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ABSTRACT 

Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial 

chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of 

functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, 

pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait 

reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called 

horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred 

through endosymbiosis between prokaryotes and eukaryotes.  

Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many 

prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids 

of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA 

genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, 

we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple 

bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. 

Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial 

species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs 

of ancestral prokaryotes to protists.  

IMPORTANCE 

The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A 

gene or set of genes in the GIs are exchanged between and within various species through horizontal gene 

transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were 

introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved 

in many critical biochemical pathways, such as regulation of pH homeostasis and electrolyte transfer. 

Among the six evolutionary families of CAs, β-CA gene sequences are present in many bacterial species, 

which can be horizontally transferred to protists during evolution. This study shows for the first time the 
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involvement of bacterial β-CA gene sequences in the GIs, and suggests their horizontal transfer to protists 

during evolution. 
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Horizontal Gene Transfer (HGT) is an evolutionary phenomenon by which a gene, or set of genes, are 

exchanged between and within various species. This makes HGT unique compared with other evolutionary 

processes, such as gene duplication, mutation, and sexual reproduction. While a heritable HGT in 

eukaryotes entails entrance of a foreign gene to the nucleus of the germ cell and successful insertion to 

chromatin packed DNA, HGT has multiple pathways in prokaryotic species. This evolutionary process is 

mediated by mobile DNA or mobile genetic elements (MGEs), which can include: genomic islands (GIs), 

plasmids, transposons, retrotransposons, and prophages (1-6). During HGT, selfish “parasitic” elements are 

often associated with toxin resistance genes, metabolic genes, virulence factors, and a wide range of 

secreted factors. The acquisition of a useful gene repertoire could offset the cost of maintaining and 

transferring a large selfish element, such as a conjugal plasmid (7). Transformation, conjugation, and 

transduction are each distinct methods of HGT in prokaryotes.  

Varieties of important genes are transferred between prokaryotes, or from prokaryotes to eukaryotes, 

through HGT (8), including those for virulence factors, antibiotic resistance, and toxins (1-3). In 1990, some 

clusters of virulence genes, which transfer through HGT, were identified in Escherichia coli and described as 

pathogenicity islands (PAIs) (9). Later GIs were defined as any cluster of genes (10–200 kb) that has been 

acquired by HGT (10). GIs represent a part of a cell’s chromosome, recognized as discrete DNA segments, 

and can differ between closely related strains. Different GI families have been recognized on the basis of 

sequence and functional homologies by GI prediction tools (11). The nucleotide sequence length of GIs is 

>10 Kb, while it is ˂10 Kb for smaller genomic islets (12). 

Interest in GIs has increased commensurately with developing knowledge of their role in bacterial survival 

and proliferation. The common environmental- and pathogen-associated virulence factors found 

disproportionately in GIs tend to serve functions. For example, the pathogenicity role of β-CA has been 

approved in Pseudomonas aeruginosa (13) and the critical role of β-CA in detoxification of cyanate by 

providing bicarbonate for cyanase enzyme has been shown in Pseudomonas pseudoalcaligenes (14). 
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However, clustered regularly interspaced short palindromic repeats (CRISPRs), used by bacteria in defense 

against insertion of phage DNA, are also found overrepresented in GIs (15).  

The presence of GIs have been studied using various computational biology methods. There are two main 

methods for prediction of GIs, including: (1) evaluation of sequence compositions, using tools such as SIGI-

HMM (16), IslandPath-DIMOB (17), PAI-IDA (18), and Centroid (19), and (2) application of comparative 

genomics, such as BLAST homology search and whole-genome sequence alignment. Among the sequence 

analysis methods, SIGI-HMM and IslandPath-DIMOB have shown the highest overall accuracy (15). Two 

computational methods for prediction of GIs based on comparative genomics, include IslandPick (20) and 

MobilomeFINDER (21). The latter method focuses on identification of the islands associated with tRNA 

genes. However, not all GIs use tRNA genes as insertion sites, which thus limits the usage of 

MobilomeFINDER compared to the IslandPick method (22). Prediction based on IslandPick is provided at 

the IslandViewer 4 database [http://www.pathogenomics.sfu.ca/islandviewer/] (23). The IslandViewer 

server combines the three most accurate GI prediction methods into a single analysis: IslandPath-DIMOB, 

SIGI-HMM, and IslandPick. 

Carbonic anhydrases (CAs) are ubiquitous metalloenzymes, which are categorized into seven gene families, 

including α, β, γ, δ, ζ, η, and θ (24-27). CAs are involved in many important biochemical pathways including 

pH homeostasis, electrolyte transfer, transport of CO2 and bicarbonate between metabolizing tissues, and 

some biosynthetic processes (28-31). Many ancient putative β-CAs have been discovered in protozoans, 

rotifers, sea louses, molluscs, starlet sea anemones, purple sea urchins, arthropods, nematodes, and 

trematodes (32-34), as well as in prokaryotes and some eukaryotes, such as fungi, algae, and plants (35). 

Notably, β-CA gene sequences are present in the genomes of most living organisms except vertebrates (33, 

34). β-CAs are considered to be crucial metabolic enzymes (32, 36, 37). They act as virulence factors for 

various bacterial, fungal and parasitic species, such as Pseudomonas aeruginosa (13) , Cryptococcus 

neoformans (38), and Toxoplasma gondii (39), so β-CAs develop a cascade leading to the production of 

infectious spores in C. neoformans, prepare the adaptation of P. aeruginosa to low CO2 condition through 

http://www.pathogenomics.sfu.ca/islandviewer/
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different organization of three β-CA genes, and play the role in rhoptry biogenesis and formation of 

parasitophorous vacuole in T. gondii. β-CA is a vital enzyme for fertility of female insects (Drosophila 

melanogaster) (36) and therefore, β-CAs are attractive targets for inhibition studies in insects and pests. 

There is active ongoing research in this field focusing on inhibition of β-CAs in important organisms; for 

example, application of sulfonamide and sulfamate for inhibition of β-CA from Helicobacter pylori (40), 

aromatic carboxylates for inhibition of β-CA from Candida albicans (41), sulfonamides for inhibition of β-CA 

from Ascaris lumbricoides (42), and sulfonamides for inhibition of β-CA from malaria mosquito Anopheles 

gambiae (43). CA inhibition studies have been mainly performed in vitro, and only a few in vivo studies 

have been carried out on parasitic infectious diseases (44-46).  

Here we have studied the importance of HGT and β-CA gene exchange between bacterial GIs and protists 

genomes. We propose that GIs play a crucial role in horizontal transfer of β-CA genes from prokaryotes to 

protists.  

RESULTS 

β-CA genes are located in many genomic islands 

Our comparative analysis of the GI annotations presented in the IslandViewer 4 database and NCBI genome 

annotations, allowed us to identify a total of 272 instances of β-CA genes in bacterial GIs (Table S1). In 

study of all strains, nucleotides in β-CA genes are 3.81x more likely to occur in GIs than is expected by 

chance.  

Identification of β-CAs from prokaryotes and protists  

A multiple sequence alignment (MSA) was created for 86 amino acid residues of 25 prokaryote and protist 

β-CA protein sequences. The alignment revealed that all β-CA protein sequences contain the first (CXDXR; 

C: Cysteine, D: Aspartic acid, R: Arginine, and X: any amino acid) and second (HXXC; H: Histidine, C. 

Cysteine, and X: any amino acid) highly conserved motifs, which are characteristic of a β-CA protein (Fig. 1). 
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Using the data from the IslandViewer 4 IslandPath-DIMOB webserver and corresponding NCBI genome 

annotations, 272 β-CA genes were identified inside of prokaryote GIs (Table S1) (e.g. β-CA-encoding GI from 

Methylibium petroleiphilum (strain PM1)).  

Table S1. Prokaryotic GIs containing β-CA genes. 

Phylogenetic analysis  

The result of the phylogenetic analysis is presented as a circular tree and divisions of interest are shown in 

three different clades: A, B, and C (Fig. 2). Partitioning delineates regions where β-CA genes appear to have 

a common ancestor in prokaryotes and protists.  

In clade A, the β-CA gene of Trichomonas vaginalis and Paulinella chromatophora has a common ancestor 

with β-CA genes from prokaryotic GIs. In Clade B, there is a β-CA gene from a prokaryotic GI and two β-CA 

genes from the protist Acanthamoeba castellanii. Clade C includes β-CA genes from 27 bacterial GIs and 14 

protists including A. castellanii, Capsaspora owczarzaki, Dictyostelium discoideum, D. fasciculatum, D. 

purpureum, Leishmania donovani, L. panamensis, Leptomonas pyrrhocoris, Phaeodactylum tricornutum, 

Phytophthora infestans, Polysphondylium pallidum, Saprolegnia diclina, Tetrahymena thermophila, and 

Trypanosoma grayi. We did not identify any definite bacterial common ancestor with β-CA genes from 

protists Entamoeba invadens, E. nuttalli, and Galdieria sulphuraria. 

Sequence conservation analysis for HGT 

In order to evaluate the hypothesis of HGT between prokaryotes and eukaryotes within Clade C, the 

sequence conservation among the Clade C proteins were compared to the rest of the phylogenetic tree. 

First, Clade C protein sequences were aligned using Clustal Omega and the residues fully conserved within 

Clade C were identified (14 residues). Then, all proteins within the phylogenetic tree outside Clade C, 

except protist sequences, were aligned using Clustal Omega (Fig. S1). The resulting MSA was analyzed using 

program Consurf for sequence conservation (Fig. 3). We then inspected the conservation of those 14 fully-

conserved residues within Clade C for their conservation in the large group of CA sequences. Among those, 

7 residues were highly conserved (conservation score 9) and 4 were well conserved (conservation score 7-
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8). However, 3 of the residues showed an average of low conservation (conservation score 3-5). Therefore, 

conservation of those 3 residues could be considered as a possible result of HGT. These three conserved 

residues (Leu21, Gly71 and Gly117) of the homology modeled of β-CA from T. vaginalis (A2ENQ8) were 

shown in Fig. 4. 

FIG S1 Multiple sequence alignment (MSA) for all proteins within the phylogenetic tree outside Clade C 

(Fig. 2), except protist sequences, were aligned using Clustal Omega.  

Exon count for β-CA genes from protists 

Single exon structure of a protist gene would provide some additional support for the hypothesis that this 

particular gene could be of prokaryotic origin. The exon count analysis revealed that the β-CA genes of 

certain protists have indeed a single exon, while many other β-CA genes have multiple exons. The single-

exonic β-CA genes of protists have shown in Table 1. 

DISCUSSION 

Our previous phylogenetic analysis has suggested that β-CA genes have crossed species boundaries on 

multiple occasions (8). The present identification of β-CA genes within bacterial GIs also strongly suggests 

that prokaryotic β-CA genes have been horizontally transferred between and within different species (47). 

Specifically, we see what appears to be a very clear case of HGT of a β-CA from prokaryotic GIs to protists T. 

vaginalis and P. chromatophora (clade A), A. castellanii (clade B), and Dictyostelium sp., P. pallidum, T. 

thermophila (NCBI IDs: XP_001009612.1, XP_001013978.2, XP_001022390.2), Leishmania sp., L. 

pyrrhocoris, and T. grayi (clade C). Also, our phylogenetic analysis reveals that β-CA genes from GIs of 

Bacillus thuringiensis and Psychrosinus fermentans have common ancestors with T. vaginalis (clade A) and 

A. castellanii (clade B), respectively. In addition, a β-CA gene from a GI of Rahnella aquatilis shows a 

common ancestor with Dictyostelium sp. and P. pallidum. In several cases we observe clustering of multiple 

β-CA genes from the same protist species. When these cluster immediately together we believe the most 

likely explanation is gene duplication after HGT. In the case where we observe two distinct clusters of 
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paralogs from the same protist, such as with T. thermophila in Clade A, it is possible that there have been 

multiple duplication events after HGT, or separate cases of HGT. 

A previous study has shown that β-CA genes in protists exist as single or multiple exon chromosomal genes, 

while in metazoans these genes exist only as multiple exon chromosomal genes (48). Single exon β-CA 

genes can be found in most of our candidate HGT species, Entamoeba sp., Leishmania sp., L. pyrrhocoris, P. 

chromatophora, Phytophthora infestans (XP_002909250.1), T. thermophila (XP_001009111.1), T. vaginalis 

(NCBI ID: XP_001317907.1), and T. grayi; while multiple exon β-CA genes can be found in the other protists. 

The single exon structure of some β-CA genes of protists thus suggests that they are closely associated to 

prokaryotic β-CAs. Therefore, it seems that β-CA genes with prokaryotic GIs origins have integrated into 

stable chromosomal loci in genomes of protists without association between GIs and β-CA genes of 

protists. Due to the large and complexity of eukaryotic genomes and heterogeneous chromosomes leading 

to high rates of false-positive results, the horizontal transfer of GIs to the eukaryotic genomes is in a halo of 

ambiguity and largely unexplored (49). Currently, identification studies of horizontally transferred genes to 

eukaryotes are performed through comparative analyses than experimental methods to show GIs in the 

genome of the eukaryotes. Therefore, further studies are needed to design the databases for identification 

of eukaryotic GIs. 

Our studies have revealed that β-CA protein has, in some cases, potentially evolved into a virulence factor 

for some pathogenic bacteria, such as B. pseudomallei (50). We have identified a significant number of β-CA 

genes which reside in GIs in bacterial species, many of which are known to be pathogenic. These β-CA 

genes occur inside of GIs at a significantly higher rate than expected by chance, implying some function. 

Known virulence factors can be influenced by attenuators or RNA-based regulatory strategies, which lead 

to premature termination of transcription (51). Based on the lack of β-CAs in vertebrates, these proteins 

can be considered potential targets for anti-parasitic drugs. On the other hand, due to the presence of β-CA 

in M. petroleiphilum, it is suggested that this enzyme plays a major role in a CO2-concentrating-mechanism 

(CCM) in carboxysomes through use of methyl tert-butyl ether (MTBE) as the sole source of carbon. The β-
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CAs from other extremophilic bacteria (Table S1), such as Halothermothrix orenii (52), Acidithiobacillus 

caldus (53), Thioalkalivibrio nitratireducens (54), and Thiomicrospira crunogena (55) may play critical 

metabolic roles through carboxysome or non-carboxysome-associated mechanisms.  

The GIs in some bacterial species, such as Pseudomonas aeruginosa, can lead to emergence of strains 

resistant to various antibiotics (56). It was demonstrated that P. aeruginosa (isolate ST235) contains Tn6162 

and Tn6163 in GI1 and GI2, respectively, which function together as multiple antibiotic-resistant cassettes. 

An environmental study showed that Thiomonas sp. is able to withstand the extreme conditions of acid 

mine drainage (57). The comparison between the genomes of T. arsenitoxydans (strain 3As), T. intermedia 

(strain K12), and Thiomonas sp. (strain CB2) identified over 20 GIs occurring through various 

rearrangements containing arsenite resistance and oxidation genes, leading to divergent resistance to 

arsenic-rich environments.  

Conclusions. A GI is a continuous genomic region which arises through HGT and can contain tens to 

hundreds of genes. We have previously identified cases of horizontal transfer of β-CA genes from plasmids 

of some prokaryotic endosymbionts to their protozoan hosts (48). The present results support the idea that 

β-CA genes in protists and modern eukaryotes originated by HGT from ancestral prokaryotic GIs, along with 

other facilitators, such as transposase and integrase. Using phylogenetics and homology modeling, we 

suggest that the close sequence similarity of CA genes in hosts and endosymbionts was due to HGT and not 

convergent evolution (48). 

Further studies will be needed to identify the origin of β-CA genes in ancestral and metazoan species. Even 

though our results suggest that β-CA genes are overrepresented in GIs compared to the rest of the genome, 

no studies have yet been reported on whether β-CA genes are overrepresented there compared to other 

metabolic genes.  

MATERIALS AND METHODS 

Identification of CA proteins in genomic islands 
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A total of 110,913 genomic island annotations for 6,348 complete bacterial and archaeal strains were 

retrieved from the IslandViewer 4 database. RefSeq assembly annotations were available for 6,238 strains, 

which were downloaded in bulk from the NCBI assembly server (https://www.ncbi.nlm.nih.gov/assembly); 

annotations only available GenBank and updated annotation versions not corresponding to the current 

IslandViewer release were not retrieved. Using custom Python scripts, assembly IDs were retrieved for all 

IslandViewer genome accession IDs, and gene annotations compared with the GI locations. All CA genes 

which occur within the IslandViewer defined GI locations were kept for further analysis. To determine 

average overrepresentation, for each examined genome the number of CA gene nucleotides (nt) 

overlapping any GI was compared to the number expected by chance alone. Expected overlap was defined 

as the sum of lengths of all CAs in the genome multiplied by the sum of lengths of all GIs in the genome 

divided by the length of the genome.  

Identification of β-CAs from prokaryotes and protists  

After detection of GIs-containing β-CA genes in the IslandViewer version 4 database, we then collected 

prokaryotic β-CAs locating in GIs, and β-CA from Klebsiella pneumoniae subsp. pneumoniae (NCBI protein 

ID: WP_019705531.1), five β-CA protein sequences equally from both gram-negative and gram-positive 

bacteria (Table 2), and protist β-CAs (Table 3) to perform a multiple sequence alignment (MSA) analysis. We 

used the β-CA protein sequence from Klebsiella pneumoniae subsp. pneumoniae (NCBI protein ID: 

WP_019705531.1) as a query from prokaryotic species for the MSA analysis. All β-CA protein sequences 

from protists used in the analysis are described in Table 3. Also, we used the β-CA protein sequence from A. 

castellanii (XP_004344666.1) as the query from protists in the Basic Local Alignment Search Tool for 

proteins (blastp) from NCBI database 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthom

e) through running different phyla of protists including Stramenopiles, Alveolata, Rhizaria, Excavata, 

Amoebozoa, Hacrobia, Apusozoa, and Opisthokonta in the choosing search set panel. Some protists contain 

more than one β-CA protein sequence, in which case we used only one as a representative sequence in the 

https://www.ncbi.nlm.nih.gov/assembly
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MSA analysis. In total 25 β-CA protein sequences of prokaryotes and protists (86 amino acid residues, 

starting three amino acid residues prior to first highly conserved motif; CXDXR) were used to compute an 

MSA using the Clustal Omega. The results were visualized in JalView [http://www.jalview.org/] (58). 

Identification of β-CA gene sequences located in prokaryotic GIs was performed using the IslandViewer 

version 4 database. This webtool provides the ability to draw main circular chromosomes of defined 

prokaryotes containing GIs, as well as search for β-CA gene sequences. 

Phylogenetic analysis  

The β-CAs identified to reside in bacterial GIs, using annotations from the IslandViewer database, were 

clustered to 90% similarity centroids with the "cluster_fast" algorithm of the search tool (59) in order to 

reduce the number of sequences for phylogenetic analysis. Similarly, a set of 35 protist β-CAs were 

clustered to 90% similarity. The resulting reduced set of 122 prokaryote β-CAs found within GIs and 35 

protist β-CAs were aligned using Clustal Omega. Model testing was performed to identify the best 

evolutionary model for analysis of the target sequences using ModelFinder (60). A maximum likelihood 

phylogenetic analysis was performed using the IQTree software (61, 62), with parameters set to "-alrt 

100000 -bb 100000 -nt AUTO -m LG+R7" and all other options run as default. A consensus tree was 

generated from the 100,000 bootstrap replicates, with a final log-likelihood value of -37626.11. The tree 

was then visualized using the ETE Toolkit Python library (63). 

Sequence conservation analysis for HGT 

In order to analyze sequence conservation among the β-CA proteins, their sequences were aligned using 

the Clustal Omega and the resulting MSA was then analyzed using the ConSurf Server 

[http://consurftest.tau.ac.il/] (64).  

Exon count for β-CA genes from protists 

In order to count the exons of β-CA genes from protists, we used the NCBI gene server 

(https://www.ncbi.nlm.nih.gov/gene/) (65). In this feature, a summary of a specific gene including gene 

http://www.jalview.org/
http://consurftest.tau.ac.il/
https://www.ncbi.nlm.nih.gov/gene/
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type, symbol and description, locus tag, RNA name, RefSeq status, organism lineage, and genomic context 

(exon count) are presented.  
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TABLE 1 The single exon β-CA genes of protists. 

No. Protist species NCBI IDs Gene name 

1 Entamoeba sp.  XP_004183626.1 EIN_065450 

XP_008860421.1 ENU1_204230 

2 Leishmania sp.  XP_003858369.1 LDBPK_060630 

XP_010703940.1 LPMP_060590 

3 Leptomonas pyrrhocoris  XP_015662104.1 ABB37_01925 

XP_015662099.1 ABB37_01923 

4 Paulinella chromatophora  YP_002049530.1 PCC_0911 

5 Phytophthora infestans  XP_002909256.1 PITG_00682 

XP_002909250.1 PITG_00674 

 6 Tetrahymena thermophila  XP_001009111.1 TTHERM_00263620 

7 Trichomonas vaginalis  XP_001317907.1 TVAG_005270 

8 Trypanosoma grayi  XP_009310034.1 DQ04_02331000 
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TABLE 2 β-CA protein sequences from bacterial species. 

No. Gram-staining Bacterial species NCBI IDs 

1  

Gram-negative 

Klebsiella pneumoniae  WP_019705531.1 

2 Brucella abortus  WP_002965854.1 

3 Yersinia enterocolitica  WP_005165125.1 

4 Bordetella parapertussis  YP_006895229.1 

5 Pseudomonas stutzeri  WP_011914306.1 

6  

 

Gram-positive 

Streptomyces sp.  WP_015579823.1 

7 Bifidobacterium angulatum  WP_003825226.1 

8 Pseudonocardia sp.  WP_060712833.1 

9 Desulfocapsa sulfexigens  WP_015403686.1 

10 Arthrobacter alpinus  WP_062006860.1 
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TABLE 3 β-CA protein sequences from protists. 

No. Protist species NCBI IDs 

1 Acanthamoeba castellanii  XP_004344666.1, XP_004335990.1, XP_004337607.1 

2 Capsaspora owczarzaki  XP_004342925.1, XP_4349240.1 

3 Dictyostelium sp.  XP_646739.1, XP_644170.1, XP_003283430.1, XP_004361116.1 

4 Entamoeba sp.  XP_004183626.1, XP_008860421.1 

5 Galdieria sulphuraria  XP_005703553.1 

6 Leishmania sp.  XP_003858369.1, XP_010703940.1 

7 Leptomonas pyrrhocoris  XP_015662104.1, XP_015662099.1 

8 Paulinella chromatophora  YP_002049530.1 

9 Phaeodactylum tricornutum XP_002176594.1 

10 Phytophthora infestans  XP_002909256.1, XP_002909250.1, XP_002909249.1 

11 Polysphondylium pallidum  XP_020436034.1 

12 Saprolegnia diclina  XP_008607403.1, XP_008604330.1 

  

13 

 

Tetrahymena thermophila  

XP_001009617.1, XP_001009612.1, XP_001009111.1, 

XP_001022390.2, XP_001009116.2, XP_001009616.1, XP_976601.1, 

XP_001013978.2 

14 Trichomonas vaginalis  XP_001317907.1, XP_001579768.1 

15 Trypanosoma grayi  XP_009310034.1 
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FIG 1 Multiple sequence alignment (MSA) of β-CA protein sequences from prokaryotes and protists. The 
alignment of 25 β-CA protein sequences shows that they all contain the first (CXDXR; C: Cysteine, D: 
Aspartic acid, R: Arginine, and X: any residue) and second (HXXC; H: Histidine, C: Cysteine, and X: any 
residue) highly conserved motifs. The alignment begins three amino acid residues prior to the first highly 
conserved residues (CXDXR). 
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FIG 2 Phylogenetic analysis of β-CAs from prokaryotes and protists. Phylogenetic relationships were 
determined using the IQTree software for β-CAs from prokaryotes and protists, yellow and blue 
respectively. Three clades (A, B, and C) reveal regions where β-CAs from prokaryotes and protists appear to 
have a common ancestor. 
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FIG 3 Sequence conservation analysis. Consurf analysis performed for the β-CA sequences in the 
phylogenetic tree except Clade C and protists. The conservation score is projected onto the T. vaginalis CA 
sequence. The residues strictly conserved within the Clade C sequences are indicated with violet stars (red 
stars used for three residues with average or low concentration). 
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FIG 4 Evaluation of the functional importance of highly conserved residues in Clade C. A homology model of 
β-CA from T. vaginalis (A2ENQ8) (8) was used to project the conserved residues to a β-CA structure. Three 
conserved residues including Leu21, Gly71 and Gly117 were all located in flexible regions and are mostly 
exposed to solvent, indicating a non-essential structural role for these residues.  
 


