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ABBREVIATIONS AND ACRONYMS 

aSAH Aneurysmal subarachnoid haemorrhage  

CFT clot formation time 

CT clotting time  

DCI delayed cerebral ischemia  

DVT deep venous thrombosis  

EBI early brain injury  

EXTEM tissue factor activated, citrated and recalcified analysis 

FIBTEM tissue factor plus platelet inhibitor cytochalasin D activated, citrated and recalcified 

analysis 

GOSe extended Glasgow Outcome Score 

ICU intensive care unit  

INTEM contact activated, citrated and recalcified analysis  

IQR interquartile range  

MCF maximal clot firmness  

PE pulmonary embolism 

ROTEM Rotational thromboelastometry 

TEG thromboelastography 

VTE venous thromboembolism 
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SUMMARY  

 

Objectives: Aneurysmal subarachnoid haemorrhage (aSAH) is reported to actuate blood 

coagulation. Rotational thromboelastometry (ROTEM) is a dynamic haemostatic test that can 

differentiate various coagulation abnormalities, for example, increased coagulation activity can 

be detected as a wider amplitude of tracing (maximal clot firmness [MCF]). Previously, 

ROTEM has not been used to evaluate coagulation changes after aSAH. The aim of this 

prospective, observational study was to evaluate the on-going coagulation process in patients 

with aSAH by comparing their ROTEM assay results to the control values obtained from 

patients undergoing clipping of non-ruptured aneurysms. Methods: ROTEM analyses were 

performed at 12, 24, 48, and 72 hours after onset of aSAH and were compared with preoperative 

analyses of the control group. In total, 17 aSAH treated in the intensive care unit and 16 control 

patients were enrolled. Results: At 72 hours, EXTEM-MCF was significantly higher in aSAH 

patients compared with the baseline value of the control group (68.0 mm [interquartile range, 

{IQR} 66.0–71.0 mm] vs. 64.5 mm [IQR, 59.5–66.8 mm]; P = 0.024). This was mainly due to 

increased fibrin formation and fibrin polymerisation as the same comparison in FIBTEM-MCF 

analysis yielded similar results (23.0 mm [IQR, 19.0–25.0 mm] vs. 15.4 mm [IQR, 12.5–17.8 

mm], respectively; P=0.001). Conclusions: Blood coagulation is activated at 72 hours after onset 

of aSAH, which can be detected by ROTEM EXTEM-MCF analysis. At the same time, 

FIBTEM-MCF was elevated, implying that relative contribution of fibrin formation and fibrin 

polymerisation are essential. 
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INTRODUCTION 

 

The annual incidence of aneurysmal subarachnoid haemorrhage (aSAH) is falling,1,2 but its one-

year mortality remains nearly at 50%.3 Among aSAH survivors, both early brain injury (EBI) 

and delayed cerebral ischemia (DCI) are major risk factors for poor neurological outcome4,5 and 

increased mortality.6 EBI is defined as early neurological deterioration caused by transient direct 

toxic effects from an initial haemorrhage,7 whereas DCI is delayed brain injury presenting as 

either as clinical deterioration or cerebral infarction.8 Still, the pathophysiology of these two 

entities is not fully understood.9,10  

 

Blood coagulation and fibrinolytic systems seems to activate during the acute phase of aSAH11 

and increased coagulation can be detected from minutes following initial haemorrhage.12 

However, association of cerebral microthrombosis with EBI or DCI has not been unequivocally 

determined in the clinical setting.9  

 

Viscoelastic point-of-care coagulation tests (e.g., rotational thromboelastometry [ROTEM]) 

are thought to be advantageous compared with conventional laboratory tests when analysing the 

increased coagulation.13 No studies have investigated the on-going coagulation process after 

aSAH using ROTEM. Our main aim was to assess ROTEM measurements after aSAH and 

analyse the role of platelets and fibrinogen on clot formation. We also examined association of 

ROTEM assay results with clinical events such as EBI and DCI.  
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MATERIAL AND METHODS 

 

This prospective, observational clinical study was conducted in the intensive care unit (ICU) and 

neurosurgical department of Tampere University Hospital, Finland, between October 2015 and 

June 2016. The trial was conducted in accordance with the amended Declaration of Helsinki. 

The study design was approved by the local ethics committee of Pirkanmaa (230215-1) and was 

registered in the Clinical Trials database (ClinicalTrials.gov: NCT02540005). Written informed 

consent was obtained from all patients or their next of kin prior to study enrolment.  

 

Study subjects  

 

Consecutive patients with acute aSAH who were admitted to the ICU within 12 hours from the 

onset of aSAH symptoms (defined as sudden severe headache or loss of consciousness), and 

expected to stay in the ICU for at least 72 hours, were considered eligible. Subarachnoid 

bleeding was diagnosed with non-contrast computed tomography of the brain. A ruptured 

aneurysm as a source of haemorrhage was confirmed by either computed tomography 

angiography or digital subtraction angiography. Exclusion criteria were: age < 18 years, 

pregnancy, anticoagulant medication in regular use, and known active cancer. Only 

acetylsalicylic acid (< 150 mg daily) was allowed as an antithrombotic medication. Patients 

undergoing elective non-ruptured intracranial aneurysm clipping were chosen as the control 

group because they present the same disease entity and thus offering the closest surrogate values 

for pre-bleeding state prior aSAH. The control group served also as a local reference group for 

ROTEM. 
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Clinical management 

 

All aSAH patients received neurointensive care based on international guidelines.14,15 This 

included thromboprophylaxis therapy (tinzaparin 4500 IU subcutaneously, once daily) after 

occlusion of the ruptured aneurysm by either endovascular coiling or surgical clipping 16. After 

tinzaparin was started, no mechanical thromboprophylaxis was used.17 All control patients were 

treated according to perioperative protocols. 

 

In addition to our standard neurointensive care, a bilateral compression ultrasound of the lower 

extremity veins to exclude asymptomatic deep venous thrombosis (DVT) was performed by 

radiologist once over days 3 to 5. When necessary, a computed tomography pulmonary 

angiogram was performed to rule out pulmonary embolism (PE).  

 

 

Blood sampling 

 

Blood samples for ROTEM analysis were retrieved from aSAH patients at 12, 24, 48, and 72 

hours after onset of aSAH symptoms and compared to the preoperative samples of the control 

group (i.e., baseline). Complete blood, platelet, and leukocyte counts, serum C-reactive protein, 

and International Normalised Ratio concentrations were measured daily during the study period. 
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All blood samples from the aSAH and the control group were taken from a heparin-naïve arterial 

line.  

 

Thromboelastometry 

 

All ROTEM assays were performed in the central laboratory of Tampere University Hospital 

using a ROTEM delta analysis system (TEM Innovations GmbH, München, Germany). The 

following parameters were measured: clotting time (CT) (which represents time to initiation of 

clot formation), clot formation time (CFT) (which represents stabilisation of the clot), and 

maximum clot firmness (MCF) (which represents maximum clot strength). Each analysis was 

performed using single-use reagents. EXTEM measures coagulation activated by the extrinsic 

pathway, FIBTEM formation of fibrin-based clots after platelet inhibition by cytochalasin D to 

block the function of GPIIb/IIIa receptor and INTEM clot formation via contact phase. In 

general, a hypercoagulable state can be detected if MCF is elevated.18 Using different reagents, 

the impact of platelets and fibrinogen (EXTEM-MCF) and fibrin formation and its 

polymerisation (FIBTEM-MCF) on clots can be distinguished.  

 

Our primary outcome was the EXTEM-MCF value in the aSAH patient group compared with 

the baseline value from the control group. Secondary outcomes were: other ROTEM 

parameters (i.e., EXTEM-CT, EXTEM-CFT, FIBTEM-MCF, INTEM-MCF, INTEM-CT, and 

INTEM-CFT) compared with baseline values from the control group. To identify the platelet 
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contribution to cloth strength, the difference between EXTEM-MCF and FIBTEM-MCF was 

calculated.  

 

Clinical and outcome measures 

 

Clinical severity of aSAH at admission was reviewed retrospectively using the Hunt–Hess grade, 

from which EBI severity was classified as severe (Hunt–Hess, 4–5) or mild (Hunt–Hess, 1–3).19 

Severity of bleeding was evaluated from the primary head computed tomography using the 

Fisher scale,20 and defined as moderate to severe if the scale was ≥ 3. Moreover, DCI was 

evaluated retrospectively from the intensive care database (Centricity Critical Care Clinisoft; 

GE Healthcare, Barrington, IL, USA) at 24 hours to 14 days from the onset of aSAH symptoms 

using criteria presented by Vergouwen et al.8 Briefly, DCI was defined as neurological 

deterioration (reduction in Glasgow Coma Scale by two or more points) for at least one hour, a 

new neurological symptom for at least one hour that cannot be explained by other features or a 

new ischemic episode on neuroimaging data that was not related to primary aSAH or 

neurosurgery.  

 

Clinically significant events representing the hypercoagulable state were evaluated e.g., VTE 

including DVT and PE. Extended Glasgow Outcome Score (GOSe)21 (including mortality) was 

registered on day 90. 

 

Statistical analysis 
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Statistical analyses were performed using the SPSS statistical software program (version 23.0, 

released 2015; IBM, Armonk, NY, USA). Depending on the distribution of variables, 

comparisons between continuous variables were performed using either the Mann-Whitney U-

test or Student’s t-test. For categorical variables, univariate analysis with Fisher’s exact test was 

performed.  

 

Based on the standard sample size calculations, at least 16 patients in each group was needed to 

detect a clinically significant increase in MCF (mm), from 65 mm to 70 mm, SD 5 mm by 

EXTEM S reagent, assuming a power of 80% and a significance level of 5%.  

 

 

RESULTS 

In total, 17 aSAH and 16 control patients were enrolled. The groups did not differ in sex, 

comorbidities, or body mass index, but the proportion of smokers was higher and patients were 

younger in the aSAH group (Table 1). Moreover, the ruptured aneurysm was more commonly 

located in the anterior communicating artery in the aSAH group, whereas most aneurysms in the 

control group were located in the middle cerebral artery (Table 1). In the majority of aSAH 

patients, bleeding was classified as moderate to severe and the aneurysm was repaired by 

endovascular coiling in 76.5% of patients (n = 13) (Table 2). On day 90, nearly 60% of aSAH 

patients showed good neurological recovery and mortality was 5.9%. More detailed 

demographic information on the aSAH patient group is shown in Table 2.  
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At 72 hours, EXTEM-MCF was significantly higher in aSAH patients compared with the 

baseline value from the control group: (68.0 mm [interquartile range{IQR}, 66.0–71.0 mm] vs. 

64.5 mm [IQR, 59.5–66.8 mm], respectively; P = 0.024). FIBTEM-MCF was also significantly 

increased at 72 hours compared with the baseline value from the control group: (23.0 mm [IQR, 

19.0–25.0 mm] vs. 15.4 mm [IQR, 12.5–17.8 mm], respectively; P = 0.001). The difference 

between EXTEM-MCF and FIBTEM-MCF represents platelet contribution to clot formation. 

This decreased significantly during the first 72 hours (48.5 mm [IQR, 46.3–50.8 mm] to 44.0 

mm [IQR, 41.0–48.0 mm]; P = 0.027) compared with baseline values from the control group 

(Figure 1). Absolute platelet concentration remained unchanged (221 [standard deviation {SD}± 

66] 109/l at 72 h vs. 244 [SD ± 88] 109/l at baseline of the control group; P = 0.426). Compared 

with the aSAH value at 72 hours, EXTEM-CFT decreased significantly from the baseline value 

of the control group (96.5 s [IQR, 81.3–120.5 s] vs. 74.0 s [65.0–89.0 s]; P = 0.015). No 

differences in INTEM-MCF, EXTEM-CT, INTEM-CT, and INTEM-CFT were observed at 72 

hours compared with baseline values from the control group (Table 3). Other time comparisons 

(12, 24, and 48 hours after onset of aSAH symptoms) to baseline values of the control group are 

shown in Table 3.   

Further, DCI was observed in seven (n = 17, 41 %) aSAH patients. At 72 hours, FIBTEM-MCF 

was significantly higher in patients who developed DCI compared with those who did not (25.0 

mm [IQR, 24.8–26.8 mm] vs. 19.0 mm [IQR, 16.5–22.5 mm]; P = 0.012) (Figure 2). No 

differences were detected in EXTEM-MCF (68.5 mm [IQR, 66.8–69.8 mm] vs. 67.0 mm [IQR, 
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64.5–71.5 mm]; P = 0.698) or INTEM-MCF (66.0 mm [IQR 36.0–70.5 mm] vs. 68.0 mm [IQR 

65.5–71.5 mm]; P = 0.606). Four patients had severe EBI, and in these patients, FIBTEM-MCF 

was significantly higher at 72 hours compared with mild EBI patients (26.0 mm [IQR, 25.0–26.0 

mm] vs. 22.0 mm [IQR, 18.3–24.8 mm]; P = 0.031) (Figure 2). EXTEM-MCF was unchanged at 

72 hours (data not shown).   

Two DVTs were detected in aSAH patients, and both patients also developed a PE. In these 

patients, EXTEM-MCF was not higher compared with other aSAH patients at 72 hours (61.5 

mm [IQR, 57.0–61.5 mm] vs. 69.0 mm [IQR, 66.5–71.5 mm]; P = 0.076). No thromboembolic 

complications were observed in the control group.  

 

DISCUSSION 

This clinical, observational trial examined the on-going coagulation process after aSAH using 

ROTEM analysis. We observed that at 72 hours after onset of aSAH, strength of the formed 

blood clot increased, as shown by higher EXTEM-MCF and FIBTEM-MCF values. Higher 

FIBTEM-MCF levels were associated with incidence of DCI and EBI. To the best of our 

knowledge, this is the first time that ROTEM has been used to examine changes in coagulation 

after aSAH. 
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In this study, EXTEM-MCF increased at 72 hours after onset of aSAH, suggesting overall 

coagulability was increased. In previous trials, haemostatic changes following aSAH have been 

investigated by another viscoelastic point-of-care coagulation test, thromboelastography 

(TEG), in which overall coagulation state is evaluated by maximum amplitude (MA), which is 

analogous to the MCF value in ROTEM.22,23 The results of these studies are consistent with 

ours in moderate to severe aSAH patients, with onset of the hypercoagulable state observed at 3 

days from bleeding, while MA levels were highest on day 10.24 When the monitoring period was 

shorter than 72 hours, no change in MA value was observed in the overall aSAH population.22,23 

Interpretation of these previous results is difficult,22,23 as the exact timing of the blood samples is 

not known. Moreover, as blood coagulation has been activated by different reagents in previous 

trials, direct comparison between results is challenging. We chose to use the extrinsic pathway 

because it most accurately mimics rupture of an aneurysm and release of tissue factors to initiate 

blood coagulation. However, these data suggest that the hypercoagulation state develops 

gradually after aSAH and can be detected by viscoelastic point-of-care coagulation test 3 days 

after bleeding.  

 

We noted that at 72 hours after the onset of aSAH bleeding, FIBTEM-MCF levels significantly 

increased. This implies that fibrin formation and polymerisation exert a major contribution on 

clot strength. To the best of our knowledge no previous trials have investigated fibrin function 

after aSAH. In general, FIBTEM-MCF is a surrogate marker for plasma fibrinogen 

concentration, and they are both known to increase in the recovery phase of many acute illnesses 
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(e.g., severe sepsis).25 When measured at the early phase of aSAH, fibrinogen concentration is 

reportedly within normal limits11,26,23,27,28, 29 or slightly elevated.24 However, we have not found 

any trials where change in fibrinogen concentration had been studied. It is known that higher 

values of the fibrin degradation product, D-dimer, after aSAH are associated with poor 

neurological outcome.30 This is in accordance with our results since a higher D-dimer value 

implies that fibrin formation is increased, as does higher FIBTEM-MCF. Additional studies are 

needed to confirm these results and determine if FIBTEM-MCF continues to increase after 3 

days.  

 

We noticed that both absolute and relative differences between EXTEM-MCF and FIBTEM-

MCF decreased after 72 hours while the absolute platelet concentration remained unchanged. 

This shows that the functional impact of platelets on formation of clot strength is declining and 

outlines the functional impact of fibrin. In previous TEG trials, clot strength was solely 

evaluated by MA, and thickening of the clot was concluded to reflect activation of platelets 

only.22,24 In a recent trial, activation and aggregation of platelets was observed after aSAH.31 

Nevertheless, it is known that both platelet activation and fibrin formation and crosslinking are 

needed for clot formation. The relative contribution of platelets and fibrin to clot strength in 

aSAH patients is unknown. In healthy individuals, fibrinogen accounts for 25% of clot strength 

while in trauma patients the contribution increases up to 44% after 72 hours of insult.32,33 Based 

on our results, it appears that the relative contribution of fibrinogen also increases after aSAH, 

from 23.5% to 33.3% at 72 hours after onset of aSAH.  
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We found significantly higher FIBTEM-MCF at 72 hours in patients who had severe EBI or 

further developed DCI. Interestingly, we did not observe any association between DCI and 

EXTEM-MCF though the absolute increase in EXTEM-MCF was statistically significant. To 

our knowledge no trial has investigated this previously. Fuji et al., found higher fibrinogen 

levels predicted incidence of DCI at 6 days after aSAH,26 while baseline fibrinogen 

concentration has not shown association with poor neurological outcome.34 Based on previous 

TEG trials, association with MA levels and EBI or DCI is inconsistent. Some studies have 

stated that higher MA levels increase the likelihood of severe EBI and developing DCI,22 while 

others did not observe any association with DCI, although hypercoagulability was associated 

with a poor neurological outcome.24  

 

These inconsistent results might be due to the widely varied definitions used for DCI.8 

Moreover, the pathophysiology of DCI is complex and not completely understood. It is known 

that aneurysm rupture causes platelet activation, which results in thrombin generation, further 

fibrin cleavage from fibrinogen, and formation of cerebral microthrombi. Ultimately, this may 

contribute to the pathophysiology of DCI.35 Based on our results, it seems that increasing fibrin 

formation and polymerisation might play a role in the pathophysiology of DCI. In clinical setting 

the antiplatelet  therapy has failed to prevent this increased fibrin formation or reduce the  

incidence of DCI or mortality after aSAH. 36 Nonetheless, a recent retrospective trial showed 

promising result when dual antiplatelet therapy was used.35 
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Interestingly, overall incidence of VTE in our study was high: 11.8% for both DVT and PE. In 

previous trials, incidence of DVT among aSAH patients varied between 2 to 24% depending on 

if a screening method was used.37,38 Although there is weak evidence that earlier onset of clot 

formation might increase risk for DVT,23 in our current trial we did not observe shortened 

EXTEM-CT or elevated EXTEM-MCF among the two VTE patients. Moreover, EXTEM-CT 

and INTEM-CT remained unchanged during the study period in whole aSAH group indicating 

that initiation of clotting, thrombin formation, and start of fibrin polymerisation were unaffected. 

In general the predictive value of TEG for VTE diagnostics is highly inconsistent. 39 Thus, a 

much larger trial is needed to show association with changes in coagulation factors and 

incidence of VTE after aSAH. Altogether, this supports the current practise to start 

pharmacological thromboprophylaxis as early as is safe.15 

 

This study has limitations. First, there was a 12-hour delay from the onset of initial bleeding to 

the first ROTEM  measurement. However, this delay is inevitable when performing clinical 

research on this patient population. Second, we monitored ROTEM measurements for only 72 

hours. In previous TEG trials, coagulation continued to increase from day 3 to day 10, with a 

clear hypercoagulability state identified on day 5.24 Third, even although neurosurgical patients 

undergoing elective aneurysmal clipping represent the same patient population, the aSAH 

patients were younger and proportion of smokers higher. This is unsurprising, since smoking is 

known to be one of the major risk factors for aneurysm rupture.40 Yet, it is not known if smoking 

affects ROTEM results. Fourth, decrease in haemoglobin level after aSAH might have 
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paradoxically increased the measured EXTEM-MCF. However, the magnitude of this is most 

likely minimal.41 and the precision of FIBTEM-MCF measurement is known to be actually 

better in anaemic patients42 Fifth, our sample size was underpowered for some clinical endpoints 

(e.g., DCI, EBI and VTE), thus these results must be interpreted with caution. Furthermore, due 

to small sample size we were unable to perform multivariate testing on other clinically relevant 

confounders, e.g. Hunt Hess or Fisher score, that might have influence on incidence of EBI and 

DCI. Finally, based on current trial design we were unable to differentiate what is the effect of 

different operative interventions on blood coagulation.  

 

In conclusion, our study shows that blood coagulation appears to increase at 72 hours after onset 

of aSAH, and for the first time this change can be detected by ROTEM EXTEM-MCF 

analysis. At the same time, FIBTEM-MCF is also elevated, suggesting that relative contribution 

of fibrin formation and fibrin polymerisation to clot strength are essential. Further, FIBTEM-

MCF was higher in patients with DCI and EBI. Thus, it seems that formation and polymerisation 

of fibrin might influence pathophysiology of DCI and EBI.  Further clinical trials are warranted 

to confirm these results.  
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FIGURE LEGENDS 

 

Figure 1 

 

 

Change in ROTEM analysis from baseline value of the control group to 72 hours after onset of 

aSAH symptoms.  

 

A. EXTEM-MCF(mm). Baseline median: 64.5 (interquartile range, {IQR} 59.5–66.8) and at 72 

hours: 68.0 (IQR 66.0–71.0); P = 0.024. 

B. FIBTEM-MCF (mm). Baseline median: 15.0 (IQR 12.5–17.8) and at 72 hours: 23.0 (IQR, 

19.0–25.0); P = 0.001. 

C. Difference between EXTEM-MCF(mm) and FIBTEM-MCF (mm) represents the impact of 

platelets on clot formation. Baseline median: 48.5 (IQR, 46.3–50.8) and at 72 hours: 44.0 (IQR, 

41.0–48.0); P = 0.027. 

 

Statistical significance was established at P < 0.05, marked with ♦ aSAH: aneurysmal 

subarachnoid haemorrhage. 
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Figure 2 

 

 

Association with fibrin formation and polymerisation (FIBTEM-MCF) over 72 hours after onset 

of aSAH symptoms with incidence of EBI and DCI.  

A. In severe EBI patients (n = 4), FIBTEM-MCF(mm) was significantly higher at 72 hours 

compared with mild EBI patients (26.0 mm [interquartile range {IQR}, 25.0–26.0 mm] vs. 22.0 

mm [IQR, 18.3–24.8 mm]); P = 0.031. 

B. In DCI patients (n = 7), FIBTEM-MCF(mm) at 72 hours was 25.0 (IQR, 24.8–26.8) 

compared with 19.0 (IQR 16.5–22.5) for non-DCI patients (n = 10); P = 0.12. 

Statistical significance was established at p < 0.05, marked with ♦ aSAH: aneurysmal 

subarachnoid haemorrhage, EBI: early brain injury, DCI: delayed cerebral ischemia
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Table 1 
Baseline Characteristics of the Patients 
 
Characteristic aSAH           

n=17 
Control               
n=16   

  n % n % p value 

BMI, median (Q1-Q3) 30 (25–33) 28 (25–31) 0.363 
Age, median  (Q1-Q3) 49 (40–60) 62 (56–67) 0.037 
Sex male 6 35.3 7 43.8 0.728 
Smoking 10 58.8 6 37.5 0.003 
Alcohol abuse 2 12.5 0  0.227 
HTA 7 41.2 11 68.8 0.166 
Diabetes 0  3 18.8 0.103 
Cancer in remission 1 5.9 1 6.3 1.000 
Low dose aspirin 1 5.9 5 31.3 0.085 
Aneurysm location      

ACA 6 35.3    

BA 2 11.8    

ICA 4 23.5    

MCA 4 23.5 15 93.8  
PCA 1 5.9    

PA 0   1 6.3   
Abbreviations: aSAH; aneurysmal subarachnoid haemorrhage, BMI; body mass index, HTA; 
hypertensio arterialis, ACA; anterior communicating artery, BA; Basilar Artery, ICA; internal 
carotid artery, MCA; middle cerebral artery, PCA; posterior cerebral artery, PA; pericallosal artery     
 



Table 2 
Characteristics of the aSAH Patients 
Parameter Mean ± SD n % 
Hunt Hess  2.4 ± 1   

1  2 11.8 
2  10 58.8 
3  1 5.9 
4  4 23.5 

Fisher scale  3 ± 0.9   
Fisher 1  0  
Fisher 2  6 35.3 
Fisher 3  5 29.4 
Fisher 4  6 35.3 

Treatment    
Clipping  4 23.5 
Coiling  13 76.5 

TXA  1 5.9 
LMWH during ICU  15 88.2 
GOSe score at 90 d  6.7 ±1.9   

Death  1 5.9 
Vegetative state  0  
Lower severe disability  0  
Upper severe disability  0  
Lower moderate disability  1 5.9 
Upper moderate disability  3 17.6 
Lower good recovery  3 17.6 
Upper good recovery   7 41.2 

Abbreviations: TXA; tranexamic acid, LMWH; low molecular weight heparin, GOSe; Glasgow 
Outcome Score Extended 
 
 
 



Table 3 
Laboratory Results and ROTEM Assays 

        From the onset of aSAH (h)                                                                                                                                                           
Parameter Reference 

range Baseline of the  control group               12   24   48   72   
    Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 

EXTEM            
MCF (mm) 50–72  64.50 59.5–66.8 64.0 62.0–69.5 68.0 63.0–70.0 66.0 65.5–69.0 68.0  ⃰ 66.0–71.0 
CT (s) 38–79 48 45–58 53 48–57 54 45–61 51 47–62 52 45–61 
CFT (s) 34–159  96.50 81.3–120.5 100.0 71.5–109.5 101.0 68.5–111.5 86.0† 69.0–92.0 74.0‡ 65.0–89.0 

INTEM            
MCF (mm) 50–72 65.50 61.3–68.0 65.0 62.5–71.5 68.0 64.0–71.5 67.0 65.5–70.0 67.5 65.8–71.3 
CT (s) 100–240 158 149–170 142 129–167 145 129–167 149 138–167 149 143–159 
CFT (s) 30–110 66.00 58.5–78.5 72.0 51.5–82.5 65.0 51.0–74.5 61.0 52.5–79.0 59.0 50.5–66.8 

FIBTEM            
MCF (mm) 9–25  15.40 12.5–17.8 15.00 13.5–21.5 16.00 14.5–22.5 19.0§ 16.5–23.0 23.0⫲  19.0–25.0 

Platelet (109/l),mean SD 150–360 244 (88)   240 (50) 217 (66) 221 (66) 
Leucocyte (109/l), mean SD 3.3–8.2 7.2 (1.6)   13.7 (3.9) 13.5 (3.9) 12.3 (3.5) 
Haemoglobin (g/l),  mean SD 134–167 145 (13)   132¶ (15.2) 124# (12.5) 127  ⃰  ⃰   (12.6) 
CRP (mg/l) < 10 23.7 13.0–36.8     8.3 3.7–13.2 19.5 9.2–45.5 34.0 6.2–88.5 

All statistical comparison are done between baseline of the control group and  different time point of aSAH group 
Abbreviations: aSAH; aneurysmal subarachnoid haemorrhage,  MCF; maximum clot firmness, CT; clotting time, CFT; clot formation time, CRP; C-reactive 
protein 
  ⃰0,024 
†0,023 
‡0,015 
§0,004 
⫲0,001 
¶0.010 
#<0.001 
  ⃰  ⃰<0.001 
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