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ABSTRACT 

This paper contributes to the literature on the labor market consequences of 

obesity by using a novel instrument: genetic risk score, which reflects the 

predisposition to higher body mass index across many genetic loci. We estimate IV 

models of the effect of BMI on labor market outcomes using Finnish data that have 

many strengths: e.g. body mass index that is measured rather than self-reported, and 

data on earnings and social income transfers that are from administrative tax records 

and are thus free of the problems associated with non-response, reporting error or top-

coding. 
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The empirical results are sensitive to whether we use a narrower or broader 

genetic risk score, and to model specification. For example, models using the 

narrower genetic risk score as an instrument imply that a one-unit increase in BMI is 

associated with 6.9% lower wages, 1.8% fewer years employed, and a 3 percentage 

point higher probability of receiving any social income transfers. However, when we 

use a newer, broader, genetic risk score, we cannot reject the null hypothesis of no 

effect. Future research using genetic risk scores should examine the sensitivity of their 

results to the risk score used. 
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1. INTRODUCTION 
 

The prevalence of obesity, defined as a body mass index (BMI) of 30 or 

higher,1 has risen dramatically in many countries in the past several decades (GBD 

2015 Obesity Collaborators, 2017). Economists have extensively studied the 

economic consequences of obesity, in particular whether obesity lowers wages or 

reduces the probability of employment (see the reviews in Averett, 2011; Cawley, 

2015). Obesity could result in worse labor market performance for several reasons; 

e.g. obesity worsens health (Hu, 2008) which may lower productivity and thus wages, 

and there may be obesity-related discrimination in the labor market (Puhl, 2011; 

Rooth, 2009).   

Correlations between weight and labor market outcomes are difficult to 

interpret. They reflect not only any impact of weight on earnings, but also any reverse 

causality that would arise if a low income results in weight gain (see e.g. Schmeiser, 

2009), and the influence of any omitted variables such as rate of time preference 

(Komlos et al., 2004). For this reason, numerous studies have sought to estimate the 

causal effect of weight on labor market outcomes. Most have instrumented for 

respondent weight using the weight of a biological relative; e.g. Cawley (2004), 

Brunello and D’Hombres (2007), Kline and Tobias (2008), and Lindeboom et al. 

(2010). This approach takes advantage of the substantial genetic variation in weight; 

genetics studies estimate a strong heritable component of BMI, roughly 40-70% 

(Barsh et al., 2000; Pietiläinen et al., 1999; Locke et al., 2015). A potential concern 

with the approach is that unobserved characteristics may be correlated with both a 

person’s own BMI and their relative’s BMI.  

                                                 
1 BMI is calculated as a person’s weight in kilograms divided by height in meters squared. 
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This paper contributes to the literature by using a novel instrument – genetic 

risk score for high BMI – to estimate the causal effect of weight on labor market 

outcomes. This instrument takes advantage of the natural experiment known as 

Mendelian Randomization, which refers to the draw of an individual’s genotype at 

conception (Conley, 2016; Haycock et al., 2016; von Hinke et al., 2016; Tyrrell et al., 

2016; Davey Smith et al., 2017).2 We utilize two different genetic risk scores for high 

BMI; a narrower one based on 32 SNPs3 and a broader one based on 97 SNPs that 

have robustly and significantly been found to influence obesity in genome-wide 

association studies involving very large samples. We discuss the power and validity 

of these instruments in detail in the Methods section. 

In addition to the genetic IVs, the data we use has three noteworthy strengths. 

First, it includes measurements, as opposed to self-reports, of weight and height; thus, 

we avoid the problems arising from reporting error in weight such as inefficiency and 

bias (see Cawley et al., 2015; Courtemanche et al., 2015). Second, we utilize 

administrative data on earnings, which avoids problems associated with refusal to 

report, and reporting error in wages and salaries. Third, the data allow us to examine a 

novel outcome – social income transfers, taken from administrative records, which 

allows us to examine one potential negative externality related to obesity. Studying 

the existence and magnitude of such external costs is important because they may be 

associated with deadweight loss to society and thus represent an economic rationale 

for government intervention to prevent and reduce obesity (Cawley, 2015). Social 

                                                 
2 Norton and Han (2008) used genetic information as an instrument for weight to estimate the effect of 
weight on labor market outcomes, although the specific genetic IVs were later called into question as 
relatively weak and likely invalid (Cawley, Han, and Norton, 2011; von Hinke et al., 2016). 
3 Places where DNA differ between people are called polymorphisms, and a single nucleotide 
polymorphism or SNP is a single base-pair variation in DNA. Humans have two copies of each 
chromosome, so they have two alleles, or versions, of each SNP that may be the same (homozygous) or 
different (heterozygous). See Appendix A of von Hinke Kessler Scholder et al. (2012). 
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income transfers are also of interest because they tend to be a substantial item in 

government budgets, especially in countries like Finland with a comprehensive social 

safety net.  

One study similar to this one is Tyrrell et al. (2016), which estimated the 

effect of obesity on labor market outcomes using genetic information as an instrument 

for BMI, and found that higher BMI lowered annual household income for women. 

Our study differs in significant ways from theirs. We use a measure of income that is 

more accurate for several reasons. Tyrrell et al. (2016) used a self-reported categorical 

income; in contrast, our paper uses administrative income data from national registers 

which avoids problems of refusal and reporting error. In addition, our measure of 

income is continuous rather than categorical. Moreover, the self-reported income in 

Tyrrell et al. (2016) is for the household, whereas our administrative information 

measures earnings specific to the individual that are more relevant for studying the 

consequences of individual weight. Furthermore, Tyrell et al. (2016) examined 

outcomes in a single year whereas we examine outcomes over 12 years. We also 

examine additional outcomes – employment, and receipt of social income transfers – 

and use data from Finland instead of the U.K. 

2. DATA 

We link data from three sources: 1) the Cardiovascular Risk in Young Finns 

Study (YFS); 2) the Finnish Longitudinal Employer-Employee Data (FLEED) of 

Statistics Finland (SF); and 3) the Longitudinal Population Census (LPC) of SF. The 

merge is executed using unique personal identifiers, which is exact matching; i.e. 

there are no misreported ID codes.  

The YFS is an on-going epidemiological study that began in 1980 with the 

goal of examining how childhood cardiovascular risk factors and health behaviors, as 
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well as biological and psychological factors, contribute to the risk of cardiovascular 

diseases in adulthood.4 Subjects in six age cohorts (aged 3, 6, 9, 12, 15 and 18 years) 

were randomly chosen from the five university hospital districts of Finland using the 

national population register (Raitakari et al., 2008).5 The sample is relatively small – 

3,596 persons participated in the study at baseline – but the richness of the data are an 

offsetting advantage. Eight waves of data have been collected in 3-9 year intervals, 

starting with baseline in 1980 and most recently in 2011-12, with response rates 

between 60% and 80%. We use data from the 2001, 2007 and 2011 waves, because 

we have, from another source, labor market data for the years 1990-2012 (as we 

explain below).  

The YFS data are collected through questionnaires, physical measurements, 

and blood tests. In all waves of the YFS, weight and height were measured to the 

nearest 0.1 kg by medical professionals at local health centers.  

In 2009, genome-wide association studies (GWAS) were performed for YFS 

subjects using the 670K Illumina platform (Sanger Institute, UK). Variation in over 

670,000 known single nucleotide polymorphisms (SNPs) were measured from 2,450 

study subjects. Imputation for up to 2.5 million SNPs was performed using 

information on Hapmap 2 by using MACH. All the SNPs were imputed with 

excellent imputation quality (MACH r2>0.8). These genetic data were used to 

construct the genetic risk scores, which will be explained in detail in the Methods 

section. 

The second dataset that we use, the Finnish Longitudinal Employer-Employee 

Data (FLEED), is the source for data on employment status, salary, and other income, 

                                                 
4 YFS is the largest running follow-up study in Europe that evaluates cardiovascular risk factors from 
childhood to adulthood; see http://youngfinnsstudy.utu.fi/studydesign.html  
5 Finland is divided into 20 hospital districts, five of which are university hospital districts. 

http://youngfinnsstudy.utu.fi/studydesign.html
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for 2001 to 2012. FLEED data come directly from tax and other administrative 

registers that are collected and/or maintained by SF. Such register-based data have 

much less measurement error than self-reports from surveys; e.g. the income data in 

FLEED do not suffer from underreporting or recall error, nor are they top coded. This 

accuracy increases the efficiency of the estimates, which is particularly important for 

relatively small samples such as the YFS. The third dataset that we use, the 

Longitudinal Population Census (LPC), is the source of information on parental 

education. 

3. METHODS 

We estimate regressions of the following form: 

   (1) 

We examine four labor market outcomes Y for an individual i. Out of a 

concern that short-term cross-sectional measures, such as yearly earnings or current 

employment status, contain idiosyncratic components that diminish the precision of 

the estimates (Dahl et al., 2011), in this paper, Y is usually the average of the values 

over 2001 to 2012, which is the period that most respondents were of working age 

(i.e. between 24 and 50). Because the sample size is relatively small, reduction in 

variance and precision gains from averaging over several periods are important.  

The first outcome we examine is the logarithm of the average of the 

individual’s annual wage and salary earnings over 2001-2012. The second dependent 

variable is labor market attachment; specifically: the share of years employed during 

2001-2012, with employment status in a year classified by the individual’s status in 

the last week of each year in FLEED. Retirement is not an issue for this sample; the 

YFS participants are between 35 and 50 years old in 2012. 

i i i iY W Xα β γ ε= + + +
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The third dependent variable we examine is an indicator variable for whether 

the respondent received any social income transfers between 2001 and 2012, and the 

fourth and final dependent variable is the logarithm of the average of the individual’s 

annual social income transfers over the period 2001-2012, conditional on receiving 

any. These last two outcomes jointly represent a two-part model, in which the first 

part concerns whether the respondent received any social income transfers, and the 

second part concerns the average annual amount received, conditional on receiving 

any. Social income transfers include unemployment benefits, housing benefits and 

disability payments.6 We examine their receipt for two reasons: first, social income 

transfers are an important component of total income in Finland, a welfare state, and 

second, the amount of social income transfers is informative about adverse labor 

market consequences and negative externalities related to obesity. For both 

wages/earnings and social income transfers, the values in each year are converted to 

constant (inflation-adjusted) values using the consumer price index (base year 2000) 

before the average is calculated. 

The regressor of interest is weight W. In our primary models, we use BMI 

measured in 2001. Thus, the main estimates are based on cross-sectional variation 

across individuals in the value of BMI in 2001. BMI has only limited variation for 

each individual over the relatively short observation window (2001, 2007 and 2011) 

and thus it is not feasible to estimate individual fixed effects models.  

                                                 
6 We exclude parental leave benefits from social income transfers because they are not a “negative 
indicator” in the same way as unemployment benefits and disability payments. Parental leave benefits 
are also strongly earnings-related in Finland. We focus on social income transfers that are indicators of 
poor labor market success and markers of negative externalities related to obesity. We have estimated 
the baseline models also by including parental leave benefits to the measure of social income transfers. 
The conclusions remain intact. Persons being on parental leave are coded as employed according to 
Statistics Finland, because parental leave does not dissolve the legal status of employment contract.  
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The vector of controls X includes indicator variables for birth month, birth 

year and gender. Typically, wage equations include education as a regressor (Mincer, 

1974). In this case that practice is questionable, as there is some evidence that youth 

obesity may reduce academic performance and educational attainment (Sabia, 2007; 

von Hinke Kessler Scholder et al., 2012). For this reason, we omit respondent 

education from the set of regressors and instead control for parental education: 

specifically, whether each parent has completed at least bachelor’s degree (based on 

LPC data from 1980). Controlling for parental education also accounts for assortative 

mating within educational groups that could potentially violate the independence 

assumption of the IV estimation; i.e. it accounts for the possibility that the allele 

distribution differs according to parental education (Von Hinke et al., 2016). Parental 

education is also a convenient control for family environment and resources. 

Wage equations sometimes include controls for cognitive performance, when 

the data are available. In this context, however, that is questionable because there is 

evidence that obesity lowers scores on tests of cognitive achievement (Sabia, 2007; 

Averett and Stifel, 2010).7   

Given the modest sample size, the main models in our paper are estimated for 

men and women pooled, and thus represent the average effect across both sexes. 

However, previous studies of the impact of weight on earnings have often found 

differences by gender (e.g. Cawley, 2004), so as an extension in the Appendix we also 

estimate models separately by gender.8 

                                                 
7 See Appendix 1 for description of the measures for cognitive performance.    
8 Finland also exhibits a gender difference in wage penalty of obesity (Sarlio-Lähteenkorva et al., 
2004; Johansson et al., 2009). 
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We first estimate equation (1) using ordinary least squares (OLS) in order to 

estimate the conditional correlation of weight with labor market outcomes.9 These 

correlations reflect not only any causal effect of weight on wages, but also potentially 

reverse causality and the influence of omitted variables that may be correlated with 

both weight and the outcomes. 

3.1. Method of instrumental variables: Genetic risk score for obesity 

In order to estimate the causal effect of body weight on these outcomes, we 

estimate models of instrumental variables (IV) in which our IV is one of the two 

genetic risk scores for BMI.10 It is estimated that 40-70% of inter-individual 

variability in BMI is due to genetic factors (e.g. Locke et al., 2015), so the genetic 

risk factor score has the potential to be a powerful instrument. 

As described in the data section, subjects in the YFS contributed DNA 

samples; results of the analysis of these samples are used to construct genetic risk 

scores (GRS) for high BMI. We use two different measures of GRS for high BMI.  

The first is based on the 32 SNPs that were found to be significantly (p<1.0 x 10-8) 

associated with high BMI by Speliotes et al. (2010) and which is used as an example 

of a powerful and likely valid application of genes as instruments by von Hinke et al. 

(2016). The second genetic risk score is based on 97 SNPs identified as associated 

with high BMI by Locke et al. (2015). This second, broader GRS includes all of the 

32 SNPs included in the first, narrower, GRS. While the 32 SNP score was used by 

von Hinke Kessler Scholder (2016), the 97 SNP score has not, to our knowledge, been 

used in any study examining the economic consequences of obesity.  

                                                 
9 For the binary outcome of receiving any social income transfers we estimate linear probability 
models. We prefer the use of linear probability models, because they facilitate easy interpretation of 
coefficients and are less sensitive to distributional assumptions. The results remain intact using a Tobit 
specification, where the social income transfers are left censored at zero.  
10 For all outcomes, the IV model is two-stage least squares. 
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The first GRS is equal to the sum of the alleles in the 32 SNPs that put one at 

elevated risk of high BMI. A person’s risk score is equal to the number of alleles they 

have that are associated with an elevated risk of high BMI; because each person has 

either 0, 1, or 2 alleles for each of the relevant SNPs, the first GRS (based on 32 

SNPs) ranges from 0 to 64. The second GRS (based on 97 SNPs) is available to us 

only in weighted form; the weights are based on the contribution of each SNP to high 

BMI in a meta-analysis. This difference in weighting explains the difference in means 

between the two risk scores shown in Appendix Table A2. The weighting may not be 

ideal in this context because the weights are based on all of the international data used 

in the meta-analysis, but the YFS represented only 0.8% of these observations, and 

thus the weights are not necessarily appropriate or best for the Finnish sample we 

study.  

The genetic risk scores have two advantages as an instrument: first, they are 

more powerful (explain more variation in weight) than any of the SNPs individually; 

and second, they may be more valid because they reduce the risk that any alternative 

biological pathway (pleiotropy) in any individual SNP will bias the IV results (Davey 

Smith, 2011; Palmer et al., 2012); the reason is that the instrument is a count of 

number of alleles associated with high BMI instead of indicator variables for having 

specific alleles of specific SNPs.11 

Speliotes et al. (2010) report that the mechanisms by which these SNPs affect 

weight are through: 1) regulators of appetite or energy balance; and 2) insulin 

secretion or response. It is estimated that the 32 loci that constitute the first risk score 

explain 1.45% of the variation in BMI (Speliotes et al., 2010) and the 97 SNPs in the 

                                                 
11 Using simulations comparing different methods, Palmer et al. (2012, p. 239) provide evidence that 
supports the use of genetic scores over indicator variables for individual SNPs. 
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second risk score explain 2.7% of the variation in BMI (Locke et al., 2015).12 (Even 

though it is estimated that 40-70% of inter-individual variation in BMI is due to 

genetic factors, all currently-identified SNPs explain several percentage points of the 

variation; in other words, the vast majority of genetic variability in BMI remains 

unexplained; see, e.g., Locke et al., 2015.) Each one-unit increase in the first genetic 

risk factor score was associated with an increase in BMI of 0.17 units, or roughly one-

half of a kilogram of weight for an average-sized adult (Speliotes et al., 2010). This 

same instrument (an unweighted risk score based on the 32 SNPs associated with 

obesity by Speliotes et al., 2010) was also used in von Hinke (2016) as an example of 

a valid and powerful application of genes as instruments; they used the IV to estimate 

the effect of fat mass on academic achievement and blood pressure. 

A threat to the validity of genetic instruments is pleiotropy – genes having 

more than one function (see, e.g., von Hinke et al., 2016; Cawley, Han, and Norton 

2011). For example, if the same genes associated with higher weight were also 

associated with unrelated traits or conditions that affect employment or earnings, then 

those genes are invalid instruments because the exclusion restriction is violated.  

There is a possible tradeoff between power and validity associated with using 

a broader SNP risk score (i.e. one based on more SNPs). The advantage is that it a 

broader risk score may be more powerful (explains more variation in BMI), given that 

it is based on additional SNPs.13 However, there is also a risk that some of those 

additional SNPs will also be correlated with other traits that affect labor market 

                                                 
12 Speliotes et al. (2010) reports that the SNP with the greatest explanatory power for BMI is FTO 
(which explains 0.34% of variation in BMI), and that having the risky allele for FTO is associated with 
20.3% greater odds of obesity. We have also estimated models in which the IV is a genetic risk score in 
which each SNP is weighted based on their effect size in the meta-analysis; this was no more powerful 
in the first stage than the unweighted genetic risk score. 
13 When the 97 SNP score is used as an instrument, the F-statistics of that instrument in the first stage 
of IV range from 52 to 63, depending the specification. Using the 32 SNP GRS the first-stage F-
statistics varied between 23 and 40. 
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outcomes (pleiotropy) and thus there may be a greater risk of bias in the IV estimates. 

The two genetic risk scores we use are correlated but far from perfectly (0.64, which 

is statistically significant at the 1% level). Moreover, the SNPs most strongly 

correlated with the trait are usually identified first and thus are likely to already be 

included in the 32 SNP score. 

We investigate the possibility of pleiotropy two ways. First, we check 

whether, in the genetics literature, the genes significantly associated with BMI are 

also significantly associated with other possible determinants of labor market 

outcomes. Speliotes et al. (2010) and Locke et al. (2015) search the genetics literature 

for evidence of any pleiotropy of the BMI-related SNPs. Of the SNPs linked to BMI, 

some have been linked to waist circumference and waist-to-hip ratio, but these are 

clearly related to weight. Some are associated with height, a component of BMI 

(Speliotes et al., 2010).14 

Some SNPs are linked to obesity-related illnesses; these could be either 

downstream effects of a high BMI, but it is also possible that coincidentally the SNPs 

affect these illnesses through pathways other than obesity. Specifically, some SNPs in 

the risk score are associated with either Type 2 diabetes, fasting glucose, fasting 

insulin, or insulin resistance, which is not surprising given that excess fat (by 

secreting the hormone resistin) causes insulin resistance and thus diabetes (Hu, 2008). 

Some are linked to serum cholesterol levels and one to blood pressure; both of these 

conditions are strongly associated with obesity (e.g. Hu, 2008). Some are associated 

with age of onset of menstruation (menarche), but this too is related to fatness (Wang, 

2002; Kaplowitz, 2008). In summary, the other phenotypes that the obesity-related 

                                                 
14 We report the results additionally controlling for height in the working paper version. The 
conclusions remain intact. 
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SNPs are associated with tend to be obesity-related comorbidities. We assume that the 

associations with obesity-related conditions occur because of the SNPs association 

with high BMI, but acknowledge that it could be through other pathways, which could 

threaten the validity of the instrument.  It is noteworthy that the searches of Speliotes 

et al. (2010) and Locke et al. (2015) did not yield evidence that the SNPs associated 

with high BMI are associated with characteristics unrelated to obesity that might 

directly affect labor market outcomes, such as intelligence. 

As a second check of the validity of the genetic instruments, we follow 

McClellan et al. (1994) and divide our sample into those with an above-average and 

below-average value of the instrument, and test whether the two groups significantly 

differ in their observable characteristics that are likely correlated with the second-

stage outcome. It is impossible to confirm the null hypothesis that the instrument is 

uncorrelated with the second-stage error term, but a lack of correlation between the 

instrument and observed variables would be consistent with the exclusion 

restriction.15 These comparisons will be discussed in the Empirical Results section. 

An additional assumption is that the allele distribution does not vary 

systematically in different population subgroups (von Hinke et al., 2016). There are 

two key facts that support the independence assumption in our setting. First, our data 

originate from Finland, which is ethnically very homogeneous. Second, following von 

Hinke et al. (2016), we have tested whether the distribution of our covariates is the 

same across the instrument distribution by regressing each of the covariates on the 

instrument. In Appendix Table A1, we report p-values associated with a joint test 

based on regressing a covariate on each of the 32 SNPs and then testing whether the 

                                                 
15 Comparing distribution of observables between above- versus below-average genetic score does not 
address the potential concern about the remaining endogeneity stemming from unobservables. 
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32 coefficients on the SNPs are jointly equal to zero. In Column 2 of Appendix Table 

A1, the p-values indicate that, for each covariate, we cannot reject the null hypothesis 

that the coefficients on the 32 SNPs in the first score are jointly equal to zero.  

However, in Column 4, the p-values indicate that we can reject the null for the 97 

SNPs for the following covariates: female, age, marital status, and father’s income in 

1980. Thus, the additional SNPs in the broader risk score may vary systematically in 

population subgroups. The evidence on this point is more supportive of the 

identifying assumptions for the narrower 32 SNP score than for the broader 97 SNP 

score.  

4. EMPIRICAL RESULTS 

4.1. Baseline OLS estimates 

OLS estimates are presented in Column 1 of Table I.16 In OLS regressions, a one-unit 

increase in BMI is associated with: 0.7% lower average earnings, 0.2% fewer years 

spent employed, 0.1 percentage point lower probability of any social income 

transfers, and 0.5% lower social income transfers, none of which are statistically 

significant.17   

4.2. Power and validity of the IV Model 

Because we seek to estimate the causal effect of BMI on these outcomes, we 

next estimate IV models. The genetic risk score for BMI is a powerful instrument for 

BMI. In the first stage of IV, the F-statistic on the instrument varies by outcome, but 

ranges between 23.5 and 39.9 for the 32 SNP genetic risk score, and between 52.0 and 

                                                 
16 Appendix Table A2 reports summary statistics for our regression sample. 
17 We estimate several additional models to assess the robustness of the baseline results using the 
narrower score (Appendix 3).   
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62.7 for the 97 SNP genetic risk score; all of these far exceed the minimum standard 

of F=10 suggested in Staiger and Stock (1997).18  

In order to examine the validity of the genetic instruments, Appendix Table 

A3 presents differences in means of the observed variables for those with above- and 

below-average values of the BMI genetic risk score, and tests for equality of the 

means. As expected, those with above-average genetic risk factor scores have a 

significantly higher BMI (by 0.92 units for the 32 SNP GRS and by 0.96 units for the 

97 SNP GRS); this is consistent with the instrument being powerful. The table also 

shows that those with a higher genetic 32 SNP risk score for obesity have 

significantly lower earnings, which is consistent with BMI worsening labor market 

outcomes. The difference in earnings for those with a high and low value of the 97 

SNP score is smaller and not statistically significant. While the difference in the 

probability of social income transfers for those with a high and low value of the 

instrument is not statistically significant for the 32 SNP score, it is statistically 

significant for the 97 SNP score.  

Lower rows in Appendix Table A3 shed some light on the criteria of validity.  

The 32 SNP score is associated with differences in two, and the 97 SNP score is 

associated with a difference in one, cognitive test score. There is also some evidence 

that obesity worsens academic test scores (Sabia, 2007; Averett and Stifel, 2010), 

although von Hinke Kessler Scholder et al. (2012) could not reject the null of no 

effect. The literature searches of Speliotes et al. (2010) and Locke et al. (2015) did not 

turn up evidence of a link between the BMI-related SNPs and intelligence. The 32 

SNP score is not associated with other covariates, but the 97 SNP score is associated 

                                                 
18 We have also estimated IV models that use both the genetic risk score and its square as instruments. 
The first-stage F-statistics in these models are lower (roughly 18), and the results are similar, so we 
continue to estimate models that simply use the level of the risk score as the IV. 
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with father’s income. This is a second piece of evidence that the 97 SNP score may be 

less valid than the 32 SNP score. (The first was the evidence that the 97 SNP score 

varies by subgroup, as seen in Appendix Table A1.)  

We also assessed the validity of our IV setting by examining potential 

heterogeneity between the variant-specific estimates. If all SNPs were valid 

instruments, their Mendelian randomization estimates should only vary by chance so 

that larger between-instrument heterogeneity would indicate a violation of IV 

assumptions, most likely due to pleiotropy (Greco et al., 2015). To visually illustrate 

the potential heterogeneity Figure A1 plots the genetic associations with log earnings 

(vertical axis) against genetic associations with the BMI (horizontal axis) for each of 

the 32 SNPs. (Figure A2 plots the same associations for the 97 SNPs.) Each point in 

Figure A1 stands for a genetic variant. The points should be compatible with a 

straight line through the origin under the null hypothesis of homogeneity and any 

point that substantially deviates from this horizontal line from the origin should be 

investigated for potential pleiotropy (Burgess et al., 2017, p. 35). Based on visual 

inspection the estimates do seem clustered along the horizontal at zero; the one 

vertical outlier is not significantly different from zero.  

In Figure A2, for the 97 SNP score, some estimates are statistically 

significantly different from zero. This could be the result of different SNPs having 

different Local Average Treatment Effects (LATE) by operating through different 

biological mechanisms; however, it is also consistent with pleiotropy. This is a third 

piece of evidence that the 97 SNP score may be less valid than the 32 SNP score. 

A formal statistical test of pleiotropy can be conducted using the Sargan’s 

over-identification test. To perform this test we estimated our main models using 

individual SNPs (both 32 and 97) as instruments for BMI. In all but one case, the 
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Sargan’s test supported the null hypothesis that all instruments yield the same 

Mendelian randomization estimate and thus provided support to the validity of our 

instrument. The exception is that when an indicator variable for social income 

transfers was used as the outcome variable, the null hypothesis was rejected at the 

10% level (p = 0.041) when 32 individual SNPs were used as instruments.  

4.3. IV estimates 

The coefficients from the IV models are presented in Columns 2 and 3 of 

Table I. The estimates based on using the 32 SNP GRS as an instrument (Column 2) 

indicate that a one-unit increase in BMI is associated with 6.9% lower wages19 and 

1.8 percentage point (2.1%) fewer years employed, both of which are statistically 

significant at the 5% level. A one-unit increase in BMI is also associated with a 3.0 

percentage point (3.7%) higher probability of receiving any social income transfers, 

which is also statistically significant at the 10% level.20 There is no statistically 

significant effect on the amount of social income transfers, conditional on receiving 

any.  

Expressed another way, the results imply that a one-standard-deviation 

increase in BMI (of 4.3 units) lowers wages by 29.7%, lowers years employed by 

9.0%, and raises the probability of receiving any social income transfers by 15.9%. 

Interestingly, when we use the broader risk score as an instrument in IV 

models (Column 3) we cannot reject the null hypothesis of no effect of BMI on any 

outcome. The IV coefficients on BMI in the regressions for employment and 

probability of social income transfers have the same sign as the earlier IV coefficients 

                                                 
19 Earnings and social income transfers have been log-transferred, so to interpret the coefficients on the 
GRS as a percent change, one must raise e to the power of the coefficient and then subtract one. 
20 If we estimate a specification for the whole sample setting zeros to 1 Euro and then using the 
logarithmic transformation of social income transfers as the outcome, using IV models we find that 
higher BMI leads to a significant overall increase in transfers (Appendix Table A4). 
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based on the 32 SNP score, but both are smaller and neither is statistically significant. 

In the Discussion, we consider explanations for the differences in results between the 

32 SNP score and the 97 SNP score.  

Reduced-Form Estimates 

Table II presents results of reduced-form models that regress outcomes on the 

instrument (BMI genetic risk score) directly, controlling for the same set of regressors 

as earlier. The results are consistent with those of the IV models. Raising the 32 SNP 

genetic risk score by one (meaning that an individual has one additional allele that 

raises their risk of high BMI) is associated with 1.2% lower earnings, 0.3 percentage 

points (0.3%) fewer years of employment, and a 0.5 percentage point (0.6%) higher 

probability of receiving any social income transfers, all of which are statistically 

significant at the 5% level (Column 1 of Table II).   

Again, the choice of GRS makes a difference in the results. Column 2 of Table 

II shows that the reduced-form estimates for the 97 SNP score are typically not 

statistically significant. The exception is that an additional risky allele is associated 

with a 8.7 percentage point (10.6%) increase in the probability of receiving any social 

income transfers.21 

5. CONCLUSION 

Much of the evidence about causal effects of obesity is based on IV models in 

which the instrument for respondent weight is the weight of a biological relative. This 

paper contributes to the literature by using a novel instrument: genetic risk score for 

obesity based on many SNPs that are robustly associated with high BMI.  

                                                 
21 We also regressed the 97 SNP score on the 32 SNP score and used the residual as a predictor in the 
reduced-form model along with 32 SNP GRS. In earnings equation, there was a significant difference 
between 32 SNP GRS and residual coefficients. This suggests that the newly-added SNPs in the larger 
score may have a different relationship to earnings than the SNPs in the narrower score. This might 
indicate that the newly added SNPs are less exogenous or less powerful.   
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Specifically, we use two such genetic risk scores, and find evidence that IV model 

estimates are sensitive to which risk score is used.  

The estimates of the IV models that use the genetic risk score based on 32 

SNPs confirm those of the previous literature that used a different instrument (the 

weight of a biological relative): weight lowers wages and the probability of 

employment. Specifically, our IV estimates indicate that an additional unit of BMI 

lowers wages by 6.9% and reduces the share of years employed by 2.1%. We also 

examine the novel outcome of social income transfers and find that an additional unit 

of BMI increases the probability of receiving social income transfers by 3.7%. This 

represents potential negative externalities of obesity – social costs of obesity paid by 

non-obese individuals – and thus an economic rationale for government intervention 

to prevent and reduce obesity. It is well-established that obesity imposes negative 

externalities through higher health care costs (e.g. Cawley and Meyerhoefer, 2012) 

but this paper offers the first evidence that there may also be negative externalities 

through social income transfers.  

Reduced form models that regress outcomes directly on the genetic risk score 

based on 32 SNPs are also consistent with the hypothesis that additional weight 

worsens labor market outcomes; raising the genetic risk score by one (meaning that an 

individual has one additional allele that raises their risk of weight gain) is associated 

with 1.2% lower earnings, 0.3% fewer years employed, and a 0.6% higher probability 

of receiving social income transfers.   

When we use a GRS based on 97 SNPs as the instrument in the IV model, 

however, the estimates are quite different. We cannot reject the null hypothesis of no 

effect of BMI on labor market outcomes. The 97 SNP score is typically not 

statistically significant in reduced-form models either; the exception is that an 
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additional risky allele is associated with a 10.6% increase in the probability of 

receiving any social income transfers.  

There are several possible explanations for the sensitivity of the results to the 

genetic risk score used. First, the 97 SNP score is available for a slightly smaller 

sample than the 32 SNP score, so some statistical power is lost. This does not appear 

to be a critical factor, because when we re-estimate the IV model using the 32 SNP 

score but for the smaller sample with a valid 97 SNP score, the IV results are similar 

to those for the full sample. Second, it is possible that the weighting of the 97 SNP 

score makes a difference. To explore this we re-estimated the IV models using a 

weighted 32 SNP score, and we find that it does raise the standard errors to the point 

that the results are not statistically significant. Thus, the weights may be playing some 

role in the difference in results. The weights are based on each SNP’s predictive 

power in a large international sample, of which the YFS constitutes less than 1%; as a 

result, the weights may not be optimal or appropriate for the YFS sample. A third 

reason why the results differ for the 97 SNP and 32 SNP scores is that the additional 

SNPs in the broader score may operate through different biological mechanisms and 

thus may have different Local Average Treatment Effects. A fourth explanation for 

the difference in results between the two risk scores is that the larger 97 SNP score 

may face a greater risk of bias because it includes SNPs less highly correlated with 

BMI but potentially correlated with other things that could affect labor market 

outcomes. We find two pieces of evidence that the 97 SNP score may not be as valid 

as the 32 SNP score: 1) the 97 SNP score but not the 32 SNP score varies by sex, age, 

marital status (Appendix Table A1), as well as father’s income (Appendix Table A1 

and Appendix Table A3); and 2) the 97 SNP score but not the 32 SNP score exhibits 

significant heterogeneity between variant-specific estimates, which could be due to 
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different SNPs having different LATEs through different biological mechanisms but 

may be due to pleiotropy (Appendix Figures A1 and A2). Because of this evidence 

casting some doubt on the validity of the 97 SNP score, the 32 SNP score is the 

preferred instrument in this study.  

In general, it is noteworthy that the IV results are sensitive to the choice of 

genetic instrument. Future studies in this area may wish to test the robustness of their 

results to the use of alternate genetic risk scores, and to explore reasons for any 

differences that are found.   

A strength of the paper is that the key variables are free of reporting error; i.e. 

weight and height are measured and information on employment, earnings, and social 

income transfers are taken from administrative records. This implies that the estimates 

are relatively free of the problems of bias and inflated standard errors that result from 

error in the dependent and independent variables (Bound et al., 2001; Cawley et al., 

2015; Courtemanche et al., 2015).  

We acknowledge the limitations of this paper. The sample is relatively small 

(N=2,062), providing little statistical power to estimate models separately by gender 

or other subgroups. Despite being rich in other ways, the data do not allow us to 

further investigate the mechanisms by which BMI affects labor market outcomes. It is 

always important to stress when using the method of IV that important assumptions 

regarding the validity of the instruments are not testable. Although the SNPs that are 

used in the genetic risk score for BMI were generally not found to be linked to non-

obesity-related outcomes, the failure to reject the null hypothesis of no effect is not 

the same as proving the null.  It is also possible that the reason the SNPs are linked to 

obesity-related illness is because of some direct effect that does not operate through a 

high BMI. The exact function and mechanisms of these SNPs are not known with 
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certainty. Although the 32 SNP GRS was used as an example of a powerful and likely 

valid application of genes as IVs (von Hinke et al., 2016), that study also pointed out 

the need for caution regarding instrument validity.  

When considering the generalizability of these results, it should be noted that 

the Local Average Treatment Effect that we measure concerns the impact of genetic 

variation in weight; it is possible that variation in weight due to other sources could 

have a different impact on labor market outcomes. Moreover, our IVs measure only 

the genetic variation due to the specific SNPs included in the risk scores. Those in the 

32 SNP score affect weight through regulators of appetite or energy balance, or 

insulin secretion or response (Speliotes et al., 2010). It is possible that genetic 

variation in weight that operates through other mechanisms (e.g. resting metabolic 

rate, or propensity to add muscle mass) could exhibit a different relationship with 

labor market outcomes.  

Our data are from Finland, a relatively small nation where the wage 

distribution is narrower than in the Anglo-Saxon countries, which may raise some 

issues of generalizability, but it is a highly economically developed country that is a 

member of the European Union and shares many labor market characteristics with the 

rest of Western Europe. The prevalence of obesity in Finland is 20.9% among adult 

men and 22.3% among adult women (Ng et al., 2014), which is similar to that of 

other Western European countries. Despite these limitations, the strengths of the data, 

such as genetic information, measured weight and height, and comprehensive 

administrative data on wages, employment, and social income transfers that are 

measured without reporting error, make it well-suited to investigate this research 

question. 
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Table I. The effect of BMI on average labor market outcomes, 2001-2012 
 

Panel A: Log of Average Earnings, 2001-
2012 

(1) 
OLS 

(2) 
IV – 32 SNP 

score 

(3)  
IV – 97 SNP 

score 
    
BMI -0.007 

(0.005) 
-0.071** 
(0.036) 

0.010 
(0.027) 

    
F-statistics … 36.53 58.92 
Mean outcome 9.863 9.863 9.866 
N 2038 2038 1886 
    
Panel B: Share of Years Employed, 2001-
2012 

OLS IV – 32 SNP 
score 

IV – 97 SNP 
score 

    
BMI -0.002 

(0.001) 
-0.018** 
(0.009) 

-0.005 
(0.007) 

    
F-statistics .. 39.90 62.73 
Mean outcome 0.857 0.857 0.859 
N   2062   2062 1909 
    
Panel C: Indicator for Social Income 
Transfers,  
2001-2012 (Extensive margin) 

OLS IV – 32 SNP 
score 

IV – 97 SNP 
score 

    
BMI -0.001 

(0.002) 
0.030* 
(0.016) 

0.019 
(0.012) 

    
F-statistics .. 36.53 58.92 
Mean outcome 0.821 0.821 0.819 
N 2038 2038 1886 
    
Panel D: Log of Average Social Income 
Transfers, 2001-2012 (Intensive margin) 

OLS IV – 32 SNP 
score 

IV – 97 SNP 
score 

    
BMI -0.005 

(0.009) 
0.061 

(0.068) 
-0.020 
(0.044) 

    
F-statistics .. 23.49 51.97 
Mean outcome 6.836 6.836 6.831 
N 1673 1673 1545 

 
Notes: Earnings are measured as the log of average earnings over the period 2001-2012. Employment is 
measured as the average share of employment years over the period 2001-2012. Indicator for social 
income transfers equals one for those who have received social security transfers at least once during 
2001-2012. Social income transfers are measured as the log of average transfers over the period 2001-
2012, conditional on obtaining a positive amount of transfers. The mean values for the dependent 
variables are reported. BMI is measured in 2001. All models include controls for the birth month and 
birth year effects. Gender and parental education (1980) are also controlled for in all models. The 
instrument used in the IV models is the BMI risk score, based on genetic markers. Angrist-Pischke 
multivariate F-tests of excluded instrument are reported for the IV models. Heteroscedasticity-robust 
standard errors are reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; 
*** at the 0.01 level.   
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Table II. Reduced form IV estimates 
 

 (1) 
32 SNP score 

(2) 
97 SNP score 

Panel A: Log of Average Earnings, 
2001-2012 

-0.012** 
(0.006) 

0.046 
(0.122) 

Mean outcome 9.863 9.866 
N 2038 1886 
   
 32 SNP score 97 SNP score 
Panel B: Share of Years Employed, 
2001-2012 

-0.003** 
(0.002) 

-0.023 
(0.035) 

Mean outcome 0.857 0.859 
N    2062 1909 
   
 32 SNP score 97 SNP score 
Panel C: Indicator for Social 
Income Transfers,  
2001-2012 (Extensive margin) 

0.005** 
(0.002) 

0.087* 
(0.053) 

Mean outcome 0.821 0.819 
N 2038 1886 
   
 32 SNP score 97 SNP score 
Panel D: Log of Average Social 
Income Transfers, 2001-2012 
(Intensive margin) 

0.009 
(0.010) 

-0.095 
(0.211) 

Mean outcome 6.836 6.831 
N 1673 1545 

 
Notes: Earnings are measured as the log of average earnings over the period 2001-2012. Employment is 
measured as the average share of employment years over the period 2001-2012. Indicator for social 
income transfers equals one for those who have received social security transfers at least once during 
2001-2012. Social income transfers are measured as the log of average transfers over the period 2001-
2012, conditional on obtaining a positive amount of transfers. The mean values for the dependent 
variables are reported. All models include controls for the birth month and birth year effects. Gender and 
parental education (1980) are also controlled for in all models. Heteroscedasticity-robust standard errors 
are reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 
0.01 level. 
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ONLINE SUPPLEMENTARY APPENDICES 
 
 

Appendix 1:  
Tests of cognitive performance  

 
In the latest follow-up of YFS (2011-12), cognitive function was assessed with 

commercially available Cambridge Neuropsychological Test Automated Battery 

(CANTAB®). The CANTAB® is a computerized, predominantly non-linguistic and 

culturally neutral test performed using a validated touch-screen computer system. The 

full test battery includes 25 individual tests from which, five age sensitive tests 

(Robbins et al. 1994; De Luca et al. 2003) were selected for YFS. The tests measured 

several cognitive domains: 1) short term memory, 2) spatial working memory, 3) 

problem solving, 4) reaction time, 5) attention, 6) rapid visual processing, 7) visual 

memory, 8) episodic memory, and 9) visuospatial learning.  

During cognitive testing the participants first conducted a motor screening test 

(MOT) measuring psychomotor speed and accuracy. In this study, the MOT test was 

considered as a training procedure in which the participants were introduced to the 

equipment used in the testing, and as a screening tool to point out any difficulties in 

vision, movement, comprehension or ability to follow simple instructions. Paired 

associates learning (PAL) test was used to assess visual and episodic memory as well 

as visuospatial associative learning containing aspects of both delayed response 

procedure and conditional learning. Spatial working memory (SWM) test was used to 

measure ability to retain spatial information and to manipulate items stored in the 

working memory, problem solving as well as the ability to conduct a self-organized 

search strategy. Reaction time (RTI) test assessed speed of response and movement 

on tasks where the stimulus was either predictable (simple location task) or 



33 
 

unpredictable (five-choice location task). Rapid visual information (RVP) test was 

used to assess visual processing, recognition and sustained attention.  

 Each of the CANTAB® tests produced several variables. Therefore, principal 

component analysis was conducted to reduce the number of variables and to identify 

components accounting for the majority of the variation within the cognition dataset. 

First, principal component analysis was conducted for the complete cognitive data 

and the resulting first component was considered as an indicator for overall cognitive 

performance. Second, principal component analyses were performed separately for all 

individual tests (MOT, PAL, SWM, RTI, RVP). The first components resulting from 

these analyses were considered to represent cognitive performance related to the 

particular domain. After creating the overall and testwise principal components their 

distributions were analyzed. The component for MOT test was excluded from further 

analyses because it did not discriminate the subjects indicating a ceiling effect. All 

other components were normalized based on the rank order normalization procedure 

resulting in five separate variables, each with mean value of 0 and standard deviation 

of 1. 
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Appendix 2: Additional tables and figures  
 

Appendix Table A1: An indirect test of independence assumption:  
regressing the covariates on the BMI 32 SNP GRS 

 
            (1) 

OLS 
32 SNP GRS 

(2) 
32 independent 

variants 
p-value of F-

statistics; 
instrument SNPs 
jointly equal to 

zero 

(3) 
OLS  

97 SNP GRS 

(4) 
97 independent 

variants 
p-value of F-

statistics; 
instrument 

SNPs jointly 
equal to zero 

Female -0.005 
(0.003) 

0.529 -0.015 
(0.071) 

0.002 

Age in 2001 -0.004 
(0.033) 

0.937 -0.739 
(0.707) 

0.012 

Married in 2001 0.001 
(0.003) 

0.257 -0.100 
(0.071) 

0.080 

Family income 
(1980),  
mother (euros) 

-26.083 
(22.346) 

0.902 -511.666 
(489.019) 

0.144 

Family income 
(1980),  
father (euros) 

-68.203* 
(35.352) 

0.270 -912.339 
(868.100) 

0.003 

University education, 
mother 

0.001 
(0.002) 

0.372 0.037 
(0.037) 

0.870 

University education,  
father 

0.000 
(0.002) 

0.352 0.005 
(0.046) 

0.164 

 
Notes: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 level.     
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Appendix Table A2: 
Summary statistics 

 
Variable Mean (SD) N 
   
Average annual earnings (2001-2012), euros  24527.93 (15042.27) 2038 
Share of years employed (2001-2012)  0.857 (0.245) 2062 
Received social income transfers at any point (2001-
2012) (extensive margin) 

0.821 (0.384) 2038 

Average annual social income transfers (2001-2012), 
euros (intensive margin) 

2005.13 (2156.62) 1673 

   
Earnings (2001), euros  18915.49 (14382.31) 2038 
Earnings (2007), euros 26399.55 (19239.1) 1940 
Earnings (2011), euros  29528.85 (19952.31) 1729 
Indicator for being employed (2001) 0.807 (0.395) 2062 
Indicator for being employed (2007) 0.885 (0.320) 1957 
Indicator for being employed (2011)  0.906 (0.291) 1742 
Indicator for social income transfers (2001) (extensive 
margin) 

0.367 (0.482) 2038 

Indicator for social income transfers (2007) (extensive 
margin) 

0.334 (0.472) 1940 

Indicator for social income transfers (2011) (extensive 
margin) 

0.291 (0.454) 1729 

Social income transfers (2001), euros (intensive 
margin) 

4195.33 (3806.08) 748 

Social income transfers (2007), euros (intensive 
margin) 

4770.23 (4567.03) 647 

Social income transfers (2011), euros (intensive 
margin) 

5182.99 (5097.73) 503 

   
BMI (2001) 25.052 (4.290) 2038 
BMI (2007) 25.864 (4.432) 1940 
BMI (2011) 26.338 (4.621) 1729 
BMI risk score based on 32 SNPs (unweighted) 29.144 (3.358) 2038 
BMI risk score based on 97 SNPs (weighted) 2.316 (0.161) 1886 
BMI>=30 (2001) 0.124 (0.329) 2038 
Weight (2001) 74.686 (15.854) 2038 
   
University education (1980), mother 0.072 (0.258) 2038 
University education (1980), father 0.102 (0.303) 2038 
Income (1980), mother (euros)  4616.65 (3503.96) 2023 
Income (1980), father (euros)  8739.78 (5775.44) 1931 
   
Married (2001) 0.445 (0.497) 2038 
   
Overall cognitive performance (2011-2012) 0.010 (0.996) 1334 
Visual and episodic memory and visuospatial 
associative learning 

0.013 (0.989) 1334 

Reaction time  0.021 (0.996) 1334 
Rapid visual information processing 0.042 (0.985) 1334 
Spatial working memory  0.005 (0.974) 1334 
   
Genetic risk score for blood pressure 30.449 (3.215) 2001 
Genetic risk score for total cholesterol  27.462 (3.089) 2001 
Genetic risk score for triglycerides 26.128 (2.875) 2001 

Notes: Descriptive statistics are reported for the samples that are used in the estimations.  
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Appendix Table A3: 
Comparison of observables by value of instrument 

 
 Difference 

(32 SNP GRS) 
t-statistics 

(32 SNP GRS) 
Difference 

(97 SNP GRS) 
t-statistics 

(97 SNP GRS) 
     
     
Earnings,  
2001-2012 (euros) 

1493.685 2.241** -679.512 -0.981 

Share of years employed, 
2001-2012 

0.017 1.575 -0.003 -0.227 

Indicator for social income 
transfers, 2001-2012 
(extensive margin) 

-0.024 -1.431 -0.037 -2.105** 

Social income transfers, 
2001-2012 (euros) 
(intensive margin) 

-103.129 -0.977 -2.105 -0.069 

     
BMI (2001) -0.920 -4.840*** -0.958 -4.864*** 
     
Married (2001) 
 

0.001 0.029 0.017 0.758 

     
Cognitive performance 
(2011-2012) 

    

Visual and episodic memory 
and visuospatial associative 
learning 

0.061 1.114 0.038 0.664 

Reaction time  
 

-0.028 -0.517 0.059 1.042 

Rapid visual information 
processing 

0.187 3.481***   0.097 1.728* 

Spatial working memory  0.124 2.321** 0.055 0.984 
     
Family background 
(1980) 

    

Income, mother 
(euros) 

247.164 1.591 143.705 0.893 

Income, father 
(euros)  

135.016 0.511 459.600 1.688* 

University education, 
mother 

-0.001 -0.112 -0.003 -0.270 

University education, father -0.004 -0.323 0.008 0.544 
 

Notes: The difference is calculated by subtracting variable’s mean value in the low GRS group from the mean 
value in the high GRS group. Low (high) GRS group consists of individuals whose GRS is below (above) 
the average value of the risk score.     
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Appendix Table A4. The effect of BMI on social income transfers 
 

Log of Average Social Income Transfers, 
2001-2012 

OLS IV – 32 SNP 
score 

IV – 97 SNP 
score 

    
BMI -0.012 

(0.015) 
0.251** 
(0.120) 

0.111 
(0.088) 

    
F-statistics .. 36.53 58.92 
Mean outcome 5.603 5.603 5.587 
N 2038 2038 1886 

 
Notes: Social income transfers are measured as the log of average transfers over the period 2001-2012 
for the whole sample, setting zeros to 1 Euro. The mean value for the dependent variable is reported. 
BMI is measured in 2001. All models include controls for the birth month and birth year effects. Gender 
and parental education (1980) are also controlled for in all models. The instrument used in the IV models 
is the BMI risk score, based on genetic markers. Angrist-Pischke multivariate F-tests of excluded 
instrument are reported for the IV models. Heteroscedasticity-robust standard errors are reported in 
parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 level. 
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Figure A1. Scatter plot of genetic association with log earnings against genetic 
associations with BMI (32 SNP score) 
 

 
Notes: Lines represent the 95% confidence intervals. 
 
 
Figure A2. Scatter plot of genetic association with log earnings against genetic 
associations with BMI (97 SNP score) 
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Appendix 3: 
Extensions 

 
We estimate several additional models to assess the robustness of the results. 

Specifically, we estimate models separately by wave, control for genetic 

predisposition to obesity-related illness, control for cognitive performance, estimate 

models separately by sex, and estimate models for alternate measures of fatness other 

than BMI.  

In brief, we find that when the sample size is reduced by estimating models 

separately by wave (instead of pooling all years), separately by sex (instead of 

pooling men and women), or by controlling for cognitive performance that is 

available for only a subset of the sample, the point estimates do not change 

significantly but the standard errors rise sufficiently that often the coefficients are not 

significantly different from zero.  

We also find that the overall result that weight worsens labor market outcomes 

is robust to controlling for the genetic risk score for obesity-related illnesses such as 

high blood pressure, high cholesterol, and high triglycerides (section B); this is useful 

as it suggests that the mechanisms by which BMI affects labor market outcomes may 

not be those specific health conditions. We also find that the results are robust to 

using an indicator variable for obesity or weight in kg instead of BMI as the measure 

of fatness (section E).    

A. EXTENSION 1: ESTIMATE MODELS SEPARATELY BY WAVE 

In the main results we examine average labor market outcomes over the period 

2001-2012 in order to minimize the influence of idiosyncratic variation that would 

diminish the precision of the estimates in our relatively small sample (cf. Dahl et al., 

2011). As an extension we estimate models for each wave of the YFS separately 

(2001, 2007, 2011), regressing the economic outcome for that year on BMI from that 
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year and other characteristics in that year (the exception is parental education, which 

is recorded on a single year); these results are presented in Table A7.   

With the smaller samples and reduced power that comes from examining each 

wave separately, only two of the wave-specific estimates is statistically significant. 

The 32 SNP IV model indicates that a one-unit increase in BMI lowers earnings by 

19.2% in 2001, compared to 7.1% over 2001-2012. The results are significant at a 

10% and 5% level, respectively. The estimated effect of BMI on employment is very 

similar for the individual year 2001 (-2.2%) and the average of the period 2001-2012 

(-1.8%), but the former is not statistically significant whereas the latter is. The second 

statistically significant result is that in year 2001 one-unit increase in BMI is 

associated with 13.9% higher social income transfers (conditional on receiving any) 

in the 97 SNP GRS IV model.    

Although the point estimates in Table A7 are not significantly different from 

those in Table I, some are of the opposite sign. There are several possible 

explanations for the difference in point estimates. For example, it could be the result 

of idiosyncratic variation in labor market outcomes in a single year. Measurement 

error in yearly outcomes leads to attenuation bias. We strongly prefer the use of long-

term measures of outcomes due to the fact that they dampen e.g. the effects of 

business cycle fluctuations on outcomes in a small open economy such as Finland. 

Conversely, contemporaneous weight (used in the wave-specific regressions) may be 

more relevant than one’s historic weight to outcomes in that year.  

B. EXTENSION 2: CONTROL FOR GENETIC PREDISPOSITION TO OBESITY-

RELATED ILLNESSES 

 A general concern about using genetic markers as IVs is that genes may affect 

multiple things (pleiotropy). As an extension we control for the genetic risk score for 
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blood pressure, total cholesterol, and triglycerides (Teslovich et al., 2010; 

International Consortium for Blood Pressure Genome-Wide Association Studies, 

2011). If obesity affects labor market outcomes primarily because our genetic risk 

score (GRS) also predicts obesity-related illnesses, we would expect that directly 

controlling for the risk scores for those obesity-related illness to result in a reduction 

in the point estimate of the IV estimate for BMI. However, the genetic risk scores for 

other diseases are not statistically significantly correlated with genetic risk score for 

BMI (Appendix Table A8); for this reason it is not surprising that we find that 

controlling for genetic risk scores for other diseases has little impact on the point 

estimate of the IV coefficient on BMI. For example, the IV models based on 32 SNP 

GRS indicate that a one-unit increase in BMI reduces log average wages by 6.9% 

when we do not control for the other risk scores (Table I), and by 7.3% when we do 

(Table A9). A one-unit increase in BMI reduces years spent employed by 1.8% when 

we do not control for the other genetic risk scores (Table I), and by 1.7% when we do 

(Table A9). Controlling for other genetic risk scores likewise has only a small impact 

on the IV coefficient on BMI in the regressions for whether one received social 

income transfers. This suggests that the impact of BMI on labor market outcomes 

may not be operating through these three specific conditions.  

C. EXTENSION 3: CONTROL FOR COGNITIVE PERFORMANCE  

 In the YFS, measures of cognitive performance are available for only a subset 

of the sample (1,334 out of 2,038). In the main results of this paper, we exclude 

cognitive performance from the set of regressors in order to avoid losing observations 

and thus statistical power and because cognitive performance may be affected by 

obesity (e.g. Sabia, 2007; Averett and Stifel, 2010). However, as an extension we 

estimate models in which we control for the five measures of cognitive performance: 
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1) overall cognitive performance 2) visual and episodic memory and visuospatial 

associative learning; 3) reaction time; 4) rapid visual information processing; and 5) 

spatial working memory. The results are presented in Appendix Table A10.   

 In each case, the point estimate of the coefficient on BMI is smaller in 

absolute magnitude and the coefficient is no longer statistically significant. However, 

the difference in point estimates is not statistically significant, which suggests that the 

lack of statistical significance in these models may be due to reduced sample size. 

D. EXTENSION 4: ESTIMATE MODELS SEPARATELY BY SEX  

Because of the relatively small sample size of the YFS, the main models in 

this paper were estimated for men and women pooled. However, previous studies of 

weight and labor market outcomes often found differences by sex; for example, there 

tends to be a greater wage penalty for excess weight among women than men in the 

U.S. (Cawley, 2004) and also in Finland (Sarlio-Lähteenkorva et al., 2004; Johansson 

et al., 2009). For this reason, as an extension we estimate models separately for men 

and women; see Appendix Tables A11 (men) and A12 (women). Interestingly, the 32 

SNP genetic risk score is a more powerful instrument for men (F of 16-30) than 

women (F of 8-13). As found in earlier studies of weight and wages, the point 

estimate of the IV coefficient on BMI is larger for women than men; specifically, 

based on 32 SNP IV model a one-unit increase in BMI is associated with 11.0% lower 

wages for women (Appendix Table A12) compared to 4.6% lower wages for men 

(Appendix Table A11). Neither is statistically significant, however, presumably 

because of the smaller sample sizes (1,109 women and 929 men). Results based on 92 

SNPs indicate that one-unit increase in BMI is related with 2.2 % higher wages for 

men and 0.5% lower wages for women but the results are not statistically significant.  
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The point estimates of the 32 SNP IV coefficient on BMI in the employment 

regressions are similar for women and men; a one-unit increase in BMI lowers the 

time spent working by 2.1% for women and 1.7% for men; neither is statistically 

significant.  The respective numbers for 97 SNP IV model are 0.7% and 0.4%. 

The impact of BMI on social welfare transfers is positive, large, and 

statistically significant for men; a one-unit increase in BMI increases the amount of 

social welfare transfers by 19.2%. For women the estimate is not statistically 

significant.  

E. EXTENSION 5: ALTERNATE MEASURES OF FATNESS: OBESITY, KG 

 As an extension, we estimate models for additional measures of fatness: an 

indicator variable for obesity (BMI>=30), and weight in kilograms. Using an 

indicator variable for BMI>=30 allows us to focus on the effect of a BMI in the 

unhealthy range where the negative health effects should be more pronounced. A 

limitation of this approach is that there is less variation in the instrumented variable 

and the genetic risk score for BMI is constructed for the whole range of BMI.  

Results are presented in Appendix Tables A13 (obesity) and A14 (weight in 

kg). Column 1 in each table presents results from OLS models. Interestingly, although 

the OLS coefficients on BMI were not statistically significant (in Table I), the OLS 

coefficients on obesity are statistically significant in earnings and employment 

equations. Obesity is associated with 13.3% lower wages and 3.2% fewer years 

employed (Appendix Table A13). 

We use BMI genetic risk score as an instrument for the indicator for obesity 

and for weight in kg (the F-statistics range from 14 to 28 for 32 SNP GRS and from 

27 to 44 for 97 SNP GRS). Appendix Table A13 presents IV results for the indicator 

for obesity. Results are generally consistent with the IV models for BMI: obesity 
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reduces earnings (although, by an implausibly large amount – 111.1%) and reduces 

the time spent employed by 28.6%. The IV estimates also indicate that obesity raises 

the probability of receiving social income transfers by 46.4 percentage points.  The 97 

SNP IV coefficients are statistically insignificant. 

Appendix Table A14 presents results for weight in kg. Again, the results are 

consistent with the models for BMI. The IV models indicate that an additional 10 kg 

of weight reduces earnings by 27%, reduces the time spent employed by 7%, and 

raises the probability of receiving social income transfers by 11 percentage points.  

All 97 SNP IV point estimates in Table A14 are insignificant. 
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Appendix Table A7. The effect of BMI on contemporaneous labor market 
outcomes 

 
 2001 2007 2011 

OLS IV 
(32 SNP 

GRS) 

IV 
(97 

SNP 
GRS) 

OLS IV 
(32 SNP 

GRS) 

IV  
(97 

SNP 
GRS) 

OLS IV 
(32 SNP 

GRS) 

IV 
(97 

SNP 
GRS) 

Panel A: Log of Earnings 
          
BMI -0.015 

(0.015) 
-0.192* 
(0.104) 

-0.056 
(0.081) 

-0.004 
(0.014) 

0.016 
(0.108) 

0.008 
(0.084) 

-0.006 
(0.012) 

-0.007 
(0.086) 

0.114 
(0.081) 

          
F-
statistics 

.. 36.53 58.92 .. 33.43 45.72 .. 39.05 44.03 

Mean 
outcome 

8.912 8.946 9.433 9.521 9.629 9.667 

N 2038 1886 1940 1492 1729 1406 
          

Panel B: Indicator for Being Employed 
          
BMI -0.002 

(0.002) 
-0.022 
(0.015) 

-0.007 
(0.012) 

-0.002 
(0.002) 

0.005 
(0.014) 

-0.002 
(0.011) 

-0.002 
(0.002) 

0.001 
(0.011) 

0.009 
(0.010) 

          
F-
statistics 

.. 39.90 62.73 .. 35.18 46.19 .. 40.65 45.67 

Mean 
outcome 

0.807 0.810 0.885 0.894 0.906 0.909 

N 2062 1909 1957 1502 1742 1416 
          

Panel C: Indicator for Social Income Transfers (extensive margin) 
          
BMI 0.002 

(0.003) 
0.007 

(0.019) 
-0.012 
(0.015) 

0.002 
(0.003) 

-0.010 
(0.019) 

-0.004 
(0.016) 

0.000 
(0.002) 

0.015 
(0.017) 

0.011 
(0.015) 

          
F-
statistics 

.. 36.53 58.92 .. 33.49 45.72 .. 39.05 44.03 

Mean 
outcome 

0.367 0.364 0.334 0.326 0.291 0.277 

N 2038 1886 1940 1492 1729 1406 
Panel D: Log of Social Income Transfers (intensive margin) 

          
BMI 0.016 

(0.011) 
0.155 

(0.104) 
0.139* 
(0.071) 

0.013 
(0.012) 

0.127 
(0.136) 

0.039 
(0.071) 

-0.003 
(0.015) 

0.060 
(0.081) 

0.090 
(0.075) 

          
F-
statistics 

.. 9.96 18.93 .. 6.12 17.88 .. 16.06 13.83 

Mean 
outcome 

7.726 7.721 7.853 7.795 7.893 7.909 

N 748 686 647 486 503 389 
 
Notes: The outcomes and BMI are measured in 2001, 2007 and 2011. All models include controls for 
the birth month and birth year effects. Gender and parental education (1980) are also controlled for in all 
models. The instrument used in the IV models is the BMI risk score, based on genetic markers. Angrist-
Pischke multivariate F-tests of excluded instrument are reported for the IV models. Heteroscedasticity-
robust standard errors are reported in parentheses: * statistically significant at the 0.10 level; ** at the 
0.05 level; *** at the 0.01 level.   
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Appendix Table A8: 
Correlations between genetic risk scores for BMI and other diseases 

 
 Blood pressure GRS Total cholesterol GRS Triglycerides GRS 
BMI 32 
SNP GRS 

0.003 -0.009 -0.024 

BMI 97 
SNP GRS 

-0.001 -0.025 0.005 

 
Notes: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 level. 
N=2001. 
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Appendix Table A9: The effect of BMI on average labor market outcomes, 2001-
2012 with controls for other genetic markers 

 
Panel A: Log of Average Earnings, 
2001-2012 

OLS IV – 32 SNP score IV – 97 SNP 
score 

    
BMI -0.007 

(0.005) 
-0.073** 
(0.036) 

0.009 
(0.026) 

    
F-statistics … 36.69 63.24 
Mean outcome 9.860 9.860 9.864 

N 2001 2001 1849 
    
Panel B: Share of Years Employed, 
2001-2012 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.002 

(0.001) 
-0.017* 
(0.009) 

-0.004 
(0.007) 

    
F-statistics .. 40.09 67.46 
Mean outcome 0.857 0.857 0.859 
N 2024 2024 1871 
    
Panel C: Indicator for Social 
Income Transfers, 2001-2012 
(extensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.002 

(0.002) 
0.027* 
(0.015) 

0.017 
(0.011) 

    
F-statistics .. 36.69 63.24 
Mean outcome 0.822 0.822 0.820 
N 2001 2001 1849 
    
Panel D: Log of Average Social 
Income Transfers, 2001-2012 
(intensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.005 

(0.009) 
0.063 

(0.068) 
-0.020 
(0.043) 

    
F-statistics .. 23.60 56.35 
Mean outcome 6.841 6.841 6.836 
N 1645 1645 1516 

 
Notes: Earnings are measured as the log of average earnings over the period 2001-2012. Employment is 
measured as the average share of employment years over the period 2001-2012. Indicator for social 
income transfers equals one for those who have received social security transfers at least once during 
2001-2012. Social income transfers are measured as the log of average transfers over the period 2001-
2012, conditional on obtaining a positive amount of transfers. The mean values for the dependent 
variables are reported. BMI is measured in 2001. All models include controls for the birth month and 
birth year effects. Gender and parental education (1980) and the genetic risk scores for blood pressure, 
total cholesterol, and triglycerides are also controlled for in all models. The instrument used in the IV 
models is the BMI risk score, based on genetic markers. Angrist-Pischke multivariate F-tests of excluded 
instrument are reported for the IV models. Heteroscedasticity-robust standard errors are reported in 
parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 level.      
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Appendix Table A10: 
The effect of BMI on average labor market outcomes, 2001-2012 with controls 

for cognitive performance 
 

Panel A: Log of Average 
Earnings, 2001-2012 

OLS IV – 32 SNP 
score 

IV – 97 SNP 
score 

    
BMI -0.006 

(0.005) 
-0.021 
(0.029) 

0.017 
(0.029) 

    
F-statistics … 34.63 45.62 
Mean outcome 9.956 9.956 9.964 
N 1334 1334 1237 
    
Panel B: Share of Years 
Employed, 2001-2012 

OLS IV – 32 SNP 
score  

IV – 97 SNP 
score 

    
BMI -0.000 

(0.001) 
-0.007 
(0.008) 

0.003 
(0.008) 

    
F-statistics .. 34.77 46.82 
Mean outcome 0.886 0.886 0.888 
N 1339 1339 1242 
    
Panel C: Indicator for Social 
Income Transfers, 2001-2012 
(extensive margin) 

OLS IV – 32 SNP 
score  

IV – 97 SNP 
score 

    
BMI -0.003 

(0.003) 
0.024 

(0.016) 
0.010 

(0.014) 
    
F-statistics .. 34.63 45.62 
Mean outcome 0.813 0.813 0.812 
N 1334 1334 1237 
    
Panel D: Log of Average Social 
Income Transfers, 2001-2012 
(intensive margin) 

OLS IV – 32 SNP 
score  

IV – 97 SNP 
score 

    
BMI 0.002 

(0.011) 
0.058 

(0.061) 
-0.016 
(0.050) 

    
F-statistics .. 29.38 43.80 
Mean outcome 6.747 6.747 6.740 
N 1085 1085 1005 

 
Notes: Earnings are measured as the log of average earnings over the period 2001-2012. Employment is 
measured as the average share of employment years over the period 2001-2012. Indicator for social 
income transfers equals one for those who have received social security transfers at least once during 
2001-2012. Social income transfers are measured as the log of average transfers over the period 2001-
2012, conditional on obtaining a positive amount of transfers. The mean values for the dependent 
variables are reported. BMI is measured in 2001. All models include controls for the birth month and 
birth year effects. Gender and parental education (1980) are also controlled for in all models. The 
instrument used in the IV models is the BMI risk score, based on genetic markers. Angrist-Pischke 
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multivariate F-tests of excluded instrument are reported for the IV models. Heteroscedasticity-robust 
standard errors are reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; 
*** at the 0.01 level. 
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 Appendix Table A11: 
The effect of BMI on average labor market outcomes 2001-2012 for men 

 
Panel A: Log of Average 
Earnings, 2001-2012 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.004 

(0.008) 
-0.046 
(0.037) 

0.022 
(0.037) 

    
F-statistics .. 29.28 39.12 
Mean outcome 10.082 10.082 10.075 
N 929 929 859 
    
Panel B: Share of Years 
Employed, 2001-2012 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.001 

(0.002) 
-0.017 
(0.011) 

-0.004 
(0.010) 

    
F-statistics .. 29.82 40.22 
Mean outcome 0.889 0.889 0.890 
N 937 937 866 
    
Panel C: Indicator for Social 
Income Transfers, 2001-2012 
(extensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.004 

(0.003) 
0.021 

(0.020) 
0.019 

(0.017) 
    
F-statistics .. 29.28 39.12 
Mean outcome 0.763 0.763 0.761 
N 929 929 859 
    
Panel D: Log of Average 
Social Income Transfers, 
2001-2012 (intensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.007 

(0.016) 
0.192* 
(0.105) 

0.000 
(0.068) 

    
F-statistics .. 15.88 34.13 
Mean outcome 6.260 6.260 6.245 
N 709 709 654 

 
Notes: Earnings are measured as the log of average earnings over the period 2001-2012. Employment is 
measured as the average share of employment years over the period 2001-2012. Indicator for social 
income transfers equals one for those who have received social security transfers at least once during 
2001-2012. Social income transfers are measured as the log of average transfers over the period 2001-
2012, conditional on obtaining a positive amount of transfers. The mean values for the dependent 
variables are reported. BMI is measured in 2001. All models include controls for the birth month and 
birth year effects. Parental education (1980) is also controlled for in all models. The instrument used in 
the IV models is the BMI risk score, based on genetic markers. Angrist-Pischke multivariate F-tests of 
excluded instrument are reported for the IV models. Heteroscedasticity-robust standard errors are 
reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 
level. 
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Appendix Table A12: 
 The effect of BMI on average labor market outcomes 2001-2012 for women 

 
Panel A: Log of Average 
Earnings, 2001-2012 

OLS IV – 32 SNP score IV – 97 SNP 
score 

    
BMI -0.009 

(0.007) 
-0.110 
(0.073) 

-0.005 
(0.039) 

    
F-statistics .. 10.04 21.99 
Mean outcome 9.679 9.679 9.692 
N 1109 1109 1027 
    
Panel B: Share of Years 
Employed, 2001-2012 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.002 

(0.002) 
-0.021 
(0.016) 

-0.007 
(0.011) 

    
F-statistics .. 12.54 24.92 
Mean outcome 0.831 0.831 0.834 
N 1125 1125 1043 
    
Panel C: Indicator for Social 
Income Transfers, 2001-2012 
(extensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI 0.001 

(0.002) 
0.051* 
(0.028) 

0.021 
(0.016) 

    
F-statistics ..   10.04 21.99 
Mean outcome 0.869 0.869 0.868 
N 1109 1109 1027 
    
Panel D: Log of Average 
Social Income Transfers, 
2001-2012 (intensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
BMI -0.004 

(0.009) 
-0.079 
(0.099) 

-0.034 
(0.062) 

    
F-statistics .. 8.17 20.26 
Mean outcome 7.260 7.260 7.262 
N 964 964 891 

 
Notes: Earnings are measured as the log of average earnings over the period 2001-2012. Employment is 
measured as the average share of employment years over the period 2001-2012. Indicator for social 
income transfers equals one for those who have received social security transfers at least once during 
2001-2012. Social income transfers are measured as the log of average transfers over the period 2001-
2012, conditional on obtaining a positive amount of transfers. The mean values for the dependent 
variables are reported. BMI is measured in 2001. All models include controls for the birth month and 
birth year effects. Parental education (1980) is also controlled for in all models. The instrument used in 
the IV models is the BMI risk score, based on genetic markers. Angrist-Pischke multivariate F-tests of 
excluded instrument are reported for the IV models. Heteroscedasticity-robust standard errors are 
reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 0.01 
level. 
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Appendix Table A13: 
The effect of obesity (BMI ≥ 30) on average labor market outcomes 2001-2012 

 
Panel A: Log of Average 
Earnings, 2001-2012 

OLS IV – 32 SNP score IV – 97 SNP 
score 

    
Obesity (BMI ≥ 30)   -0.133* 

(0.068) 
-1.111* 
(0.568) 

0.176 
(0.465) 

    
F-statistics .. 24.70 31.34 
Mean outcome 9.863 9.863 9.866 
N 2038 2038 1886 
    
Panel B: Share of Years 
Employed, 2001-2012 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
Obesity (BMI ≥ 30) -0.032* 

(0.019) 
-0.286* 
(0.146) 

-0.085 
(0.126) 

    
F-statistics .. 27.52 33.58 
Mean outcome 0.857 0.857 0.859 
N 2062 2062 1909 
    
Panel C: Indicator for Social 
Income Transfers, 2001-2012 
(extensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
Obesity (BMI ≥ 30) -0.024 

(0.027) 
0.464* 
(0.251) 

0.330 
(0.207) 

    
F-statistics .. 24.70 31.34 
Mean outcome 0.821 0.821 0.819 
N 2038 2038 1886 
    
Panel D: Log of Average 
Social Income Transfers, 
2001-2012 (intensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
Obesity (BMI ≥ 30) -0.003 

(0.115) 
1.009 

(1.149) 
-0.360 
(0.803) 

    
F-statistics .. 14.72 26.97 
Mean outcome 6.836 6.836 6.831 
N 1673 1673 1545 

 
Notes: Obesity indicator equals one for whose BMI was at least 30 in 2001. Earnings are measured as 
the log of average earnings over the period 2001-2012. Employment is measured as the average share of 
employment years over the period 2001-2012. Indicator for social income transfers equals one for those 
who have received social security transfers at least once during 2001-2012. Social income transfers are 
measured as the log of average transfers over the period 2001-2012, conditional on obtaining a positive 
amount of transfers. The mean values for the dependent variables are reported. All models include 
controls for the birth month and birth year effects. Gender and parental education (1980) are also 
controlled for in all models. The instrument used in the IV models is the BMI risk score, based on genetic 
markers. Angrist-Pischke multivariate F-tests of excluded instrument are reported for the IV models. 
Heteroscedasticity-robust standard errors are reported in parentheses: * statistically significant at the 0.10 
level; ** at the 0.05 level; *** at the 0.01 level. 
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Appendix Table A14: 
The effect of weight (kg) on average labor market outcomes 2001-2012 

 
Panel A: Log of Average 
Earnings, 2001-2012 

OLS IV – 32 SNP score IV – 97 SNP 
score 

    
Weight (kg) -0.000 

(0.002) 
-0.027* 
(0.014) 

0.004 
(0.010) 

    
F-statistics .. 23.40 41.05 
Mean outcome 9.863 9.863 9.866 
N 2038 2038 1886 
    
Panel B: Share of Years 
Employed, 2001-2012 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
Weight (kg) -0.000 

(0.000) 
-0.007* 
(0.004) 

-0.002 
(0.003) 

    
F-statistics .. 26.21 43.88 
Mean outcome 0.857 0.857 0.859 
N 2062 2062 1909 
    
Panel C: Indicator for Social 
Income Transfers, 2001-2012 
(extensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
Weight (kg) -0.001 

(0.001) 
0.011* 
(0.006) 

0.007 
(0.004) 

    
F-statistics .. 23.40 41.05 
Mean outcome 0.821 0.821 0.819 
N 2038 2038 1886 
    
Panel D: Log of Average 
Social Income Transfers, 
2001-2012 (intensive margin) 

OLS IV – 32 SNP score  IV – 97 SNP 
score 

    
Weight (kg) -0.002 

(0.003) 
0.024 

(0.027) 
-0.007 
(0.016) 

    
F-statistics .. 14.02 35.62 
Mean outcome 6.836 6.836 6.831 
N 1673 1673 1545 

 
Notes: Weight (kg) is measured in 2001. Earnings are measured as the log of average earnings over the 
period 2001-2012. Employment is measured as the average share of employment years over the period 
2001-2012. Indicator for social income transfers equals one for those who have received social security 
transfers at least once during 2001-2012. Social income transfers are measured as the log of average 
transfers over the period 2001-2012, conditional on obtaining a positive amount of transfers. The mean 
values for the dependent variables are reported. All models include controls for the birth month and birth 
year effects. Gender and parental education (1980) are also controlled for in all models. The instrument 
used in the IV models is the BMI risk score, based on genetic markers. Angrist-Pischke multivariate F-
tests of excluded instrument are reported for the IV models. Heteroscedasticity-robust standard errors 
are reported in parentheses: * statistically significant at the 0.10 level; ** at the 0.05 level; *** at the 
0.01 level. 


