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ABSTRACT 

Currently several disease-modifying therapies (DMTs) are available for the treatment of 
MS, but due to clinical and pathophysiological complexities of this disease, the 
evaluation of its prognosis and therapeutic response is difficult. Moreover, reliable and 
sensitive biomarkers for use in clinical practice are still lacking. In spite of efficacy of 
new treatments, the long-term use of highly effective MS therapies such as natalizumab 
(NTZ) has been associated with the potential of developing progressive multifocal 
leukoencephalopathy (PML). PML is a fatal demyelinating lytic infection of the CNS 
caused by the reactivation of latent neurotropic virus called JC polyomavirus (JCPyV). 
Currently, the risk of PML has become a major challenge in the treatment of MS, 
because in addition to NTZ, also other effective MS therapies were reported to carry 
the PML risk. Since there are no clearly established biomarkers available to predict the 
PML risk, and currently used risk stratification parameters are not sensitive enough to 
rule out the complete risk of PML, one of the main aim of this thesis was to find the 
biomarker to identify the PML risk in individual MS patient under NTZ therapy. In this 
thesis, soluble (s) L-selectin and JC virus miRNAs were analysed in relapsing-remitting 
MS (RRMS) patients to assess their biomarker potential in predicting the risk of PML. 
The results from the sL-selectin study showed a positive correlation between sL-
selectin and anti-JCPyV-antibody levels and most importantly sL-selectin level was 
found to be higher in those patients who were considered to have a high risk for PML 
compared to patients with low risk. Based on these data sL-selectin could be used for 
the assessment of PML risk in MS patients treated with NTZ. The JCPyV miRNA 
study detected reduced levels of 5p miRNA among NTZ-treated MS patients and an 
association with JCPyV seropositivity, suggesting a possible involvement of these 
miRNAs in support of JCPyV reactivation. Thus, these results suggested that miRNA-
J1-5p can be a potential new marker for the NTZ-associated PML risk assessment in 
MS patients. In addition, observation of the high level of miRNA prevalence also in 
JCPyV seronegative patients suggested that the ELISA test currently used for the 
detection of anti-JCPyV antibody may be less sensitive than miRNA detection to reveal 
earlier acquired JCPyV infection. 

The other main aim of this thesis was to identify the biomarkers of MS disease 
activity and to distinguish between patients with benign or aggressive disease course 
based on the presence of clinical activity as measured by the number of relapses, 
neurological disability scores, and MRI disease activity. In the study of costimulatory 
molecules, increased levels of sCD26 and sCD30 in MS suggested the potential of these 



 

 

molecules as biomarkers consistent with relatively inactive or stable disease activity. 
Moreover, sCD30 molecule was considered as a marker of regulatory immune response 
due to its positive correlation with an anti-inflammatory cytokine IL 10, and increased 
levels of sCD30 in RRMS patients treated with DMTs compared with untreated 
patients. Gene expression study for DR3, DcR3 and TL1A in PBMC obtained from 
MS patients, displayed TL1A as a candidate biomarker for reflecting inflammatory 
activity in MS and predicting disability progression. Our findings further illustrated that 
TL1A may hold the ability to reflect ongoing stable disease course and as well as the 
marker of therapeutic response to immunomodulatory treatment in MS. However, 
additional studies including a larger sample size are needed to evaluate the clinical 
relevance of these findings. 



 

 

TIIVISTELMÄ 

Multippeliskleroosia (MS) voidaan hoitaa useilla eri taudin kulkua muuntavilla 
lääkkeillä, mutta taudin kliinisen ja patofysiologisen monimuotoisuuden vuoksi 
yksittäisen potilaan hoitovasteiden arviointi eri lääkeaineille on haastavaa. Kliinisesti 
luotettavia ja sensitiivisiä biomerkkiaineita kaivataan hoitovasteiden arviointiin. 
Nykytilanteessa MS-potilaita hoidetaan entistä tehokkaimmilla lääkkeillä, kuten 
natalizumabilla, mutta niiden pitkäaikainen käyttö lisää progressiivisen multifokaalisen 
leukoenkefelopatian (PML) riskiä. PML on keskushermoston fataali demyelinisoiva 
lyyttinen infektio, joka on seurausta neurotrooppisen JC-viruksen reaktivaatiosta. MS-
potilaiden hoidon yksilöllisessä suunnittelussa on otettava huomioon PML:n riski, joka 
on kohonnut erityisesti natalizumab-hoidetuilla potilailla, mutta myös muiden 
tehokkaiden lääkeaineiden on osoitettu lisäävän riskiä tälle taudille. Tällä hetkellä kliinisessä 
käytössä ei ole vakiintunutta biomerkkiainetta, joka ennustaisi PML-taudin kehittymisen 
riskiä ja myöskään nykykäytäntöjen mukaan stratifikaatioparametrit eivät ole tarpeeksi 
sensitiivisiä tunnistamaan korkean riskin MS-potilaita natalizumab-hoidettujen joukosta. 
Väitöskirjan tavoitteena oli löytää biomerkkiaine, joka tunnistaisi PML:n riskin 
natalizumab-hoidetuilla potilailla. 

Väitöskirjatutkimuksessa tutkittiin liukoisen L-selektiinin ja JC-virus-mikro- 
RNA:iden (miRNA) ilmentymistä relapsoivaa-remittoivaa MS-tautia sairastavilta 
selvittääksemme niiden biomerkkiainepotentiaalia ennustaa PML-taudin riskiä. 
Tulokset osoittivat, että liukoinen L-selektiini korreloi positiivisesti JCPyV-vasta- 
ainetasojen kanssa ja erityisesti L-selektiinitasot olivat korkeammat niillä potilailla, jotka 
voitiin luokitella korkean riskin potilaiksi. Tulokset viittaavat siihen, että liukoista L-
selektiiniä voitaisiin käyttää biomerkkiaineena PML-taudin kehittymisen riskin arvioinnissa. 
JCPyV miRNA tutkimuksessa havaittiin miRNA-J1-5p tasojen olevan matalammalla tasolla 
natalizumab-hoidetuilla MS-potilailla ja tasojen olevan yhteydessä JCPyV-
seropositiivisuuteen, joka mahdollisesti liittyy JC-viruksen reaktivaatioon. Tulokset 
osoittivat, että miRNA-J1-5p miRNA on uusi potentiaalinen biomerkkiaine JCPyV:n riskin 
arvioinnissa. Lisäksi JCPyV:lle seronegatiivisilta potilailta löytyi JCPyV-miRNA:ta, joka 
viittaa nykyisen JCPyV-vasta-aineiden ELISA- määritysmenetelmän johtavan osittain 
vääriin negatiivisiin tuloksiin. 

Väitöskirjan toisena tavoitteena oli löytää taudin aktiivisuuden biomerkkiaineita, joiden 
avulla voitaisiin erotella aggressiivista ja benigniä tautimuotoa sairastavat potilaat 
käyttäen mittareina relapsien lukumäärää, neurologisen disabiliteetin kertymistä ja 
MRI:llä mitattua aktiivisuutta. Kohonneet seerumin CD26- ja CD30- tasot MS-taudissa 



 

 

viittasivat molekyyleillä olevan biomerkkiainepotentiaalia ja niiden assosioituvan 
inaktiiviseen ja stabiiliin taudinkulkuun. Lisäksi seerumin CD30-tasot olivat koholla 
immunomoduloivia lääkeaineita käyttävillä potilailla ja ne korreloituivat IL-10 tasojen 
kanssa, joka viittaa immunoregulatorisiin tehtäviin MS- taudissa. Taudin 
aktiivisuusmerkkiaineista tutkittiin myös kolmen kostimulaattorimolekyylin (DR3, 
DcR3 ja TL1A:n) ilmentymistä geenitasolla veren mononukleaarisista soluista MS-
potilailla, jossa havaittiin TL1A:n olevan yhteydessä tulehdukselliseen aktiivisuuteen ja 
vammautumisen kertymiseen. Tutkimuksessa havaittiin lisäksi TL1A:n tasot olivat 
yhteydessä stabiiliin tautimuotoon ja assosioituvan immunomoduloivilla lääkkeillä 
hoidettavien potilaiden hyvään hoitovasteeseen. Tässä väitöskirjatyössä tehtyjen 
löydösten varmentaminen kliiniseen käyttöön edellyttää lisätutkimuksia, käyttäen 
suurempia aineistoja.
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1 INTRODUCTION 

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central 
nervous system (CNS) that leads to significant neurological disability (Reich et al., 
2018). MS mainly affects young adults, typically begins between the ages of 20 and 
40 years, and is universally more prevalent in women compared to men (Krokki et 
al., 2011). The disease is characterized by complex pathophysiological processes, 
which include multifocal inflammation, demyelination, reactive gliosis, 
oligodendrocyte and axonal loss, and remyelination (Lassmann, 2013). Etiology of 
MS is unknown, but both differential genetic predisposition and environmental 
factors such as vitamin D deficiency, infection with Epstein-Barr virus, smoking, and 
obesity are considered as risk factors for MS (Olsson et al., 2017). 

MS has a variable clinical course and a heterogeneous clinical presentation and 
the disease is classified into three main types based on clinical courses: relapsing-
remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive 
MS (PPMS) (Lublin & Reingold, 1996; Lublin, 2014). Initially, majority of the 
patients, about 85%, have RRMS, which is characterized by intermittent relapses 
followed by partial or full recovery between initial relapses. After 10-20 years, RRMS 
turns into SPMS, characterized by the irreversibility of the neurological deficits due 
to progressive neurodegeneration (Confavreux & Vukusic, 2006; Weinshenker, 
1998). About 15 % of MS patients exhibit a gradual progression of disability without 
relapses from onset called as PPMS (Compston, 2003; Lublin, 2014). 

Immunopathogenesis of MS involves the activation of myelin-specific T cells, 
mainly the T helper (Th)-1 CD4+ T cells and Th17 cells, that invade to CNS 
parenchyma from periphery through blood-brain barrier (BBB) and blood-CSF 
barrier (BCF) mediating neural tissue damage (Holman et al., 2011; Jadidi-Niaragh 
& Mirshafiey, 2011; Stromnes et al., 2008). In addition, other immune cells such as 
CD8+T cells, natural killer (NK) cells, B cells, and several cytokines and chemokines 
contribute to the pathogenesis of MS (Comabella & Khoury, 2012). 

There is still no cure for MS but different disease-modifying therapies (DMTs) 
are available particularly for the relapsing-remitting form of the disease. These drugs 
reduce immune cell activity and their entry into the CNS and decrease the frequency 
of clinical attacks known as relapses (Torkildsen et al., 2016). Most of the MS 
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treatments are associated with the side effects, among which opportunistic infections 
are the most serious ones (Berger & Houff, 2009). Progressive multifocal 
leukoencephalopathy (PML) is the most serious complication and may occur in 
patients treated with natalizumab (NTZ) - or other immunomodulatory drugs. NTZ 
is an effective drug for MS, however, long-term treatment (more than 2 years) in 
RRMS patients is associated with the risk of developing PML (Clifford et al., 2010). 
PML is a JC polyomavirus (JCPyV)-mediated infection of the CNS caused by the 
reactivation of latent virus, followed by lytic infection of oligodendrocytes and 
astrocytes (Ferenczy et al., 2012; Khalili et al., 2007). Currently there is no biomarker 
available to predict the complete risk of PML in individual NTZ- treated MS patient 
and this risk has become a major challenge for clinicians, because, in addition to 
NTZ, also other effective biological therapies such as fingolimod and dimethyl 
fumarate were reported to carry the risk of PML in MS patients (Faulkner, 2015). 
Therefore, we analysed L-selectin and JCPyV miRNAs in our study to explore their 
biomarker potential for predicting NTZ-associated PML risk. 

Due to the clinical and pathophysiological complexities, MS disease course 
including PML risk and prognosis of MS are highly unpredictable. Moreover, due to 
the lack of reliable and sensitive biomarkers, it is difficult to evaluate disease activity 
and therapeutic response (Gastaldi et al., 2017). Currently, most of the existing 
biomarkers in MS are not fully able to reflect the immensity of diverse MS disease 
activity. Therefore, our aim was to assess CD26 and CD30 molecules in sera as 
biomarkers of MS subtypes, and relation to inflammatory disease activity and 
disability in MS patients. Similarly, we analysed the relative gene expression of death 
receptors (DR3, DcR3) and ligand (TL1A) to detect their association with MS 
subtypes, inflammatory disease activity and disability in MS patients. These 
biomarkers will contribute to overall clinical management of MS patients with an 
ultimate goal to prevent the disease progression and development of long-term 
neurological disability. 
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2 REVIEW OF THE LITERATURE 

2.1 Epidemiology of multiple sclerosis 

Multiple sclerosis has an increasing prevalence worldwide (Cotsapas et al., 2018) and 
it is one of the most common causes of non-traumatic disability among young and 
middle-aged individuals (Leray et al., 2016; Mandia et al., 2014). MS affects more 
than 2 million people worldwide and it is more prevalent in women compared to 
men (Fox et al., 2006; Kira, 2014). A similar trend of increasing RRMS incidence and 
high female prevalence has been reported in Finland (Sumelahti et al., 2014). The  
female-to-male ratio in MS prevalence has increased over time, and it has been 
estimated from 1.4 in 1955 to 2.3 in 2000 (Alonso & Hernan, 2008) and even higher 
recently, from 2.35 to 2.73, according to a study  which compared sex ratio trends 
of over a 60-year span (Trojano et al., 2012). However, in individuals with primary 
progressive disease form, there is no gender preponderance. MS prevalence varies 
considerably by continent and geographical latitude (Leray et al., 2016). The 
prevalence is highest (>30 per 100,000) in northern parts of Europe and North 
America; medium (5-30 per 100,000) in southern Europe and southern United 
States; and Central and South America (10-20 per 100,000). Low Prevalence rate has 
been reported (<5 per 100,000) in Asia and South America (Koch-Henriksen & 
Sorensen, 2010). However, it is still elusive whether this variation in the incidence 
rate is due to environmental or the genetic differences. 

Finland belongs to a high-risk region for MS affecting around more than 9,000 
people (Finnish neuro society, 2018). The incidence of MS has increased 
considerably from 1981 to 2010 in Finland (Fox et al., 2006; Holmberg et al., 2013; 
Kira, 2014). There are regional differences in MS epidemiology in Finland. In 
Seinäjoki and Vaasa with the highest incidence, the total incidence rate of 
12.5/100,000 person and 8.3/100,000 in 2010, respectively has been reported 
(Sumelahti et al., 2014). The risk of MS was two-fold higher in Seinäjoki and 
substantially higher in Vaasa compared to the Pirkanmaa, which is considered as a 
region of medium-risk for MS in Finland (Sumelahti et al., 2001; Sumelahti et al., 
2014). 
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2.2 Risk factors for multiple sclerosis 

2.2.1 Genes 

The etiology of MS is unknown but complex interactions between genetic 
background and environmental factors are responsible for disease development 
(Reich et al., 2018). The human leukocyte antigen (HLA) provides the highest genetic 
contribution to MS susceptibility; however, the exact mechanism of alternation of 
MS incidence in different population is not fully understood (Hemmer et al., 2015; 
Ramagopalan & Ebers, 2008; Ramagopalan et al., 2009). HLA class II extended 
haplotype HLA-DRB1*1501 is one of the most important factors that affect MS 
susceptibility (Hillert & Olerup, 1993; Hillert, 2010; Smestad et al., 2007). This 
haplotype accounts for approximately 50% of the genetic risk for MS and it is known 
as the strongest known MS-susceptibility marker. Although this haplotype is 
regarded as the strongest risk factor, it only increases the risk of MS by 2- to 4-fold 
and this factor is also present in approximately 20% to 30% of the healthy population 
(Hollenbach & Oksenberg, 2015; Nylander & Hafler, 2012). The reason why these 
HLA class II molecules contribute as strong risk factor for MS may be due to their 
role in antigen presentation to pathogenic CD4+ T cells (Parnell & Booth, 2017). 
Several studies have shown the correlation between DRB1*1501 and disease 
progression or severity, and also with the presence of oligoclonal bands and 
increased IgG levels in the CSF of MS patients (Goris et al., 2015; Mero et al., 2013). 
Different other non-HLA genes (genes outside HLA region) which are found in  
genome-wide association studies (GWAS) are also identified as mild risk factors for 
MS (De Jager et al., 2009; International Multiple Sclerosis Genetics Consortium et 
al., 2007). These genes include IL7RA, IL2RA, CLEC16A, LFA-3, TNFRSF1A, 
CD6 and IRF8 (International Multiple Sclerosis Genetics Consortium (IMSGC), 
2008; Zuvich et al., 2010). 

2.2.2 Viral infections 

Increasing evidence supports the role of several viruses such as and Epstein-Barr 
virus (EBV) and Human herpesvirus 6 (HHV-6) in MS disease induction and 
pathogenesis (Belbasis et al., 2015; Pormohammad et al., 2017). Currently these 
viruses are suggested as leading risk factors for MS (Pietilainen-Nicklen et al., 2014; 
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Virtanen & Jacobson, 2012), however their causative or pathogenic role in disease 
development is still unclear, because these viruses are commonly lymphotropic and 
they could  be only passengers in the MS brains, due to the persistent presence of 
immune cells. Serological studies have shown higher level of EBV antibodies specific 
for Epstein-Barr nuclear antigen-1 (EBNA1) in the serum of MS patients in 
comparison to normal individuals (Ascherio & Munger, 2010). Recently EBV was 
shown in brain tissues in most of the MS cases further supporting the role of EBV 
in MS pathology (Hassani et al., 2018). Although the mechanism of interaction 
between HHV-6 and MS remains elusive yet, growing evidence supports the 
significant relationship between MS and infection with HHV-6 (Pormohammad et 
al., 2017). Detection of HHV-6 viral mRNA (Opsahl & Kennedy, 2005) and protein 
expression particularly in the oligodendrocytes in demyelinated plaques (Challoner 
et al., 1995) have raised the hypothesis that HHV-6 may be a driver of MS 
pathogenesis. In addition, the presence of HHV-6 DNA and anti-HHV-6 IgG and 
IgM antibodies has been shown in serum and CSF of MS patients (Challoner et al., 
1995; Moore & Wolfson, 2002; Soldan et al., 2000). Recent studies have also shown 
correlation between HHV-6 specific oligoclonal bands (OCBs) and several clinical 
and magnetic resonance imaging (MRI) parameters of MS (Pietilainen-Nicklen et al., 
2014).  MS patients who had detectable viral DNA in CSF had significantly more 
contrast enhancing lesions as compared to patients who lack CSF viral DNA 
(Pietilainen-Nicklen et al., 2014). In addition to EBV and HHV-6, recent studies 
have shown an association between human endogenous retrovirus (HERV) 
expression with development and progression of MS (Morandi et al., 2017; Mostafa 
et al., 2017). An increased expression of HERV-K and HERV-H families in the 
blood, brain or CSF of MS patients has been reported by some studies (Christensen, 
2005). 

2.2.3 Vitamin D deficiency 

Several studies, including genetic studies, have confirmed vitamin D deficiency as a 
potent risk factor for MS (Munger et al., 2004; Munger et al., 2006; Pierrot-
Deseilligny & Souberbielle, 2017). Recently a large nationwide study in Finland has 
shown that vitamin D deficiency is linked to a higher risk of MS for women in 
Finland (Munger et al., 2016).Vitamin D level has been considered as an early 
predictor of MS disease activity and progression (Ascherio et al., 2014). Low levels 
of circulating 25-dihydroxyvitamin D, and an association between vitamin D status 
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and MS disease activity, have been reported by several studies suggesting the 
protective role of vitamin D in MS disease (Mowry et al., 2012; Munger et al., 2006; 
Runia et al., 2012; Simpson et al., 2010).  Vitamin D exerts the immunomodulatory 
role in MS, mainly during the inflammatory stage of the disease (Pierrot-Deseilligny 
& Souberbielle, 2017) and decreases the risk of relapse and reduction in disease 
activity (Munger et al., 2006; Munger & Ascherio, 2011). Vitamin D was shown to 
have an effect in reducing the relapses by 50-70% (Munger & Ascherio, 2011; 
Pierrot-Deseilligny & Souberbielle, 2017). Due to these beneficial effects, systematic 
moderate supplementation of vitamin D has been recommended in MS as predicted 
by statistical models. A recent study has suggested that the supplementation of 
vitamin D with 10,400 IU daily is safe and well-tolerated in MS patients and exhibits 
in vivo pleiotropic immunomodulatory effects (Sotirchos et al., 2016). The 
immunological effects of vitamin D include the reduction of IL-17 production by 
CD4+ T cells and decreased proportion of effector memory CD4+ T cells with a 
concomitant increase in central memory and naïve CD4+ T cells (Sotirchos et al., 
2016). 

2.2.4 Gender-related hormones 

A growing body of evidence suggests that the gender influences MS disease 
susceptibility, disease course, symptoms and the severity of MS (Airas & Kaaja, 2012; 
Hanulikova et al., 2013). Especially, higher female predominance in MS is considered 
to be due to the hormonal rather than genetic factors (Leray et al., 2016). Potential 
elements that play role on this gender dimorphism are the effects of sex hormones 
on immune responses (de Andres et al., 2004; Sanchez-Ramon et al., 2005). 
Pregnancy plays an important role in the stabilization of MS. Several studies have 
found decreased clinical disease activity as decrease in the number of relapse rate by 
more than 70% and a modified disease course during pregnancy when 
concentrations of estrogen and progesterone are highest (Confavreux et al., 1998; 
Hanulikova et al., 2013; Salemi et al., 2004). Clinical improvement during pregnancy 
increases especially in the last trimester compared to a year before pregnancy 
(Pozzilli et al., 2015). However, the relapse rate increases postpartum and during 
menopause probably due to the decrease in the estrogen hormone levels and 
diminished immunosuppressive effects of pregnancy (Airas & Kaaja, 2012). 
Estrogen is considered to have potential neuroprotective effects and regulates MS 
pathology by increasing regulatory cytokines, decreasing demyelination, and 
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increasing the oxidative and energy producing activities in the cells of CNS 
(Christianson et al., 2015; R. Voskuhl & Momtazee, 2017). Due to the beneficial 
effects, estrogens and androgens have been studied for the treatment of MS (Spence 
& Voskuhl, 2012). Previously estriol treatment in women with MS showed 
significant reductions in gadolinium-enhancing lesions during the treatment 
compared to six months before the treatment (Sicotte et al., 2002; Soldan et al., 
2003). In fact, recently the supplementation of estriol with MS drug (glatiramer 
acetate) has proceeded already to the clinical trial providing for reduced relapse rates 
in women with RRMS (R. R. Voskuhl et al., 2016). In addition, testosterone 
treatment has been also studied for its neuroprotective effect in men with RRMS 
(Gold & Voskuhl, 2006; Kurth et al., 2014; Sicotte et al., 2007). 

2.3 Clinical subtypes, disease course and diagnosis 

The clinical course of MS is variable and the disease is classified into relapsing-
remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS 
(PPMS), and progressive-relapsing MS types (Lublin, 2014). Eighty percent of the 
MS patients are initially diagnosed as clinically isolated syndrome (CIS) patients 
(Miller et al., 2012). CIS patients were defined as patients who had their first acute 
demyelinating event suggestive of MS (Confavreux & Vukusic, 2006; Miller et al., 
2012; Polman et al., 2005; Scalfari et al., 2010). The clinical manifestation of CIS may 
include unilateral optic neuritis with visual disturbances, and/or spinal cord, brain 
stem, cerebellar, or hemispheral symptoms and signs (Miller et al., 2012). 

Initially, in the RRMS disease course, the majority of the patients (85%) 
experience relapses, neurologic symptoms and findings characterized by a subacute 
onset over several days and usually followed by remissions with complete or partial 
recovery after several weeks or months (Yamout et al., 2013). These clinical relapses 
are characterized by the presence of inflammatory infiltrates and demyelination in 
the brain and spinal cord (Mahad et al., 2015). Later the disease enters into a 
progressive neurodegenerative phase characterized by the accumulation of a more 
severe neurological disability (Compston & Coles, 2008). After a median of 10 to 15 
years, more than half of the RRMS patients undergo transition to a progressive form 
called SPMS that may be with or without clinical relapses but always with a gradual 
increase in the neurological dysfunction (Raine, 2008). Clinical relapses may occur in 
SPMS patients especially during the early transition period from RRMS to SPMS 
(Fox et al., 2006). Around 10-20 % of patients have a progressive onset of the disease 
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from the beginning of the disease without superimposed relapses. This form of the 
disease is characterized by the steady progress of an irreversible disability called 
PPMS and it is regarded as a non-inflammatory or less inflammatory pathologic form 
of MS (Compston & Coles, 2008). Different clinical stages of MS based on the 
disease course are shown in Figure 1. 

The diagnosis of MS needs clinical and radiographic evidence. In 2001, the 
diagnostic criteria were developed called "McDonald Criteria" for the diagnosis of 
MS (Confavreux et al., 2001; McDonald et al., 2001). These criteria were revised in 
2005, 2010 and 2017 to enable earlier, more sensitive and specific diagnosis of MS 
(McDonald et al., 2001; Polman et al., 2005; Polman et al., 2011; Thompson et al., 
2018). According to the 2017 revision, the early diagnosis of MS can be made 
primarily in CIS patients, establishment of dissemination of space (DIS) of CNS 
lesions on MRI, and the presence of CSF-specific oligoclonal bands, without the 
requirement for demonstration of dissemination of time (DIT) of CNS lesions on 
MRI (Thompson et al., 2018). 

 

Figure 1.  Schematic diagram of Multiple Sclerosis disease course. The disease usually starts with a 
preclinical phase also called clinically isolated syndrome (CIS) where clinical symptoms are suggestive 
of MS. MRI activity, as shown by vertical arrows, measures the number of gadolinium-enhancing 
lesions or new T2 hyperintense brain lesions that represents the ongoing inflammatory process where 
breakdown of blood-brain barrier allows migration of cells to the CNS. Subsequent decrease in brain 
volume as measured by atrophy and increase in disease burden as shown by number of active lesions 
indicates the permanent CNS tissue damage. Redrawn with permission from publisher (Olsson et al., 
2017) 
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2.4 Neuropathology of multiple sclerosis 

The central hallmark of MS pathology is the development of demyelinated areas 
called plaques or lesions which occur either focally or diffusely in white matter (WM) 
and grey matter (GM) of the CNS (Lassmann et al., 2007; Lassmann, 2013). Mostly, 
MS lesions comprise disruption of BBB, multifocal inflammation, demyelination, 
loss of oligodendrocytes, reactive gliosis, and axonal degeneration (Dutta & Trapp, 
2006; Trapp & Nave, 2008; Trapp & Stys, 2009). Acute active MS lesions are 
hypercellular demyelinated plaques, which are hugely infiltrated by macrophages, and 
contain patchy infiltrates of autoreactive T cells and antigen-nonspecific monocytes 
and macrophages inside the area of myelin loss (Frischer et al., 2009). These 
inflammatory infiltrates mainly contain a higher number of clonally expanded CD8+ 
T cells, and the lesser number of CD4+ T cells, B cells, and plasma cells, which 
accumulate mainly in the perivascular spaces and meninges (Nylander A., 2012; 
Popescu et al., 2013). Chronic lesions are more frequently seen in progressive MS, 
which are characterized by a rim of microglia and/or macrophages without myelin 
debris, a well-demarcated hypocellular gliotic area characterized by the myelin loss, 
relative preservation of axons, and the development of astrocytic scars (Mahad et al., 
2015; Stadelmann et al., 2011; Stadelmann, 2011). In addition, other immune cells 
such as B cells and plasma cells, macrophages containing myelin debris, and 
complement factors and immunoglobulin depositions are also present in the active 
lesions (Lassmann, 2013; Trapp & Stys, 2009). Demyelinating activity within a plaque 
can be assessed based on the presence or absence of specific myelin degradation 
products such as myelin basic protein (MBP) and myelin oligodendrocyte protein 
(MOG) (Popescu et al., 2013; Stadelmann, 2011). 

The pathology of MS varies between relapsing and progressive disease forms 
(Lassmann, 2013). Active CNS tissue injury occurs in all the stages of MS but active 
MS lesions, mostly in cortical demyelinated lesions, are most common in RRMS 
form whereas become less frequent during later progressive stages of the disease 
(Dutta & Trapp, 2014). Four major cortical lesions have been detected in MS brains. 
Type I or leukocortical lesions extend through both the WM and the GM, Type II 
or intracortical lesions that are fully localized in cerebral cortex, Type III lesions are 
characterized by subpial areas of demyelination and Type IV lesions cover the entire 
width of the cortex (Popescu & Lucchinetti, 2012; Popescu et al., 2013). Chronic 
lesions do not show active inflammation or the inflammation decreases as plaques 
progress, and macrophages and microglia gradually disappear (Lassmann, 2014). 
Consequently, axonal damage and loss in normal appearing white matter (NAWM), 



 

25 
 

and prominent involvement of grey matter and subpial demyelination, and brain 
atrophy are the apparent pathological features of chronic MS (Dutta & Trapp, 2006; 
Dutta & Trapp, 2014). 

2.5 Immunopathogenesis of multiple sclerosis 

Immunopathogenesis of MS is a complex process in which inflammation is 
considered as a key mediator of events that leads to tissue damage in the CNS 
(Baecher-Allan et al., 2018). Both innate and adaptive immune responses play 
important roles in the clinical course of MS (Hemmer et al., 2015). Reactivation of 
myelin-specific CD4+T cells in the brain initiate release of abundant 
proinflammatory mediators causing axonal damage and demyelination (Nylander A., 
2012). Then, CD8+ T cells are also regarded as potent effector cells for CNS damage 
as these cells are involved in the axonal damage by directly attacking neurons and 
oligodendrocytes through their cytotoxic and proinflammatory properties (Salou et 
al., 2015). 

Previously MS pathogenesis was thought to be mainly driven by CD4+ effector 
T cells; however, several immunological studies found other immune entities 
contributing to the disease pathogenesis, such as interleukin (IL)-17-producing T 
helper (Th) 17 cells, B cells, plasma cells, CD8+ T cells, and both CD4+ and CD8+ 
T-regulatory (Treg) cells (Selter & Hemmer, 2013). Therefore, currently MS is 
defined as Th1, Th17 mediated autoimmune disease, and rather not just the Th1 
mediated process (Hernandez-Pedro et al., 2013; Jadidi-Niaragh & Mirshafiey, 2011). 
Increasing evidence suggests that programmed cell death (apoptosis) also contribute 
to the pathology and tissue damage in MS, which occur either in the brain or in the 
peripheral level (Macchi et al., 2015; Mc Guire et al., 2011). MS immunopathogenesis 
consists of mainly three events: activation of immune cells in the periphery, 
transmigration of such cells into the CNS, and neural tissue damage (Comabella & 
Khoury, 2012). 

2.5.1 T cell activation and proliferation 

The essential component in the activation of CD4+ T cells is the interaction between 
antigen presenting cells (APCs) with T lymphocytes (Selter & Hemmer, 2013). 
Dendritic cells (DCs) are the primary APCs that are activated via toll-like receptors 
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(TLRs) and recognize specific microbial or viral antigens (Hartung et al., 2014). After 
activation, APCs interact with CD4+ T cells through T-cell receptors (TCRs) that 
recognize major histocompatibility complex (MHC) class II molecules on the APCs 
(Grakoui et al., 1999). Thus, this first interaction between TCR and APCs in the 
form of peptides bound histocompatibility molecules provides the first signal. The 
interaction between MHC II and TCR activates CD40 ligand on the surface of T-
cells and binds to its CD40 receptor present on the surface of APCs resulting the 
upregulation of CD80 and CD86 molecules. These molecules then interact with 
CD28 and CTLA4 molecules on the surface of T cell to generate a second signal 
(Kasper & Shoemaker, 2010). This second signal, also called costimulatory signal, is 
required for the optimal activation of T cells (Kasper & Shoemaker, 2010; Loma & 
Heyman, 2011; Selter & Hemmer, 2013; Sharpe & Abbas, 2006). Additional third 
signal for the optimal activation of T cells can be provided through cytokine signaling 
(Kambayashi & Laufer, 2014). Schematic diagram of T cell activation is presented in 
Figure 2A. Naïve CD4+T cells after activation differentiate into distinct T helper 
subsets such as Th1, Th2, Th17, and Tregs cells depending mainly upon the cytokine 
milieu of the microenvironment, and produce lineage-specific cytokines (Figure 
2B)(Han et al., 2015; Zhu, 2017). Unlike CD4+ T cells, CD8+ T cells can directly 
interact with MHC class I/APCs and mediate damage of neurons and 
oligodendrocytes (Salou et al., 2015). 

2.5.2 Costimulatory molecules 

The CD80/CD86–CD28/CTLA4 are the most important and well known 
costimulatory molecules (Slavik et al., 1999), but several other costimulatory 
molecules, such as CD26 and CD30 are responsible for the optimal activation of T 
cells (Del Prete et al., 1995; Tanaka et al., 1993). These molecules are regarded as 
markers of Th1 and Th2 lymphocyte activation, respectively (Del Prete et al., 1995; 
Jafari-Shakib et al., 2009; Romagnani et al., 1995). These multifunctional proteins are 
expressed on different cell types and play important role in MS and in several other 
autoimmune diseases (Aliyari Serej et al., 2017; Kim et al., 2015; Morimoto & 
Schlossman, 1998; Ohnuma et al., 2011; Shinoda et al., 2015; Steinbrecher et al., 
2001; Tejera-Alhambra et al., 2014). Several other ligands and receptors interactions 
also provide costimulatory signals to T cells, for example, TNF-like ligand 1A 
(TL1A), and its two receptors, i.e. death domain receptor 3 (DR3, TNFRSF25) and 
decoy receptor 3 (DcR3, TNFRSF6B). These ligand-receptors interactions mediate 



 

27 
 

various signaling pathways to maintain immune homeostasis and regulate the 
pathology of various autoimmune diseases (Meylan et al., 2008; Meylan et al., 2011; 
Richard et al., 2015; Sonar & Lal, 2015). The widely studied TNF superfamily 
molecules that provide costimulatory signals to activated T cells include tumor 
necrosis factor receptor 2 (TNFR2, TNFRSF1B), OX40 (CD134, TNFRSF4) and 
4-1BB (CD137, TNFRSF9) (Ward-Kavanagh et al., 2016). Further, costimulatory or 
coinhibitory signals based on the receptor-ligand interactions are essential for innate 
and adaptive immune responses and are shown to be involved in several chronic 
inflammatory diseases including MS (Sonar & Lal, 2015). 

 

Figure 2.  T cell activation and proliferation. A. Schematic representation of T cell activation. B. T cell 
differentiation. Th1 cells release proinflammatory cytokines such as interferon-gamma (IFN- ), 
interleukin (IL)-2, and tumor necrosis factor-a (TNF- ). Th2 cells secrete regulatory cytokines such as 
IL-4, IL-5, and IL-10. Th17 cells secrete proinflammatory cytokines such as IL-17A and IL-17F. 
Underneath each arrow are the master transcription factors, which are expressed on each cell subsets 
and are required for the lineage commitment. Abbreviations: APC, Antigen presenting cell; TCR, T cell 
receptor; Foxp3, forkhead box protein 3; GATA-3, GATA-binding protein 3; ROR T, retinoic acid 
receptor-related orphan receptor; STAT, signal transducer and activator of transcription. Redrawn with 
permission from publisher (Kambayashi & Laufer, 2014; Comabella & Khoury, 2012). 
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2.5.3 Transmigration of immune cells to the CNS 

The tight junctions between the endothelial cells of the BBB and the epithelial cells 
of the blood-CSF barrier limit the access of immune cells into the CNS (Ransohoff 
et al., 2003). Transmigration of autoreactive T cells across the BBB into the CNS is 
mediated by cell adhesion molecules (CAMs), chemokines, and matrix 
metalloproteinases (MMPs) expressed on lymphocytes (Engelhardt et al., 2001; 
Engelhardt, 2008; Engelhardt, 2010). MMPs are the proteolytic enzymes that disrupt 
the BBB by degrading the extracellular matrix and basement membranes (Comabella 
& Khoury, 2012). It is considered that in MS, initially the primary adhesion molecule 
4 1-integrins or very late activation antigen-4 (VLA-4) expressed on the surface of 

activated lymphocytes interact with vascular cell adhesion molecule-1 (VCAM-1) 
expressed on the capillary endothelial cells (Engelhardt, 2008). This interaction is 
facilitated by the MMPs, and chemokines and its receptors along with other 
inflammatory mediators regulate the extravasation of immune cells from the 
periphery to CNS (Engelhardt, 2008). Classical leukocyte adhesion cascade starts 
from activation to transmigration and consist of four steps. i) capturing and rolling 
ii) activation iii) arrest and iv) diapedesis or transmigration (Luster et al., 2005). 
However additional steps have been integrated into this sequence such as capture or 
tethering, slow rolling, adhesion strengthening and spreading, intravascular crawling, 
and paracellular and transcellular transmigration (Engelhardt, 2010; Ley et al., 2007). 

2.5.4 Mechanisms of CNS tissue damage 

In CNS, activation of macrophage and microglia produce several cytotoxic 
molecules that promote CNS tissue injury and are abundantly present in MS lesions 
(Hendriks et al., 2005). Activated microglia promotes CNS inflammation by releasing 
proinflammatory IL-1  and TNF- , and reactive oxygen species (ROS) and nitric 
oxide (NO) radicals (Bogie et al., 2014; Hendriks et al., 2005; Lassmann & van 
Horssen, 2011). These radicals cause the oxidative injury of oligodendrocytes and 
neurons (Miller et al., 2013). Oxidative stress, one of the most important mechanisms 
of tissue injury, leads to mitochondrial injury/dysfunction, which causes energy 
deficiency or virtual hypoxia initiating a cascade of deleterious events contributing 
to axonal degeneration in MS (Witte et al., 2014). Thus, the major cause of 
degeneration of chronically demyelinated axons includes an imbalance between 
energy demand and energy supply (Dutta & Trapp, 2014). Other components such 
as glutamate excitotoxicity, complement activation, proteolytic and lipolytic 
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enzymes, and T cell-mediated injury via T cell products contribute to 
oligodendrocyte, myelin, and axonal damage (Popescu et al., 2013). B-cells, plasma 
cells, and abundant immunoglobulins are involved in the pathology of tissue damage 
in MS (Cross & Wu, 2010; Cross & Waubant, 2011; Wekerle, 2017). B cells 
contribute to demyelination and neurodegeneration due to its role in antigen 
presentation, autoantibody production, cytokine regulation, and the formation of 
ectopic lymphoid follicles in the meninges (Howell et al., 2011; Li et al., 2015; Serafini 
et al., 2004). B cells travel out from the CNS and undergo affinity maturation in the 
lymph nodes, and re-enter to CNS mediating further damage (Dendrou et al., 2015). 
Moreover, apoptotic processes are also involved in the extensive cell death of 
oligodendrocytes, which leads to demyelination (Macchi et al., 2015; Moreno et al., 
2014). Other mechanisms driving tissue damage in MS include alternation in intra -
axonal ion homeostasis, imbalance of microbial community, and age-dependent iron 
accumulation within the brain tissue (J. Chen et al., 2016; Lassmann, 2013; Levy et 
al., 2017; Su et al., 2013; Witte et al., 2014). Different immunological mechanisms 
play important roles in the dysregulation of the immune system inside the CNS 
during the early and late phase of MS, which is presented in Figure 3. 

2.6 MRI in multiple sclerosis 

MRI is the most sensitive noninvasive tool for characterizing MS lesion profiles, 
detecting asymptomatic dissemination of lesions in space (DIS) and time (DIT), and 
it is helpful in discriminating the inflammatory and neurodegenerative processes in 
the brain and spinal cord (Thompson et al., 2018). MRI is useful in the assessment 
of disease diagnosis, evaluating disease activity and disease progression, and 
therapeutic monitoring (Baecher-Allan et al., 2018; Reich et al., 2018). The 
inflammatory element of MS is seen as gadolinium-enhancing lesions reflecting the 
breakdown of BBB and the movement of cells into the CNS and accumulation of 
disease burden (Lublin, 2014). Conventional MRI provides information on the 
number and distribution of focal T2 lesions and contrast-enhancing WM lesions, but 
it is unable to detect the actual burden of GM lesions (Kaunzner & Gauthier, 2017). 

Different types of MRI images provide different information regarding disease 
pathology. T1-weighted and gadolinium-enhanced images reveal the presence of 
active lesions defining active inflammation, T2-weighted images provide information 
on disease burden or lesion load detecting hyperintense WM lesions, FLAIR (fluid 
attenuated inversion recovery) images quantify lesion and help to visualize T2 
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hyperintense WM lesions (Bakshi et al., 2008; Fox et al., 2011). Other advanced 
quantitative MR based techniques such as magnetization transfer ratio imaging 
(MTR), diffusion tensor imaging (DTI), functional MRI (fMRI), have improved 
disease diagnosis and monitoring, as well as increased deeper understanding of MS 
pathophysiology (Fox et al., 2011). In recent times, MRI protocols have been 
updated and improved and recent guidelines have been developed to facilitate the 
early diagnosis of MS (Dutta & Trapp, 2014; Kaunzner & Gauthier, 2017; 
Thompson et al., 2018). 
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Figure 3.  Immune system dysregulation inside the CNS in early and late MS. Early-stage MS is 
characterized by the immune cell infiltration from the periphery because of BBB breakdown. Peripheral 
immune cells together with activated CNS-resident cells mediate demyelination and ODC damage 
through several effects (Top panel). In the late stage, immune cell infiltration diminishes but chronic 
CNS-intrinsic inflammation and neurodegeneration persist. Meningeal follicles like structures may 
promote to late-stage inflammation in SPMS. Stimulated astrocytes secrete CCL2 and GM-CSF 
leading to microglial recruitment and activation. The astrocytes inhibit maturation of ODC and therefore 
prevents remyelination (Bottom panel). Abbreviations: APC, antigen-presenting cell; CD8+ MAIT cell, 
CD8+ mucosa-associated invariant T cell; CCL2, CC-chemokine ligand 2; FDC, follicular dendritic cell; 
GM-CSF, granulocyte–macrophage colony-stimulating factor; IFN- , interferon- ; IL-17, interleukin-
17; NO, nitric oxide; ODC, oligodendrocyte; RNS, reactive nitrogen species; ROS, reactive oxygen 
species; Th1 cell, T helper 1 cell. Reproduced with the permission from the publisher (Dendrou et al., 
2015). 
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2.7 Disease-modifying therapies in multiple sclerosis 

The DMTs are available for MS disease; those reduce the number of relapses, 
manage disease symptoms, and partially control disability progression (Pardo & 
Jones, 2017). Currently there are eleven drugs approved for the treatment of MS 
(Table 1, excluding the off-label drugs) and all these drugs have immunomodulatory 
functions. In Finland, according to current care guidelines, interferon- , dimethyl 
fumarate, glatiramer acetate, and teriflunomide are used as first-line DMTs or for 
active RRMS, whereas NTZ, fingolimod and alemtuzumab are used as second-line 
or very active therapies for MS. These drugs provide mainly anti-inflammatory 
effects and are more effective in the early phase of disease, but they have no 
significant benefit on progressive MS (Loma & Heyman, 2011; Torkildsen et al., 
2016). In addition to these therapies, recently a drug called ocrelizumab has been 
approved for the treatment of RRMS and early PPMS patients (Sorensen & 
Blinkenberg, 2016). Initially MS patients are treated with drugs indicated by disease 
activity and careful risk-benefit stratification (Torkildsen et al., 2016) and if the 
patient fails to respond adequately to this first-line therapy, the use of second-line 
therapies should be considered (Hartung et al., 2011; Sorensen, 2011). In addition, it 
is suggested that oral agents dimethyl fumarate or teriflunomide should be evaluated 
as chosen among the other drugs for de novo RRMS based on the risk-benefit ratio of 
the approved therapies (Freedman et al., 2016; Ochi, 2015). The drugs generally 
differ as to efficacy, tolerance, and safety issues. Therapies for very aggressive disease 
are associated with an increased risk of opportunistic infections and other major 
adverse effects including JCPyV induced progressive PML (Clifford et al., 2010). 
Development of new drugs is aimed for achieving a disease-free state in patients, 
with no relapses, no increase in EDSS and no new or active lesions on the MRI 
scans. The term referred for freedom from disease activity is called no evidence of 
disease activity (NEDA) (Giovannoni et al., 2015; Rotstein et al., 2015; Ziemssen et 
al., 2016). Different disease-modifying therapies in MS are listed in Table 1 
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2.7.1 Safety aspects of MS treatments 

Number of DMTs are available for the treatment of MS, however many are 
associated with the adverse effects ranging from mild to serious complications. 
Adverse events associated with interferon-beta treatment includes hepatic injury, 
anaphylaxis, depression, and some cases of acute liver failure and pancreatitis 
(Torkildsen et al., 2016). The treatment may induce the formation of specific 
neutralizing antibodies reducing the efficacy of treatment. Glatiramer acetate is a 
well-tolerated drug but most patients (65%) experience injection site reactions and 
other side effects include cutaneous necrosis, lymphadenopathy, dyspnoea and 
lipoatrophy, among which lipoatrophy is the most severe one (Torkildsen et al., 
2016). Teriflunomide treatment is associated with hepatic injury, teratogenicity, 
potential immunosuppression, infection, and peripheral neuropathy. Dimethyl 
fumarate treatment may cause anaphylaxis and angioedema, PML, and lymphopenia. 
Rare side effects associated with fingolimod include myocardial infarction, PML, and 
opportunistic herpes simplex virus (HSV) or cryptococcus infections (Gajofatto & 
Benedetti, 2015). Treatment with mitoxantrone is associated with congestive heart 
failure, amenorrhoea and acute promyelocytic leukemia (Pardo & Jones, 2017). 
Recently developed ocrelizumab is associated with infusion-related reactions, 
infections, and neoplasms (Gajofatto & Benedetti, 2015). Most importantly, 
potentially life-threatening side effects associated with MS drugs include PML, which 
is associated with the treatment with natalizumab and other new drugs. Other risks 
associated with NTZ- treatment include infusion reactions, hepatotoxicity and rarely 
other serious opportunistic infections. NTZ-associated PML risk has become a 
major challenge in the treatment of MS because, in addition to NTZ, also other 
effective biological therapies such as fingolimod and dimethyl fumarate were 
reported to carry the risk of PML in MS patients (Faulkner, 2015). Potential MS 
drugs, which are associated with high, low, no or very low risk of PML, are listed in 
Table 2. Recently the new practice guideline has been developed on the efficacy and 
safety of DMTs in MS (Rae-Grant et al., 2018a), and thirty recommendations were 
made  concerning starting, switching, and stopping DMTs pertinent to people with 
RRMS, SPMS, PPMS, and CIS of demyelination (Rae-Grant et al., 2018b). 
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Table 2.  A PML risk stratification table for disease-modifying therapies for MS 
Therapeutic Agent Treated 

condition 
predisposes 
to PML? 

Latency from the 
time of drug 
initiation to PML 

Frequency/Incidence 
of PML 

Class I – high potential PML risk  No 
 

Yes  High  

Natalizumab MS and 
Crohn's 
disease 

None<8 months; 
>85% of cases >24 
months 

 1/100–1/1000 

Class II – low potential PML risk  No 
 

Yes Low/infrequent 

Dimethyl fumarate  MS and 
psoriasis 
 

18–54 months ~1/50,000  

Fingolimod MS 18–54 months ~1/18,000 
Class III – no or very low potential 
PML risk 

Yes No Very low or evident 
only with related drug 

Alemtuzumab 
Rituximab 
Mitoxantrone 
Teriflunomide 
Daclizumab 

   Unknown; no cases 
with MS 
1/30,000 

  

Abbreviations: PML-progressive multifocal leukoencephalopathy. Modified with permission from (Berger, 2017). 

2.7.2 Natalizumab 

Natalizumab (NTZ) is the first humanized monoclonal antibody for the treatment 
of RRMS and received the Food and Drug Administration (FDA) approval in 2004 
(Polman et al., 2006). It is generally recommended as a second-line therapy for those 
patients who have not responded to first-line DMTs or who have very active disease 
(Kappos et al., 2011). NTZ reduces the relapse rate, decreases sustained disability, 
and reduces the number of new lesions on MRI (Miller et al., 2003; Polman et al., 
2006). NTZ has also shown its efficacy in the reduction of rate of brain volume loss 
and enhancement of tissue integrity (Sellebjerg et al., 2016). In a two-year phase 3 
clinical trial of NTZ in RRMS patients (AFFIRM study), it reduced the risk of 
sustained progression of disability by 42% over two years, and reduced the rate of 
clinical relapse at one year by 68%, and 83 % reduction in the accumulation of new 
or enlarging hyperintense lesions (Polman et al., 2006). According to the current 
treatment guidelines, the recommended dose of NTZ for MS patients is standard 
300 mg and administered intravenously over one hour every four weeks (Engelhardt 
& Kappos, 2008; Sheremata et al., 1999; Vollmer et al., 2004). 
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2.7.2.1 Mode of action 

NTZ blocks the entry of inflammatory cells into the CNS across the BBB. It inhibits 
the interaction of 4-integrin subunit of 4 1 with VCAM-1 and of 4 7 with 
Mucosal addressin cell adhesion molecule-1 (MAdCAM-1), resulting in the blockage 
of adhesion processes of leukocytes to endothelial cells and consequently the 
migration of autoreactive T cells to the CNS (Hutchinson, 2007; Selewski et al., 
2010). Transmigration of leukocytes into the CNS includes several steps, which was 
described in chapter 2.6. Since VCAM-1 is expressed on inflamed cerebrovascular 
endothelial cells, 4 1 is thought to be the important target of NTZ in preventing 
leukocyte migration into the CNS tissue in MS (Engelhardt & Kappos, 2008). NTZ 
is also known to alleviate ongoing CNS inflammation, by interrupting the 
interactions between 4-integrin-expressing leukocytes and extracellular matrix 
proteins such as osteopontin and fibronectin (Hutchinson, 2007). In 2008, NTZ was 
approved also for the treatment of Crohn's disease. The possible mechanism of 
action is the blockage of interaction of 4 7 with MAdCAM-1, resulting in the 
inhibition of the transendothelial migration of lymphocytes into the intestinal 
mucosa (Guagnozzi & Caprilli, 2008). 

2.7.3 JC virus and PML 

JC polyomavirus (JCPyV, previously named JCV) belongs to human polyomaviruses, 
which are nonenveloped, icosahedral viruses with a closed circular, supercoiled, 
double-stranded DNA genome of approximately 5130 nucleotides (Wollebo et al., 
2015). The viral genome is divided into an early and a late region encoded on 
opposite strands. In between these two regions contains a non-coding control region 
(NCCR) which encodes the origin of replication (Ferenczy et al., 2012). The early 
region encodes two proteins, large T (tumor) antigen and small t antigen, which play 
regulatory functions during viral replication cycle. The late region is expressed later 
in the viral life cycle and it encodes three capsid proteins VP1, VP2 and VP3 forming 
the viral capsid, and agnoprotein responsible for DNA repair and cell cycle 
regulation (Ferenczy et al., 2012). Agnoprotein is an auxiliary protein in the viral late 
region, which have multiple functions ranging from viral transcriptional regulation 
to the inhibition of host DNA repair acting as a viroporin (Suzuki et al., 2010). The 
regulatory region NCCR of JCPyV is variable and two different types can be 
identified: one is archetypal form (non-pathogenic) which is shed in the urine from 
normal individuals, and another is neurotropic form (pathogenic) (Jelcic et al., 2015). 
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PML pathogenesis is almost exclusively associated with viral strains harboring 
neurotropic NCCR. Most probably, the originally acquired archetype virus mutates 
in the brain to gain the ability to replicate efficiently in glial cells. These mutant strains 
are found in blood and CSF, and very rarely in the urine of PML patients (Reid et 
al., 2011). 

Respiratory inhalation was thought to be the possible route of JCPyV and 
tonsillar lymphocytes are considered as the primary target of initial infection. The 
primary infection is encountered mostly in childhood and occasionally in adult age 
in 60–80% of the human population and asymptomatic lifelong persistent infection 
is established (Ferenczy et al., 2012). However, under immunosuppressive 
conditions, the latent virus may reactivate, access the brain and gain neurotropic 
mutations, or first gain neurotropic mutations and then enter the brain, where it can 
replicate efficiently due to these mutations. In glial cells, JCPyV may cause a fatal 
demyelinating lytic infection in CNS called progressive multifocal 
leukoencephalopathy (PML) (Khalili et al., 2007). Reactivation and replication of 
JCPyV are characterized by a lytic infection of glial cells, particularly 
oligodendrocytes, astrocytes and neuronal cells in the CNS (Ferenczy et al., 2012; 
Wollebo et al., 2015). 

2.7.4 Clinical manifestations and diagnosis of PML 

Clinical manifestations that are consistent with PML include cognitive deficits, 
language problems, personality changes, motor dysfunction, visual changes, 
headaches, and seizures (Available at: https://pmlconsortium.org/healthcare-
professionals/diagnosis/). Pathologically PML is associated with unifocal or 
multifocal brain lesions and its diagnostic process includes clinical examinations, 
MRI findings, and detection of JCPyV DNA in CSF or brain biopsy (Wollebo et al., 
2015). Detection of JCPyV DNA in CSF is the widely employed approach; however, 
there are reports of false-negative results, although the disease course is progressive 
and radiological findings are indicative of PML (Babi et al., 2015). Other diagnostic 
approaches include detection of viral protein by immunohistochemistry and western 
blotting, characterization of brain lesions by histopathology on biopsy or autopsy 
materials (White et al., 2016). The PML diagnostic criteria has been developed for 
the definite diagnosis of PML, which includes the characterization of 
neuropathologic feature of typical histopathologic triad (demyelination, bizarre 
astrocytes, and enlarged oligodendroglial nuclei) along with the tools to display the 
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presence of virus (Berger et al., 2013; Wollebo et al., 2015). There is no cure for PML 
but currently employed risk stratification method has highly improved clinical 
decision-making process (Singer, 2017). 

Currently onset of PML is defined as the time at which virus enters the brain and 
infects oligodendrocytes, that eventually leads to a clinically severe brain injury which 
is initially not detectable on MRI (Major et al., 2018). Primarily, PML was an AIDS-
defining illness and it is the major cause of death in 3 to 5 patients with AIDS. More 
recently, however, the risk of PML has been also associated with current 
immunomodulatory treatments such as NTZ- treatment for MS (Major & Douek, 
2013). Until August 31, 2017, the global overall incidence of NTZ-associated PML 
was reported as 4.22 per 1000 patients (Biogen 2017). 

Due to the two cases of NTZ- associated brain infection, PML was identified in 
patients during two-year, phase 3 clinical trial  (SENTINEL) (Rudick et al., 2006), it 
was removed after 3 months of its approval from the market in 2005, but was re-
introduced in 2006 with a mandatory surveillance program called Tysabri Outreach 
Unified Commitment to Health (TOUCH) (Foley, 2010). As of September 1, 2017, 
749 PML cases were confirmed, among which 746 PML cases were related with MS, 
and 3 with Chron’s disease (Biogen 2017, https://medinfo.biogen.com). Recently a 
phase 3 clinical trial (ASCEND) was conducted to assess the effect of NTZ in 
disease progression in patients with SPMS (Kapoor et al., 2018). 

2.7.5 Mechanism of natalizumab-associated PML 

The exact mechanism of NTZ-associated PML is still unclear, but it is suggested that 
PML develops due to impaired CNS immunosurveillance (Mancuso et al., 2012). It 
has been proposed that blocking of T and B cells migration across the BBB into the 
CNS interferes with cell-mediated immunity and immunosurveillance, allowing 
JCPyV reactivation from latency (Berger & Houff, 2009). Thus, in the absence of 
functional CD4+ cells and JCPyV-specific CD8+ effector cells in the CNS, it is not 
possible to control JCPyV replication and dissemination, and this phenomenon 
increases the risk of developing PML (Antoniol & Stankoff, 2015). In addition, NTZ 
was shown to have an effect in the mobilization of mononuclear cells that harbor 
JCPyV DNA from the bone marrow and convey the virus into the CNS (Mancuso 
et al., 2012). A study had found JC virus in CD34+ and CD19+ cells from MS 
patients, suggesting that these mononuclear cells in circulation harbor JCPyV DNA 
in NTZ-treated MS patients, contributing to the pathogenesis of PML (Frohman et 
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al., 2014). NTZ-treatment also increases B cell differentiating factor Spi-B in the 
peripheral blood, and this Spi-B could upregulate JCPyV gene expression (and 
increase viral transcription) and viral replication, leading to lytic infection and tissue 
damage that ultimately increases the risk of developing PML (Marshall et al., 2010). 

2.8 Biomarkers of natalizumab-associated PML 

2.8.1 Anti-JCPyV antibodies 

Currently, quantification of anti-JCPyV antibodies, measured as JCPyV index, in 
serum or plasma is the only available biomarker used for the PML risk stratification 
in patients treated with NTZ (Campagnolo et al., 2016; Cutter & Stuve, 2014; Werner 
& Huang, 2016). Development of PML in long-term NTZ treated patients was 
shown to be associated with the presence of these antibodies in the blood 
(Bloomgren et al., 2012; Calabresi et al., 2007). The rationale behind the 
determination of anti-JCPyV antibody levels is to classify the individuals with an 
indication of past viral exposure and those individuals who have not encountered 
the virus. Higher anti-JCPyV antibody level, or index, indicates higher PML risk, and 
earlier studies have demonstrated higher antibody levels in NTZ-associated PML 
compared to non-PML patients (Lee et al., 2013; Outteryck et al., 2013; Trampe et 
al., 2012). Anti-JCPyV antibody positivity is a risk factor for the developing risk of 
PML and quantification of these antibodies enables the stratification of PML risk in 
those patients who are JCPyV-seropositive (Faulkner, 2015). These antibodies are 
measured as anti-JCPyV antibodies indices in serum or plasma, with a confirmatory 
second-generation ELISA know as STRATIFY JCPyV™ DxSelect™, and Focus 
Diagnostics provides STRATIFY JCPyV testing service, exclusively licensed from 
Biogen, for PML risk stratification in NTZ-treated MS patients (Lee et al., 2013). In 
the assay, the anti-JCPyV antibody levels in a patient sample are compared with a 
standard sample representing robust antibody levels, whose index value has been set 
to 1. JCPyV index allows stratification of PML risk as high and low in NTZ-treated 
MS patients without prior use of immunosuppressants: patients with JCPyV index 
more than 1.5 are considered as higher risk for developing PML and with JCPyV 
index less than 1.5 as lower risk (Lee et al., 2013). Although patients have JCPyV 
index >1.5, PML risk is low during 1–24 months of NTZ-treatment with an 
estimated risk of 1.17/1000 but increases noticeably to 8.83/1000 in months 25–48 
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of treatment and increases to 10.12/1000 (or 1 in 99) from 49–72 months of 
treatment (McGuigan et al., 2016). Stratification of PML risk estimation based on 
the duration of NTZ-treatment and prior use of immunosuppressants are given in 
Table 3. 

Table 3.   Stratification of PML risk estimation in Natalizumab-treated MS patients who are anti-
JCPyV-antibody positive. 

 

 

 

 
 

 

            

            PML risk estimates obtained from medinfo.biogen.com, 2018 

2.8.2 L-Selectin-expressing CD4+ T cells in peripheral blood 

L-Selectin (CD62L) is a cell adhesion molecule, which plays an important role during 
leucocyte transmigration by mediating initial capturing and tethering of leucocytes 
from the blood vessels to the sites of inflammation (Rainer, 2002; Telen, 2014). 
Several ligands expressed on endothelial cells are known to bind L-selectin (Rainer, 
2002; Tu et al., 2002) and among such ligands, P-selectin glycoprotein ligand-1 
(PSGL-1) is regarded as a major ligand (Rainer, 2002). During inflammation, L-
selectin mediates leukocyte–leukocyte interactions using PSGL-1 (Sperandio et al., 
2003). Naive T cells express high levels of surface L-selectin and upon activation by 
antigens, these T cells rapidly divide and differentiate into L-selectin low effector cells 
resulting in the homing of T cells into the sites of inflammation (Raffler et al., 2005; 
Wedepohl et al., 2012). Surface L-selectin upon activation is rapidly shed from the 
cell surface by endoproteolytic cleavage (Wedepohl et al., 2012; Wang et al., 2010) 
and remains as a functionally active soluble form in the blood (Schleiffenbaum et al., 
1992). sL-selectin significantly increases during acute or chronic inflammation 
(Smalley & Ley, 2005). Previous studies have reported the role of L-selectin in MS 
pathogenesis, particularly in the process of myelin damage in the CNS (Grewal et al., 

Duration of Natalizumab treatment Prior use of immunosuppressive drugs? 

Yes No 

1-24 months 0.1% <0.1% 

25-48 months 1.2% 0.3% 

49-72 months 1.3% 0.6% 
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2001; Huang, Kikuta, & Rosen, 1994). Some clinical studies have detected increased 
levels of sL-selectin in serum and CSF of MS patients (Baraczka et al., 2000; Duran 
et al., 1999), and correlated with MRI findings (Hartung et al., 1995; Mossner et al., 
1996). 

Previously, a retrospective study proposed L-selectin-expressing CD4+ T cells in 
peripheral blood as a biomarker of developing NTZ-associated PML risk (Schwab 
et al., 2013). This study found reduced levels of L-selectin-expressing CD4+ T cells 
in long-term NTZ -treated MS patients compared to those patients who were not 
treated with NTZ, and healthy controls (Schwab et al., 2013). In addition, a study 
found the link between soluble L-selectin and JCPyV seropositivity, suggesting that 
soluble L-selectin could be a biomarker of PML risk (Basnyat et al., 2015a). Recently 
a multicentric study in international cohorts of NTZ-treated MS patients showed 
that utilization of both anti-JCPyV-antibody index and L-selectin could strongly 
reduce PML incidence up to 10-fold (Schwab et al., 2016). However, a recent study 
on a well-controlled cohort of NTZ-treated patients reported that the percentage of 
surface L-selectin is not a reliable biomarker NTZ-associated PML risk (Lieberman 
et al., 2016). 

2.8.3 JCPyV microRNAs 

MicroRNAs (miRNAs) are small, 18-25 nucleotide (nt) long, single stranded 
noncoding regulatory molecules, which downregulate gene expression by binding to 
target gene mRNA (Lagatie et al., 2013). The miRNAs exhibit high diagnostic, 
prognostic and therapeutic potential and can serve as potential biomarkers because 
of their small size, higher stability, and relative ease of detection in a variety of 
biological tissues and body fluids (Auvinen, 2016). JCPyV encodes a pre-miRNA, 
which is processed into two mature JCPyV-specific miRNAs (JCPyV-miR-J1-5p and 
JCPyV-miR-J1-3p) that appear late in the infection to autoregulate the early gene 
expression (Seo et al., 2008). Out of 13 human polyomaviruses known till date, only 
BK polyomavirus (BKPyV), JCPyV, and Merkel cell polyomavirus (MCPyV) encode 
5p and 3p miRNAs, which are cleaved from one common precursor transcript 
(Auvinen, 2016). In the case of JCPyV, the sequence of JCPyV-miR-J1-5p is unique 
for JCPyV, but JCPyV-miR-J1-3p shares identical sequence with BKPyV-encoded 
bkv-miR-B1-3p, and thus its origin cannot be differentiated (Seo et al., 2008). These 
microRNAs are known to play a key role in controlling viral replication through 
downregulation of Large T-Antigen expression (Seo et al., 2008), and also control 
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the killer receptor NKG2D-mediated killing of virus-infected cells by NK cells 
through downregulation of the stress-induced ligand ULBP3 (Bauman et al., 2011). 
Recent studies have suggested potential of JCPyV-miR-J1-5p as a biomarker of past 
JCPyV infection as it can be frequently detected in plasma, urine, and CSF of both 
JCPyV seropositive and seronegative healthy individuals and immunosuppressed 
patients (Lagatie et al., 2014a; Pietila et al., 2015). Moreover, exosomal JCPyV 
miRNAs extracted from biological fluids have been studied for their biomarker 
potential of viral infection (Martelli & Giannecchini, 2017), particularly in NTZ-
treated MS patients to identify the possible mechanisms of viral reactivation leading 
to development of PML (Giovannelli et al., 2015; Skarica et al., 2011). 

2.9 Potential biomarkers in multiple sclerosis 

High degree of heterogeneity in pathophysiological processes has made clinical 
management of MS challenging (Bielekova & Martin, 2004; Comabella & Montalban, 
2014). Therefore sensitive and reliable biomarkers are needed for early diagnosis, 
establishing long-term prognosis, measurement of disease activity, predicting 
therapeutic response to treatments and potential adverse events associated with the 
specific treatment (Buck & Hemmer, 2014; Polman et al., 2011; Teunissen et al., 
2015). A biomarker is described as a measurable indicator, which can reflect the 
normal biologic and pathogenic processes, and the pharmacological responses to a 
therapeutic intervention (Biomarkers Definitions Working Group., 2001), and an 
ideal biomarker is the one which is present in all MS patients but absent in other 
individuals (Comabella & Montalban, 2014; Tomioka & Matsui, 2014). Biomarker 
discovery area is very active in MS and aims to find a reliable and precise biomarker 
that can stratify different MS subtypes, evaluate inflammatory activity, degree of 
demyelination and neurodegeneration, remyelination, and depict the accurate picture 
of clinical status (Bielekova & Martin, 2004; Buck & Hemmer, 2014; Comabella & 
Montalban, 2014). There are many exploratory biomarkers available in MS, however, 
only a few are validated and are used in clinical practice. This fact suggests that the 
goal of personalized medicine in MS is still in its infancy stage. Biomarker 
development is a long process, which takes approximately more than 20 years from 
the time of biomarker discovery until its clinical implementation (Teunissen et al., 
2015). 
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2.9.1 Biomarker samples 

Different specimens such as blood, CSF, urine, tears, and saliva can be used as 
sources of body fluid biomarkers among which blood and CSF are the most used 
body fluids (Dobson, Topping et al., 2013; Gebregiworgis et al., 2013; Giovannoni 
& Thompson, 1998; Oehninger-Gatti et al., 2000). CSF samples are more promising 
for biomarker discovery due to its proximity to the CNS and hence show better 
pathological processes, however, multiple samples from the same patient are 
restricted due to the invasive sample collection procedure (Comabella & Montalban, 
2014). Thus, blood-based biomarkers exhibit greater clinical value due to the easy 
and minimally noninvasive method of collection (D'Ambrosio et al., 2015). Blood 
biomarkers can provide crucial information regarding the immune trigger of MS and 
help to evaluate the therapeutic efficacy of MS treatments. Different biochemical 
compounds, mostly DNA, RNA, or proteins are measured as biomarkers in 
biological fluids. Most of the molecular biomarkers that are used today are protein-
based biomarkers, particularly antibodies (Teunissen et al., 2015). Biomarkers in MS 
are classified into several groups: diagnostic and disease activity, disease progression, 
treatment response, and adverse event biomarkers, the latter associated with the MS 
therapies (Comabella & Montalban, 2014). 

2.9.2 Biomarkers for diagnosis and disease activity 

Diagnostic biomarkers, also called conversion markers, are used to stratify patients 
who have MS from patients with other neurological or autoimmune diseases, or from 
the healthy population (D'Ambrosio et al., 2015). These biomarkers are measured in 
those patients who have neurological symptoms suggestive of demyelinating 
disorder, patients with CIS, and patients with the radiologically isolated syndrome 
(RIS), or other conditions such as neuromyelitis optica (NMO). Disease activity 
biomarkers are measured in patients with RRMS or progressive forms and are mostly 
associated with pathophysiological processes of the disease. Therefore, these 
biomarkers can be classified as biomarkers of inflammation, demyelination, oxidative 
stress, glial dysfunction, remyelination, and axonal damage. Several biomarkers of 
disease activity are explored in MS, which belong to numerous immune profiles such 
as cytokines, chemokines, immune cell subsets, costimulatory molecules, antibodies, 
and cell adhesion molecules (Graber & Dhib-Jalbut, 2011). 
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2.9.3 Oligoclonal bands and Anti-aquaporin 4 IgG 

Presence of oligoclonal IgG bands (IgG-OCBs) in CSF is regarded as the only 
biomarker that is validated for the definitive diagnosis of MS, although it is not 
unique to MS (Dobson, Ramagopalan et al., 2013; Teunissen et al., 2015; Tintore et 
al., 2008). IgG-OCBs are CSF restricted, thus these IgGs are not present in the 
serum.  A strong correlation was shown between OCB positivity and disease 
conversion from CIS to MS (Dobson et al., 2013). CSF OCBs are the independent 
prognostic marker for disease conversion (Kuhle et al., 2015). Thus, the combined 
brain MRI lesions and the CSF oligoclonal bands reflect the inflammatory and 
demyelinating features of the disease (El Ayoubi & Khoury, 2017; Gastaldi et al., 
2017). The diagnostic sensitivity of OCBs was reported as high (88%)(Dobson et al., 
2013) and (94%)(Petzold, 2013), however, it lacks the specificity (~35%) in terms of 
other inflammatory CNS disorders (Owens et al., 2009). Including OCBs, other 
parameters such as measurement of IgG index (Link & Huang, 2006) and evaluation 
of daily de novo CNS IgG synthesis are used for the diagnosis of  MS (Tomioka & 
Matsui, 2014). The principal method for the determination of CSF OCBs is 
isoelectric focusing followed by immunofixation (Espino et al., 2015). In addition, 
measurement of intrathecal IgM OCBs is suggested as a prognostic biomarker in MS 
and the patients with these OCBs were shown to convert earlier to SPMS (Teunissen 
et al., 2015). In addition, IgM OCB was also suggested as a useful prognostic 
biomarker in MS and recent studies have reported intrathecal IgM OCBs as a 
biomarker of progressive disease (Harris et al., 2017). 

 
Anti-aquaporin 4 IgG (AQP4-IgG) allows differential diagnosis by 

differentiating NMO from MS (Flanagan et al., 2016; Wingerchuk & Weinshenker, 
2003). AQP4-IgG are highly specific autoantibodies that target the astrocytic AQP4-
IgG water channel and are present in the serum of patients with NMO (Jarius et al., 
2010). Serum AQP4-IgG is a promising biomarker for NMO diagnosis and this 
marker specifically assists clinicians in differentiating the distinct pathophysiological 
features from MS (Flanagan et al., 2016). Based on several methods, the sensitivity 
of AQP4-IgG was found in the range from 12.5% to 100%, with a median value of 
62.3% (Jarius & Wildemann, 2013). However, recently introduced techniques such 
as recombinant antigen-based assays and cell sorting assays have augmented the 
sensitivity of AQP4-IgG detection (Jiao et al., 2013). 
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2.9.4 Cytokines and chemokines as biomarkers of disease activity 

Several cytokines and chemokines, and their receptors, have potential role as 
biomarkers in MS as they were found in MS lesions and CSF, and associate with MS 
disease activity and disease progression (Comabella & Montalban, 2014; Graber et 
al., 2007; Tomioka & Matsui, 2014). Elevated levels of proinflammatory cytokines 
such as IL-17, TNF- , IFN- , IL-12 are frequently observed in MS compared to 
healthy individuals, particularly in RRMS patients with active inflammatory disease 
process (Kallaur et al., 2013; Obradovic et al., 2012). Occurrence of increased pro-
inflammatory and decreased anti-inflammatory cytokines and chemokines are 
frequent during MS relapses (Dendrou et al., 2015). Regulatory or anti-inflammatory 
cytokines such as IL-10 and IL-4 are increased during the remission phase of the 
disease (Imitola et al., 2005). 

C–X–C motif chemokine 13 (CXCL13) is a B cell chemoattractant which is 
studied as a biomarker of B-cell involvement in CNS and thus as an indicator of 
intrathecal B-cell responses in MS (Harris & Sadiq, 2014). This chemokine serves as 
a prognostic biomarker for CIS conversion and its correlation was found with 
relapse rate, EDSS score, and number of lesions (Brettschneider et al., 2010; 
Khademi et al., 2011). However, it lacks its diagnostic potential due to the specificity 
issue, as higher CSF levels were observed not only in MS but also in other 
inflammatory or infectious CNS diseases (Alvarez et al., 2013; Khademi et al., 2011). 
Several studies have reported increased CSF levels of CXCL13 in CIS, RRMS, SPMS, 
and PPMS patients compared to patients with other non-inflammatory CNS diseases 
(Sellebjerg et al., 2009; Stilund et al., 2015), and also higher levels were  reported in 
serum of patients with active MS (Festa et al., 2009). 

Chitinase 3-like protein 1, also called YKL-40, is a glial cells activation marker, 
which is expressed on activated astrocytes and microglia in the brain (Canto et al., 
2015). These proteins are candidate biomarkers to identify CIS converters and thus 
exhibit diagnostic and prognostic potential as a biomarker in MS (Canto et al., 2015; 
Comabella et al., 2010; Hinsinger et al., 2015). In CSF of RRMS patients, YKL-40 
was found to be associated with earlier disease progression to high EDSS scores 
(Martinez et al., 2015). Significantly higher CSF levels were found in converted CIS 
patients compared to those patients who remained as CIS (Comabella et al., 2010). 
YKL-40, along with neurofilaments light chain, is regarded as a significant predictor 
of long-term physical and cognitive disability after optic neuritis as a first 
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demyelinating event (Modvig et al., 2015). Recently YKL-40 in CSF was reported as 
a biomarker for monitoring disease activity in SPMS patients (Burman et al., 2016). 

Neurofilaments light (NFL) and heavy chains (NFH) are emerging as 
promising new biomarkers for monitoring ongoing axonal injury and 
neurodegeneration in MS due to their abundant presence in CNS tissues and relative 
stability (Harris & Sadiq, 2014; Modvig et al., 2015). Presence of these 
neurofilaments in CSF reflects the degree of inflammation-mediated axonal damage 
as these filaments are released into the extracellular spaces during an acute and 
ongoing axonal injury (Martinez et al., 2015; Stilund et al., 2015; Teunissen et al., 
2015). In CSF of MS patients, the levels of both NFL and NFH were shown to be 
elevated and they were highest especially during the relapses (Kuhle et al., 2011; 
Teunissen et al., 2009). A recent study has found serum NFL as a sensitive and 
clinically useful blood biomarker to monitor the disease activity and disability in MS 
patients and as well as the marker of therapeutic responses of MS therapies (Disanto 
et al., 2017; Novakova et al., 2017). In addition, increased levels of serum NFL in 
CIS patients was found to be associated with T2 hyperintense and gadolinium-
enhancing lesions and with disability status (Disanto et al., 2016; Disanto et al., 2017). 
CSF NFL in CIS patients was also shown to be associated with gadolinium-
enhancing lesions in MRI and displayed the predictive and prognostic potential for 
conversion and measurement of disease outcomes (Salzer et al., 2010; Teunissen et 
al., 2009). A recent study has highlighted the potential of serum NFL as a biomarker 
for subclinical MRI activity and treatment response in RRMS (Varhaug et al., 2017). 
Apart from MS, increased neurofilaments levels are also found in other conditions 
such as in Alzheimer disease (Bacioglu et al., 2016), fronto-temporal dementia 
(Meeter et al., 2016), and motor neuron diseases (Steinacker et al., 2016). 

Anti-microbial antibodies are regarded as clinically useful biomarkers in MS. 
Among them are anti-EBNA-1 antibodies against EBV nuclear antigen-1 (Farrell et 
al., 2009; Lunemann & Ascherio, 2009), and anti-HHV antibodies against human 
herpesvirus type 6 (Alenda et al., 2014; Leibovitch & Jacobson, 2014; 
Pormohammad et al., 2017). Elevated levels of these antibodies have been reported 
in MS (Leibovitch & Jacobson, 2014; Lunemann & Ascherio, 2009; Lunemann et al., 
2010; Skorstad et al., 2009). CSF-restricted IgG directed against neurotropic viruses 
such as measles, rubella, and varicella zoster (VZV), together called as MRZ have 
predictive values for CIS-CDMS conversion (Brettschneider et al., 2009). 
Approximately 80% of MS patients have antibodies against MRZ in CSF 
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(Felgenhauer & Reiber, 1992), and measles virus antibody index was shown to be 
associated with increased EDSS score and presence of Gd-enhancing lesions 
(Rosche et al., 2012). A recent study has reported the prevalence of positive MRZR 
(MRZ reaction that is composed of the three antibody indices against measles, 
rubella, and VZV) in PPMS and RRMS confirming its diagnostic potential in 
separating both MS subtypes from other inflammatory neurological diseases 
(Hottenrott et al., 2017). 

8-iso-PGF2 , a well-recognized isoprostane in CSF, is regarded as a biomarker 
of disease activity and oxidative stress in MS (Mir et al., 2014). Some studies have 
also reported relative production of 8-iso-PGF2  in serum and urine samples of MS 
patients (Greco et al., 1999; Mattsson et al., 2007; Miller et al., 2011; Sbardella et al., 
2013). ROS and NO lead to oxidative stress in MS and are responsible for the 
mitochondrial damage and tissue hypoxia in MS (Van der Goes et al., 2001). Elevated 
CSF levels of NO was reported in CSF of MS patients and correlated with disease 
activity and disability progression (Rejdak et al., 2004), and also increased urinary 
NO metabolites was shown to be associated with early and relapsing MS 
(Giovannoni et al., 1998; Giovannoni et al., 1999). 

Neutralizing antibodies are used as biomarkers to identify therapeutic response to 
IFN-  treatment. Based on clinical experience, 40% of patients treated with IFN-  
are non-responders to therapy (Rudick et al., 2004). Development of these 
neutralizing antibodies leads to therapeutically poor outcome and alleles such as 
HLA-DRB1*0401, 0408, and 1601 were shown to be associated with the higher risk 
of developing these antibodies (Buck et al., 2011). Quantification of myxovirus-
resistance protein A (MxA) is an established tool in clinical practice for predicting 
the treatment non-response for IFN-  therapy (Polman et al., 2010). MxA usually 
upregulates upon IFN-  injection, however, the presence of anti-IFN-  neutralizing 
antibodies attenuates the treatment response (Polman et al., 2010). Likewise, 
neutralizing antibodies against NTZ-treatment are used to identify non-responders 
to this drug, and these antibodies have been found in 4.5-14.1% of NTZ-treated MS 
patients, 12 weeks after initiation of NTZ therapy (Calabresi et al., 2007; Sorensen 
et al., 2011). Apart from neutralizing antibodies, CSF fetuin-A (Harris et al., 2013) 
and circulating CD49d expression (Defer et al., 2012) have been considered as 
emerging candidate biomarkers to determine the therapeutic efficacy of NTZ 
treatment. 
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3 AIMS OF THE STUDY 

The specific aims of the study were: 

1. To identify the biomarker potential of sL-selectin for predicting the 
developing risk of PML in NTZ-treated MS patients (Study I) 
 

2. To evaluate the presence and prevalence of JC virus encoded 
miRNAs in plasma of NTZ-treated MS patients and to investigate 
their biomarker potential for developing risk of PML (Study II) 
 

3. To assess circulating levels of CD26 and CD30 in sera as biomarkers 
of MS subtypes, and relation to inflammatory disease activity and 
disability in MS patients (Study III) 
 

4. To assess the relative gene expression of death receptors (DR3, 
DcR3) and ligand (TL1A) as biomarkers in MS, and to detect their 
association with MS subtypes, inflammatory disease activity and 
disability in MS patients (Study IV) 
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4 PATIENTS AND METHODS 

4.1 Clinical characteristics of patients and ethical considerations 

The Studies I-IV included in total 315 subjects, of whom 137 were MS patients, 19 
CIS patients and 159 were healthy controls. RRMS patients who were included in 
Studies I-II were enrolled consecutively from four Finnish MS centers (Tampere, 
140 patients; Helsinki, 114 patients; Seinäjoki, 98 patients; and Turku, 54 patients) 
between January 2012 and February 2013. These same patients participated in our 
Studies I-II and were selected based on the current treatment, NTZ or IFN-beta.   
These patients originally participated in the study of anti JC virus seroprevalence in 
a Finnish MS cohort (Kolasa et al., 2015). Studies III-IV included the same patients 
and were enrolled from Tampere University Hospital with different subtypes 
including also the CIS patients. CIS patients (n=19) included in Study III, after 4 
years of clinical follow-up, 10 patients converted to RRMS. 

Patients were diagnosed as clinically definite MS and the diagnosis was based on 
the revised Mc Donald’s criteria and the (Polman et al., 2005; Polman et al., 2011). 
All patients underwent neurological examination and blood samples were collected 
on the same day. Neurological disability was quantified by the expanded disability 
status scale (EDSS) score, which was developed by John F. Kurtzke (Kurtzke, 1983). 
The Ethics Committee of Tampere University Hospital approved the study, and all 
subjects gave informed consent. The healthy subjects had no history of any 
neurological disorders or immune-mediated illness. Clinical disease activity was 
evaluated by counting the number of relapses preceding two years of study (Studies 
I-IV). MRI disease activity was assessed by the detection of gadolinium-enhancing 
T1 lesions and volumes of fluid attenuation inversion recovery (FLAIR) lesions 
(Study IV). Disease progression index (PI) was calculated as EDSS/disease duration, 
and annualized relapse rate (ARR) was calculated as the number of total 
relapses/disease duration. Clinical characteristics of patients in each study are shown 
in Table 4. 
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Table 4.  Clinical characteristics of MS patients enrolled for study I – IV 

Abbreviations: Ab: antibody, CIS: clinically isolated syndrome, EDSS: expanded disability status scale, GA: glatiramer acetate, 
HCs: healthy controls, IFN- : interferon- , JCPyV: John Cunningham virus, NA: not applicable, NT: no treatment, NTZ: 
Natalizumab, PPMS: primary progressive MS, RRMS: relapsing-remitting MS, SPMS: secondary progressive MS 
aNumber of patients  
bMean ± SD (range)  
cTwo years before starting Natalizumab 
dMedian (range) 
eAnti-JCPyV antibody index of seropositive patients only 

Study I : Soluble L-selectin measurement for PML risk assessment   
Patients cohorts (RRMS) NTZ-treated IFN- -treated HCs   
Number of Patients 44 30 25   
Sex (F/M)a 34/10  21/9 19/6   
Age (years)b 38.2±7.8 (23-52) 35.5±9.9 (20-53) 33.2±11.0 (22–60)   
Disease duration from diagnosis (years)b 9.1±5.3 (1.8–22.4) 4.6±5.4 (0.2-18.1) -   
EDSSb 2.7±1.9 (0-6.5) 1.4±1.6 (0-6.0) -   
Number of relapsesb,c 1.9±1.0 (1-4) - -   
Duration of treatment (years)b 2.8±1.5 (0.4-5.8) 2.5±2.8 (0-13.1) -   
Anti-JCPyV Ab index d 0.3 (0.1-3.1) 0.3 (0.1-2.9) -   
Anti-JCPyV Ab seropositivitya 21 (48%) 13 (43%) -   
JCPyV-positive Ab index d,e 1.1 (0.3-3.1) 1.9 (0.7-2.9) -   
Study II : Analyses of  JC virus microRNAs for PML risk assessment   
Patients cohorts (RRMS) NTZ-treated IFN- -treated HCs   
Number of Patients 49 28 25   
Sex (F/M)a 38/11 20/8 18/7   
Age (years)b 38.3±7.6 (23–52) 35.6±10 (20–53) 33.3±11.3 (22–60)   
Disease duration (years)b 9.2±5.3 (1.8–22.4) 4.3±5.1 (0.2–18.1) –   
EDSSb 2.6±1.8 (0–6.5) 1.3±1.3 (0–5.5) –   
Number of relapsesb,c 2.0±1.0 (0–4) – –   
Duration of treatment (years)b 2.8±1.4 (0.4–5.8) 2.5±3.0 (0.1–13.1) –   
Anti-JCPyV Ab seropositivitya 24 (49%) 12 (43%) –   
JCPyV-positive Ab index d,e 1.0 (0.3–3.1) 1.9 (0.7–2.9) –     
Study III : Soluble CD26 and CD30 molecules for disease activity assessment in MS     
MS subtypes CIS  RRMS  SPMS  PPMS HCs 
Number of Patientsa 19 39 19 - 60 (sCD30) 
     58 (sCD26) 
Gender (F/M) a 17/2 27/12 12/7 - 39/21; 33/25 
Age (years)b 35.0 ± 9.0 37.4 ± 8.7 49.1 ± 8.6 -  
Disease duration  (years)b NA 3.9 ± 3.8 11.7 ± 9.7 -  
EDSSb 0.1 ± 0.3 1.4 ± 1.5 4.7 ± 1.8 -  
Number of relapsesa,c     -  
0 4 12 15 -  
1 13 12 2 -  
2 to 5 2 15 2 -  
Therapy (NT/ IFN /GA)a NT 19/18/2 19/0/0 -   
Study IV : DR3, DcR3, and TL1A gene expressions in MS for disease activity assessment in MS   
MS subtypes CIS RRMS SPMS PPMS HCs 
Number of Patientsa 11 30 8 9 16 
Gender F/Ma 9/2 23/7 5/3 6/3 11/5 
Age (years)b,d 35.4±10.2 (23-53) 36.6±10.3 (19-54) 51.3±8.3 (39-62) 60.7±8.0 (46-73) - 
Disease duration (years)b,d NA 4.0±3.9 (0.0±13.7) 16.3±11.0 (1.4±32.4) 18.7±8.2 (3.3-27.2) - 
EDSSb,d 0.2±0.4 (0-1) 1.7±1.9 (0-7) 5.6±2.0 (2.0-7.5) 4.8±1.8 (1.5-6.5) - 
Total relapsesb,d 1.6±0.9 (0-3) 5.7±3.9 (0-17) 7.8±8.0(0-22)  - 
Relapses preceding two yearsb,d 0.8±0.6 (0-2) 1.7±1.7(0-7) 0.0±0.0  - 
Annualized relapse rateb,d 0.0±0.0 2.0±1.6 (0-6.4) 0.4±0.4 (0-1)  - 
Treatment (NT/IFN/GA/MX)a NT 0/17/1/1 0/0/0/0 0/0/0/0 - 
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4.2 Molecular methods 

4.2.1 Blood sample collection (Studies I-IV) 

Venous blood was collected into three separate tubes: i) covered test tube (BD 
Vacutainer® SST II Plus plastic serum tube, 8.5 ml) for serum preparation, ii) 
EDTA-treated tubes (BD Vacutainer® Plus plastic whole blood tube, 10 ml) for 
plasma preparation and iii) CPT tubes (BD Vacutainer® CPT™ Cell Preparation 
Tube with Sodium Citrate) for peripheral blood mononuclear cells (PBMC) 
separation. Serum and plasma were isolated by centrifugation at 2000 x g for 10 min 
and stored at -80oC until use. PBMCs were separated using CPT tubes according to 
the manufacturer’s protocol. Thereafter cells were lysed with lysing buffer for RNA 
isolation and stored -80oC until use. Sera samples were used for Studies I and III, 
plasma was used for Study II, and PBMCs were used for Study IV. 

4.2.2 Enzyme-linked immunosorbent assay (Articles I-III) 

4.2.2.1 ELISA for soluble L-selectin, CD26 and CD30 determination (Studies I-II) 

sL-selectin in sera was determined by commercially available quantitative ELISA kits 
according to the manufacturer's protocol (#BBE4B; Quantikine, R&D Systems 
Europe Ltd, Abingdon, United Kingdom). Briefly, serum samples with 1:100 
dilutions were added on the 96-wells microtiter plate, which were pre-coated with a 
monoclonal antibody specific for human serum L-selectin and incubated for an hour 
RT. Thereafter, horseradish peroxidase (HRP) conjugated polyclonal antibody 
specific for human L-selectin, was then added in the wells. TMB 
(Tetramethylbenzidine) substrate was added in the plate and the blue color was 
allowed to develop for 30 mins. Later, the color development was stopped by adding 
hydrochloric acid (HCl). The absorbances were measured at wavelength of 450 nm 
on a Multiskan MS version 4.0 spectrophotometer (Labsystems, Helsinki, Finland). 
Samples from all MS subtypes and healthy controls were included in each 96 well 
plate in order to minimize the inter-assay variation between the plates, and also the 
similar batch of reagents was used. The intra- and inter-assay coefficients of variation 
for the sL-selectin assay was 4.1% and 7.1%, respectively. The minimum detection 
limit for sL-selectin ELISA according to assay protocol was 0.3 ng/mL. 
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The levels of sCD26 and sCD30 in sera were measured using ELISA according 
to the manufacturer’s protocol (Human sCD26 Platinum ELISA BMS235CE and 
Human sCD30 instant ELISA BMS240INSTCE; eBioscience, Bender Med Systems 
GmbH, Vienna, Austria). The assay was performed in the same way as L-selectin 
(Study I). The concentration of molecules was measured by the absorbance reader 
Labsystems Multiskan® MCC/340 by setting 450 nm as a primary wavelength and 
620 nm as a reference wavelength. A standard curve was made for each run using 
four parameters logistic for curve fitting (Ascent™ Software 2.0, Thermo Scientific). 
Sensitivity of sCD26 and sCD30 assays was 7.3 ng/ml and 0.33 ng/ml, respectively. 
Intra- and inter-assay reproducibility of sCD26 assay was measured using pooled 
plasma samples (coefficient of variation 9.3%, n=9 and 34.7%, n=10). Inter-assay 
reproducibility of sCD30 assay was evaluated using pooled plasma sample (3.6%, 
n=2). 

4.2.2.2 Second generation ELISA (STRATIFY JCPyV™ DxSelect) for anti-JCPyV 
antibody measurement (Studies I, III) 

The validated second generation ELISA, also known as the confirmatory second 
generation ELISA (STRATIFY JCPyV™ DxSelect™) was used to determine the 
anti-JCPyV antibody levels in serum or plasma, in RRMS patients treated with NTZ. 
The test was performed at Unilabs, Copenhagen, Denmark. The technique is 
licensed exclusively from Biogen and the test is not intended for donor screening. A 
screen index value of less than 0.2 was considered anti-JCPyV antibody negative, and 
of greater than 0.4 as anti-JCPyV antibody positive. The samples with a screen index 
between 0.2 and 0.4 were evaluated with a supplementary confirmatory inhibition 
test, and samples showing greater than 45% inhibition in blocking with specific 
antigen were classified as anti-JCPyV antibody positive (Lee et al., 2013). The 
detailed laboratory procedure is available at the manufacturer’s website 
https://www.focusdx.com/pdfs/pi/OUS/EL1950.pdf. 

4.2.3 Luminex assay for determination of cytokine levels (Study III) 

The levels of IL-10, IFN-  and TNF-  were measured with High Sensitivity Human 
cytokine LINCOplex kit (Linco Research). The data were collected and analyzed 
using Bio-Plex suspension array system and Bio-Plex Manager software 4.1 (Bio-Rad 
Laboratories, California, USA). A four-parameter regression formula was used to 
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calculate the sample concentration from Human cytokine LINCOplex kit. Samples 
from all MS subtypes and healthy controls were included in each 96 well plate in 
order to minimize the inter-assay variation between the plates, and also the similar 
batch of reagents was used. According to the manufacturer, the inter- and intra-assay 
values were <15%. The percent recovery of standards that was used as a detection 
limit for each protein ranged from 90% to 110%. The lower detection limits for IL-
10, TNF- , and IFN-  was 0.13 pg/ml. 

4.2.4 RNA extractions (Studies II and IV) 

For Study III, total RNA was extracted from 620 l of plasma using the mirVana™ 
PARIS™ RNA and native Protein Purification Kit (Ambion, Thermo Fisher 
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. Total 
RNA was eluted into 95 l of elution solution and spiked with 5 l of cel-39-3p 
miRNA (5 fmol/ l, Integrated DNA Technologies, Coralville, IA, USA). The use of 
synthetic Caenorhabditis elegans miRNA was to control the success of reverse 
transcription (RT) and miRNA amplification, as well as for normalization of results. 
For Study IV, total RNA was isolated from the PBMCs with a Qiagen RNeasy plus 
mini kit (QIAGEN GmbH, Hilden, Germany) according to the manufacturer's 
protocol. The total RNA was eluted with nuclease-free water, and samples were 
stored at  80 °C until use. 

4.2.5 Reverse transcription (Studies II and IV) 

For Study III, TaqMan miRNA assay was used for reverse transcription (RT) and JC 
virus miRNA detection (Thermo Fisher Scientific). The specific targets were JCPyV-
miR-J1-5p, bkv-miR-B1-3p/JCPyV-miR-J1-3p (identical sequences), and cel-miR-
39-3p. Each 15 l RT reaction mixture contained 1× RT buffer, 0.25 mM of each 
dNTP, 1× RT primer, 3.33 U/ l MultiScribe RT enzyme, 0.25 U/ l RNase 
inhibitor, and 10 ng of total RNA. RT reactions were incubated 30 min at 16 °C, 30 
min at 42 °C, and 5 min at 85 °C. If real-time PCR was performed directly after RT, 
the tubes were cooled to 4 °C, but for longer storage, the reactions were placed in 

20°C manufacturer’s protocol. For Study IV, total RNA (1 g) was reverse 
transcribed to cDNA in a 20 l reaction volume using a High Capacity cDNA 
reverse transcription kit (Applied Biosystems, Foster City, CA, USA) with the 
standard protocol. RT reaction mixture contained 2 l of 10x RT buffer, 0.8 l of 
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25x dNTP Mix, 2 l of 10x random hexamer primers, 1 l of 50 U/ l MultiScribe 
RT enzyme, 4.2 L of RNase-free water, and 10 l of extracted RNA solution in 
RNase-free water. cDNAs were stored in -20°C until use. 

4.2.6 Quantitative real-time PCR (RT-qPCR) (Studies II and IV) 

For PCR amplification of JC virus-encoded miRNAs in Study II, the Applied 
Biosystems® 7500 Real-Time PCR System (Thermo Fisher Scientific) was used. 
Each 10 l RT reaction contained 1.3 l of diluted (1:2) RT reaction, 1× TaqMan® 
assay mixture, and 1× TaqMan® Universal Master Mix II, no UNG (Thermo Fisher 
Scientific). All miRNA assays were performed in three replicate reactions in the 
following conditions: enzyme activation in 95 °C for 10 min, after which 40 cycles 
of 15 s denaturation in 95 °C and 1 min annealing and extension in 60 °C was 
performed. In each 96-microwell plate, three replicate no template controls (NTC) 
were run for each master mix. The functionality of the miRNA assays was confirmed 
using synthetic oligonucleotides (Integrated DNA Technologies) representing the 
target sequence of each specific miRNA assay as templates.The relative miRNA 
expression was calculated by using standard delta delta Ct (2 Ct) method. 
Further information on miRNA assays are provided in Table 5. 

Table 5.  MiRNA assay information (Study II) 
miRNA Assay name Assay 

ID 
Mature miRNA 
Sequence 

Details are available at 

jcv-miR-J1-5p jcv-miR-J1-5p 007464
_mat 

UUCUGAGAC
CUGGGAAAA
GCAU 

https://www.thermofisher.com/order/genome-
database/details/microrna/007464_mat?CID=&ICID=&s
ubtype= 

jcv-miR-J1-3p/bkv-
miR-B1-3p 

bkv-miR-B1-3p 006801
_mat 

UGCUUGAUC
CAUGUCCAG
AGUC 

https://www.thermofisher.com/order/genome-
database/details/microrna/006801_mat?CID=&ICID=&s
ubtype= 

cel-miR-39 cel-miR-39 000200 UCACCGGGU
GUAAAUCAG
CUUG 

https://www.thermofisher.com/order/genome-
database/details/microrna/000200?CID=&ICID=&subty
pe= 

 
Likewise, in Study IV, gene expression of DR3, DcR3, TL1A and GAPDH were 

analyzed with TaqMan assays using the Applied Biosystems® 7900 Real-Time PCR 
System (Thermo Fisher Scientific). Other related information on these assays are 
provided in Table 6.  Each PCR reaction was performed in 10 l reaction volume in 
the 384 well plate, which contained 0.5 l of 20x TaqMan® Gene Expression Assay, 
5 l of 2x TaqMan® Gene Expression Master Mix (Thermo Fisher Scientific), 2.5 
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l of RNase/DNase free water and 2 l of cDNA. Samples were run in three 
replicates and NTCs were run in each run. Quantitative-PCR reactions were run 
under standard conditions: initial denaturation at 95°C for 10min, after which 40 
amplification cycles of 15sec denaturation in 95°C and 1min annealing and extension 
in 60°C. The gene expression data were analysed with RQ manager software 
(Applied Biosystems) using the comparative Ct method ( Ct). The housekeeping 
gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize 
the results, and a HC sample, in each plate, was used as a calibrator in the data 
analysis.  

Table 6.  Information related to gene expression assays (Study IV) 
Gene (Gene symbol) Assay ID Cat# Details are available at 

DR3 (TNFRSF25) Hs00980365_g1  4331182 https://www.thermofisher.com/taqman-gene 
expression/product/Hs00980365_g1?CID=&ICID=&subtype= 

DcR3(TNFRSF6B) Hs00187070_m1 4448892 https://www.thermofisher.com/taqman-gene-
expression/product/Hs00187070_m1?CID=&ICID=&subtype= 

TL1A (TNFSF15) Hs00270802_s1 4331182 https://www.thermofisher.com/taqman-gene-
expression/product/Hs00270802_s1?CID=&ICID=&subtype= 

GAPDH Hs99999905_m1 4331182 https://www.thermofisher.com/taqman-gene-
expression/product/Hs99999905_m1?CID=&ICID=&subtype= 

 

4.2.7 Magnetic resonance imaging (Study IV) 

All MRI examinations were performed on a 1.5 Tesla MRI Unit (Siemens Avanto, 
Erlangen, Germany). The MRI protocol included a T1-weighted header followed by 
an axial T1-weighted magnetisation prepared rapid gradient echo (MP-RAGE), and 
a T2-weighted turbo spin echo (TSE), fluid attenuation inversion recovery (FLAIR), 
magnetisation transfer contrasts (MTC), diffusion weighted imaging (DWI), and 
gadolinium-enhanced T1-weighted MP-RAGE sequences. T1-weighted MP-RAGE, 
FLAIR and T2-weighted TSE images were used for volumetric analysis. For MP-
RAGE, the imaging parameters were as follows: repetition time (TR) = 1160 ms; 
echo time (TE) = 4.24 ms; inversion time (TI) = 600 ms; slice thickness = 0.9 mm; 
and in-plane resolution = 0.45  0.45 mm. In FLAIR, the following parameters were 
used: TR = 8500 ms; TE = 100 ms; TI = 2500 ms; slice thickness = 5.0 mm; and in-
plane resolution = 0.45  0.45 mm. In TSE, the following imaging scheme was used: 
TR = 750 ms; TE = 115 ms; slice thickness = 3.0 mm; and in-plane resolution = 
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0.90  0.90 mm. Volumetric segmentation of plaques in the brain was performed 
using semiautomatic Anatomatic™ software operating in a Windows environment, 
and the images were blindly analysed. 

4.2.8 Statistical analyses (Studies I-IV) 

Statistical analyses were performed using SPSS version 16.0 for Windows in Study I, 
SPSS version 18.0 in Study III, and version 22.0 in Studies II and IV (SPSS Inc., 
Chicago, IL, USA). GraphPad Prism 7.03 was used to prepare figures in Studies II-
IV. A non-parametric, two-tailed Mann–Whitney U test was used to compare the 
differences between the clinical parameters of patients and levels of sL-selectin, 
relative expression of JC virus miRNAs, sCD26 and sCD30, and relative expression 
of DR3, DcR3, and TL1A genes, in different study groups (Studies I-IV). Spearman’s 
correlation coefficient was used to analyze the association of levels of sL-selectin and 
JCPyV miRNA expression with anti-JCPyV antibody indices. Further, correlation 
was explored between the disease profiles of patients and different immune 
molecules (Studies III-IV). Differences in the detection rate of JCPyV miRNAs 
between different groups of patients treated with NTZ and IFN- , and HCs were 
assessed using Fisher’s exact test in Study II. Moreover, a linear regression model 
was used to observe the correlation between relative 5p JCPyV miRNA expression 
levels and anti-JCPyV antibody indices in Study II. In Studies I-IV, a p-value less 
than 0.05 was considered statistically significant. In Study IV, the p-value from each 
analysis was corrected for multiple group comparisons using the Benjamini and 
Hochberg method to control the false discovery rate (FDR) at a level of 0.05 
(Benjamini & and Hochberg, 1995). For correlation analyses, Spearman's correlation 
coefficient was used to explore the association between relative gene expression 
levels and clinical or MRI parameters. A p-value less than 0.05 was considered 
statistically significant. 
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5 RESULTS 

5.1 Biomarkers for detecting PML risk in natalizumab-treated 
RRMS patients (Study I-II) 

5.1.1 Soluble L-selectin in sera as a biomarker for developing PML risk (I) 

In Study I, the levels of sL-selectin were determined in patients treated with NTZ, 
IFN- , and HCs. The results showed no difference in sL-selectin levels between 
these study groups (Figure 4A). In addition, there was no difference between the 
levels of JCPyV seropositive and JCPyV seronegative patients in NTZ-treated 
(1330.5±476.2 vs. 1076.0±500.9 ng/ml (mean±SD); p=0.10) or IFN- -treated 
groups (1225.5±611.4 vs. 1403.6±575.9 ng/ml (mean±SD); p=0.28). When NTZ-
treated patients were classified based on their anti-JCPyV antibody index into groups 
with high risk for developing PML (anti-JCPyV antibody index higher than 1.5, n=8) 
and low risk group for developing PML (anti-JCPyV antibody index 1.5, n=36), the 
levels of sL-selectin was found to be significantly higher in the high-risk group 
compared to that with low risk group for developing PML (1621.3±506.9 vs. 
1103.3±453.2 ng/mL (mean±SD); p=0.01, Figure 4B). 

 

Figure 4.  The levels of sL-selectin did not differ between the NTZ-, IFN- -treated or HC, B. The levels of sL-
selectin were significantly higher in the high-risk group compared to that with low risk group for 
developing PML in NTZ-treated patients. (Modified with permission from (Basnyat et al., 2015a). 
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Correlation analyses showed a positive correlation between the levels of sL-
selectin and the anti-JCPyV antibody indices in all NTZ-treated patients (r=0.402; 
p= 0.007; n=44, Figure 5A), but not in the IFN- -treated patients (r= 0.262; 
p=0.161; n=30; Figure 5B). In approximately 80% of NTZ-treated (34/44) patients 
who were treated for more than 18 months, sL-selectin levels correlated with anti-
JCPyV antibody indices (r=0.385; p=0.025; n= 34; Figure 5C), and the strength of 
this correlation increased specially among JCPyV seropositive patients treated for 
more than 18 months (r=0.529; p=0.043; n=15; Figure 5D). No significant 
correlations between sL-selectin and anti-JCPyV index were found when JCPyV 
seropositive (r=0.356 p=0.113, n=21) and JCPyV seronegative (r=0.360; p=0.092; 
n=23) NTZ-treated patients were analysed as separate groups. There was no 
correlation between anti-JCPyV antibody index and treatment duration in patients 
treated with either NTZ-or IFN- . 

 

  

Figure 5.  Correlation analyses between sL-selectin and the anti-JCPyV antibody index in (A) NTZ-treated 
patients, (B) IFN- -treated patients, (C) Long-term NTZ-treated (>18 months) patients and (D) JCPyV 
seropositive long-term (>18 months) NTZ-treated patients. (Reproduced with permission from 
(Basnyat et al., 2015a). 
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5.1.2 JC virus-encoded microRNAs in plasma as the biomarker for 
developing PML risk (II) 

The presence of JCPyV-encoded 5p and 3p miRNAs was studied in altogether 102 
plasma samples from 77 RRMS patients and 25 HCs. The overall detection rate for 
5p miRNA among NTZ-treated patients, IFN- -treated patients, and HCs was 
found to be similar (Table 7). Furthermore, the detection rate of 5p miRNA among 
JCPyV seropositive and seronegative patients treated with either NTZ or IFN-  was 
also found to be similar (Table 7). Surprisingly, the rate of 5p miRNA detection 
among JCPyV seronegative patients treated with NTZ was higher than among IFN-
-treated patients (Table 7), although the difference was not statistically significant 

(p > 0.5). True positive 3p miRNA signals could not be indisputably detected in any 
of the samples. 

Table 7.  JCPyV-miR-J1-5p detection rates in the different patient groups. The overall detection rate 
among all groups was 85/102 (83%) 

 All MS patients NTZ-treated IFN- -treated HCs p-value 

All 62/77 (80.5%) 41/49 (84%) 21/28 (75%) 23/25 (92%) >0.5 

JCPyV Ab+ 30/36 (83%) 20/24 (83%) 10/12 (83%) NA >0.5 

JCPyV Ab- 32/41 (78%) 21/25 (84%) 11/16 (69%) NA >0.5 
JCPyV Ab+ anti-JCPyV antibody positive 
JCPyV Ab- anti-JCPyV antibody negative 
NA Not available. (Reproduced with permission from (Basnyat et al., 2017). 

 
Relative 5p miRNA expression levels were studied in different patient cohorts: 

The 5p miRNA expression levels were found to be similar in the whole MS cohort 
compared to HCs (p=0.06, Figure 6A). In groups based on treatment, the expression 
levels were found to be lower in NTZ-treated patients as compared to patients 
treated with IFN-  (p=0.027) but not as compared to HCs (p=0.454, Figure 6A). 
IFN- -treated patients had relatively higher levels of 5p miRNA than NTZ or HCs 
as shown by fold change (p=0.001, Figure 6A). 5p miRNA expression levels between 
JCPyV seropositive and seronegative patients in the different MS cohorts, treated 
either with NTZ- or IFN- , were similar (p>0.5). When NTZ-treated patients were 
further classified as high risk or low risk for developing PML as in Study I, the levels 
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of 5p miRNA expression did not differ between the high-risk group and low-risk 
group of developing PML (p=0.38). 

 

Figure 6.  (A) Scatterplot of relative JCPyV-miR-J1-5p expression levels. Bars indicate mean ± standard 
deviation. The values on the y-axis reflect fold change of 5p miRNA expression among individual NTZ-
treated patients and IFN-beta-treated patients as compared to HCs. (B) Relationship between JCPyV 
miRNA expression and anti-JCPyV antibody index. (Modified with permission from Basnyat et al., 
2017). 

Association between plasma 5p miRNA levels and anti-JCPyV antibody index 
was further studied by correlation analyses along with other clinical characteristics 
of MS patients (age, disease duration, drug duration, and EDSS). There were no 
significant correlations found between 5p miRNA expression and clinical 
characteristics of patients. Among all NTZ-treated patients (n = 49), and patients 
who had been treated more than 18 months (n = 40), 5p miRNA expression did not 
correlate with anti-JCPyV antibody index. Interestingly, a significant inverse 
correlation between 5p miRNA expression and anti-JCPyV antibody index was 
found in those patients (n = 19) who had been treated long-term with NTZ and 
were JCPyV seropositive (r = 0.756, p=0.002, Figure 6B). The mean duration of 
NTZ treatment among JCPyV seropositive MS patients was 3.0 years (SD ±1.3 
years, range 1.6–5.3 years). Moreover, further analyses by linear regression model 
showed that the observed correlation between relative 5p miRNA expression levels 
and anti-JCPyV antibody indices was not affected when adjusted for age, sex, or for 
both. 
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5.2 Immune cells as biomarkers for MS subtypes, inflammatory 
disease activity and disability in MS patients (Study III-IV) 

5.2.1 Soluble CD26 and CD30 levels and association with MS clinical 
spectrum 

In all the study groups (CIS, RRMS and SPMS), the levels of sCD26 and sCD30 
were found to be higher than in the controls (Figures 7A-B), although no differences 
were detected between the disease subtypes. Among the 19 CIS patients, 10 
converted patients showed increased levels of sCD30 compared to controls (23.0 ± 
6.4 vs 16.3 ± 7.4 ng/mL, p= 0.009), whereas no difference was observed between 
unconverted patients and controls (Figure 7C). The levels of sCD26 did not differ 
in converted CIS patients when compared with controls and unconverted CIS 
patients (891.1 ± 145.2 vs 778.4 ± 237.7 ng/mL, p=0.086; 891.1 ± 145.2 vs 911.4 
±135.9ng/mL, p=0.905). Moreover, the levels of cytokines IL-10, TNF-  and IFN-
 in sera did not differ between the MS subtypes and controls (p > 0.05). 

  

Figure 7.  Different levels (mean ± SD) of (A) sCD26 and (B) sCD30 in patients with CIS, RRMS, SPMS and 
HCs. (C) sCD30 levels in converted and unconverted CIS patients. (D) sCD30 levels in DMT-treated 
and untreated RRMS patients. (Reproduced with permission from (Basnyat et al., 2015b). 

To evaluate whether the sCD26 and sCD30 reflect the inflammatory disease 
activity in MS, their levels were further correlated with cytokines IL-10, TNF-  and 
IFN- . The levels of IL-10 correlated positively with the level of sCD30 in the MS 
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group (RRMS and SPMS) (r = 0.583, p < 0.0001, n = 43; Figure 8A), but the levels 
of sCD26 and sCD30 did not show any correlation with other cytokines analyzed. 
Correlation analyses were performed between sCD30 and sCD26, and the result 
showed a weak, but statistically significant positive correlation between these 
molecules, including both in RRMS and SPMS patients (r = 0.262, p = 0.046, n = 
58; Figure 8B). Furthermore, investigation of association of sCD26 and sCD30 with 
pre-study disease activity (number of relapses) and EDSS scores, showed no 
significant correlation between these molecules and clinical measures in patients. 
Because half of the RRMS patients (51%) were treated with DMTs (Table 4), the 
effect of treatment was explored on these molecules. The results showed 
significantly higher levels of sCD30 in treated RRMS patients compared with 
untreated patients (26.4 8.0 vs 20.5 ± 9.4 ng/mL, p = 0.016; Figure 7D). 

 

 

Figure 8.  Correlation analysis between the levels of (A) sCD30 and interleukin IL 10 and between the levels of 
(B) sCD30 and sCD26 in MS patients. (Modified with permission from Basnyat et al., 2015b). 

5.2.2 Gene expression profiles of Tumor Necrosis Factor-like Cytokine 
TL1A and its Receptors DR3 and DcR3 in MS 

 
Relative gene expression levels of DR3, DcR3, and TL1A were compared among 

study groups, which revealed significantly lower expression level of TL1A in 
relapsing onset MS group as compared to patients with CIS, PPMS, and HCs 
(p<0.05, Figure 9C). Relapsing onset group includes RRMS patients and SPMS 
patients. Expression levels of DR3 and DcR3 did not differ between MS groups, 
CIS, and HCs (p>0.05, Figures 9A-B). Although relapsing onset MS showed lower 
levels of DR3 expression and higher levels of DcR3 expression compared to HCs 



 

63 
 

(p=0.034, p=0.032, respectively), these differences were not significant after p-value 
correction (Figures 9A-B). 

 

Figure 9.  Scatter plot showing the relative gene expression levels of DR3, DcR3, and TL1A in different MS 
patients, CIS and HCs. The bars indicate the median and interquartile range. 

Although the relapsing onset patients showed a lower expression of TL1A as 
compared to PPMS/CIS/HC groups, the subgroup analysis showed a significantly 
higher TL1A expression in patients with severe disability (EDSS from 3.5 to 7.5) 
compared to patients without disability (EDSS = 0)  (p=0.016). Such difference was 
not observed between patients with mild disability and no disability (p=0.578), or 
between patients with mild disability and severe disability (p=0.127, Figure 10). 

 

Figure 10.  Scatter plot showing the relative gene expression levels of TL1A in relapsing onset MS patients 
based on their EDSS. The bars indicate the median and interquartile range. 
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The effect of DMTs on gene expressions of DR3, DcR3, and TL1A, was 
compared among the relapsing onset MS patients who were treated and those who 
were treatment naïve. Those patients who were treated showed significantly 
decreased expression of DcR3 and TL1A compared to treatment naïve patients 
(p<0.01, n=19, Figures 11B-C) whereas DR3 expression did not differ between 
these groups (p=0.430, Figure 11A). 

 

Figure 11.  Relative DR3, DcR3, and TL1A gene expression levels among relapsing onset MS patients treated 
with immunomodulatory drugs versus those who were treatment naïve. The bars indicate the median 
and interquartile range. 

Moreover, the association of relative DR3, DcR3, and TL1A gene expression 
with clinical and MRI parameters was explored in different patient groups. Among 
the three genes analysed, only in relapsing onset MS, TL1A significantly correlated 
with EDSS score (r=0.387, p=0.016, n=37, Figure 12A), the volume of T1-weighted 
lesions (r=0.376, p=0.022, Figure 12B), FLAIR lesions (r=0.366, p=0.026, Figure 
12C), change in the volumes of FLAIR lesions (delta FLAIR) (r=0.422, p=0.009, 
Figure 12D), and the time from first symptoms (r=0.341, p=0.036, Figure 12E). 
Among CIS and PPMS patients, none of the genes reveal any correlations with 
clinical or MRI parameters. 
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Figure 12.  Association of TL1A gene expression to clinical (A. EDSS, E. Time from the first symptoms) and MRI 
(B. volumes of T1 lesions C. volumes of FLAIR lesions and D. Change in the volumes of FLAIR 
lesions) parameters. 
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6 DISCUSSIONS 

6.1 Biomarkers for the PML risk assessment in natalizumab-
treated MS patients 

The current PML risk stratification method mainly based on the measurement of 
anti-JCPyV antibody has proven not effective enough in the assessment of PML 
(Cutter & Stuve, 2014). Anti-JCPyV antibodies are present in approximately 60-80 
% of the healthy population, and 60–70% of the MS patients (Ferenczy et al., 2012; 
Kolasa et al., 2016; Olsson et al., 2013). However, reactivation of the JCPyV and the 
development of PML are rare events in healthy individuals (Ferenczy et al., 2012). 
Previous attempts mainly based on leukocyte cell membrane markers such as CD11a, 
CD49d, and CD62L still lack their clinical utility in the PML risk assessment (Basnyat 
et al., 2015a; Jilek et al., 2010; Schwab et al., 2013; Schwab et al., 2014). Moreover, 
even the detection of JCPyV DNA in the urine and blood samples from MS patients 
was much less sensitive than antibody measurement in ruling out the precise 
individual risk of PML (Rudick et al., 2010). A recent report has detected the NTZ-
related PML cases in those MS patients who were negative for JCPyV antibody 
(Gagne Brosseau et al., 2016). Therefore, due to these reasons, we evaluated soluble 
L-selectin and JCPyV miRNA as new biomarkers that would narrow down the in-
risk population and identify the individual patient with a higher risk of developing 
PML in NTZ-treated MS patients. 

6.1.1 L-selectin and prediction of the risk of PML 

To investigate the biomarker potential of sL-selectin for predicting the risk of PML, 
we analysed the levels of sL-selectin in sera obtained from NTZ-treated RRMS 
patients. The results showed a positive correlation between the levels of sL-selectin 
anti-JCPyV antibody indices in all MS patients treated with NTZ. Interestingly, this 
correlation was significantly stronger among those patients who were considered 
anti-JCPyV-antibody positive and treated with NTZ for more than 18 months. 
Long-term NTZ treatment duration and JCPyV antibody positive status are 
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considered as potent risk factors for developing the risk of PML in MS patients 
(Bloomgren et al., 2012).  Schwab et al. 2013, reported that lack of cellular L-selectin 
on the surface of CD4+ T cells was indicative of increased PML risk in MS patients 
treated with NTZ (Schwab et al., 2013). These authors further reported the positive 
correlation between cellular L-selectin expression and anti-JCPyV antibody index 
values in NTZ-treated patients (Schwab et al., 2014). Interestingly, low cell-surface 
L-selectin levels were shown to be associated with increased serum levels of sL-
selectin and this increased soluble level was due to the shedding of L-selectin from 
the cell surface. This phenomenon possibly explains the reduced leukocyte migration 
into CNS from the periphery (Jackson et al., 2005). This mechanism, therefore, 
explains our result of increased level of sL-selectin. Our observation of the positive 
correlation between increased sL-selectin levels and increased anti-JCPyV antibody 
indices only in NTZ-treated patients but not in IFN-beta treated MS patients 
suggests that sL-selectin measurement could be useful for the assessment of PML 
risk among those MS patients treated with NTZ. This observation is sustained 
further by our finding of increased sL-selectin level in those patients who have high 
anti-JCPyV antibody index (>1.5) and are considered at highest risk for developing 
PML (Lee et al., 2013). In fact, it would be therefore rational to measure the level of 
sL-selectin in the serum of those MS cohort included by Schwab et al., who lacked 
L-selectin on CD4+ T cells, and who later developed PML (Schwab et al., 2013). Our 
assumption is that they also would have increased levels of sL-selectin. Thus, our 
observations suggest a biological connection between shedding of cellular L-selectin 
from the cell surface and rising anti-JCPyV antibody levels in the blood of RRMS 
patients. This association indicates that NTZ-treatment influences two biological 
factors in serum: loss of L-selectin via shedding and rising JCPyV index values. 

Importantly, measurement of the soluble form of L-selectin in serum using an 
ELISA assay is comparatively easy, reliable and can be applied to any laboratory, 
then cellular L-selectin measurement on cryopreserved PBMCs using flow cytometry 
method which was used by Schwab et al. 2013. This method is technically demanding 
and prone to errors related such as during cell handling, which might lead to 
shedding (mechanical) of L-selectin from the cell surface, which may influence the 
purity of results. A study has reported that surface L-selectin is not a reliable 
biomarker for predicting PML risk because of the issues related to sample collection, 
processing procedure, and assay methodologies (Lieberman et al., 2016). 



 

68 
 

6.1.2 JCPyV encoded miRNAs: a potential new marker of PML 

This study evaluated the presence and prevalence of JC virus-encoded miRNAs in 
plasma of NTZ-treated MS patients and investigated their biomarker potential for 
developing risk of PML. Detection of viral miRNAs offers the new tool for the 
improved diagnosis, prognosis and risk assessment for chronic and persistent viral 
diseases (Auvinen, 2017). Earlier studies have proposed JCPyV miRNAs as potential 
biomarker of viral infection in gastrointestinal tract and these miRNAs were detected 
also in the brain tissues obtained from patients with PML (Link et al., 2014; Seo et 
al., 2008). Therefore, we evaluated the JCPyV encoded miRNAs in an attempt to 
assess its predictive potential as a new biomarker for the risk of developing PML in 
NTZ-treated MS patients. Human blood miRNAs have been studied for their 
biomarker potential in predicting NTZ-associated PML (Munoz-Culla et al., 2014) 
but studies utilizing the JC virus miRNAs as biomarkers are lacking. Recent studies 
have reported the frequent detection of JCPyV miRNAs, both JCPyV-miR-J1-5p 
and JCPyV-miR-J1-3p, in plasma, urine, and CSF of both anti-JCPyV antibody 
positive and anti-JCPyV antibody negative healthy subjects and patients with 
immunosuppression (Lagatie et al., 2014b; Pietila et al., 2015). Thus, these studies 
highlighted the possibility that the JCPyV miRNAs exhibit biomarker potential and 
could serve as PML risk assessment tool better than the method based on JCPyV 
serology. 

Our results showed that the 5p miRNA was detected in altogether 83% of plasma 
samples. Similar to the previous study, detection rate of 5p miRNA in our samples 
was similar between JCPyV seropositive and seronegative patients, which further 
sustain the previously reported finding that negative anti-JCPyV-antibody status 
does not exclude the possibility of absence of viral infection (Lagatie et al., 2014b). 
Higher levels of 5p miRNA was also reported in tissue samples of patients with 
colonic neoplasia compared to healthy individuals (Link et al., 2014), in PBMC and 
in exosomes from plasma and urine of NTZ-treated MS patients as compared to 
untreated and healthy individuals (Giovannelli et al., 2015). Although the exact 
mechanisms of JCPyV reactivation leading to PML lack experimental evidence, two 
main conceptions prevail: rearrangements may occur in the genome of persistent 
archetype form of virus either in B cells where immunoglobulin gene rearrangement 
machinery can be exploited or by the homologous recombination phenomenon 
taking place during virus replication. 

Asymptomatic reactivation of JCPyV may occur in NTZ-treated MS patients (Y. 
Chen et al., 2009), which may lead to the increased viral replication, rearrangements 
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of archetype form of virus, including putative alterations within the regulatory region 
NCCR of virus genome. JCPyV with archetype NCCR is usually present in 
asymptomatic individuals whereas viral strains with rearranged NCCR forms are the 
characteristics in PML (Martelli & Giannecchini, 2017). Several processes including 
increased transcription, DNA replication, and expression of viral gene products 
would enable the better detection of virus infection by both innate and adaptive 
immune systems of the host. On the other hand, substantial downregulation of 
archetype BK polyomavirus DNA replication was shown due to viral miRNA 
expression, aiding to maintain persistent virus in a healthy host despite a functional 
immune system (Broekema & Imperiale, 2013). In analogy, downregulation of 
miRNA expression could release viral early gene transcription and DNA replication 
from the negative regulation by miRNA and in the context of JCPyV, allow viral 
replication resulting in the formation/emergence of rearranged neurotropic strains. 
This could also explain our observation of lower expression of 5p miRNA of JCPyV 
in NTZ-treated patients as compared to IFN- -treated patients, although the 
expression levels were similar in comparison with healthy controls. 

Moreover, we observed an association of 5p miRNA level with JCPyV 
seropositivity in NTZ-treated MS patients. In a previous study, no such association 
between JCPyV DNA positivity in blood or urine, and a risk of developing PML 
among NTZ-treated MS patients was observed (Rudick et al., 2010). Although no 
reports are available to compare our result of correlation, two recent studies have 
detected similar inverse correlations of 5p miRNA expression with JCPyV T-Ag 
expression in colorectal cancer tissues (Link et al., 2014), and with JCPyV DNA load 
in blood and CSF of those HIV patients who were at risk of developing PML (Rocca 
et al., 2015). These observations confirm that miRNA expression may actually 
restrict replication of virus in order to suppress immune responses towards the virus 
by the host. 

Both studies on sL-selectin and JCPyV miRNAs have similar limitations, the 
absence of pre-PML or PML samples associated with the NTZ-treatment. Actually, 
only two NTZ- associated PML cases among MS patients, both deceased, were 
reported in Finland so far. It would be also interesting to measure levels of sL-
selectin and JCPyV miRNA expression in the prospective follow-up study on the 
same group of MS patients who were evaluated as patients with high risk for PML 
to see whether any of the patients developed eventual PML. Therefore, future 
studies, including PML samples, will have to determine the clinical relevance of sL-
selection and JCPyV miRNA as biomarkers for predicting PML risk associated with 
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NTZ-treatment in MS. It would be also interesting to measure some human 
miRNAs as well in NTZ-treated JCPyV seropositive MS patients.  

6.2 Novel immune molecules as biomarkers of MS disease 
spectrum 

6.2.1 Soluble CD26 and CD30 as markers of MS disease activity 

This study assessed whether the circulating levels of CD26 and CD30 in sera are 
associated with MS subtypes, inflammatory disease activity and disability in MS 
patients. The identification of candidate immunological biomarkers that correlate 
with disease profiles in MS is highly needed for the design of personalized 
therapeutic strategies. Moreover, the current treatment algorithms are not effective 
enough to depict the underlying complex pathogenic heterogeneity of MS. 
Therefore, the levels of sCD26 and sCD30 were analysed to explore their biomarker 
potential in MS patients, including also the CIS patients. CD26 and CD30 molecules 
provide costimulatory signals for the optimal activation of T cells and have been 
implicated in autoimmune pathophysiology (Del Prete et al., 1995; Tanaka et al., 
1993). Levels of sCD26 and sCD30 were found to be increased in RRMS, SPMS and 
CIS patients compared to the controls. Previous studies have reported increased 
expression of CD26 on T cells in the blood of patients with relapsing MS (Khoury 
et al., 2000) and progressive MS (Hafler et al., 1985). On the contrary, the 
concentration of soluble form of CD26 in plasma, and its enzymatic activity, was 
found to be decreased in MS (Tejera-Alhambra et al., 2014). Interestingly, this study 
observed higher levels of sCD26 in MS patients who were in remission compared to 
patients who had relapses (Tejera-Alhambra et al., 2014), supporting our observation 
of increased levels of sCD26 in MS patients who had relatively stable disease. 
Another study had reported elevated sCD26 in CSF of MS patients and also in 
relapsing NMO patients, but they found unchanged serum levels in MS patients 
compared to controls (Narikawa et al., 2006). In line with these observations, 
increased CD26 levels suggest the predominant presence of regulatory immune 
response characteristics of the stable phase of MS disease course. In addition, we 
also presented the possible effect of IFN  treatment resulting increased sCD26 in 
sera. It was shown that IFN  treatment decreases the percentage of CD26 cells 
expressing on the surface of CD8+ T cells in MS patients that might stimulate the 
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shedding of cell surface CD26 to the circulation as a soluble form (Jensen et al., 
2006). 

Similar to sCD26, increased levels of sCD30 were observed in MS and CIS, but 
without group difference among MS subtypes. In line with this observation, 
increased sCD30 were previously reported in blood and CSF of MS patients and, in 
particular, among RRMS patients who were at clinical remission compared to 
patients at relapse (McMillan et al., 1998). Therefore, our data suggest that the 
increased levels of sCD30 might reflect a relatively inactive disease course in MS.  
CD30 was considered as a marker of Th2 type immune responses and was shown 
to be involved in immunoregulatory activities to maintain the physiological balance 
between Th1 and Th2 type immune responses (Pellegrini et al., 2003; Pellegrini et 
al., 2005). The regulatory role of sCD30 was further sustained by our observation of 
increased levels of sCD30 in RRMS patients treated with DMTs compared to 
treatment naïve patients. IFN  treatment induces the immune shift from Th1 type 
to Th2 type responses by enhancing the production of regulatory cytokines such as 
IL 10 and IL 4, and decreasing the production of pro inflammatory cytokines, such 
as IFN  (Jensen et al., 2006; Šega et al., 2004). This supports our finding of a positive 
correlation between IL 10 and sCD30 and further supports sCD30 as a marker of 
regulatory immune responses in stable MS patients. In addition, increased levels of 
sCD30 in converted CIS patients before they were converted to RRMS when 
compared with the controls might indicate the presence of regulatory immune 
responses already at the CIS stage, which might indicate the goal of the immune 
system to inhibit or balance the pro inflammatory events responsible for the 
development of tissue damage. Some of the limitations of this study were the lack 
of MRI data and small sample size. Therefore, further studies, including longitudinal 
follow up analyses with concurrent MRI analyses, are needed to confirm this 
preliminary result. 

6.2.2 Association of DR3, DcR3, and TL1A gene expressions with MS 

This is the first study to the best of our knowledge which evaluated the relative gene 
expression of death receptors (DR3, DcR3) and ligand (TL1A) of tumor necrosis 
factor superfamily in different MS subtypes and investigated their association with 
clinical and MRI characteristics. Due to the evidence indicating the association of 
DR3, DcR3, and TL1A with neuroinflammation and autoimmunity (Sonar & Lal, 
2015), PBMC gene expression of these molecules obtained from MS patients were 
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analyzed and evaluated whether these molecules may contribute as biomarkers in 
MS. The results showed that only TL1A expression was decreased in relapsing onset 
MS compared to PPMS, CIS and HCs. However, no group difference was observed 
for DR3 and DcR3. TL1A is considered as a marker of active inflammation since its 
binding to DR3 receptor induces activation of NF-kappaB, and therefore promoting 
inflammation, but also regulating apoptotic cell death by activating caspase cascade 
(Oh & Ghosh, 2013; Schreiber et al., 2010; Schreiber & Podack, 2013). Expression 
of DR3 is primarily upregulated on the activated immune cells such as T cells, 
monocytes, B cells and dendritic cells (Siakavellas et al., 2015). 

All relapsing onset MS patients recruited in this study had relatively stable clinical 
disease activity; therefore, the observation of lower TL1A expression most likely 
reflects the state of reduced inflammatory activity or the state of immune system 
homeostasis that is mediated by the tight regulation of apoptosis (Macchi et al., 
2015). In MS, inflammatory and apoptotic responses may occur either at the 
peripheral level or at the CNS, and in particular, stable phase of the disease that is 
characterized by the inhibition of peripheral inflammatory response, as in the case 
of healthy individuals (Gurevich & Achiron, 2012; Macchi et al., 2015). Moreover, 
as shown in other diseases, decreased expression of TL1A in relapsing onset group 
might partly be explained by the effect of treatment with DMTs, resulting the 
significant reduction of these molecules as a response to anti-inflammatory therapy 
(Bamias et al., 2012). IFN-  has immunoregulatory properties and the treatment 
induces the expression of large number of genes that encode proteins, which have 
immunomodulatory and apoptosis promoting functions (Dhib-Jalbut & Marks, 
2010; Sellebjerg et al., 2008). In relapsing onset MS group, half of the patients were 
treated with DMTs and those patients showed to have even lower expression of 
TL1A as compared to treatment naïve patients. Moreover, in line with our previous 
study, DMT treated relapsing onset patients were classified as partial responders and 
responders (Rinta et al., 2008). Interestingly, the levels of TL1A tended to be 
upregulated in patients with partial DMT responders in comparison to responders 
indicating the presence of inflammatory activity in this subgroup. These findings 
suggest that TL1A expression may hold the ability to reflect ongoing stable disease 
course and as well as the marker of therapeutic response to immunomodulatory 
treatment in MS. 

To date, there are no available reports of TL1A association to clinical or 
radiological parameters related to disease activity and progression in MS. However, 
some experimental studies have found an association to EAE disease pathogenesis 
mediated through Th1- and Th17 T-cells (Meylan et al., 2008; Pappu et al., 2008). In 
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addition, TL1A association with disease activity profiles was shown in several other 
diseases such as Crohn’s disease, RA and SLE (Bamias et al., 2008; Xu et al., 2017). 
In the present study, TL1A correlated positively with EDSS score, volumes of 
hypointense T1 and FLAIR lesions in relapsing onset group indicating the 
connection of low TL1A expression to both disability freedom and lower 
hypointense T1 and FLAIR lesion load pointing at the role of TL1A in inflammatory 
activity. In particular, the expression of TL1A was associated to increase of EDSS 
score over a year and increase of FLAIR lesion volumes over a year suggesting its 
role to reflect the ongoing inflammatory activity in MS and predicting disease 
progression, however, further investigation is required in a larger sample size. 
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7 CONCLUSIONS 

PML risk assessment is a challenging field in which the identification of sensitive 
biomarkers could significantly contribute to the improved identification of patients 
at high risk. This thesis has highlighted the biomarker potential of sL-selectin and JC 
virus miRNAs for predicting the risk of developing PML in long-term NTZ-treated 
MS patients. The Study I concluded that the level of sL-selectin is biologically 
connected to the anti-JCPyV antibody levels and possibly also the cell surface L-
selectin in NTZ-treated MS patient. This observation is noteworthy in order to 
further evaluate the biomarker potential of soluble L-selectin to predict the PML 
risk. The Study II showed that JCPyV 5p miRNA could be a new marker for the 
PML risk assessment in MS. We hypothesized that a low level of miRNA in plasma 
may suggest a possible involvement in the release of viral reactivation and indicative 
of high replication of JCPyV, which may consequently cause PML. In addition, the 
observation of high level of miRNA prevalence also in JCPyV seronegative patients 
reconfirmed that the ELISA test that is currently used for the detection of JCPyV 
antibody has insufficient sensitivity.  

Studies III and IV were aimed for finding biomarkers to evaluate the disease 
activity, disease progression, and neurological disability in MS patients. In Study III, 
the observation of increased levels of sCD26 and sCD30 in MS suggested the 
potential of these molecules as biomarkers of relatively inactive disease course in MS 
or the markers of stable disease activity. Immunologically, increased levels of these 
molecules indicated the state of homeostasis between pro inflammatory Th1 and 
anti inflammatory Th2 type immune responses as a reflection of stable disease 
activity in MS. Moreover, sCD30 was evaluated as a regulatory molecule or the 
marker of regulatory immune response due to its positive correlation with IL 10, 
and increased levels in RRMS patients treated with DMTs compared with untreated 
patients. To the best of our knowledge, Study IV is the first work reporting the gene 
expression of DR3, DcR3 and TL1A in PBMC obtained from MS patient, and 
evaluated their biomarker potential in MS. This study concluded TL1A as a candidate 
biomarker for reflecting inflammatory activity in MS and predicting disability 
progression. The findings of this study further illustrated that TL1A may hold the 
ability to reflect ongoing stable disease course and as well as the marker of 
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therapeutic response to immunomodulatory treatment in MS. However, additional 
studies including a larger sample size are needed to evaluate the clinical relevance of 
these findings. 
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a b s t r a c t

Objective: In relapsing-remitting MS (RRMS) patients treated with natalizumab, the low level of L-se-
lectin-expressing CD4þ T cells has been associated with the risk of progressive multifocal leukoence-
phalopathy (PML). In this study, our aim was to correlate the levels of soluble L-selectin and the anti-JCV
antibody index in the sera of RRMS patients treated with natalizumab.
Methods: This study included 99 subjects, including 44 RRMS patients treated with natalizumab, 30 with
interferon beta (IFN-β) and 25 healthy controls. The levels of soluble L-selectin (sL-selectin) in sera were
measured by ELISA, and the anti-JC Virus (JCV) antibody index was determined by the second–generation
ELISA (STRATIFY JCVTM DxSelectTM) assay.
Results: A significant correlation was found between the levels of sL-selectin and anti-JCV antibody in-
dices in sera in the natalizumab-treated patients (r¼0.402; p¼0.007; n¼44), but not in those treated
with IFN-β. This correlation became even stronger in JCV seropositive patients treated with natalizumab
for longer than 18 months (r¼0.529; p¼0.043; n¼15).
Conclusion: The results support the hypothesis of sL-selectin being connected to the anti-JCV antibody
index values and possibly cellular L-selectin. Measurement of serum sL-selectin should be evaluated
further as a potential biomarker for predicting the risk of developing PML.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central
nervous system (CNS) that is characterized by complex pathophy-
siological processes, including inflammation, demyelination, axonal
loss and remyelination (Goldenberg, 2012). Natalizumab is a hu-
manized monoclonal antibody and an α4 integrin (CD49d) an-
tagonist that prevents the migration of peripheral leukocytes across
the blood–brain barrier (BBB) (Hutchinson, 2007). It has been
shown to reduce the relapse rate, decrease sustained disability, and
reduce the number of new lesions on magnetic resonance imaging
(MRI) (Miller et al., 2003; Polman et al., 2006). Despite its efficacy,
long-term treatment (mostly more than 18 months) of natalizumab
is associated with the substantial complication of developing pro-
gressive multifocal leukoencephalopathy (PML), a demyelinating

lytic infection of the CNS caused by John Cunningham Virus (JCV)
(Clifford et al., 2010). The precise mechanism of natalizumab-as-
sociated PML is still unclear, but it is suggested that PML occurs
when immunosurveillance in the CNS is impaired (Mancuso et al.,
2012). It has been proposed that blocking lymphocyte trafficking
through the BBB during natalizumab therapy would decrease cell-
mediated immunity, allowing the reactivation of the JC virus from
latency (Berger and Houff, 2009). According to recent data, the
relative incidence of natalizumab-associated PML is higher than 2/
1000 patients (Buck and Hemmer, 2014). In addition to long-term
natalizumab treatment, the prior use of immunosuppressants and
the presence of anti-JCV antibodies have been established as con-
tributing risk factors for developing PML (Bloomgren et al., 2012).
Although anti-JCV antibodies are widely used for predicting the risk
of developing PML, such antibodies are also measured in approxi-
mately 60–80% of healthy individuals. However, JCV reactivation
and the development of PML are only rarely seen in healthy sub-
jects (Ferenczy et al., 2012). Therefore, there is a high need for more
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sensitive biomarkers that would identify patients with a higher risk
of developing natalizumab-associated PML.

Recently, a retrospective study showed that reduced levels of L-
selectin-expressing CD4þ cells in blood were associated with a
risk of developing natalizumab-associated PML (Schwab et al.,
2013). Due to this observation, the authors proposed L-selectin as a
possible biomarker for individual PML risk in MS patients. L-se-
lectin (CD62L) is a cell adhesion molecule expressed on the surface
of most circulating leukocytes, including T cells. It is also present
as a functionally active soluble form in the blood (Raffler et al.,
2005), which significantly increases during acute or chronic in-
flammation (Smalley and Ley, 2005). In this study, our aim was to
evaluate whether the soluble form of L-selectin is associated with
anti-JCV antibody indices in natalizumab-treated RRMS patients,
which would suggest the potential of sL-selectin in the assessment
of PML risk.

2. Patients and methods

2.1. Patients

This cross-sectional study included a total of 99 subjects of
whom 44 RRMS patients were treated with natalizumab, 30 pa-
tients with IFN-β (21 patients with Rebif 22 mg and 9 with Rebif
44 mg) and 25 subjects were healthy controls (HC). MS patients
were enrolled consecutively from four Finnish MS centers (Tam-
pere, Helsinki, Seinäjoki, and Turku) between January 2012 and
February 2013 based on their ongoing immunomodulatory ther-
apy. The clinical characteristics of these patients are shown in
Table 1. All patients underwent clinical and neurological ex-
aminations before blood sampling. The diagnosis of MS was based
on the revised McDonald Criteria (Polman et al., 2005), and the
diagnosis was definite. Neurological disability was evaluated by
the expanded disability status scale (EDSS) score (Kurtzke, 1983).
The study was approved by the Ethics Committee of Tampere
University Hospital, and all subjects gave informed consent. The
healthy individuals had no previous history of any neurological
disorders or immune-mediated diseases.

2.2. Determination of sL-selectin /CD62L concentrations in serum

The collected blood was allowed to clot and was centrifuged for
15 min at 1500xg. Sera were separated from blood, aliquoted and
stored at �80 °C until use. sL-selectin levels were determined by

commercially available quantitative enzyme-linked im-
munosorbent assay (ELISA) kits according to the manufacturer's
protocol (#BBE4B; Quantikine, R&D Systems Europe Ltd, Abing-
don, United Kingdom). Briefly, serum samples with 1:100 dilutions
were mixed with a monoclonal antibody that is specific for human
serum L-selectin, which was pre-coated on a 96-well microtiter
plate. Horseradish peroxidase (HRP) conjugate, an enzyme-linked
polyclonal antibody specific for human L-selectin, was then added.
Color developed after TMB (Tetramethylbenzidine) substrate ad-
dition was stopped by adding hydrochloric acid (HCL) as a stop
solution. The absorbances were measured at wavelength of
450 nm on a Multiskan MS version 4.0 spectrophotometer (Lab-
systems, Helsinki, Finland). The intra- and inter-assay coefficients
of variation for the sL-selectin assay was 4.1% and 7.1%, respec-
tively. The minimum detection limit for sL-selectin assay was
0.3 ng/mL.

2.3. Determination of the anti-JCV antibody index

A confirmatory second–generation ELISA (STRATIFY JCVTM

DxSelect) was used to test sera for anti-JCV antibodies at the
Unilabs, Denmark (Lee et al., 2013). A screen index value of less
than 0.2 was considered anti-JCV antibody negative and of greater
than 0.4 as anti-JCV antibody positive. The samples with a screen
index between 0.2 and 0.4 were evaluated with a supplementary
confirmatory test, and results greater than 45% were classified as
anti-JCV antibody positive (Lee et al., 2013).

2.4. Statistical analysis

Statistical analyses were performed using SPSS version 16.0 for
Windows (SPSS Inc., Chicago, IL, USA). A non-parametric, two-
tailed Mann–Whitney U test was used to compare the differences
between the clinical parameters and levels of sL-selectin in dif-
ferent groups. Spearman’s correlation coefficient was used to
analyze the correlation between the sL-selectin levels and anti-JCV
antibody index. A p-value less than 0.05 was considered statisti-
cally significant.

3. Results

3.1. Clinical data

Natalizumab-treated patients had a longer disease duration

Table 1
Clinical characteristics of MS patients and healthy controls.

Characteristics Natalizumab IFN-β HC p-value

n¼44 n¼30 n¼25

Sex (F/M)a 34/10 21/9 19/6
Age (years)b 38.277.8 (23-52) 35.579.9 (20-53) 33.2711.0 (22–60) NS
Disease duration from diagnosis (years)b 9.175.3 (1.8–22.4) 4.675.4 (0.2-18.1) – po0.001
EDSSb 2.771.9 (0–6.5) 1.471.6 (0-6.0) – p¼0.002
Number of relapsesb,c 1.971.0 (1-4) – – –

Duration of treatment (years)b 2.871.5 (0.4–5.8) 2.572.8 (0–13.1) – NS
Anti-JCV Ab index d 0.3 (0.1–3.1) 0.3 (0.1–2.9) – NS
Anti-JCV Ab seropositivitya 21 (48%) 13 (43%) – NS
JCV-positive Ab indexd,e 1.1 (0.3–3.1) 1.9 (0.7–2.9) – NS

IFN-β – interferon-β, HC – healthy controls, EDSS – expanded disability status scale, JCV – John Cunningham virus, NS – not significant
a Number of patients.
b Mean7SD (range).
c Two years before starting Natalizumab.
d Median (range).
e Anti-JCV antibody index of seropositive patients only.
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and higher EDSS scores than IFN-β-treated patients, while the age
and duration of therapy did not differ between the groups (Ta-
ble 1). Two years before initiating natalizumab therapy, all 44
patients had relapses, and 41 of themwere previously treated with
other immunomodulatory or immunosuppressive drugs (12 pa-
tients with only IFN-β, 28 patients with IFN-β and other im-
munomodulatory or immunosuppressive (IS) drugs and 1 with
only the IS drug), and the remaining 3 patients did not have any
pretreatment. The mean duration of natalizumab therapy was 2.8
(71.5 (SD), 0.4–5.8 (range)) years. During natalizumab therapy,
relapses were observed in 8 (18%) patients in whom the treatment
duration ranged from 1.7 to 5.8 years. The seroprevalence of anti-
JCV antibodies was 48% in natalizumab-treated and 43% in IFN-β-
treated patients. In JCV-seropositive natalizumab-treated patients
(n¼21), the mean duration of this therapy was 2.5 (71.4 (SD),
0.4–5.3 (range)) years.

3.2. Association between sL-selectin and the anti-JCV antibody index

The levels of sL-selectin did not differ between the patients
treated with natalizumab, IFN-β or healthy controls (Fig. 1), or
between the JCV seropositive and JCV seronegative patients in
natalizumab-(1330.57476.2 vs. 1076.07500.9 ng/ml (mean7SD);
p¼0.10) or IFN-β-treated groups (1225.57611.4 vs. 1403.67
575.9 ng/ml (mean7SD); p¼0.28). The natalizumab-treated pa-
tients were further stratified according to their anti-JCV antibody
index into groups with high risk for developing PML (anti-JCV an-
tibody index higher than 1.5, n¼8) and low risk group for devel-
oping PML (anti-JCV antibody indexr1.5, n¼36). The levels of sL-
selectin were significantly higher in the high-risk group compared
to that with low risk group for developing PML (1621.37506.9 vs.
1103.37453.2 ng/mL (mean7SD); p¼0.01) Fig. 2.

Association between sL-selectin and anti-JCV antibody index
was also studied by correlation analyses. A positive correlation was
found between the levels of sL-selectin in sera and the anti-JCV
antibody indices in all natalizumab-treated patients (r¼0.402; p¼
0.007; n¼44, Fig. 3A), but not in the IFN-β-treated patients
(r¼�0.262; p¼0.161; n¼30; Fig. 3B). Approximately 80% of na-
talizumab-treated subjects (34/44) patients were treated with
natalizumab for more than 18 months. In this group, sL-selectin
levels correlated with anti-JCV antibody indices (r¼0.385;

p¼0.025; n¼ 34; Fig. 3C), and this correlation became even more
significant in JCV seropositive patients treated with natalizumab
for more than 18 months (r¼0.529; p¼0.043; n¼15; Fig. 3D). No
significant correlations between sL-selectin and anti-JCV index
were found when JCV seropositive (r¼0.356 p¼0.113, n¼21) and
JCV seronegative (r¼0.360; p¼0.092; n¼23) natalizumab-treated
patients were evaluated as separate groups. There was no corre-
lation between anti-JCV antibody index and treatment duration in
patients treated with either natalizumab or IFN-β.

4. Discussion

In this study, we have shown that the levels of sL-selectin in
sera of natalizumab-treated RRMS patients correlate positively
with their anti-JCV antibody indices. Earlier studies have shown
higher anti-JCV antibody index values in natalizumab-associated
PML compared to non-PML patients (Outteryck et al., 2013; Plavina
et al., 2014; Trampe et al., 2012), indicating the potential of JCV
index for predicting PML risk. The demonstration of association
between increased sL-selectin levels and increased anti-JCV anti-
body indices suggests that sL-selectin measurement could be
useful for the evaluation of PML risk among patients treated with
natalizumab. This observation is further supported by our result of
increased sL-selectin level in natalizumab-treated patients with
high anti-JCV antibody index (41.5) that are considered at highest
risk for developing PML (Lee et al., 2013).

Recently, Schwab et al. studied the expression of L-selectin on
the surface of CD4þ T cells and proposed that lack of L-selectin on
CD4þ T cells was indicative of increased PML risk in natalizumab-
treated MS patients (Schwab et al., 2013). Moreover, in the recent
study of these authors, the positive correlation between cellular L-
selectin expression on T cells and anti-JCV antibody index values in
natalizumab-treated patients was detected (Schwab et al., 2014).
Interestingly, low cell-surface L-selectin levels have been shown to
be associated with increased serum levels of sL-selectin that is due
to shedding of L-selectin from the cell surface, a mechanism pos-
sibly explaining reduced leukocyte extravasation into tissues
(Jackson et al., 2005). These observations are in line with our result
of increased level of sL-selectin indicative of increased PML risk in

Fig. 1. The levels of sL-selectin did not differ between the natalizumab-, IFN-β-
treated or healthy controls (HC) (p40.05, Mann–Whitney U test). The length of the
box represents the interquartile range within which 50% of the values were located.
The middle line in each box represents the median value. The lower and upper bars
show the standard deviation.

Fig. 2. The levels of sL-selectin were significantly higher in the high-risk group
(anti-JCV antibody index41.5, n¼8) compared to that with low risk group (anti-
JCV antibody indexr1.5, n¼36) for developing PML in natalizumab-treated pa-
tients (p¼0.01, Mann–Whitney U test). The length of the box represents the in-
terquartile range within which 50% of the values were located. The middle line in
each box represents the median value. The lower and upper bars show the standard
deviation.
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natalizumab-treated patients. Since we could not measure the sL-
selectin levels in the pre-PML or PML samples, use of sL-selectin as
a biomarker of PML risk need to be evaluated in the future studies.
Indeed, it would be interesting to measure the level of sL-selectin
in the serum of those patients described by Schwab et al., who
lacked L-selectin on CD4þ T cells, and who later developed PML
(Schwab et al., 2013). Our hypothesis is that they also would have
increased levels of sL-selectin, and our observations might hence
be indicative of a biological association between shedding of cel-
lular L-selectin and rising anti-JCV antibody levels in natalizumab
treated RRMS patients.

Role of L-selectin in MS pathogenesis has been studied earlier.
Different studies have shown that L-selectin is involved in myelin
damage processes in the CNS (Grewal et al., 2001; Huang et al.,
1994). L-selectin is constitutively expressed on lymphocytes, and it
mediates the initial capturing and tethering of leukocytes to the
endothelium. Following leukocyte activation by cytokines and
chemotactic factors, L-selectin is rapidly shed from the cell surface
by endoproteolytic cleavage (Wedepohl et al., 2012; Wang et al.,
2010). Activation-independent shedding of L-selectin may also
occur during crosslinking with specific monoclonal antibodies
(Palecanda et al., 1992). It is suggested that shedding L-selectin
from activated lymphocytes prevents cell re-entry to the periph-
eral lymph nodes and sites of inflammation, likely by preventing
the L-selectin-dependent mechanism of lymphocyte adhesion
and transmigration (Wedepohl et al., 2012; Ivetic, 2013;

Schleiffenbaum et al., 1992). Earlier studies showed increased le-
vels of sL-selectin in serum and CSF in RRMS patients (Duran et al.,
1999; Baraczka et al., 2000). Association of serum sL-selectin with
active, gadolinium enhancing lesions in MRI has also been re-
ported in different studies (Mossner et al., 1996; Hartung et al.,
1995), suggesting its role in the inflammatory processes of active
MS.

Natalizumab has proven to be therapeutically highly efficient
for treatment of active MS. However, the risk of PML hampers its
use and hence biomarkers for prediction of PML risk of individual
patients are sorely needed. Importantly, measurement of soluble
serum L-selectin using an ELISA assay is easy, reliable and ap-
plicable to any laboratory, unlike measurement of L-selectin on the
surface of frozen T cells using flow cytometry, which is technically
demanding and prone to errors related e.g. to cell handling, which
might lead to shedding of L-selectin from the cell surface and thus
influence the results (Schwab et al., 2013). In future studies, it will
be highly interesting to measure the sL-selectin levels in a nata-
lizumab-treated MS patient cohort with eventual PML to see
whether they will have high sL-selectin levels.

In conclusion, our preliminary data demonstrate the positive
correlation between sL-selectin and the anti-JCV antibody levels in
the sera of natalizumab-treated MS patients, and suggest that
measurement of serum sL-selectin should be evaluated further as
a potential biomarker for predicting the risk of developing PML in
this patient cohort.

Fig. 3. Correlation analyses between sL-selectin and the anti-JCV antibody index in (A) Natalizumab-treated patients, (B) IFN-β-treated patients, (C) Long-term natalizumab-
treated (418 months) patients and (D) JCV seropositive long-term(418 months) natalizumab-treated patients.
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Abstract

Objective The activation of autoreactive T cells is a major event in the initi-

ation of autoimmune responses in multiple sclerosis (MS). In addition to the

T cell receptor stimulation, optimal activation of T cells requires various cos-

timulatory molecules, such as CD26 and CD30, which has not been exten-

sively studied in MS. Our aim was to explore whether the circulating levels

of CD26 and CD30 in sera are associated with MS subtypes, inflammatory

disease activity and disability in MS patients.

Methods The study included 195 participants: 39 relapsing–remitting MS

patients, 19 secondary-progressive MS patients, 19 clinically isolated syn-

drome patients, 58 controls for sCD26 analysis and 60 for sCD30 analysis.

The levels of sCD26 and sCD30 in sera were analyzed using enzyme-linked

immunosorbent assay, and the levels of interleukin-10, tumor necrosis fac-

tor-a and interferon-c were analyzed with the Luminex assay.

Results We observed increased levels of sCD26 and sCD30 in relapsing–
remitting MS, secondary-progressive MS, and clinically isolated syndrome

patients compared with the controls (P < 0.05). Furthermore, elevated levels

of sCD30 were noticed in treated relapsing–remitting MS patients than in

untreated patients (P = 0.016), and also in converted CIS patients than in

unconverted patients (P = 0.009). Although sCD26 and sCD30 could not

associate with clinical measures, such as the disability score or disease activ-

ity, the levels of sCD30 correlated positively with interleukin-10 levels

(r = 0.583, P < 0.0001) and sCD26 levels (r = 0.262, P = 0.046) in MS

patients.

Conclusion The present results suggest that the elevated levels of sCD30

are associated with the regulatory immune responses predisposing to clini-

cally stable phase of MS.

Introduction

Multiple sclerosis (MS) is an autoimmune demyeli-

nating disease of the central nervous system, char-

acterized by inflammation, myelin damage and

axonal degeneration.1 Current studies have shown

the critical role of myelin-specific CD4+ Th1 and

Th17 cells in the initiation of autoimmune

responses in MS.2 During this process, autoreactive

CD4+ T cells are activated in the periphery and

migrate to the central nervous system through the

blood–brain barrier, initiating neuroinflammation

that eventually leads to neuronal damage. The acti-

vation of these T cells is a tightly regulated process

that is dependent on two signals: the first signal is

provided by the interaction between the T cell

receptor and major histocompatibility complex

(MHC) class II molecules, whereas the second sig-

nal is provided by costimulatory molecules. CD80/

CD86–CD28/CTLA4 are the most important and

best known costimulatory signals,3 but several other

costimulatory molecules, such as CD26 and CD30,
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are known to mediate the optimal activation of T

cells.4,5

CD26 (also known as dipeptidyl peptidase IV) is a

110-kD transmembrane glycoprotein that plays an

important role in the inactivation of incretin hor-

mones, and is also involved in the inactivation of

chemokines CXCL9–11 and CXCL12, which are

known to be secreted after T cell activation.6–9 In

addition to the enzymatic function of CD26, membra-

nous CD26 also binds to its ligands, adenosine deami-

nase and caveolin-1, to provide a costimulatory signal

that enhances the activation of T cells.10,11 CD30 is a

120-kD transmembrane glycoprotein that belongs to

the tumor necrosis factor receptor superfamily, and is

predominantly expressed on the surface of activated T

cells, B cells and NK cells.12,13 Previously, it was

shown that CD30 activation promotes the develop-

ment of Th2 cells, and it was therefore considered to

be an activation marker of Th2 cell populations. CD30

binds with its ligand, CD30L, which induces cell pro-

liferation by the activation of nuclear factor-kappa B

in T cells, but it might also induce growth arrest and

apoptosis.14,15 Both CD26 and CD30 exist in soluble

forms that are released into the blood stream on T cell

activation; however, their biological functions are not

yet fully understood.

Until now, the role of CD26 and CD30 in MS has

not been extensively studied. In previous studies, a

higher number of CD26+CD4 T cells and CD8 T cells

in the blood was shown to be associated with the

clinical and magnetic resonance imaging (MRI) mea-

surements of disease activity in MS.16–19 Addition-

ally, lower levels of soluble CD26 (sCD26) in plasma

and higher levels in CSF have been reported in MS

patients.20,21 Similarly, few studies have reported

elevated levels of soluble CD30 (sCD30) in MS

patients, but no association has been shown with

clinical or MRI measures.22,23

In the present study, our aim was to explore

whether the levels of sCD26 and sCD30 are associ-

ated with clinical phenotypes, disease activity and

disability progression in MS. Because CD26 and

CD30 expression might reflect the activation state of

T cells, we also associated their levels to pro- and

anti-inflammatory molecules to further understand

the roles of these molecules in MS.

Methods

The study included 195 participants: 39 relapsing–
remitting MS (RRMS) patients, 19 secondary-pro-

gressive MS (SPMS) patients, 19 clinically isolated

syndrome (CIS) patients, 58 controls for sCD26 anal-

ysis: age 30.1 � 9.4 years, 33 women, 25 men; and

60 for sCD30 analysis: age 34.0 � 11.8 years, 39

women, 21 men (mean � SD).

The diagnosis of MS was based on the revised

McDonald Criteria, and the diagnosis was definite.24

CIS patients were defined as patients who had their

first demyelinating event that was suggestive of

MS.24 All patients underwent neurological examina-

tion, which included the determination of prestudy

disease activity (number of relapses preceding

2 years of the study), expanded disability status scale

(EDSS) score and the disease duration, which are

summarized in Table 1.25 The study was approved

Table 1 Clinical characteristics of patients

All CIS

n = 19

CIS-CISa

n = 9

CIS-CDMSb

n = 10

RRMS

n = 39

SPMS

n = 19

Gender (M/F)c 2/17 1/8 1/9 12/27 7/12

Aged 35.0 � 9.0 37.0 � 8.9 33.3 � 8.5 37.4 � 8.7 49.1 � 8.6

Disease duration (years)d NA NA NA 3.9 � 3.8 11.7 � 9.7

EDSSd 0.1 � 0.3 0.1 � 0.3 0.1 � 0.3 1.4 � 1.5 4.7 � 1.8

Number of relapsesc,e

0 4 1 3 12 15

1 13 6 7 12 2

2–5 2 2 0 15 2

Therapy (NT/IFN/GA)c 0/0/0 0/0/0 0/0/0 19/18/2 19/0/0

CDMS, clinically definite MS; CIS, clinically isolated syndrome; EDSS, expanded disability status scale; GA, glatiramer acetate; IFN, interferon-b; NA, not

applicable; NT, no treatment; RRMS, relapsing remitting MS; SPMS, secondary progressive MS.
aPatients who remained CIS.
bPatients with CIS who converted to clinically definite MS.
cNumber of patients.
dMean � SD.
eAll relapses preceding two years before study entry.
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by the ethics committee of Tampere University

Hospital, and all participants gave informed consent.

Serum samples from 39 RRMS patients were

obtained at the time of remission, and none of the

patients had any relapse 8 weeks before study entry.

The levels of sCD26 and sCD30 in sera were ana-

lyzed using enzyme-linked immunosorbent assay

(ELISA) according to the manufacturer’s instructions

(Human sCD26 Platinum ELISA BMS235CE and

Human sCD30 instant ELISA BMS240INSTCE;

eBioscience, Bender MedSystems GmbH, Vienna,

Austria). The levels of interleukin (IL)-10, tumor

necrosis factor-a and interferon (IFN)-c were ana-

lyzed with the Luminex assay using a high-sensitiv-

ity human cytokine LINCOplex kit (Linco Research,

St. Charles, MO, USA).

Statistical analyses were carried out with SPSS ver-

sion 18.0 (SPSS, Chicago, IL, USA). The Mann–
Whitney U-test was used to analyze the differences

in sCD26 and sCD30 levels and clinical parameters

between the subtypes. Spearman’s correlation analy-

sis was used to explore the association of sCD26 and

sCD30 with cytokines and the clinical characteristics

of the patients. A P-value <0.05 was considered sta-

tistically significant.

Results

Clinical characteristics

The clinical characteristics of the study participants

are summarized in Table 1. As expected, the patients

in the SPMS group had longer disease duration and

were older than the RRMS and CIS patients

(P < 0.05). The EDSS scores were lowest in CIS

when compared with RRMS and SPMS subtypes.

The SPMS group had higher EDSS scores than

patients with RRMS (P < 0.05). Two years before

enrolment, 12 out of 39 (31%) RRMS patients were

relapse-free, another 12 patients had one relapse

and 15 out of 39 (38%) patients had two to five

relapses. Out of 39 RRMS patients, 18 patients were

treated with interferon-beta (IFN-b) and two other

patients with glatiramer acetate. CIS patients were

followed up clinically for 4 years. During that time,

10 out of 19 patients converted to RRMS (Table 1).

Serum sCD26 and sCD30 levels, and correlation with

clinical parameters

In all patient groups (CIS, RRMS and SPMS), the

levels of sCD26 and sCD30 appeared to be higher

than in the controls (Fig. 1a,b), although no differ-

ences were detected between patient subgroups.

Among the 19 CIS patients, 10 converted patients

showed higher levels of sCD30 compared with

the controls (23.0 � 6.4 vs 16.3 � 7.4 ng/mL,

P = 0.009), whereas no difference was found

between unconverted patients and controls (Fig. 1c).

The levels of sCD26 did not differ in converted CIS

patients when compared with controls and uncon-

verted CIS patients (891.1 � 145.2 vs 778.4 � 237.7

ng/mL, P = 0.086; 891.1 � 145.2 vs 911.4 � 135.9

Figure 1 Different levels (mean � SD) of (a)

sCD26 and (b) sCD30 in patients with clinically

isolated syndrome (CIS), relapsing–remitting

multiple sclerosis (RRMS), secondary progres-

sive MS (SPMS) and healthy controls (HC). (c)

sCD30 levels in converted and unconverted CIS

patients. (d) sCD30 levels in treated and

untreated RRMS patients.
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ng/mL, P = 0.905). Furthermore, the levels of

cytokines IL-10, tumor necrosis factor-a and IFN-c
in sera did not differ between the MS subtypes and

controls (P > 0.05).

To understand whether the levels of sCD26 and

sCD30 reflect the inflammatory activity in MS, we

also correlated their levels with cytokines IL-10,

tumor necrosis factor-a and IFN-c, which were ana-

lyzed in 43 out of 58 MS patients. The levels of IL-

10 correlated positively with the level of sCD30 in

the MS group, including RRMS and SPMS patients

(r = 0.583, P < 0.0001, n = 43; Fig. 2a), but the

levels of sCD26 and sCD30 did not show any corre-

lation with other cytokines that were analyzed in

the present study. We also carried out the correla-

tion analyses between sCD30 and sCD26, and

the result showed a weak, but statistically signifi-

cant, positive correlation between the sCD30

and sCD26 levels in MS patients, including both

RRMS and SPMS patients (r = 0.262, P = 0.046,

n = 58; Fig. 2b).

We investigated the levels of sCD26 and sCD30,

and their association to prestudy disease activity and

EDSS scores. The result showed no significant corre-

lation between these molecules and clinical mea-

sures in MS patients. Because half of the RRMS

patients (51%) were treated with immunomodula-

tory therapy (Table 1), the effect of treatment on

these molecules was explored. The results showed

significantly higher levels of sCD30 in treated RRMS

patients compared with untreated patients (26.4 �
8.0 vs 20.5 � 9.4 ng/mL, P = 0.016; Fig. 1d).

Discussion

The objective of the present study was to explore

the potential of sCD26 and sCD30 as a biomarker to

depict the inflammatory disease activity or disability

in MS patients that might be helpful to further

understand the underlying mechanism of disease

pathogenesis.

CD26 has been regarded as a marker of Th1-type

immune responses,26 and recently, its role in Th17-

type immune responses was reported.27 Several

studies have shown a higher expression of CD26 on

T cells in blood obtained from RRMS patients17 and

progressive MS,28 whereas contradictory results are

reported for its soluble form.20,21 Observations from

the present study showing increased levels of serum

sCD26 in MS and CIS patients are consistent with

the study by Narikawa et al., who reported increased

levels of sCD26 in the CSF of MS patients, but

unchanged serum levels compared with the con-

trols.21 Another study by Tejera et al.20 showed the

lower plasma levels of sCD26 in MS patients com-

pared with controls, but the same study also

reported higher levels of sCD26 in patients with

remission compared with patients at relapse. In line

with the same study, our observation of increased

levels of sCD26 in MS most likely reflects the stable

phase of the disease, as all of our RRMS patients had

relatively inactive disease based on their number of

relapses in the 2 years preceding the study

(1.1 � 1.2), and none of the patients had any

relapse 8 weeks before the study entry. However,

we cannot entirely exclude the possibility of active

disease on our MS patients, as the patients did not

undergo MRI examination. It is well established that

the disease activity, as measured by gadolinium-

enhanced MRI scans, is detected 5–10 times more

frequently on MRI compared with clinical assess-

ment of relapses.29 In addition to inactive disease,

the use of immunomodulatory treatment in our

RRMS patients could also be a factor for increased

Figure 2 Spearman’s correlation analysis between the levels of (a)

sCD30 and interleukin (IL)-10 and between the levels of (b) sCD30 and

sCD26 in multiple sclerosis (MS) patients.
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levels of sCD26. Recent study has shown that IFN-b
treatment decreases the percentage of CD26 cells

expressing on the surface of CD8+ T cells in MS

patients that might also stimulate the shedding of

CD26 from the cell surface to circulation.19 There-

fore, immunomodulatory treatment could possibly

be responsible for the increased levels of sCD26 in

sera. The exact role of sCD26 is not entirely known,

but its shedding from the cell surface might repre-

sent the regulatory process involved in immune cell

activation.30 Therefore, the increased levels of sCD26

over the entire disease course might indicate the

state of homeostasis between pro-inflammatory Th1

and anti-inflammatory Th2-type immune responses

in MS.

Previously, CD30 was considered to be a marker

of Th2-type immune responses, and it was shown to

be involved in immunoregulatory activities to main-

tain the physiological balance between Th1 and Th2-

type immune responses.31,32 Increased levels of

sCD30 and correlation with disease activity have

been detected in different autoimmune disorders

associated with Th2-type immune responses, such as

systemic lupus erythematosus and systemic sclero-

sis.33,34 We observed that the levels of sCD30 were

increased in MS and CIS, but no differences were

detected amongst the subtypes. Similar observations

of increased levels of sCD30 in blood and CSF in MS

patients have been previously reported by McMillan

et al.22 They reported increased levels of sCD30 in

RRMS patients with clinical remission compared

with the patients at relapse.22 Therefore, our data

and the data of others suggest that the increased

levels of sCD30 might reflect a relatively inactive dis-

ease course in MS.

The regulatory role of sCD30 was further sup-

ported by our observation of increased levels of

sCD30 in RRMS patients treated with immunomod-

ulatory therapy compared with untreated patients,

because IFN-b treatment is shown to induce a shift

from Th1-type to Th2-type responses by enhancing

the production of regulatory cytokines IL-10 and IL-

4, and decreasing the production of pro-inflamma-

tory cytokines, such as IFN-c.19,35 Furthermore, the

detected positive correlation between the levels of

anti-inflammatory cytokine IL-10 and sCD30 in the

MS group is in line with this concept. Earlier studies

have shown that CD30-positive T cells produce high

levels of IL-10,36,37 and exerts the immunoregula-

tory activity through the synergic action of IL-4 and

IL-10.38,39

Consistent with these observations, our findings

might suggest the predominant presence of regulatory

immune response characteristics of stable phase of

the MS disease course.

We also analyzed the levels of sCD26 and sCD30

in converted and unconverted CIS patients. Con-

verted CIS patients showed increased levels of

sCD30 before they were converted to RRMS when

compared with the controls, while no differences

were observed between the unconverted and the

controls. This observation might indicate the pres-

ence of regulatory immune responses already at the

CIS stage that might suggest the goal of the immune

system to inhibit or balance the pro-inflammatory

events responsible for the development of tissue

damage. Therefore, sCD30 might be the marker of

regulatory immune response also in the CIS stage of

MS patients. However, the potential of sCD30 as a

conversion marker should be evaluated in further

follow-up studies.

Taken together, the increased levels of sCD26 and

sCD30 in MS are consistent with the coexistence of

both Th1- and Th2-type immune responses in the

entire course of MS. Our observation of a positive

correlation between IL-10 and sCD30 might suggest

the role of sCD30 as a marker of regulatory immune

responses in MS. Further studies, including longitu-

dinal follow-up analyses with concurrent MRI analy-

ses, should be carried out to confirm this

preliminary result.
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