledge and 
experience, and on information obtained from the medical literature and data (Kentala et 
al., 1998). For example, the newest diagnostic criteria for diseases were obtained from 
medical journals. Furthermore, the collected data on several hundred patients was 
employed in the knowledge formation (Auramo and Juhola, 1995). The original 
knowledge base was used as a starting point in the knowledge updating process. The 
experts went through the attributes and weights in the disease patterns one by one and 
changed the weighting if necessary (Varpa et al., 2006). Weights were manually defined 
for each attribute in each disease pattern. The experts used their knowledge and 
experience as the basis when defining the weights. In addition, they were able to compare 
their assumptions about the diseases with the collected data (all 1,030 cases) during the 
updating process. 

The medical experts could define weights and fitness values for seven disease 
classes: acoustic neurinoma, benign positional vertigo, Menière’s disease, sudden 
deafness, traumatic vertigo, vestibular neuritis and benign recurrent vertigo. Two classes 
(vestibulopatia and central lesion) were found to be too complex to describe with weight 
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and fitness values. Therefore, in classification runs with the experts’ knowledge, seven 
disease classes with 951 cases were used in this study.  

 
3.2.2 Scatter method 
 
The first machine learning method applied to the attribute weight setting is the Scatter 
method (Juhola and Siermala, 2012; Siermala et al., 2007). The Scatter method can be 
utilised to evaluate whether a data set includes meaningful information that can be used 
for class separation. It has been used, for example, to solve the importance and separation 
power of attributes and to map the overlap of the classes in the attribute space. A scatter 
value describes the power of an individual attribute or attribute set to separate the classes 
in the data. In this study, we were interested in each attribute’s power to differentiate one 
class from the other classes and the possibility to transform the scatter values into weights 
that can be utilised in the classification. Therefore, scatter values were separately 
computed for all attributes within each disease class vs. all the other classes. 

In order to calculate the scatter value, the entire data set must be traversed 
through from a case to its nearest unvisited neighbour case. Before calculation, the 
attribute values are normalized into the same scale [0, 1]. The Scatter method starts by 
randomly selecting an initial case x from the data. The nearest case y for x is searched 
with the Euclidean distance. If there are several cases with exactly the same distance, the 
nearest case y is randomly selected from these nearest cases. The classes of x and y are 
compared: If the cases are from different classes, a counter a is incremented; otherwise, 
(they are from the same class) a is kept unchanged. After the comparison, case x is 
removed from the data set and case y is set as a new x. A new nearest case y is searched 
from the diminished data set and the classes are compared. These steps are repeated until 
only case x is left in the data set. After going through all the cases in the data set, the 
scatter value s is calculated with Equation 6 

A
as ,         (6) 

where  a is the total number of observed changes between the classes and  
A is the theoretical maximum number of possible class changes.  

A is computed as follows (Equation 7): Let mG be the size of the largest class and MO be 
the sum of the number of cases in the other classes (in other words, MO = n- mG, where n 
is the number of cases in the data set). When mG is greater than MO, A is equal to 2MO 
and, otherwise, A equals n-1.

A = 
OG

OG

    if,1
    if,2
Mmn
MmM      (7) 

Thus, the scatter value s describes the relationship between the number of observed class 
changes and the theoretical maximum number of changes. The scatter values vary in (0, 
1]. The closer the scatter value is to 0, the more accurately separated from each other the 
classes are in the attribute space. The scatter value is close to 1 if the cases are selected 
alternately from different classes, meaning that the classes are entirely overlapping in the 
attribute space. The Scatter method is described in more detail in (Juhola and Siermala, 
2012). 

The scatter value describes the overlap of the classes within the attribute values: 
the closer the scatter value is to 0, the better the attribute differentiates the classes. 
Nevertheless, the interpretation of the attribute weight values is opposite to the scatter 
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values: the greater the weight value, the more important the attribute is. Therefore, we 
needed to take inverses of the scatter values in order to use them as attribute weights. 

 
3.2.3 Instance-based learning algorithms IB4 and IB1w 
 
The other machine learning method applied to the attribute weight formation is Aha’s 
attribute weight learning algorithm from the incremental instance-based learning 
algorithm IB4 (Aha, 1992). IB4 tolerates irrelevant attributes by learning attribute 
relevancies (i.e. weights for attributes) independently for each class and using these 
weights in its similarity function. It can also handle skewed class distributions. The learnt 
attribute weights are receiving our special attention and we do not report the classification 
results of IB4, but we do use the learnt weights with the nearest pattern method of ONE 
and the attribute weighted k-nearest neighbour OVA method. 

In the IB4 method, each class c is described with a separate class description 
CDc and a set of attribute weights 

acWeight (Aha, 1992). The class description contains a 
set of cases with classification records about their past performance during classification, 
that is, their number of correct and incorrect classification predictions. Based on their 
classification performance, the cases stored in CDc are defined as statistically acceptable 
or mediocre. Cases in CDc are regarded as statistically acceptable if their classification 
accuracy is statistically significantly greater than their class’s observed frequency (the 
statistical calculation is based on the confidence intervals) (Aha, 1992; Aha et al., 1991). 
Acceptable cases are used in the subsequent classification tasks. If there are no acceptable 
cases in CDc, mediocre cases are used in the classification instead. Mediocre cases are 
kept in the class description as long as they are regarded as noisy. Noisy cases with 
significantly poor classification performance (classification accuracy statistically 
significantly less than the class’s observed frequency) are discarded from the CDc as soon 
as they are revealed. The status of the saved cases in CDc can change during the learning 
of the attribute weights: mediocre cases can change to noisy or acceptable and even cases 
previously regarded as acceptable can be discarded from the description when they later 
appear to be noisy. 

In the beginning, a class description is empty and the attribute weights are zero. 
The first learning case x is moved directly into the class description. When there is at least 
one case in the class description, the similarity between the learning case x and the cases 
in CDc are calculated with an attribute weighted negative Euclidean distance measure  

m

a
aac yxWeightyxcSimilarity

a
1

22 )(),,(    (8). 

The attribute values of x and y are normalized to the range [0, 1] in order to have the same 
(maximal) effect on the similarity with each attribute. If xa or ya is missing, these values 
are assumed to be maximally different, i.e., the difference (xa - ya) is 1. The most similar 
acceptable neighbour is searched from the CDc and set as the nearest neighbour ymax. If 
there are several acceptable cases with the same highest similarity, the class frequency 
within these cases is checked and a case from the class having the highest frequency is 
randomly selected as ymax. If there are no statistically acceptable cases in the CDc, a 
random number i is selected within [1, |CDc|] and the ith most similar case from the CDc
is set as the nearest neighbour ymax (Aha et al., 1991). The classes of x and ymax are 
compared. When the classes of x and ymax are different (x is misclassified), x is added to 
the class description CDc. After the classification of x, the classification records of all 
saved cases in CDc that are at least as similar as ymax are updated (the number of correct or 
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incorrect classification predictions are increased, depending on whether or not the class
was correct). The saved cases regarded as noisy are discarded from the CDc. In addition, 
all attribute weights are adjusted after the classification of each learning case x through a 
performance feedback algorithm (described in Algorithm 1) to reflect the relative 
relevancies of the attributes: the weights of attributes are increased when they correctly 
predict the classification and are otherwise decreased. The attribute weights are defined in 
the range [0, 0.5], where the weight 0 means that the attribute is irrelevant (Aha, 1992). 
The weight range is set to [0, 0.5] instead of [0, 1] because the total weight of an 
irrelevant attribute is expected to be half of its total possible attribute weight (Aha, 1992). 
 
Algorithm 1  The attribute weight updating algorithm of IB4 (Aha, 1992) 
 
Since the cases are normalized, step 1 yields a value in [0,1]. 

 
Attributes: x = case being classified 

ymax = the classifying case from CDc

c = the target class 
  = the higher observed relative frequency among x’s actual and predicted (ymax) 

class members, value range [0,1] 
 

For each attribute a: 
1. LET difference = | xa - 

a
ymax | 

2. IF (x’s classification was correctly predicted (x_class == ymax_class) 
  THEN 

acWeightCumulative =
acWeightCumulative + (1- )*(1-difference) 

   ELSE 
acWeightCumulative =

acWeightCumulative + (1- )*difference 

3.
acalizerWeightNorm  = 

acalizerWeightNorm  + (1- ) 

4. Weight
ac = )0,5.0(max

ac

c

alizerWeightNorm
WeightCumulative

a  

 
The novel learning case x is classified in each class description (in this study to 

seven and nine disease classes). Since the classes are represented separately, the cases are 
either members or non-members of the class. As a result, there are separate class 
descriptions and attribute weight sets for each disease class used. 

In addition, the attribute weight algorithm was applied with IB1 (Aha et al., 
1991), a simpler version of the instance-based learning algorithm IB4. This was done 
because of the imbalanced class distribution of the data in use: we wanted to see if there 
were any differences in the attribute weights when handling the class descriptions in 
different ways. We needed to modify the original IB1 method in order to use it 
appropriately in this research. First of all, the weighted similarity function (Equation 8) 
was taken into use with the IB1 method. IB1 usually handles all classes at the same time 
with one classifier. The weight values are needed for each class separately. Therefore, we 
needed to alter the IB1 method to work like IB4, having class descriptions for each class 
separately. This variant of IB1 is called IB1w. The difference between IB1w and IB4 is 
that IB1w saves all processed cases in its class descriptions and does not discard any 
cases from the class descriptions during runs. Also, the cases with poor classification 
records are kept in class descriptions with IB1w. 
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3.3 Cross-validation 

We used a 10-fold cross-validation (CV) (Mitchell, 1997) to evaluate the classification 
performance of the ONE and the attribute weighted k-nearest neighbour OVA methods
combined with different weighting schemes. In the 10-fold cross-validation, the data was 
randomly divided into 10 subsets of approximately equal size. The division was made in a 
stratified manner to ensure that the class distribution of each subset resembled the skewed 
class distribution of the entire data set. In the 10 training and testing runs, each training 
data set included the cases of nine subsets and the testing data set included the cases of 
the remaining subset. The 10-fold cross-validation was repeated 10 times. Thus, in total, 
there were 100 runs per each classification method - weighting scheme combination. The 
same cross-validation divisions were used with all the combinations - i.e., each 
combination had the same training and testing data sets used during the runs.  

The class-wise fitness values (FV) of the attribute values for the nearest pattern 
method of ONE were computed once for each CV training data set with the fitness value 
method described in study (Varpa et al., 2008). The original data set containing also the 
cases having missing attribute values were used in the fitness value calculation. The 
fitness values for attribute values by experts’ were defined only once. 

The attribute weights were calculated for each CV training set from the imputed 
data. The calculation of the weights within each CV training set was repeated 10 times 
with the Scatter, IB4 and IB1w methods in order to handle the randomness in these 
methods. In the Scatter method, the randomly selected starting case and, possibly, 
randomly selected nearest cases when having several neighbours with the same distance 
both have an effect on the final result of the calculation. In the IB4 and IB1w methods, 
the order of the cases in the data set affects the results (Wettschereck and Aha, 1995) and, 
therefore, the order of the cases was mixed up within the repetitions. The mean weights of 
the 10 weight calculation repetitions were saved into weight sets and used in the 
classification. Attribute weights were necessary to calculate separately for seven and nine 
disease class classifications. The attribute weights defined by the application area experts 
(we) were the same in each CV run. 

In order to prepare for a possible situation where all classifiers in the attribute 
weighted k-nearest neighbour method with OVA vote a case to be a non-member, it was 
necessary to calculate the Scatter-based weight values and IB4 and IB1w weights from 
the training data set having the original classes in addition to the class-wise attribute 
weights. In the OVA non-member voting situation, the basic attribute weighted k-nearest 
neighbour method with one classifier and one weight set was used. These attribute weight 
calculations were also repeated 10 times. In the non-member voting situations with the 
attribute weights defined by the experts we needed to use weights 1 with the basic 
weighted k-NN because the experts could not set a single combination of attribute 
weights that only contains one weight for each attribute and can separate all disease 
classes. For the experts, it was more natural to define the class-wise attribute weights by 
considering the characteristics of a certain disease. 

 Different weighting scheme and classification method (ONE and attribute 
weighted k-NN OVA) combinations formed for each CV training data set were tested 
with corresponding CV testing data sets using the original cases with the missing attribute 
values. The research process in a CV run of the 10-fold CV is summarized in Figure 2. 
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1 The weight setting methods were run 10 times in each CV run in order to handle randomness within the 
methods. The weight sets contained the mean weights of 10 runs. 
2 Weight sets w1 and we and experts’ fitness values expert FV were created only once. 
 
Figure 2 Description of the research process within a cross-validation (CV) run of the 10-fold 

CV. The 10-fold CV was repeated 10 times, so, this process was repeated 100 times. 
In addition, the attribute weights were calculated and tested separately for seven and 
nine disease classes. 

 
4 Results 

When testing the effect of attribute weights on the classification performance, five 
different weight sets were used:  

w1 Equal weighting, all attribute weights set to 1.  
we  Weights set by the experts. The weights varied from 0 to 15, except the 

weight 40 of the attribute hl_type for sudden deafness. The experts 
could set weights for seven disease classes. 
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wscat  The weights computed with the Scatter method. The attribute weights 
were inverse scatter values and varied from 1 to 14. 

wIB4  The weights computed with the weight calculation method of Aha’s 
IB4 algorithm. Only the statistically acceptable and mediocre cases 
were kept in the class descriptions during the weight calculations, and 
the non-acceptable cases were dropped out. The weights varied from 0 
to 0.5. 

wIB1w  The weights computed with the weight calculation method of Aha’s 
IB4 algorithm, but the case handling was derived from Aha’s IB1 
method: all of the cases were added to the class descriptions and kept 
there. The weights varied from 0 to 0.5. 

These weight sets were used as attribute weights with the machine learnt fitness values in 
the knowledge base of ONE and with the attribute weighted k-nearest neighbour method 
having OVA classifiers (wk-NN OVA). In addition, classification run of ONE with the 
knowledge base fully formed by the domain experts (ONE experts) was used as the basis 
in the result comparisons. In this knowledge base, both the attribute weights and the 
fitness values of attributes were defined by the experts. Expert-set attribute weights (we) 
for seven disease classes were used with both classification methods and, in order to have 
the results comparable with each other, attribute weight values were computed with the 
machine learning methods from data containing the seven diseases. The attribute weight 
sets wscat, wIB4 and wIB1w were also formed from data containing all nine disease 
classes in order to compare the classification performance between the methods with 
more classes. 

The classification performance of the methods with different attribute weight 
sets is described with a class-wise true positive rate (TPR) and a total classification 
accuracy (ACC). TPR is calculated as the percentage of correctly inferred cases in the 
class:  

%,100
ccases

cpos

n
t

TPR        (9) 

where  
cpost is the number of correctly classified cases in the class c and  

ccasesn is the number of all cases in the class c.  
The total classification accuracy gives the percentage of all correctly classified cases 
within the data set: 

,%100
cases

pos

n
t

ACC        (10) 

where tpos is the total number of cases correctly classified in all classes and  
ncases is the total number of cases used in the classification.  

 In addition to the classification rates TPR and ACC, classification method – weight set 
combinations were examined with Cohen’s kappa (K) (Ben-David, 2007; Cohen, 1960):  

c

co

P
PPK

1
,        (11) 

where  Po is the total agreement probability (i.e. accuracy) and   
Pc is the probability of predicting the correct class due to chance.

Cohen’s kappa was used separately for each classification method – weight set 
combination to estimate the degree of agreement between their classification results and 
the actual class labels, and, in addition, to evaluate the pair-wise agreement between the 
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compared combinations. The value range of kappa is [-1, 1], where -1 means total 
disagreement (worse than random performance), 0 is a random or majority-based 
classification and 1 is perfect agreement. Usually, when the kappa value is higher than 
0.81, the pair is considered to have almost perfect agreement (Landis and Koch, 1977). 

When comparing the classification results of the seven disease classes based on 
the first diagnosis suggestion of ONE and the attribute weighted 1- and 5-nearest 
neighbour methods with the OVA classifiers using the different attribute weight 
combinations in Table 2, it can be seen that the highest total classification accuracy 
(79.7%), the highest median true positive rate (75.2%) and the highest Cohen’s kappa 
(0.73) were achieved with the Scatter weighted 5-nearest neighbour method (5-NN OVA 
wscat). The other nearest neighbour methods classified 70.8% to 78.9% of the cases 
correctly, had a median TPR between 60.6% and 74.3% and Cohen’s kappa varying from 
0.61 to 0.72, whereas the total classification accuracies of ONE combinations varied from 
43.3% to 74.6%, with a median TPR between 47.8% and 69.8% and Cohen’s kappa from 
0.33 to 0.67. The ONE combination having the highest total accuracy and Cohen’s kappa 
(74.6% and 0.67 respectively) was ONE with the Scatter weights (ONE1 wscat). The 
highest median TPR (69.8%) was achieved with ONE using IB1w weights (ONE1 
wIB1w). Based on the kappa values, all of the weighted k-NN OVA and ONE variants 
except ONE1 experts and ONE1 we had a substantial agreement with the actual classes 
(kappa value over 0.6). Error bars (with 99% confidence intervals) for the mean total 
accuracies, mean median true positive rates and mean Cohen’s kappa of ONE and the 
attribute weighted 1- and 5-nearest neighbour OVA methods with different weighting 
schemes achieved within 10 times repeated 10-fold cross-validation are shown in Figure 
3.  

Figure 3  Error bars (with 99% confidence intervals) for the mean total accuracies, Cohen’s 
kappas and median true positive rates (TPR) of classification methods from 10 
times repeated 10-fold cross-validation with seven disease classes.  
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In the figure, the Cohen’s kappa values are altered to the range [-100, 100] in 
order to make the figure easier to interpret. The total accuracies, Cohen’s kappa and 
median TPR of two of the weighted 5-NN OVA variants (5-NN OVA wscat and 5-NN 
OVA we) were significantly higher than the results of the ONE and other k-NN OVA 
variants. ONE1 wscat, ONE1 wIB4, ONE1 wIB1w and ONE1 w1 had similar kind of 
results with the weighted 1-NN OVA variants. ONE1 experts and ONE1 we had 
significantly lower results based on the error bars. The total accuracies and kappa were 
quite stable between the 10-fold cross-validation runs, whereas the median true positive 
rates varied by a few percentage points.  

The best true positive rates of the disease classes were achieved with different 
methods and different attribute weights: the highest TPR (95.4%) was achieved on 
Menière’s disease with the 5-nearest neighbour method with weights 1 (5-NN OVA w1). 
The IB4 weighted ONE (ONE1 wIB4) had the best TPR for traumatic vertigo (94.5%), 
ONE with the experts’ weights (ONE1 we) rated the best sudden deafness (85.5%) cases, 
the 5-nearest neighbour method with the experts’ weights (5-NN OVA we) had the highest 
TPRs for vestibular neuritis (80.7%) and benign positional vertigo (74.3%), the 1-nearest 
neighbour method with weights 1 (1-NN OVA w1) had the best TPR for acoustic 
neurinoma (68.5%) and ONE purely defined with the experts’ knowledge (ONE1 experts) 
had the highest TPR for benign recurrent vertigo (65.0%). 

From the classification results of ONE in Table 2 it can be seen that the 
knowledge bases containing the machine learnt weights (ONE1 wscat, wIB4 and wIB1w) 
improved the total classification accuracy by more than 26% compared with the 
knowledge base fully formed by the domain experts (ONE1 experts) and more than 12% 
compared with the knowledge base containing attribute weights defined by the experts 
(ONE1 we): ONE1 experts and ONE1 we classified 43.3% and 57.6% of the cases 
correctly and the knowledge bases with the machine learnt weights 74.6%, 70.0% and 
73.9% respectively. Knowledge base ONE1 w1 treating all attributes as equally important 
performed better than ONE1 experts and ONE1 we and, in addition, better than ONE1 
wIB4. Its total classification accuracy was 73.8%. 

Interestingly, for the 1-nearest neighbour OVA method, the best total accuracy 
of 74.7% and Cohen’s kappa of 0.67 were achieved with the experts’ weights (1-NN OVA 
we), while the second best classifier was 1-NN OVA wscat with an accuracy of 72.8% and 
a kappa value of 0.65. For the 5-nearest neighbour method, the Scatter based weights 
yielded the best results: 5-NN OVA wscat classified 79.7% of the cases correctly and had 
a kappa value of 0.73, whereas 5-NN OVA we achieved a total accuracy of 78.9% with a 
kappa value of 0.72 and 5-NN OVA w1 achieved 76.2% and 0.68 respectively. The 
weights of the IB4 and IB1w methods slightly reduced the total classification accuracy 
with both 1- and 5-nearest neighbour OVA methods. The best and worst results of the 
attribute weighted 1- and 5-nearest neighbour methods with OVA classifiers using 
different weight settings were much closer to each other than the results of ONE.  

Classification method – weight set combinations were also evaluated pair-wise 
with Cohen’s kappa within 10 times repeated 10-fold cross-validation runs in order to see 
the interrelated agreement between two combinations (Figure 4).  
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There were 19 combination pairs that had almost perfect agreement (a kappa value of 
over 0.8) on their classification results in every 10-fold run:

ONE1 w1 - ONE1 wscat 
ONE1 w1 - ONE1 wIB1w 
ONE1 wscat - ONE1 wIB1w 
ONE1 wIB4 - ONE1 wIB1w 
1-NN OVA w1 - 1-NN OVA wscat 
1-NN OVA w1 - 1-NN OVA wIB4  
1-NN OVA w1 - 1-NN OVA wIB1w 
1-NN OVA we - 5-NN OVA we  
1-NN OVA wscat - 1-NN OVA wIB4 
1-NN OVA wIB4 - 1-NN OVA wIB1w 

5-NN OVA w1 - 5-NN OVA we 
5-NN OVA w1 - 5-NN OVA wscat 
5-NN OVA w1 - 5-NN OVA wIB4 
5-NN OVA w1 - 5-NN OVA wIB1w 
5-NN OVA we - 5-NN OVA wscat 
5-NN OVA we - 5-NN OVA wIB4 
5-NN OVA wscat - 5-NN OVA wIB4 
5-NN OVA wscat - 5-NN OVA wIB1w 
5-NN OVA wIB4 - 5-NN OVA wIB1w. 

Four of these pairs consisted of ONE combinations; the others were 1- and 5- nearest 
neighbour combinations. In addition to above mentioned pairs, “1-NN OVA wscat - 5-NN 
OVA wscat”, “1-NN OVA wIB1w - 5-NN OVA wIB1w”, “ONE1 wscat – ONE1 wIB4”, “1-
NN OVA wIB4 - 5-NN OVA wIB4”, “5-NN OVA we - 5-NN OVA wIB1w” and “ONE1 w1 
– ONE1 wIB4” had almost perfect agreement in some of the 10 times repeated 10-fold
runs (9, 9, 7, 5, 4 and 3 out of 10 respectively). The Cohen’s kappa shows that the 5-
nearest neighbour OVA variants with different weight sets are more similar to each other 
and agree more on the classifications than the 1-nearest neighbour OVA and ONE 
combinations. Thus, the weight sets have more effect on the classification results of the 1-
nearest neighbour OVA and ONE methods than on the results of the attribute weighted 5-
nearest neighbour OVA method.  

In this domain, patients can have confounding and overlapping symptoms and 
diseases can mimic other diseases (Havia, 2004; Kentala, 1996), which led us to 
investigate the number of tied diagnosis suggestions of ONE and tied votes of k-NN OVA 
variants within 10 times repeated 10-fold cross-validation. ONE had only one case with 
two tied best suggestions (Table 3(a)). With the attribute weighted 1- and 5-nearest 
neighbour OVA methods, the number of cases having tied voting classifiers was quite 
large (Table 3(b)). There were situations where the 1- and 5-nearest neighbour method 
with OVA classifiers voted a case to be a member of more than one classifier or voted it 
to be a non-member of all classes. The total number of cases having tied voting classifiers 
varied with the 1-nearest neighbour OVA method from 204 to 279 (from 21.5% to 
29.3%) and with the 5-nearest neighbour OVA method from 158 to 228 (from 16.6% to 
24.0%) within 10 times repeated 10-fold cross-validation. The lowest total number of 
cases having tied voting classifiers within 1-NN OVA (from 204 to 223) was yielded with 
1-NN OVA wIB4 and within 5-NN OVA (from 158 to 179) with 5-NN OVA wIB1w. The 
proportion of cases having non-member voting classifiers with each 1- and 5- nearest 
neighbour OVA variant was quite high: at worst, 14.5% of 1-NN OVA and 13.0% of 5-
NN OVA cases could not be assigned to a class with the OVA classifiers. In these non-
member voting situations, the class was solved using the basic attribute weighted 1-
nearest neighbour method. 

In order to see what diseases were mixed up with others, we created mean 
confusion matrices for the classification methods ONE and 1- and 5- nearest neighbour 
methods using OVA classifiers with the weight combinations that had the highest total 
accuracy from the 10 times repeated 10-fold cross-validation (Table 4). The confusion 
matrix of ONE1 experts was added for comparison. 
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Table 3  The minimum and maximum number (n) of cases having tied diagnosis suggestions 
or a tied voting situation occurring in 10 times repeated 10-fold cross-validation 
with seven disease classes (the number of cases covers the entire 10-fold data). 

(a) diagnosis suggestions of ONE with the same highest score and maximum score 
and minimum score difference. 

(b) tied voting with the attribute weighted 1- and 5-nearest neighbour methods with 
OVA classifiers.  

All disease classes were mixed up with Menière’s disease: in ONE1 wscat from 
8.5% (TRA) to 26.0% of the cases (SUD), in 1-NN OVA we from 4.8% (TRA) to 28.5% 
(SUD), in 5-NN OVA wscat from 2.7% (TRA) to 34.0% (ANE) and in ONE1 experts 
from 0% (TRA) to 10.6% (SUD). There were differences in the mixing: ONE1 wscat, 1-
NN OVA we and 5-NN OVA wscat mainly misclassified cases as Menière’s diseases, 
whereas ONE1 experts mostly mixed up all classes with benign positional vertigo from 
4.3% (SUD) to 30.0% (BRV) and with benign recurrent vertigo from 8.2% (TRA) to 
47.1% (VNE). In addition, ONE1 experts classified 48.1% of the acoustic neurinoma 
cases as having sudden deafness. ONE1 wscat, 1-NN OVA we and 5-NN OVA wscat also 
mixed up benign recurrent vertigo with benign positional vertigo (27.5%, 44.5% and 
44.0% of the cases respectively). 1-NN OVA we mixed 21.5% of sudden deafness cases 
with acoustic neurinoma. 

n of tied voting 
classifiers 

ONE1 
experts 

ONE1  
w1 

min n   max n 
ONE1  

we  

ONE1 
wscat 

ONE1 
wIB4 

ONE1 
wIB1w 

2 suggestions 0 0 1 0 0 0 0 
total n of ties 0 0 1 0 0 0 0 

n of tied voting 
classifiers 

1-NN OVA  
w1 

1-NN OVA  
we 

1-NN OVA 
wscat 

1-NN OVA 
wIB4 

1-NN OVA 
wIB1w 

min n  max n min n  max n min n max n min n  max n min n max n  

2 class members 124 138 115 135 135 150 101 127 125 140 
3 class members 2 7 8 14 3 9 2 8 2 7 
4 class members 0 0 0 1 0 1 0 0 0 0 
5 class members 0 0 0 0 0 0 0 0 0 0 
6 class members 0 0 0 0 0 0 0 0 0 0 
7 non-members 81 102 124 138 91 106 88 104 73 91 
total n of ties 216 237 253 279 240 260 204 223 212 232 

n of tied voting 
classifiers 

5-NN OVA  

w1 

5-NN OVA  

we 
5-NN OVA 

wscat 
5-NN OVA 

wIB4 
5-NN OVA 

wIB1w 

min n max n min n max n min n max n min n  max n min n max n 

2 class members 62 67 94 105 88 100 54 66 60 75 
3 class members 0 1 3 7 2 7 0 2 0 3 
4 class members 0 0 0 0 0 0 0 0 0 0 
5 class members 0 0 0 0 0 0 0 0 0 0 
6 class members 0 0 0 0 0 0 0 0 0 0 
7 non-members 105 111 102 119 97 106 111 124 95 106 
total n of ties 169 178 205 228 191 211 171 189 158 179 
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Table 4  Confusion matrices of seven disease classes in mean percentages (%) for ONE and 
the 1- and 5-nearest neighbour OVA methods with the weight sets having the 
highest total accuracies from 10 times repeated 10-fold cross-validation. Results of 
ONE1 experts added for comparison.  

ONE1 wscat: total accuracy 74.6%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV 
ANE 62.3 0.7 21.2 13.2 0.0 1.5 1.1 
BPV 0.0 55.6 25.9 1.0 2.7 0.6 14.2 
MEN 0.0 0.9 91.9 4.0 0.6 0.3 2.3 
SUD 2.1 0.0 26.0 71.9 0.0 0.0 0.0 
TRA 0.0 3.0 8.5 3.6 83.2 1.5 0.3 
VNE 0.0 5.2 15.7 2.4 1.6 67.8 7.2 
BRV 0.0 27.5 24.0 0.0 0.0 5.5 43.0 

1-NN OVA we: total accuracy 74.7%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV 
ANE 67.6 3.1 25.0 1.6 0.5 2.3 0.0 
BPV 0.5 69.3 20.4 0.5 1.4 1.3 6.6 
MEN 1.5 4.9 87.2 0.7 0.9 3.0 1.8 
SUD 21.5 0.6 28.5 45.3 0.0 4.0 0.0 
TRA 1.5 14.7 4.8 0.4 74.8 1.4 2.5 
VNE 0.0 7.8 11.8 0.1 1.1 74.4 4.8 
BRV 0.0 44.5 22.5 0.0 0.0 14.0 19.0 

5-NN OVA wscat: total accuracy 79.7%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV 
ANE 63.1 1.2 34.0 0.2 0.0 1.5 0.0 
BPV 0.5 70.9 23.5 0.0 1.7 1.4 2.0 
MEN 0.3 2.3 93.7 0.3 1.6 1.1 0.7 
SUD 2.3 2.1 11.3 84.3 0.0 0.0 0.0 
TRA 0.0 5.3 2.7 3.7 86.6 1.6 0.0 
VNE 0.0 8.6 11.0 0.6 1.6 75.2 3.1 
BRV 0.0 44.0 23.5 0.0 0.0 14.0 18.5 

ONE1 experts: total accuracy 43.3%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV 
ANE 24.4 11.5 6.1 48.1 0.0 0.0 9.9 
BPV 4.0 65.9 5.8 0.6 1.7 1.2 20.8 
MEN 7.7 13.4 42.0 3.1 1.4 1.4 30.9 
SUD 2.1 4.3 10.6 68.1 4.3 0.0 10.6 
TRA 0.0 24.7 0.0 0.0 67.1 0.0 8.2 
VNE 1.9 24.8 6.4 1.9 1.9 15.9 47.1 
BRV 0.0 30.0 5.0 0.0 0.0 0.0 65.0 
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In addition to confounding and overlapping symptoms, patients can actually 
have two (or more) diseases present simultaneously (Kentala et al., 1996). Furthermore, 
vertigo diseases resemble each other and can be difficult to differentiate from others, as 
can be seen in Table 4. Therefore, it is good to check the classification results of ONE 
with more than one disease suggestion. In the end, the final diagnostic choice must be 
made by the physician based on the information given on all alternative diseases (Kentala 
et al., 1996). The classification results when looking for the correct class among the first, 
second and third diagnosis suggestions given by ONE are given in Table 5. Within the 
three diagnosis suggestions, the weights computed with the Scatter and IB1w methods 
improved the total classification accuracy: with the experts’ weights the accuracy was 
86.2% (ONE123 experts) and 90.6% (ONE123 we), whereas with the IB1w weights the 
accuracy was 93.0% (ONE123 wIB1w) and with the Scatter weights 94.4% (ONE123 
wscat). The gap between ONE123 w1, ONE123 experts and ONE123 we narrowed when 
looking at the three diagnosis suggestions, but ONE123 w1 was still more robust with a 
total accuracy of 92.3%. The Scatter-based and IB1w weights also increased the total 
accuracy compared with the weights 1. 

Table 5  The mean true positive rates of seven disease classes and the mean total 
classification accuracies of the ONE variants having correct diagnosis suggestions 
within the first, second and third diagnosis suggestions (ONE123) in percentages 
(%) from 10 times repeated 10-fold cross-validation. The highest TPRs and 
accuracies are in boldface. 

Disease Cases 
ONE123 
experts 

ONE123 
w1

ONE123 
we

ONE123 
wscat 

ONE123 
wIB4

ONE123 
wIB1w

ANE 131 78.6 90.3 73.9 86.6 82.7 93.6 

BPV 173 95.4 88.3 85.5 97.5 84.6 89.7 

MEN 350 78.6 97.9 97.6 98.1 95.6 97.7 

SUD 47 97.9 98.9 100.0 100.0 99.6 99.4 

TRA 73 100.0 100.0 94.4 100.0 100.0 100.0 

VNE 157 87.9 82.5 91.7 85.7 78.0 82.4 

BRV 20 100.0 77.0 76.0 90.5 99.0 79.0 

Median of TPR 95.4 90.3 91.7 97.5 95.6 93.6 

Total ACC 951 86.2 92.3 90.6 94.4 89.5 93.0 

Even though the experts could not define weights for vestibulopatia and central 
lesion, these two classes were used in the classification runs of ONE and the weighted k-
nearest neighbour method using OVA classifiers. With the machine learning methods we 
were able to create weights for these two classes and were thus able to use nine disease 
classes in the classification runs. When comparing the classification results of nine 
disease classes with ONE and the attribute weighted 1- and 5-nearest neighbour methods
(Table 6), the best results were achieved with the 5-nearest neighbour method with the 
weights calculated by the Scatter method (5-NN OVA wscat). It classified 73.3% of cases 
correctly, whereas other wk-NN OVA methods recognized 62.9% to 70.1% and ONE 
variants 59.1% to 62.4% cases correctly. 5-NN OVA wscat also had the highest Cohen’s 
kappa value (0.66). The highest median TPR (65.7%) was yielded with ONE1 wIB4.  
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The highest total accuracy of the ONE variants at 62.4% was achieved with ONE1 wscat, 
having a kappa value of 0.54 and a median TPR of 62.7%. Other machine learnt weights 
(IB4 and IB1w) slightly reduced the total accuracy compared with the equally weighted 
ONE and 5-NN OVA. The weights based on the Scatter method seemed to work with all 
methods: ONE and 1- and 5-NN OVA with the Scatter-based weights had the highest 
total accuracies within the methods. 

The two added classes (vestibulopatia and central lesion) were difficult to 
recognize with both the attribute weighted k-nearest neighbour OVA methods and ONE 
(Table 6). Vestibulopatia was correctly classified with the weighted k-NN OVA 
combinations from 17.5% to 36.9% of the cases and with the first suggestion of ONE’s 
weight combinations from 40.2% to 47.5% of the cases. The classification of central 
lesion was not much easier for the weighted k-NN OVA: from 7.5% to 23.3% of the cases 
were correctly classified with the weighted k-NN OVA combinations. Instead, ONE 
classified from 40.8% to 89.2% of the central lesion cases correctly. Furthermore, the 
addition of these two difficult diseases to the classification reduced the true positive rates 
of the other seven classes with some methods, especially with benign recurrent vertigo 
(39.0% decrease with ONE1 wscat), benign positional vertigo (25.1% decrease with 
ONE1 wIB4), and Menière’s disease (15.7% decrease with ONE1 wIB4) (Tables 2 and 6).  

With the nine disease classes, the total number of cases having tied voting 1- and 
5-nearest neighbour method OVA classifiers within the 10 times repeated 10-fold cross-
validations (Table 7) increased compared with the seven disease classes. However, ONE 
did not have more than one case having the same highest score and the same max-min 
score difference for two class suggestions. The total number of ties occurring within the 
cross-validation runs varied with the 1-nearest neighbour OVA method from 270 to 332 
(26.2% to 32.2%) and with the 5-nearest neighbour OVA method from 244 to 290 (23.7% 
to 28.2%). The weighted 1- and 5-nearest neighbour OVA method having the lowest total 
number of tied voting classifiers was achieved with 1-NN OVA wIB4 (270 to 302 ties) and 
5-NN OVA wIB1w (244 to 267 ties). Interestingly, the proportion of non-member voting 
classifiers with 1-NN OVA stayed almost the same with nine disease classes, whereas the 
proportion increased with 5-NN OVA: during the classification of nine diseases with 1-NN 
OVA there were at worst 14.1% non-member voting classifiers (14.5% with seven 
diseases) and 20.8% with 5-NN OVA (13.0% with seven diseases). 

Table 7  The minimum and maximum number (n) of cases having tied diagnosis suggestions 
or a tied voting situation occurring in 10 times repeated 10-fold cross-validation 
with nine disease classes (the number of cases covers the entire 10-fold data).  

(a) diagnosis suggestions of ONE with the same highest score and maximum score 
and minimum score difference.

n of tied suggestions 
ONE1  

w1 
min n max n 

ONE1 wscat ONE1 wIB4 ONE1 wIB1w 

2 suggestions 0 1 0 0 0 
total n of ties 0 1 0 0 0 
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(b) tied voting with the attribute weighted 1- and 5-nearest neighbour methods with 
OVA classifiers.  

n of tied voting 
classifiers 

1-NN OVA 

w1 

1-NN OVA 

wscat 

1-NN OVA  

wIB4 
1-NN OVA 

wIB1w 

min n   max n min n  max n min n  max n min n   max n 

2 class members 152 169 161 180 125 150 154 168 
3 class members 6 11 9 15 7 13 6 11 
4 class members 0 2 0 2 0 0 0 1 
5 class members 0 0 0 0 0 0 0 0 
6 class members 0 0 0 0 0 0 0 0 
7 class members 0 0 0 0 0 0 0 0 
8 class members 0 0 0 0 0 0 0 0 
9 non-members 117 134 124 140 125 145 110 126 
total n of ties 292 306 311 332 270 302 280 300 

n of tied voting 
classifiers 

5-NN OVA  
w1 

5-NN OVA  
wscat 

5-NN OVA  
wIB4 

5-NN OVA 
wIB1w 

min n   max n min n   max n min n   max n min n   max n 

2 class members 54 67 87 100 53 65 58 74 
3 class members 0 1 3 6 0 1 0 2 
4 class members 0 0 0 0 0 0 0 0 
5 class members 0 0 0 0 0 0 0 0 
6 class members 0 0 0 0 0 0 0 0 
7 class members 0 0 0 0 0 0 0 0 
8 class members 0 0 0 0 0 0 0 0 

9 non-members 187 209 171 185 197 214 175 199 
total n of ties 253 272 269 290 256 273 244 267 

The mean confusion matrices for the classification methods ONE and 1- and 5- 
nearest neighbour methods using OVA classifiers with weight combinations that had the 
highest total accuracy from the 10 times repeated 10-fold cross-validation within nine 
disease classes are given in Table 8. All disease classes were again mixed up with 
Menière’s disease. In particular, the cases of sudden deafness were classified as 
Menière’s disease: in ONE1 wscat 25.7%, in 1-NN OVA wscat 34.7% and in 5-NN OVA 
wscat 53.6%. The 1- and 5-nearest neighbour methods using the Scatter weights mixed up 
the cases of vestibulopatia, central lesion and benign recurrent vertigo with benign 
positional vertigo besides Menière’s disease. In addition, benign recurrent vertigo was 
badly mixed up with vestibulopatia with all three methods: in ONE1 wscat 62.0%, in 1-
NN OVA wscat 28.0% and in 5-NN OVA wscat 32.5%. With ONE1 wscat, the cases of 
benign positional vertigo were mixed up with vestibulopatia, central lesion and Menière’s 
disease.  

When looking the correct class within the three best diagnosis suggestions of 
ONE with the nine disease classes (Table 9), the best total accuracy was achieved with 
ONE123 wscat (85.0%). ONE123 w1 was the second best with 84.9% total accuracy and 
ONE123 wIB1w was the third best with 84.7% accuracy. However, the highest median 
TPR (91.2%) was achieved with ONE123 wIB4. The addition of two disease classes 
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reduced the true positive rates of the other seven classes (Tables 5 and 9). The TPRs 
reduced at worst by 31.2% (BPV with ONE123 wscat) and 30.0% (BRV with ONE123 
w1) within the three first diagnosis suggestions compared with results of ONE when 
using seven disease classes in the knowledge base.  

Table 8  Confusion matrices of nine disease classes in mean percentages (%) for the ONE 
and the 1- and 5-nearest neighbour OVA methods with the weight sets having the 
highest total accuracies within the methods from 10 times repeated 10-fold cross-
validation.  

ONE1 wscat: total accuracy 62.4%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV VES CL
ANE 62.7 0.0 19.7 12.3 0.0 1.3 0.2 2.9 0.9 
BPV 0.0 31.4 14.2 0.9 1.6 0.6 3.9 32.9 14.6 
MEN 0.0 0.3 80.2 3.9 0.6 0.3 0.9 4.7 9.0 
SUD 2.1 0.0 25.7 68.9 0.0 0.0 0.0 2.1 1.1 
TRA 0.0 1.2 6.3 3.4 77.3 1.4 0.0 5.8 4.7 
VNE 0.0 1.3 10.3 2.3 0.7 64.9 1.8 12.9 5.8 
BRV 0.0 9.0 12.0 0.0 0.0 5.0 4.0 62.0 8.0 
VES 0.0 4.9 21.8 0.0 0.0 0.0 8.9 41.3 23.1 
CL 0.0 0.0 16.7 0.0 4.2 4.2 0.0 28.3 46.7 

1-NN OVA wscat: total accuracy 64.6%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV VES CL
ANE 71.5 1.7 22.1 2.7 0.0 1.6 0.0 0.1 0.3 
BPV 0.5 65.1 17.5 0.5 1.6 1.5 2.5 8.8 2.0 
MEN 1.1 4.8 86.4 1.2 0.6 0.9 1.5 2.7 0.7 
SUD 10.0 1.5 34.7 48.3 0.0 3.6 0.0 1.9 0.0 
TRA 0.0 4.1 4.1 0.0 87.7 4.1 0.0 0.0 0.0 
VNE 0.0 3.2 8.6 0.6 0.9 79.4 1.7 5.1 0.6 
BRV 0.0 25.5 18.0 0.0 0.0 9.0 14.5 28.0 5.0 
VES 1.8 21.5 22.9 0.0 0.0 3.6 11.6 28.9 9.6 
CL 0.0 31.2 26.3 0.0 5.0 5.0 4.2 19.2 9.2 

5-NN OVA wscat: total accuracy 73.3%

Correct class 
Predicted class 

ANE BPV MEN SUD TRA VNE BRV VES CL
ANE 68.7 0.6 26.6 2.0 0.0 1.8 0.0 0.2 0.2 
BPV 0.5 64.6 25.1 0.0 1.0 0.7 0.6 6.6 0.9 
MEN 0.0 2.1 95.3 0.0 0.5 0.8 0.3 1.0 0.0 
SUD 13.2 0.9 53.6 28.7 0.0 2.8 0.0 0.2 0.6 
TRA 0.0 4.7 7.1 0.0 83.2 0.5 2.3 2.2 0.0 
VNE 0.0 5.2 12.7 0.0 0.7 77.6 0.4 3.2 0.0 
BRV 0.0 33.5 19.0 0.0 0.0 5.0 10.0 32.5 0.0 
VES 1.3 28.5 34.5 0.5 0.0 0.4 3.1 27.3 4.4 
CL 0.0 21.7 44.2 0.0 4.2 4.2 0.4 22.5 2.9 
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Table 9  The mean true positive rates of nine disease classes and the mean total classification 
accuracies of ONE variants having correct diagnosis suggestion within the first, 
second and third diagnosis suggestions (ONE123) in percentages (%) from 10 times 
repeated 10-fold cross-validation. The highest TPRs and accuracies are in boldface. 

Disease Cases ONE123 
w1

ONE123 
wscat 

ONE123 
wIB4 

ONE123 
wIB1w 

ANE 131 87.3 80.5 75.7 86.1 
BPV 173 63.9 66.3 61.0 64.3 
MEN 350 97.4 96.7 91.2 96.9 
SUD 47 92.6 97.0 96.8 92.1 
TRA 73 96.7 96.3 99.7 98.2 
VNE 157 73.6 72.4 70.0 72.6 
BRV 20 47.0 68.5 74.0 59.0 
VES 55 90.9 95.8 93.6 89.5 
CL 24 80.8 86.7 97.9 80.8 

Median of TPR 87.3 86.7 91.2 86.1 

Total ACC 1030 84.9 85.0 81.7 84.7 

5 Conclusions 

The Scatter method and the weight calculation method of the instance-based learning 
method with two variants (IB4 and IB1w) were used in the attribute weight calculation. 
The created attribute weights were tested with the nearest pattern method of ONE and the 
attribute weighted k-nearest neighbour method with One-vs-All classifiers. The expert-
defined weights and weights set to 1 were also used in the classification. 

Previous study (Varpa et al., 2008) showed that learning fitness values for 
attribute values with the machine learning method improved the classification of ONE. 
However, there was a need for attribute weighting in order to ameliorate the 
discrimination of the classes: some classes were mixed up with other classes when having 
equal attribute weighting (all weights set to 1). Nevertheless, as the results of this study 
show, attribute weighting is a demanding task and does not always help recognition. The 
Scatter-based weights were the only machine learnt weights that improved the total 
accuracies compared with the equal weighting. The IB4 and IB1w weights did not help 
the separation of classes with the attribute weighted k-nearest neighbour OVA method 
and ONE. Overall, the best total accuracy was achieved with the attribute weighted 5-
nearest neighbour OVA method using the Scatter weights. 

Based on the total accuracies and the Cohen’s kappa values, the machine learnt 
weights improved the classification of ONE compared with the weights defined by the 
experts when classifying seven disease classes. The Scatter-based weights yielded the 
best total accuracy and Cohen’s kappa for ONE (74.6% and 0.67). ONE with the weights 
set to 1 classified cases better than ONE with the experts’ weights. With the attribute 
weighted 1-nearest neighbour OVA method, the best total accuracy and Cohen’s kappa 
were achieved with the experts’ weights (74.7% and 0.67), whereas with the attribute 
weighted 5-nearest neighbour OVA method, the best total accuracy and Cohen’s kappa 
were yielded with the Scatter-based weights (79.7% and 0.73). Also, with nine disease 
classes, the best total accuracy and Cohen’s kappa with ONE (62.4% and 0.54) and with 
attribute weighted 1- and 5-nearest neighbour OVA methods (64.6% and 0.56 and 73.3% 
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and 0.66 respectively) were achieved using the Scatter-based weights. Thus, the weights 
based on the Scatter method worked well with both weight utilizing methods. The highest 
true positive rates within the disease classes varied depending on the utilised inference 
mechanism and class: in some disease classes even the weights set to 1 or the weights 
defined by the experts produced the best accuracy. 

When adding two difficult diseases (vestibulopatia and central lesion) to the 
knowledge base of ONE, the true positive rates of the other seven disease classes 
decreased considerably, especially with the diseases benign recurrent vertigo, benign 
positional vertigo and Menière’s disease. The decrease can also be seen in the results of 
the attribute weighted k-nearest neighbour with OVA classifiers. This confirms that 
certain disease classes have overlapping and confounding symptoms (Kentala et al., 
1998), and, therefore, are mixed up with other diseases during classification. 

The kappa chance value Pc describes the “agreement” probability that can really 
be attributed to chance alone (Ben-David, 2007). In Ben-David’s research, the average 
kappa chance within different classification methods (C4.5, sequential minimal 
optimisation , Naïve Bayes, logistic regression and random forest) tested with different 
data sets from the UCI Machine Learning Repository were 0.35, thus showing that more 
than one-third of the hits in the classification results could not be attributed to the 
classifiers’ sophistication. Compared with this average kappa chance value, ONE and the 
attribute weighted k-nearest neighbour OVA methods do not seem to let chance affect the 
classification results as much. The kappa chance values varied with ONE from 0.15 to 
0.24 with seven diseases, from 0.15 to 0.18 with nine diseases and with the weighted 1- 
and 5-nearest neighbour methods from 0.23 to 0.26 and 0.19 to 0.24 respectively. 

Otoneurology is a difficult domain: there are many reasons for vertigo and some 
diseases are considered challenging to diagnose because of the overlapping and similar 
symptoms within diseases. Therefore, physicians see tools that support making a 
diagnosis as very useful (Aalto, 2005). In order to support more diagnosing, we are 
aiming to make ONE a hybrid decision support system - i.e., to use several inference 
methods while making diagnosis suggestions. With more than one inference method it is 
possible to make more reliable decisions. Therefore, in this research we used the attribute 
weighted k-nearest neighbour OVA method with ONE’s classification method. ONE and 
the attribute weighted k-nearest neighbour OVA method have different approaches to the 
classification problem: ONE handles descriptions of the diseases and can advise the user 
why the diseases could be possible or not (e.g., do the occurring symptoms fit the disease 
and what tests need to be done in order to confirm the diagnosis), whereas the attribute 
weighted k- nearest neighbour OVA method handles cases individually and classifies new 
cases based on their k most similar neighbours giving information about similar cases.  

The next step in the attribute weighting of ONE is to use more adaptive machine 
learning methods in the attribute weight calculation. In our next study, we will use a 
genetic algorithm (Michalewicz, 1992; Mitchell, 1996) as an adaptive weight calculation 
method. This approach has been shown to improve the results with a k-nearest neighbour 
classifier (Kelly and Davis, 1991). 

As the results showed, it is important to have appropriate attribute weights. The 
extent of the effect the attribute weights had on the classification results depended on the 
classification method used. Based on the Cohen’s kappa evaluations, the ONE method is 
more sensitive to the attribute weights. The attribute weighted 5-nearest neighbour OVA 
variants with different weight sets agreed more with each other than attribute weighted 1-
nearest neighbour OVA and ONE with different weight sets.  

The machine learning methods for weight calculation described in this study are 
not domain-dependent and can be applied in totally different domains. The only 
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prerequisite is that there is enough data in order to apply machine learning methods in 
attribute weight calculation. In the future, the attribute weighting methods will be tested 
with several data sets from different domains. Also other attribute weighting and 
weighted classification methods will be taken into use in further research. 
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Genetic algorithms have been utilized inmany complex optimization and simulation tasks because of their powerful searchmethod.
In this researchwe studiedwhether the classification performance of the attributeweightedmethods based on the nearest neighbour
search can be improved when using the genetic algorithm in the evolution of attribute weighting. The attribute weights in the
starting population were based on the weights set by the application area experts andmachine learning methods instead of random
weight setting. The genetic algorithm improved the total classification accuracy and the median true positive rate of the attribute
weighted k-nearest neighbour method using neighbour’s class-based attribute weighting. With other methods, the changes after
genetic algorithm were moderate.

1. Introduction

One of the most commonly used simple classification meth-
ods is the nearest neighbour (NN) method that classifies a
new case into the class of its nearest neighbour case [1]. The
nearest neighbour method is an instance-based learning
method that searches for the most similar case of the test case
from the training data by somedistancemeasure, usuallywith
the Euclidean distance. A natural extension to NN is the k-
nearest neighbour (k-NN) method that assigns the majority
class of the k nearest training cases for the test case [2].
Different refinements and extensions have been proposed for
k-NN in order to improve classification results and overcome
classification problems, for example, distance-weighting of
neighbours [2], extensions using properties of the data set [3],
weighting of attributes [2, 4, 5], and attribute weight opti-
mization with genetic algorithms (GA) [6–11].

Genetic algorithms [12, 13] and other evolution algo-
rithms [14, 15] have been utilized in various complex opti-
mization and simulation problems because of their powerful
search and optimization capabilities. A search method of a
genetic algorithm is a combination of directed and stochastic
search and the search can be done multidirectionally because
GA maintains a population of potential solutions from the
search space [14]. The basics of the search method of GA

underlie in natural selection and genetic inheritance [12];
individuals of the population are used in the reproduction of
new solutions by means of crossover and mutation. Genetic
algorithms have been used with various machine learning
methods to optimize weighting properties of the method.
Since our research is based on the nearest neighbour search
applying machine learning methods, we concentrate on
related works where GAs have been applied only with the k-
nearest neighbourmethod. Kelly and Davis [6] combined the
GA with a weighted k-nearest neighbour (wk-NN) method
in the algorithm called GA-WKNN in order to find a single
attribute weight vector that would improve the classification
results of the wk-NN. A similar kind of approach was used in
[7] where GA was combined with the wk-NN and a parallel
processing environment in order to optimize classification of
large data sets. In both studies, a set of real-valued weights for
attributes to discriminate all classes of data were achieved as
a result after GA runs. The study of Hussein et al. [8] showed
that GA can be applied successfully in setting a real-valued
weight set for 1-NN classifier but the improvement of accu-
racy happened at the expense of increase in processing time.
Results showed that GA methods combining the wk-NN
outperformed the basic k-NN [6–8]. However, a single set of
weights for all classes is not always the best solution because
attributes have a different effect on classes [11]. Therefore,

Hindawi Publishing Corporation
Journal of Computational Medicine
Volume 2014, Article ID 526801, 11 pages
http://dx.doi.org/10.1155/2014/526801



2 Journal of Computational Medicine

solutions for searching for a weight for each class and
attribute have been developed. Lee et al. [9] combined the
GA-based attribute weighting method with a modified k-
NN, thus, forming an adaptive feature weighting method
A3FW-MNN that used different sets of attribute weights
for different classes. Also, Mateos-Garćıa et al. [10] assigned
different weights to every attribute depending on each class in
their evolutionary algorithm called Label Dependent Feature
Weighting (LDFW) algorithm.

In this research we studied whether the classification per-
formance of the attribute weighted machine learning meth-
ods based on the nearest neighbour search can be improved
when using the genetic algorithm in the evolution of
attribute weighting based on the experts and machine learn-
ing methods when runs were made with a medical data set.
This medical data has been our test data in our previous
researches [16, 17].

2. Material

In this research an otoneurological data set having 951 cases
from seven different vertigo diseases (classes) (Table 1) was
used. The data was collected over a decade starting from the
1990s in the Department of Otorhinolaryngology at Helsinki
University Central Hospital, Finland, where experienced
specialists confirmed all the diagnoses. The distribution of
the disease classes is imbalanced; over one-third of the cases
belong to the Menière’s disease class (36.8%), whereas the
smallest disease class benign recurrent vertigo has only 2.1%
of the cases.

In total, the data includes 176 attributes concerning a
patient’s health status: occurring symptoms, medical history,
and clinical findings in otoneurologic, audiologic, and imag-
ing tests [18, 19]. Clinical testing has not been done to every
patient and, therefore, there are several test results that have
missing values of the attributes. Attributes with low frequen-
cies of available values were left outside this research. After
leaving out the attributes having over 35% missing values, 94
attributes remained to be used in this research: 17 quantita-
tive (integer or real value) and 77 qualitative attributes (of
which 54 were binary (yes/no), 20 were ordinal, and 3 were
nominal). Genetic algorithm runs were done with the data
including missing attribute values.

3. Genetic Algorithm

The basic idea of the genetic algorithm is the following: in the
beginning, a population of individuals is formed either
randomly or with information about the application domain.
Traditionally, a binary representation of the individuals has
been used but in multidimensional and numerical problems
real-valued representation is nowadays used [14]. In each gen-
eration, the individuals of the population are evaluated with
an objective evaluation function, thus, giving the individual
its fitness rate. A selection method is used to find the fittest
individuals for a newpopulation. Some individuals of the new
population undergo reproduction by means of crossover and
mutation. In the crossover, the information of the individuals

Table 1: The frequency distribution of vertigo disease classes.

Disease name Abbreviation Frequency %
1 Acoustic neurinoma ANE 131 13.8
2 Benign positional vertigo BPV 173 18.2
3 Menière’s disease MEN 350 36.8
4 Sudden deafness SUD 47 4.9
5 Traumatic vertigo TRA 73 7.7
6 Vestibular neuritis VNE 157 16.5
7 Benign recurrent vertigo BRV 20 2.1

Total 951 100

is swapped in their corresponding elements. Mutation alters
one or more elements of the individual arbitrarily. Elitism is a
commonly applied survivor selection method. It keeps the
current fittest individual unchanged in the population so the
high-performance individuals are not lost from one gener-
ation to the next [20]. The GA can be ended after a fixed
number of iterations or if no further improvement is observed
after some number of generations.

We utilized the genetic algorithm in the evolution of the
attribute weight values. A pseudocode of the used genetic
algorithm is given in Pseudocode 1. A population contained
21 individuals that used real-valued representation instead of
binary presentation because the attribute weight values were
described with real-valued numbers, not just with 0 and 1.
Each individual consisted of seven different attribute weight
sets for 94 attributes. The individuals of the starting pop-
ulation were based on the weights set by the experts and
machine learningmethods.The starting population is defined
more accurately in Section 3.1. The genetic algorithm used
a roulette-wheel selection in parent selection and a uniform
crossover with discrete recombination in offspring creation.
The crossover was done in 80.0% probability (𝑝𝑐 = 0.8) and
the crossover points were selected randomly and indepen-
dently for each gene (a field on an individual). Mutation was
done in 1.0% probability (𝑝𝑚 = 0.01) for the gene and it was
done also in a uniform manner: a random value was drawn
from the range [0, 1] which was set as a new value in the cur-
rent position. In addition, elitism was used in order to keep
the best individual within the population during runs.We did
not want to lose the best performing weight set during the
evolution. If the number of the individuals was higher than
21 in the end of the generation, a survivor selection was used.
The individuals were ordered by their classification perfor-
mance and the individuals with the lowest accuracy were
discarded from the population. The genetic algorithm ended
after 20 generations or if the best classification accuracy
maintained the same during 10 successive generations. Fur-
thermore, if all the individuals were the same in the popula-
tion, the evaluation ended. The parameters used in the GA
runs are described in Table 2.

The genetic algorithm runs were done separately with
three different machine learning methods used in the
population evaluation: with the nearest pattern method
of the otoneurological expert system (ONE), with the
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data𝐷 = [𝐶𝑎𝑠𝑒1
...𝐶𝑎𝑠𝑒951]

= [[𝑐1,1, . . . , 𝑐1,94]
...[𝑐951,1, . . . , 𝑐951,94]]

population𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = [𝑊𝑒𝑖𝑔ℎ𝑡1
...𝑊𝑒𝑖𝑔ℎ𝑡21]

= [[𝑤1,1,1, . . . , 𝑤1,1,94; . . . ; 𝑤1,7,1, . . . , 𝑤1,7,94]
...[𝑤21,1,1, . . . , 𝑤21,1,94; . . . ; 𝑤21,7,1, . . . , 𝑤21,7,94]]

population size = 21𝑝𝑐 = 0.8 //Crossover rate𝑝𝑚 = 0.01 //Mutation rate
divide data𝐷 into 10 equally-sized subsets
for cv round = 1 to 10 do

divide training data D-𝑑𝑐V 𝑟𝑜𝑢𝑛𝑑 into train (6 subsets) and test (3 subsets) data
initialize methods with train data:

cwk-NN and wk-NN OVA: HVDM initialization
ONE: fitness value calculation for values of attributes

evaluate starting populationWeights with test data and ONE/cwk-NN/wk-NN OVA
while ending terms of GA are not fulfilled do

//Survivor selection: Elitism
search for the individual with the highest fitness rate from the population
//Parent selection: Roulette-wheel selection with fitness-proportionate selection
for each individual in the population do

calculate individual’s fitness proportionate rate = individual‘s fitness rate/sum of individuals’
fitness rates
calculate individual’s cumulative fitness proportionate rate

end for
while nr of individuals in the mating pool is smaller than population size do

generate a random number r from [0, 1]
search for the jth individual that has smaller cumulative fitness proportionate rate than 𝑟
add the jth individual in the mating pool

end while
//Crossover: Uniform crossover with discrete recombination
for each individual in the mating pool do

generate a random number s from [0, 1]
if 𝑠 is smaller than 𝑝𝑐 then

add the individual in the parent pool
else

add the individual in the new population (offspring is a direct copy of its parent)
end if

end for
while two individuals can be taken from the parent pool do

if two individuals are exactly the same then
add the first individual into the new population
take new individual from the parent pool to use in the crossover

end if
for each disease class weight set do

select the crossover points randomly
swap information of two individuals in the corresponding crossover points (create children)

end for
add children in the new population

end while
//Mutation: Uniform mutation
for each individual in the new population do

for each gene of individual do
generate a random number 𝑡 from [0, 1]
if 𝑡 is smaller than 𝑝𝑚 then

select a random value V from the range [0, 1]
set the value v as a new value of the gene

end if
end for

end for

Pseudocode 1: Continued.



4 Journal of Computational Medicine

evaluate children and mutated individuals in the new population with test data and
ONE/𝑐𝑤𝑘-NN/𝑤𝑘-NN 𝑂𝑉𝐴
add the elite individual without changes into the new population
//Survivor Selection
if nr of individuals in the new population is larger than population size then

sort cases descending by their fitness rate
discard the last cases in order to have correct nr of individuals in the population

else if nr of individuals in the new population is smaller than population size then
select randomly missing cases from the old population

end if
end while
initialize methods with training data D-𝑑𝑐V 𝑟𝑜𝑢𝑛𝑑:

cwk-NN and wk-NN OVA: HVDM initialization
ONE: fitness value calculation for values of attributes

evaluate the individual with the highest fitness rate after GA with testing data 𝑑𝑐V 𝑟𝑜𝑢𝑛𝑑 and
ONE/cwk-NN/wk-NN OVA

end for

Pseudocode 1: Pseudocode of the genetic algorithm used in the evolution of the attribute weight values with 10-fold cross-validation.

Table 2: Parameters used with the genetic algorithm.

Genetic algorithm parameters
Crossover rate 0.8
Mutation rate 0.01
Population size 21
Generation 20 (and 100 for ONE)
Elitism Yes (1 individual)

attribute weighted k-nearest neighbour method using neigh-
bour’s class based attribute weighting (cwk-NN), and with
the attribute weighted k-nearest neighbour method using
one-versus-all the other (OVA) classifiers (wk-NN OVA).
The evaluation methods are defined more accurately in
Section 3.2. During the genetic algorithm runs, for each
individual in the population its fitness rate was calculated
with themethod at hand; that is, the individual was evaluated
against the method. Within the methods cwk-NN and ONE,
the fitness rate for the individual was defined with a total
classification accuracy (ACC) and within the wk-NN OVA
with a true positive rate (TPR). The total classification
accuracy was used with the ONE and the cwk-NN because all
seven disease classes were classified at the same time whereas
the wk-NN OVA concentrated on one disease class (and its
weight set) at a time. During GA wk-NN OVA runs, it was
more important to find the weight set that separated well the
cases of the disease class at hand from the others than to
classify the other cases also well.

The total classification accuracy showed the percentage of
all correctly classified cases within the data set:

ACC = 100 𝑡pos𝑛cases %, (1)

where 𝑡pos was the total number of cases correctly classified
within classes and 𝑛cases was the total number of cases used

in the classification. The true positive rate expressed the per-
centage of correctly inferred cases within the class as

TPR = 100 𝑡pos𝑐𝑛cases
𝑐

%, (2)

where 𝑡pos
𝑐

was the number of correctly classified cases in
class 𝑐 and 𝑛cases

𝑐

was the number of all cases in class 𝑐.With
the cwk-NN and wk-NN OVA methods, the classification
performance was calculated from the seven nearest neigh-
bour method (7-NN) results and with the ONE from the first
diagnosis suggestion (ONE1). However, for disease class
benign recurrent vertigo (BRV) with the wk-NN OVA
method it was necessary to use the TPR of three nearest
neighbours (3-NN) as the fitness rate because of the small size
of the disease class at hand. Otherwise the TPR for classifying
BRV would have always been zero. Nonetheless, if there
occurred a situation where TPR of 3-NN was zero with all
individuals in the starting population, a new population was
created randomly and evaluated. Random new population
was created at most ten times and if the TPR did not change
during 10 runs, GA run was ended.

A 10-fold cross-validation (CV) [2]was used in evaluating
the classification performance of the genetic algorithm. The
data was randomly divided into 10 subsets of approximately
equal size. The division was made in a stratified manner to
ensure that the class distribution of each subset resembled the
skewed class distribution of the entire data set. In the begin-
ning, one cross-validation partition (10% of the data) was
left aside to test the performance of the found best individual
after genetic algorithm run. The nine cross-validation parti-
tions (90%) were used during the training process. In order
to calculate the fitness rate for each individual in the popu-
lation during genetic algorithm runs, the training data was
further divided into two parts: six cross-validation parts were
used for training and three cross-validation parts were used
for testing the current machine learning method used in the
fitness rate calculation. Thus, during the genetic algorithm
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run 60%–30% data division was used. After the genetic
algorithm run, the individual having the highest fitness rate
was declared as a result of weight combination and it was then
tested with the left aside test data subset. The 10-fold cross-
validation was repeated ten times. In total, there were 100 test
runs per each evaluation method used in the genetic algo-
rithm.The same cross-validation divisions were used with all
the evaluation methods—that is, each method had the same
training and testing sets used during the genetic algorithm
runs.

3.1. Starting Population. The starting population consisted
of 21 individuals. Each individual included seven different
attribute weight sets (weights for 94 attributes), one set for
each disease class. Instead of selecting the starting individuals
at random, we decided to use good “guesses” as a starting
point. Therefore, the starting individuals were based on the
attribute weights defined by the domain experts (three differ-
ent weight set versions) and learnt by three machine learn-
ing methods (the Scatter method [21–23] and the weight-
ing method of the instance-based learning algorithm IB4
[24] and its variant IB1w). Based on the weight sets defined
by the experts and the machine learning methods, two
different modifications were created from weight sets with
50% randommutation, thus having 18 weight sets in total. In
addition to these, three totally random weight sets were
created into the starting population.

The weight values were computed with the machine
learning methods from the imputed data set, that is, from the
data set where the missing values of attributes were substi-
tuted with the class-wise modes of the qualitative and the
class-wise medians of the quantitative attributes. In total,
10.1% of the values of attributes were missing in the data set.
The imputation was done class-wise on the basis of the whole
data prior to data division into training and testing sets. The
calculation of the weights was repeated 10 times for each CV
training set in the Scatter, IB4, and IB1w methods and the
mean weights of the 10 repetitions were used in the classifica-
tion to handle the randomness in these methods.Theweights
defined by the application area experts were the same for each
CV training set.

The experts’ weights were based on three different com-
binations. The first weight set included the original attribute
weights defined by a group of experienced otoneurological
physicians for the decision support system ONE made in the
1990s [25].The second and the third weight sets were defined
by two domain specialists during the upgrade process of the
decision support system in the 2000s [16].

The Scatter method is normally used for attribute impor-
tance evaluation [21–23]. It calculates a scatter value for
an attribute that expresses the attributes’ power to separate
classes in the data set. For attribute weighting purposes, the
scatter values were calculated for each attribute in different
class versus other classes’ situations. In order to use the scatter
values as attribute weights, it was necessary to take inverses of
scatter values.

The weight calculation method of the IB4 classification
method computes attribute weights independently for each

class with a simple performance feedback algorithm [24].The
attribute weights of IB4 reflect the relative relevancies of the
attributes in the class.The difference between IB4 and its sim-
pler version IB1w is that IB1w saves all processed cases in its
class descriptions and does not discard any cases from the
class descriptions during runs. Also, the cases with poor
classification records are kept in class descriptions with IB1w
whereas IB4 discards these cases based on their past perfor-
mance during classification.

More detailed description of the machine learning meth-
ods Scatter, IB4, and IB1w and their use in weight formation
will be given in the paper [17].

In order to have different weight sets comparable to each
other during the genetic algorithm runs, the attribute weights
were normalized into range [0, 1]. The values of each weight
set were divided by the highest weight value occurring in the
weight calculation method at issue.

3.2. Evaluation Methods

3.2.1. Nearest Pattern Method of ONE. The first method used
within the genetic algorithm to evaluate the performance of
the individuals in the population was the inference mecha-
nism of the otoneurological decision support system ONE
[26]. Its inference mechanism resembles the nearest neigh-
bourmethods of pattern recognition. Instead of searching for
the nearest case from the training set, it searches for the most
fitting class for a new case from its knowledge base.

In the knowledge base of ONE, a pattern is given to each
class that corresponds to one vertigo disease.The pattern can
be considered a profile of a disease as it describes its related
symptoms and signs. Each class in the knowledge base is
described with a set of attributes with weight values express-
ing their significance for the class. In addition, a fitness value
for each attribute value is given to describe how it fits the class.
The fitness values for attribute values were computed on the
basis of the 60% part of training data. Fitness values can have
values between 0 and 100. The fitness value 0 means that the
attribute value does not fit the class, whereas the fitness value
100 shows that the value fits the class perfectly. The weight
values for attributes were given in the population in the GA;
thus, the weight values varied from 0 to 1. The greater the
weight value is, the more important the attribute is for the
class.

The inference mechanism calculates scores for the classes
from the weight and fitness values of the attributes.The score𝑆(𝑐) for a class 𝑐 is calculated in the following way:

𝑆 (𝑐) = ∑𝐴(𝑐)𝑎=1 𝑥 (𝑎)𝑤 (𝑐, 𝑎) 𝑓 (𝑐, 𝑎, 𝑗)∑𝐴(𝑐)𝑎=1 𝑥 (𝑎)𝑤 (𝑐, 𝑎) , (3)

where 𝐴(𝑐) is the number of the attributes associated with
class 𝑐, 𝑥(𝑎) is 1 if the value of attribute 𝑎 is known and other-
wise 0, 𝑤(𝑐, 𝑎) is the weight of the attribute 𝑎 for class 𝑐, and𝑓(𝑐, 𝑎, 𝑗) is the fitness value for the value 𝑗 of the attribute 𝑎
for class 𝑐 [26]. In the case of quantitative attributes, the fitness
values are interpolated by using the attribute values in the
knowledge base as interpolation points.The fitness values are
altered to the range of 0 to 1 during the inference process.
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In addition to the score, the minimum and maximum scores
are calculated for the classes using the lowest and the highest
fitness values for the attributes having missing values.

The classes are ordered primarily by the score and secon-
darily by the difference of theminimum andmaximum score.
If the classes have the same score but one class has a smaller
difference between the minimum and maximum scores than
the others, the class having the smallest difference is placed
higher in order. If the classes have the same score and the
minimum and maximum score difference, their order is sel-
ected randomly.The class having the highest score is referred
to as the best diagnosis suggestion.

Some vertigo diseases resemble each other by having a
similar kind of symptoms with other diseases during some
phase of the disease and, in addition, some patients can actu-
ally have two (or more) vertigo diseases present concurrently
[27]. Therefore, it is good to check the classification results of
ONE with more than one disease suggestion. In the end, the
final diagnostic choice must be made by the physician based
on the information given on all alternative diseases [27].

3.2.2. Attribute Weighted k-Nearest Neighbour Method Using
Neighbour’s Class-Based Attribute Weighting. The other
method used in the population evaluation was the attribute
weighted k-nearest neighbour method using neighbour’s
class-based attribute weighting (cwk-NN). The distance
measure of the basic k-nearest neighbour method [1] was
expanded to take the attribute weighting into account [6].
Lee et al. [9] used a similar class-dependent attribute
weighting with their modified k-nearest neighbour method
where different attribute weight sets for different classes were
determined with the adaptive-3FW feature weighting
method. With our cwk-NN the attribute weighting depends
on the disease class of the neighbour case. Thus, there ought
to be as many attribute weights sets available as there are
classes.

The distancemeasure used with the cwk-NNwas theHet-
erogeneous Value DifferenceMetric (HVDM) [28] expanded
with the attribute weighting. HVDMwas used because it can
handle both qualitative and quantitative attributes in the data
set. The attribute weighted HVDM is defined as

weighted HVDM (𝑥, 𝑦) = √ 𝑚∑
𝑎=1

𝑤𝑐𝑎𝑑𝑎(𝑥𝑎, 𝑦𝑎)2, (4)

where 𝑚 is the number of attributes, 𝑐 is the disease class of
the case 𝑦, 𝑤𝑐𝑎 is the weight of the attribute 𝑎 in class 𝑐, and𝑑𝑎(𝑥𝑎, 𝑦𝑎) is the distance between the values 𝑥𝑎 and 𝑦𝑎 for
attribute 𝑎. The distance function 𝑑𝑎(𝑥𝑎, 𝑦𝑎) is defined as

𝑑𝑎 (𝑥𝑎, 𝑦𝑎)
= {{{{{

1, if 𝑥 or 𝑦 is unknown
normalized vdm𝑎 (𝑥𝑎, 𝑦𝑎) , if 𝑎 is qualitative
normalized diff𝑎 (𝑥𝑎, 𝑦𝑎) , otherwise.

(5)

Because HVDM computes distances to qualitative and other
attributes with different measurement ranges, it is necessary

to scale their results into approximately the same range in
order to give each attribute a similar influence on the overall
distance [28]. The normalized distance to a quantitative
attribute is calculated with (6):

normalized diff𝑎 (𝑥𝑎, 𝑦𝑎) = 󵄨󵄨󵄨󵄨𝑥𝑎 − 𝑦𝑎󵄨󵄨󵄨󵄨4𝜎𝑎 , (6)

where 𝜎𝑎 is the standard deviation of the numeric values of
attribute 𝑎 in the training set of the current classifier, and to a
nominal attribute with (7):

normalized vdm𝑎 (𝑥𝑎, 𝑦𝑎) = √ 𝐶∑
𝑐=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑁𝑎,𝑥,𝑐𝑁𝑎,𝑥 −

𝑁𝑎,𝑦,𝑐𝑁𝑎,𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2, (7)

where 𝐶 is the number of output classes in the problem
domain (in this case𝐶 = 7),𝑁𝑎,𝑥(𝑦),𝑐 is the number of cases in𝑇 that have a value 𝑥 (or a value 𝑦) for attribute 𝑎 and the
output class 𝑐, and𝑁𝑎,𝑥(𝑦) is the number of cases in𝑇 that have
a value 𝑥 (or a value 𝑦) for attribute 𝑎 [28]. In other words,
we are calculating the conditional probabilities to have the
output class 𝑐 when having attribute 𝑎 with the value 𝑥 (or
the value 𝑦).

This approach allowed modifications of all the weights at
the same time.

3.2.3. Attribute Weighted k-Nearest Neighbour Method Using
One-versus-All Classifiers. In addition to the neighbour’s
class-based attribute weighting the attribute weighted k-
nearest neighbour method was tested with one-versus-all
classifiers (wk-NN OVA). Within this method, the multiclass
classification problem was converted into multiple binary
classifiers—that is, the 𝑚 class problem was divided into 𝑚
binary problems [29]. Each binary OVA classifier was trained
to separate a class from all the other classes by marking the
cases of this one class as member cases and the cases of the
other classes as nonmember cases in the training set.

The attribute weighted k-NN OVA is an instance-based
learning method that searches for the k most similar cases
(neighbours) of a new case from each classifier separately.
There is one classifier per each class and each classifier gives a
vote for the case being a member or nonmember of the class
based on themajority class of the k neighbours.The final class
of the new case is assigned from a classifier suggesting the
case being a member of a class.There can occur a situation in
which the new case getsmore than onemember of a class vote
(a tie situation) or all of the classifiers vote for the other class
(the case to be a nonmember of all the classes). In a tie situa-
tion the class of the new case is determined by searching for
the most similar member case from the member voting
classifiers.The case gets the class of the member case with the
shortest distance to it.When all the classifiers vote for the case
to be a nonmember, the basic 1-nearest neighbour classifier
using the whole training data containing the original disease
classes is employed to find themost similar case (and its class)
for the new case.

The distance measure used in the wk-NN OVA was also
the HVDM measure. The difference in the HVDM descrip-
tion in (4) is that the 𝑐 is the class of the classifier at issue, not
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Table 3: Example evaluation computation time of one population (21 individuals, one generation) in GA runs with different computers.

Example one population evaluation time
Computer GA ONE GA cwk-NN GA wk-NN OVA Specifications
C1 3min 25 s 48min 54 s 4 h 57min 8 s W7 Intel Core i7-3540M 3.00GHz, 16GB RAM
C2 — 49min 53 s 6 h 59min 16 s I3-530 2.93GHz, 12GB RAM
C3 — 3h 47min 41 s 9 h 41min 9 s Q6600 2.4GHz, 8GB RAM
C4 — 3h 12min 41 s 21 h 14min 0 s HP ProLiant DL580 G7 server: 4∗Intel Xeon X7560 2.26GHz, 1 TB RAM
C5 — 3h 4min 58 s 7 h 22min 52 s DL785 G5 server: 8∗AMD Opteron 8360 SE 2.5GHz, 512GB RAM
C6 — — 10 h 34min 55 s Intel Core2 Duo E6750 2.66GHz, 2GB RAM

Table 4: The ending time of the genetic algorithm runs within different evaluation methods.

Genetic algorithm GA ONE GA cwk-NN GA wk-NN OVA GA ONE100
Ended before 20th generation [%] 75.0 18.0 82.9 39.0∗

Ended on 10th generation [%] 48.0 6.0 54.9 12.0∗

Ended on 20th generation [%] 25.0 82.0 17.1 61.0∗
∗The ending generations of the GA ONE100 runs was examined before 100th generation, on 50th generation and on 100th generation.

the class of the case𝑦. In addition, in (7)wk-NNOVAhas two
output classes (𝐶 = 2). The data in the learning set 𝑇 of the
classifier is divided into themember and nonmember classes.

4. Results

The results of the GA runs with ONE and cwk-NN as an
evaluation method were the averages of the 10 times repeated
10-fold cross-validation whereas the results with the wk-NN
OVA were the averages of the 5 times repeated 10-fold cross-
validation.The 10-fold cross-validationwas repeated only five
times with the GA wk-NN OVA due to its huge computation
time. For example, the evaluation of a population (21 individ-
uals in one generation in a GA run) in one cross-validation
set with the GA ONE lasted 3 minutes and 25 seconds, with
the GA cwk-NN 48 minutes and 54 seconds, and with the
GA wk-NN OVA 4 hours, 57 minutes, and 8 seconds when
running the GA with the computer C1 (Table 3). With the
other computers, the computation was even slower. Thus,
at worst, the computation time of one cross-validation set
lasting 20 generations with the computer C1 and GA wk-NN
OVA was over four days (over 12 days with C4) assuming
that within each generation all individuals were evaluated. In
practice, the number of evaluated individuals varied within
generations due to the crossover and the mutation. Notice
that computers C4 and C5 were servers having several other
users simultaneously and, thus, we had only minor part of
their CPU in use. During GA cwk-NN and GA wk-NN OVA
runs, the GA was run parallel in five computers, thus, having
at best 11 parallel GA runs in process. GA ONE was run only
with the computer C1.

The number of generations in the GA runs with all
used evaluation methods varied from 10 to 20. In total,
75.0%, 18.0%, and 82.9% of GA runs ended before the 20th
generation due to having the same best accuracy (GA ONE
andGA cwk-NN) or TPR (GAwk-NNOVA) in 10 consecutive
GA runs with ONE method, cwk-NN, and wk-NN OVA,
respectively (Table 4). With the GA wk-NN OVA, all the

GA runs with the disease classes sudden deafness, traumatic
vertigo, and benign recurrent vertigo ended before the 20th
generation and with the other classes from 58.0% to 88.0%
of the runs. If the number of ending generation was 10, this
meant that the best ACC or TPR in the population did not
change at all during the GA run and, therefore, the run was
ended. GA cwk-NN ended after 10 generations only in 6.0%
of the GA runs whereasGAONE andGAwk-NNOVA ended
during the GA runs around half of runs (in 48.0% and 54.9%
of runs, resp.). In the GA wk-NN OVA runs, this happened
especially with disease class traumatic vertigo where all CV
runs ended after 10 generations and with sudden deafness
(96.0%) and benign recurrent vertigo (94.0%). The other
disease classes ended during the GA wk-NN OVA runs after
10 generations from 12.0% (acoustic neurinoma) to 34.0%
(vestibular neuritis) of the runs.Most of theGA cwk-NN runs
lasted 20 generations (82.0%) whereas only a fourth of the
GA ONE runs and 17.1% of the GA wk-NN OVA runs went
through 20 generations.

Within the GA wk-NN OVA runs of the disease class
benign recurrent vertigo occurred situations where the TPRs
in the starting population were zero regardless of using the
TPR of 3-NN instead in population evaluation. The TPR of
3-NN was used with BRV instead of 7-NN because of the
small size of the disease class.TheTPRs of starting individuals
were zero in 30 out of 50 cross-validation sets within the
GA wk-NN OVA run concentrating on the BRV. In this case,
new starting individuals were created randomly. Random
individual creation was repeated in different cross-validation
sets from one to five and nine times. The GA wk-NN OVA
run ended if the TPR of starting population stayed zero ten
times. This happened in 14 (28.0%) cross-validation sets only
with the disease class benign recurrent vertigo.

In order to see the effect of genetic algorithmon the popu-
lation, we examined the worst and the best total classification
accuracies of individuals (the attribute weight vectors) in the
beginning and in the end of the genetic algorithm run. The
mean worst and the mean best total accuracies and their
standard deviations with GA runs usingONE and cwk-NN as
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Table 5: The mean and its standard deviation of the best and worst total classification accuracies of individuals in the starting and ending
populations occurring during different GA runs within 10 times (in GA wk-NN OVA 5 times) repeated 10-fold cross-validation.

Method Population Best accuracy [%] Worst accuracy [%]
Mean Std dev. Mean Std dev.

GA ONE
(ONE1)

start 74.0 0.8 49.8 1.6
end 73.8 0.7 61.4 2.8

end 100 73.9 0.9 66.5 2.0
GA cwk-NN
(7-NN)

start 63.6 1.6 27.9 2.2
end 68.3 1.9 56.2 2.2

GA wk-NN OVA
(7-NN)

start 79.2 0.5 75.3 0.5
end 78.6 0.9 78.7 0.8

Table 6: The starting point of the genetic algorithm using ONE inference (GA ONE), the attribute weighted 𝑘-nearest neighbour method
with neighbour’s class-based attribute weighting (GA cwk-NN) and with OVA classifiers (GA wk-NN OVA) as evaluation method. The true
positive rates (TPR) of seven disease classes and the total classification accuracies of the best individual from the starting population are given
in percentages (%) from 10 times (five times with GA wk-NN OVA) repeated 10-fold cross-validation.

Disease ANE BPV MEN SUD TRA VNE BRV Median TPR Total accuracy
Cases 131 173 350 47 73 157 20 951

GA ONE
ONE1 63.5 55.0 91.1 67.4 84.0 67.5 37.0 67.4 74.0
ONE12 76.0 84.7 96.6 97.0 96.3 75.4 69.5 84.7 87.5
ONE123 88.1 94.7 98.1 99.6 99.9 84.6 86.0 94.7 93.8

GA cwk-NN

1-NN 47.6 50.2 75.7 28.7 59.0 55.0 10.5 50.2 58.8
3-NN 48.9 52.5 82.2 24.0 58.9 57.0 9.0 52.5 61.9
5-NN 49.0 54.4 85.1 21.1 57.0 56.5 8.5 54.4 62.9
7-NN 48.9 55.0 86.6 19.6 56.3 57.8 5.5 55.0 63.6
9-NN 49.2 56.0 87.8 16.4 53.4 57.5 3.5 53.4 63.7

GA wk-NN OVA

1-NN 70.4 73.5 85.0 67.2 62.7 78.2 19.0 70.4 75.8
3-NN 71.1 75.8 91.8 73.2 61.1 79.4 18.0 73.2 79.2
5-NN 70.7 75.7 92.8 74.5 62.5 79.5 15.0 74.5 79.6
7-NN 69.9 74.7 93.0 73.2 60.0 80.1 15.0 73.2 79.2
9-NN 68.9 73.2 93.2 71.9 58.1 80.5 16.0 71.9 78.7

an evaluationmethod were calculated from 10 times repeated
10-fold cross-validation andwithGA runs usingwk-NNOVA
from 5 times repeated 10-fold cross-validation (Table 5). The
mean best accuracies stayed approximately the same with the
GA ONE, whereas the mean best accuracy increased 4.7%
with the GA cwk-NN and decreased 0.6% with the GA wk-
NNOVA.The improvement can be seen from themean worst
classification accuracies: the worst accuracy occurring in the
population increased during GA runs, especially with theGA
cwk-NN (28.3%).With theGAONE, themeanworst accuracy
improved 11.6%when using at most 20 generations and 16.7%
when using at most 100 generations. With the GA wk-NN
OVA, the improvement was moderate (3.4%) but one must
notice that its mean worst classification accuracy was already
over 75% in the starting population, which was better than
the mean best accuracies of the other methods.

Themore detailed results of theGAONE, theGAcwk-NN,
and theGAwk-NNOVA runs in the beginning and in the end
with the best individual occurring in the population are given
in Tables 6 and 7.The true positive rates of the disease classes

are shown with GA ONE for the first (ONE1), the first and
second (ONE12), and the first, second, and third (ONE123)
diagnosis suggestions of ONE and with GA cwk-NN and
GA wk-NN OVA for one, three, five, seven, and nine nearest
neighbours (1-NN–9-NN). During cross-validation runs in
GA, the individuals were evaluated by the total classification
accuracy of the ONE1 with theGAONE and of the 7-NNwith
theGA cwk-NN and by the true positive rate of the 7-NNwith
the GA wk-NN OVA (except with disease class BRV that used
the TPR of 3-NN).The true positive rate was used as a fitness
rate with the GA wk-NN OVA instead of the total accuracy
because it concentrated on classifying one disease class at a
time whereas GA ONE and GA cwk-NN classified all seven
disease classes at the same time.

Within 20 generations lasting GA, the best improvement
between the start population and the end population was
yielded with the GA cwk-NN that improved the total classifi-
cation accuracies and themean true positive rates when using
one to nine nearest neighbours in the classification. Total
classification accuracy of the GA cwk-NN rose at best 5.1%
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Table 7: The end result of the genetic algorithm using ONE inference (GA ONE), the attribute weighted 𝑘-nearest neighbour method with
neighbour’s class-based attribute weighting (GA cwk-NN) and with OVA classifiers (GA wk-NN OVA) as evaluation method in population
evaluation after at most 20 generations. The true positive rates (TPR) of seven disease classes and the total classification accuracies of the
best individual in the end population are given in percentages (%) from 10 times (five times with GA wk-NN OVA) repeated 10-fold cross-
validation.

Disease ANE BPV MEN SUD TRA VNE BRV Median TPR Total accuracy
Cases 131 173 350 47 73 157 20 951

GA ONE
ONE1 63.5 55.4 90.8 66.2 83.0 68.0 31.5 66.2 73.8
ONE12 77.0 82.7 96.4 93.6 96.2 76.2 62.0 82.7 87.0
ONE123 87.6 92.8 98.0 98.5 99.5 84.4 84.5 92.8 93.2

GA cwk-NN

1-NN 70.2 50.0 68.4 30.6 70.0 60.3 15.0 60.3 61.1
3-NN 70.8 53.9 78.1 27.7 72.5 62.9 14.5 62.9 65.9
5-NN 70.5 56.1 81.5 23.2 71.9 63.8 12.0 63.8 67.4
7-NN 69.5 56.6 84.7 21.1 71.0 63.9 8.5 63.9 68.3
9-NN 69.0 57.5 86.6 18.1 69.7 64.1 6.0 64.1 68.8

GA wk-NN OVA

1-NN 71.5 74.1 84.6 67.2 67.1 77.8 18.0 71.5 76.2
3-NN 71.6 75.3 91.7 74.9 66.8 78.7 16.0 74.9 79.5
5-NN 70.4 73.6 92.2 77.0 63.6 79.2 14.0 73.6 79.1
7-NN 70.4 71.8 92.6 77.0 59.5 79.6 13.0 71.8 78.6
9-NN 70.5 72.4 92.7 74.9 59.7 79.6 13.0 72.4 78.7

(in 9-NN) and median TPR 10.7% (in 9-NN). The GA had a
smaller effect on the results of the GA ONE and the GA wk-
NN OVA. The results in the start population and in the end
population stayed quite near each other. Small improvement
in the mean total classification accuracy and the mean TPR
can be seen with the GA wk-NN OVA using one or three
nearest neighbours in the classification. Otherwise, the total
classification accuracies decreased a bit when using the GA
ONE andwith theGAwk-NNOVA using five or seven nearest
neighbours in the classification.

Changes within the true positive rates of disease classes
compared to the start and end results varied between meth-
ods.TheGA cwk-NN mainly increased the TPRs. During GA
runs, it increased the most the TPR of acoustic neurinoma
(22.6% in 1-NN) and traumatic vertigo (16.3% in 9-NN).
Menière’s disease was the only class where the TPR decreased
(at worst −7.3% in 1-NN) during GA cwk-NN runs. With the
GA ONE, the TPRs of classes mainly decreased. It decreased
the most the TPR of benign recurrent vertigo (−7.5% in
ONE12) and sudden deafness (−3.4% in ONE12). However,
small increase in TPR can be seen with acoustic neurinoma
(1.0% in ONE12) and with vestibular neuritis (0.8% with
ONE12).With theGAwk-NNOVA, someTPRs increased and
some decreased. The TPR increased the most with traumatic
vertigo (5.8% in 3-NN) and sudden deafness (3.8% in 7-NN)
and decreased themost with benign recurrent vertigo (−3.0%
in 9-NN) and benign positional vertigo (−2.9% in 7-NN).

Because the computation time with the ONEmethod was
so much faster than with the k-nearest neighbour methods,
the evolution of the population withGAONE runs was tested
also with 100 generations in addition to the 20 generations.
The ending condition was also changed: the GA run ended if
the maximum accuracy stayed the same in 50 successive runs
or 100 generationswere run. In total, 39.0%of theGAONE100

Table 8: The end result of the genetic algorithm using ONE
inference in population evaluation after at most 100 generations.
True positive rates and the total classification accuracies of the best
individual in the end populationare given in percentages [%] from
10 times repeated 10-fold cross-validation.

Disease Cases GA ONE 100
ONE1 ONE12 ONE123

ANE 131 67.1 79.9 89.6
BPV 173 56.9 82.0 92.8
MEN 350 89.9 96.1 97.9
SUD 47 61.7 90.9 97.0
TRA 73 80.3 96.4 99.7
VNE 157 69.6 78.7 86.0
BRV 20 23.0 53.5 75.0
Median TPR 67.1 82.0 92.8
Total accuracy 951 73.9 87.3 93.5

runs ended before the 100th generation and within 12.0% of
the runs there was no change in the best total classification
accuracy during 50 generations (Table 4). The classifica-
tion results of the GA ONE100 runs are given in Table 8.
The increase of generations from 20 to 100 did not affect
much the mean total classification accuracy nor the mean
median TPR.Within disease classes, benign recurrent vertigo
suffered the most from the generation increase: its true
positive rate decreased at worst−16.0% (ONE12) compared to
the starting population and−9.5% (ONE123) compared to the
20th generation. The best TPR increase was achieved with
acoustic neurinoma: 3.9% from the starting population and
3.6% from the 20th generation.
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5. Discussion and Conclusion

Genetic algorithm runs were done with three different popu-
lation evaluationmethods in order to see whether the classifi-
cation performance of the attribute weighted methods based
on the nearest neighbour search can be improved when using
the genetic algorithm in the evolution of attribute weighting.
The attribute weighting in the starting population was based
on the weights described by the application area experts
and machine learning methods instead of random weight
setting.The genetic algorithm runs were done separately with
the nearest pattern method of ONE (GA ONE), with the
attribute weighted k-nearest neighbour method using neigh-
bour’s class-based attribute weighting (GA cwk-NN), and
with the attribute weighted k-nearest neighbour method
using one-versus-all classifiers (GAwk-NNOVA).The 10-fold
cross-validation was repeated 10 times withGAONE and GA
cwk-NN and 5 times with GA cwk-NN OVA due to its huge
computation time.

The GA runs lasted at maximum 20 generations, 10 gen-
erations if there were no change in the best classification
accuracy. Most of the GA runs with GA ONE and GA wk-
NNOVA ended before the 20th generation (75.0% and 82.9%,
resp.) and around half (!) of the GA runs ended without a
change in the best classification (ended after 10 generations;
48.0% and 54.9%, resp.). Only 18.0% of the GA cwk-NN runs
ended before the 20th round and 6.0% after 10 generations.

The total classification accuracies and the mean true pos-
itive rates were improved within GA cwk-NN runs whereas
with GA ONE and GA wk-NN OVA the results in the begin-
ning and in the end population stayed quite near each other.
One reason why the GA did not improve much the total
classification accuracies with the GA ONE and the GA wk-
NNOVAmight be that the attribute weights used in the start-
ing population were already optimized for separate disease
classes. In addition, also the fitness values for ONE method
can be said to be the best occurring fitness values because they
were computed from the otoneurological data with the
machine learning method.

Hussein et al. [8] noticed that in some applications a strict
cost-benefit analysismay rule out the use of genetic algorithm
optimization because of its increase in processing time (e.g.,
100–150% increase in counting time compared to the basic
classifier with 200 train and test cases and over 400% when
using 3824 train cases and 1797 test cases with k-NN leave-
one-out). Also, Kelly and Davis [6] admit that it can take a
tremendous amount of time to find high-performanceweight
vectors for variably weightedmachine learningmethods.The
results in [3] showed that the extensions of the k-NN yielded
generally better results at the cost of speed since all extensions
required a training phase. In this research, the GA wk-NN
OVA was really time-consuming compared to GA cwk-NN
and GA ONE. However, if the weight calculation needs to be
done only once or quite seldom, the time issue is not that
crucial, especially if it improves the performance of the
method.

In this study the weights set by the experts and learnt by
machine learningmethods were used as a starting point.This
helped a lot the search of appropriate weights but there might

be different attribute weight combinations with as good or
even better classification results. Therefore it would be good
to test genetic algorithm also with totally random starting
population and with several different parameters in offspring
creation and mutation.
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Applying One-vs-One and One-vs-All 
Classifiers in k-Nearest Neighbour Method 

and Support Vector Machines to an 
Otoneurological Multi-Class Problem 

Kirsi VARPA a1, Henry JOUTSIJOKI a, Kati ILTANEN a Martti JUHOLA a  
a Computer Science, School of Information Sciences, University of Tampere, Finland 

Abstract. We studied how the splitting of a multi-class classification problem into 
multiple binary classification tasks, like One-vs-One (OVO) and One-vs-All 
(OVA), affects the predictive accuracy of disease classes. Classifiers were tested 
with an otoneurological data using 10-fold cross-validation 10 times with k-
Nearest Neighbour (k-NN) method and Support Vector Machines (SVM). The 
results showed that the use of multiple binary classifiers improves the 
classification accuracies of disease classes compared to one multi-class classifier. 
In general, OVO classifiers worked out better with this data than OVA classifiers. 
Especially, the OVO with k-NN yielded the highest total classification accuracies. 

Keywords. multi-class classification, binary classifiers, otoneurology, k-nearest 
neighbour method, support vector machines 

1. Introduction 

Multi-class classification problems can be difficult to understand. Especially, if the 
application domain is not so familiar before, it can be hard to conceptualize the domain. 
Whenever creating new computer systems into new domains, it is important to have 
understanding about domain concepts, their relationships and differences. In order to 
distinguish classes better, one way is to convert the multi-class problem into multiple 
two-class problems [1, 2]. This may also help separation of classes. Earlier we have 
studied otoneurological data, for example, by using machine learning (ML) methods 
like decision trees [3] and neural networks [4]. Previous studies have shown that 
certain disease classes are difficult to recognize: they easily mix up with other classes 
[5]. From the literature, studies can be found where this kind of problem has been eased 
with using One-vs-One (OVO, also called round robin or pairwise class binarization) 
[6] and One-vs-All (OVA, also known as one-against-all, one-vs-rest) [7] solutions (i.e. 
using several binary classifiers instead of trying to classify all the classes at the same 
time with one classifier). Beforehand, it is not possible to say which of these solutions 
is better than others. Therefore, we examine the use of multiple binary classifiers to 
help the classification of vertigo data, and to find out which classifier solution seems to 
work the best with this data.  
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In this paper, we examine the effect of using multiple binary classifiers instead of 
using only one multi-class classifier. Binary classifiers used are OVO and OVA 
classifiers with a k-Nearest Neighbour (k-NN) method [8] and Support Vector 
Machines (SVM) [9].  

2. Data and Methods 

The k-NN classifier is a widely used, basic instance-based learning method that 
searches for the k most similar cases of a test case from the training data [8]. It can be 
used with both binary and multi-class problems. The k-NN classifier used in this 
research was implemented in Java. The nearest cases were searched with k= 1, 3, 5, 7, 
9, 11 and 13. The best k-NN varied between classes, so, we selected NN classifier with 
k=5 (5-NN) into the comparison to SVM. (In addition, 5-NN was used in our earlier 
study [5]). The k-NN method used Heterogeneous Value Difference Metric (HVDM) 
[10] since our data included nominal, ordinal and quantitative attributes.  

SVM is a newer, more sophisticated ML method to be used in the separation 
between two classes [9]. It is a kernel-based classification method [11, 12]. Originally, 
it was made for the binary classification tasks, but later it has been extended for the 
multi-class cases [13]. The basic idea in SVM is to generate an input space dividing 
hyperplane such that the margin, the distance between the closest members of both 
classes, is maximized. The use of SVM was expanded by the invention of kernel trick, 
where the input space is mapped with a non-linear transformation into higher 
dimensional space [14, 15]. In the research, we used the binary SVM implementation 
of Bioinformatics Toolbox of Matlab with the Least-Square method [16] as a basis for 
the multi-class extensions. SVM runs were made with linear, polynomial (d=2,3,4,5), 
Multilayer Perceptron (MLP) (scale κ in [0.2,10]; bias δ in [-10,-0.2]) and Gaussian 
Radial Basis Function (RBF) (scaling factor σ in [0.2,10]) kernels with box constraints 
[0.2,10] (κ, δ and σ with intervals 0.2). The best kernel functions, linear and RBF, were 
selected into comparison.  

ML methods were tested with an otoneurological data containing 1,030 vertigo 
cases from nine different vertigo diseases (Table 1). Data was collected at Helsinki 
University Central Hospital during several years [3]. The dataset used in this research 
consists of 94 attributes concerning a patient’s health status: occurring symptoms, 
medical history and findings in otoneurologic, audiologic and imaging tests. More 
detailed information about the collected patient’s information is provided in [17] and in 
[4] 38 main attributes are described. From the 94 attributes, 17 were quantitative 
(integer or real) and 77 were qualitative: 54 binary (yes/no) and 23 categorical 
attributes.  

Clinical tests are not done to every patient and, therefore, values are missing in 
several test results. In total, the data had about 11% missing values, which allowed 
using imputation. Imputation was needed due to calculation of the SVM method. 
Missing values of qualitative attributes were imputed (substituted) with class modes 
and missing values of other attributes with class medians. The imputed data was used 
with k-NN in order to keep it comparable to SVM. A 10-fold cross-validation (CV) was 
repeated 10 times using each time different random data divisions. Training and test set 
divisions into 10-fold CV were created with Matlab. In divisions, the ratios of disease 
classes were maintained in different CV folds. CV was used with both ML methods. 
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In OVA runs, we had nine (n_classes) binary classifiers: each one of them was trained 
to separate one class from the rest. A test sample was input to each classifier and a final 
class for the test sample was assigned according to the winner-takes-all rule from a 
classifier suggesting a class. For OVO runs, we trained 36 (n_classes·(n_classes − 1)/2) 
binary classifiers between all pairs of the classes. A test sample was solved with each 
binary classifier. 
Table 1. Nine disease classes and their absolute and relative frequencies in the otoneurological data. Average 
true positive rates (TPR) of disease classes, median of TPR and total classification accuracies with machine 
learning methods 5-NN and SVM linear and RBF using OVO and OVA classifiers from ten 10-fold cross-
validation runs in percents. Used kernel parameters with SVM linear and RBF presented below the table. 

Linear kernel with box constraint bc = 0.20 (OVO and OVA) 
RBF kernel with bc = 0.4 and σ = 8.20 (OVO), bc = 1.4 and σ =10.0 (OVA) 

In OVO, the results of pairwise decisions were combined, thus having 36 class 
suggestions (votes) for the class of the test sample altogether. The final class for the 
test sample was chosen by the majority voting method, the max-wins rule [1]. A class, 
which gained the most votes, was chosen as the final class.  

If a tie situation occurred in the max-wins (OVO) or winner-takes-all (OVA) rules, 
the final class, within the tied classes, was solved in SVM by 1-NN, whereas k-NN 
searched for the nearest case from the classifiers belonging to the tied classes and 
selected the class with minimum distance to the test case. If the test case did not get 
any class by using k-NN with OVA (every classifier voted 0), the class was searched 
from the whole learning set with normal 1-NN. 

3. Results 

In the Table 1, mean true positive rates (TPRs) and total classification accuracies of the 
ten 10-fold cross-validations are presented for 5-NN and SVM with linear and RDF 

Total Classification Accuracy  79.8 82.4 77.4 78.2 78.8 76.8 79.4 

Median of TPR  77.9 88.2 82.4 79.4 77.7 73.5 78.6 

Central Lesion (CL) 24 (2.3) 5.0 2.1 26.0 28.5 15.0 19.0 15.8 

Vestibulopatia (VES) 55 (5.3) 9.6 14.0 16.5 22.8 15.8 15.3 13.5 

Benign Recurrent Vertigo 
(BRV) 20 (1.9) 3.0 4.0 20.0 16.5 8.0 21.0 8.0 

Vestibular Neuritis (VNE) 157 (15.2) 87.7 88.2 82.4 81.4 85.0 85.4 84.3 

Traumatic Vertigo (TRA) 73 (7.1) 89.6 96.2 99.9 99.3 77.7 79.9 96.7 

Sudden Deafness (SUD) 47 (4.6) 77.4 94.3 88.3 79.4 87.4 61.3 58.1 

Menière's Disease (MEN) 350 (34.0) 92.4 93.1 83.8 90.1 89.8 87.8 91.5 

Benign Positional Vertigo 
(BPV) 173 (16.8) 77.9 79.0 70.0 67.0 77.6 73.5 78.6 

Acoustic Neurinoma (ANE) 131 (12.7) 89.5 95.0 91.6 87.2 90.2 90.6 90.7 

Disease Name  
(Abbreviation) 

Cases 
1,030(100%) 5-NN 5-NN 

SVM 
linear 

SVM 
RBF 5-NN 

SVM 
linear 

SVM 
RBF 

    OVO Classifiers OVA Classifiers 
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kernels. Both methods were run by using OVO and OVA classifiers. The 5-NN method 
was also run in a basic way by using all nine disease classes in a classifier, i.e. all of the 
training cases class labels were used when searching for the nearest case to the test 
sample. The basic 5-NN was used as a baseline in the comparison of the predictive 
accuracies of the methods.  

The mean number of tie situations occurring during 10 times repeated 10-fold CV 
with OVO classifiers was 20.3 with 5-NN (standard deviation SD=4.8), 7.2 using SVM 
linear (SD=2.6) and 2.6 with SVM RBF (SD=1.5). With OVA classifiers, the number 
of ties was higher, as expected: 5-NN 167.1 (SD=3.8), SVM linear 49.8 (SD=4.7) and 
SVM RBF 25.8 (SD=4.2). With 5-NN OVA classifier all of the ties (16.2%) happened 
when a case could not be classified at all, ties with all nine classifiers, whereas 5-NN 
OVO classifier had ties (2.0%) with two or three classes (mainly BPV, MEN and VES). 

The results show that the use of multiple binary classifiers improves the TPRs of 
disease classes. The best results were yielded with OVO in 5-NN: it had the highest 
median of TPR and total accuracy. With this data, the OVO classifiers mainly increase 
TPRs and the total accuracies, whereas OVA classifiers have slightly decreasing effect 
on classification. However, there were exceptions also with this: SVM with MLP and 
polynomials 4 and 5 worked better with OVA classifiers. Usually, MLP is one of the 
best kernel functions used in SVM, but with this data it did not work at all (total 
accuracy 25.5% with OVO and 68.5% with OVA). It could also be seen with k-NN that 
the bigger k, the closer the results with OVO, OVA and the basic k-NN came (except 
with disease classes SUD and TRA). 

4. Discussion 

In this research, we concentrated on studying the effect of splitting the multi-class 
problem into several binary classifiers and the voting procedure within two different 
ML methods, the k-NN and SVM classifiers. Splitting a problem into several binary 
problems helps to understand data better, especially with OVO classifiers in k-NN. The 
OVO classifiers aid to see which classes are difficult to separate and which ones 
distinguish well from the others.  

Diagnosis of the otoneurological disorders is demanding. For example, in [18], 
1,167 patients participated in research but only for 872 patients could be made 
confirmed diagnosis and in [19], ten of the 33 test cases had to be excluded from the 
test because even the expert physician could not give them a definite diagnosis. 
Diseases can simulate each other in the beginning having symptoms of similar kind and 
symptoms can vary in time making recognition difficult [18, 20]. Classification 
accuracy of the medical professionals with the data of this study having 1,030 cases has 
not been tested because this would be an enormous task for them to do. However, a 
smaller number of cases (23) have been classified with a group of physicians [19]. 

We need to remember that classification tasks in this research were performed with 
the imputed data. In real life, there usually occur missing data because clinical tests are 
not done to every patient automatically. Thus, TPRs and total classification accuracies 
in this research might be a little bit higher than with the original data having missing 
values.  

There occur some differences in the way how ML methods used in the research 
handle data. SVM treats each attribute as quantitative, whereas k-NN using HVDM 
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distance metric makes a different calculation depending on the type of the attribute 
(quantitative or qualitative).  

In the future, we shall expand the use of the voting procedure to involve handling 
the results of several different classification methods (e.g. k-NN, nearest pattern 
method of an otoneurological expert system [21] and Naive Bayes [8]), thus, forming a 
hybrid decision support aid. Being able to use results of several ML methods 
simultaneously strengthens the support of decision making. 
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