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The surgical reconstruction of functional neovagina is challen-

ging and susceptible to complications. Therefore, developing

tissue engineering-based treatment methods for vaginal defects

is important. Our aim was to develop and test a novel supercriti-

cal carbon dioxide foamed poly-L-lactide-co-1-caprolactone

(scPLCL) scaffold for vaginal reconstruction. The scaffolds

were manufactured and characterized for porosity (65+4%),

pore size (350+150 mm) and elastic modulus (2.8+0.4 MPa).

Vaginal epithelial (EC) and stromal cells (SC) were isolated,

expanded and characterized with flow cytometry. Finally, cells

were cultured with scPLCL scaffolds in separate and/or co-

cultures. Their attachment, viability, proliferation and phenotype

were analysed. Both cell types strongly expressed cell surface

markers CD44, CD73 and CD166. Strong expression of CD326

was detected with ECs and CD90 and CD105 with SCs. Both

ECs and SCs attached and maintained viability on scPLCL.

Further, scPLCL supported the proliferation of especially ECs,

which also maintained epithelial phenotype (cytokeratin

expression) during 14-day assessment period. Interestingly,

ECs expressed uroplakin (UP) Ia, UPIb and UPIII markers;

further, UPIa and UPIII expression was significantly higher

on ECs cultured on scPLCL than on cell culture plastic.
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In conclusion, the scPLCL is potential scaffold for vaginal tissue engineering and the results of this

study further illustrate the excellent biocompatibility of PLCL.
.royalsocietypublishing.org
R.Soc.open

sci.5:180811
1. Introduction
The vaginal defects can result due to numerous reasons. Failed embryonal fusion in the midline can

cause genitourinary malformations such as vaginal agenesis [1]. Operative complications of pelvic

organ prolapse surgery might lead to epithelial erosions or shortening of the vagina [2]; additionally,

operative treatment of gynaecologic cancer may require removal of vaginal tissue [3,4]. In addition,

transgender reconstructive surgery is a new and extremely challenging field of surgery requiring

advanced reconstruction techniques [5,6]. Various surgical and non-surgical techniques have been

used to reconstruct a functional neovagina. For vaginal agenesis, dilatation of vulvar tissue to create

vagina is the first-line method. It is, however, a long process that takes patience and devotion, and yet

is not always successful [7]. Different natural materials and acellular meshes such as amniotic mem-

branes, peritoneal layers, recombinant artificial dermis and intestinal tissue have been studied for

vaginal reconstruction [8–11]. Nevertheless, the non-vaginal tissues are not ideal for vaginal function

and have problems such as shrinking, lack of lubrication, mucous secretion, stenosis formation and

neovaginal prolapse depending on the graft tissue origin [8,12–16].

Recently, tissue engineering emerged as an alternative method for vaginal reconstruction. The selec-

tion of an appropriate biomaterial is essential; biomaterial should be biocompatible, flexible, suturable,

easily moulded as a tubular structure, degrade without unfavourable tissue reactions and the mechanical

properties of the scaffold should be close enough to the reconstructed vaginal tissue. Further, the scaffold

for vaginal tissue engineering should adhere to the surrounding tissue, promote the viability and pro-

liferation of both vaginal epithelial cells (EC) and stromal cells (SC), and the recovery of vaginal tissue

architecture [17–19]. The poly-L-lactide-co-1-caprolactone (PLCL) is known to be a biocompatible, elastic

and flexible polymer, which is widely studied especially in soft tissue engineering applications, such as

urothelial, vascular and neural tissue engineering [20–23]. The mechanical properties of the PLCL are

more adequate to soft tissue engineering application when compared with other poly-a-esters such as

polylactide and depend on the scaffold structure and manufacturing method [19,24,25]. Further, Vuornos

et al. [25] have previously shown that the elastic modulus of supercritical carbon dioxide (scCO2) foamed

PLCL (scPLCL) scaffold is 1.6+ 0.6 MPa, which is closer to elastic modulus of vaginal tissue (6.65+
1.48 MPa) compared with, for instance, elastic modulus of braided PLA scaffold (280+20 MPa). Even

though the PLCL is widely studied in soft tissue engineering applications, at least best to our knowledge,

the PLCL is not previously studied for vaginal tissue engineering. We wanted to study three-dimensional

scaffold in order to facilitate the three-dimensional organization of cells [26]. For this study, we chose

scCO2 foaming as a method for fabricating three-dimensional scaffold for vaginal tissue engineering

in order to avoid any harmful solvents in fabrications process [27]. To our knowledge, the scCO2 foaming

has not been previously studied for vaginal tissue engineering.

The aim of this study was to evaluate the suitability of scPLCL for vaginal tissue engineering by eval-

uating the morphology, viability and proliferation of vaginal ECs and SCs. Further, we also studied how

the cells retain their viability and phenotype in co-cultures on scPLCL scaffold. Our hypothesis was that

the scPLCL is a suitable scaffold structure for vaginal ECs and SCs and the cells maintain their viability

and proliferate on the scPLCL.
2. Material and methods
2.1. Scaffold preparation
The polymer used in the porous scaffolds was 70/30 poly-L-lactide-co-1-caprolactone (PLCL, 70 L/30CL;

PURAC Biochem BV, Gorinchem, The Netherlands) with inherent viscosity of 1.6 dl g21. The polymer

was first melt-extruded into rods and in a second step foamed with scCO2 with a custom-fitted scCO2

reactor system (Waters Operating Corporation, Milford, MA, USA). The porous samples were cut into

disc shape samples with a diameter of 5 mm and a height of 2–2.5 mm. The scaffolds were gamma

irradiated for sterility with a minimum irradiation dose of 25 kGy.

http://rsos.royalsocietypublishing.org/
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2.2. Scaffold characterization with X-ray microtomography, differential scanning calorimetry
and tensile testing

The scaffold structure was characterized with microtomography (mCT) imaging. The scaffolds (n ¼ 3) were

imaged with Xradia MicroXCT-400 (Zeiss, Pleasanton, CA, USA) X-ray device with 5.637 mm pixel size.

Reconstruction was performed with the manufacturer’s XMReconstructor software, and Avizo Software

(Thermo Fisher Scientific, Waltham, MA, USA) was used for image processing and segmentation. Porosity

and pore sizes were calculated with Fiji [28] using BoneJ plugin [29]. Interconnectivity of pores in PLCL scaf-

folds was calculated with developed Matlab (The MathWorks, Inc., Natick, MA, USA) script based on the

pore size data.

The change in the crystallinity, measured as a change in melting enthalpy, was measured by a differ-

ential scanning calorimeter (DSC Q1000, TA Instruments, New Castle, DE, USA) for zero-week dry

samples and samples incubated four weeks in vitro at 378C in phosphate buffer solution (pH 7.6–7.9).

Analyses were performed with 5–10 mg samples with the temperature range of 10–2008C with a heating

rate of 208C min21.

The tensile tests were performed for scPLCL (n ¼ 6) with thickness of 3.3+0.3 mm, widths of 10.4+
0.4 mm and gauge lengths of 10 mm. The samples were strained with crosshead speed of 2 mm min21

until 300% strain was reached. The elastic modulus of the samples was determined from the linear

part of the resulting stress–strain curves. The mechanical tests were performed using Instron ElectroPuls

E1000 (High Wycombe, UK) in ambient laboratory environment and in aqueous environment at 378C
with Instron’s temperature-controlled fluid bath. Prior to testing in aqueous environment, the samples

were incubated in phosphate buffer solution (pH 7.6–7.9) at 378C for 48 h.
2.3. Cell isolation
For this study, human vaginal ECs and SCs were isolated from vaginal tissue pieces from three patients

undergoing vaginectomy in Tampere University Hospital. The isolation protocol was modified from

De Filippo et al. [30]. Briefly, the tissue sample was washed twice with Hanks’ balanced salt solution

(HBSS, Life Technologies, Thermo Fisher Scientific, Waltham, MA, USA) and cut into small pieces.

The pieces were digested in solution containing 1.5 mg ml21 of collagen cleaving collagenase type I

(Life Technologies), and 4 mg ml21 of dispase, separating the EC (Invitrogen, Thermo Fisher Scientific)

for 60 min at 378C water bath with shaker on. The digested tissue was filtered through the 100 m cell

strainer (BD Biosciences, San Jose, CA, USA) and the resulting suspension was centrifuged. The digested

tissue pieces and the resulting pellet were plated on separate CellBind T75 flasks (Sigma-Aldrich, St

Louis, MO, USA) with EpiLife medium (Invitrogen) supplemented with 1% of EpiLife defined growth

supplement (EDGS; Invitrogen), 0.1% of CaCl2 (Invitrogen) and 0.35% of antibiotics (100 U ml21 penicil-

lin and 0.1 mg ml21 streptomycin (Lonza, BioWhittaker, Verviers, Belgium) and cultured at 378C in a

humidified atmosphere of 5% CO2 in air. After primary culturing, the cells were treated with TrypLE

Select (Gibco, Thermo Fisher Scientific) for 2 min and the cells were passaged to T75 flasks (Nunc,

Thermo Fisher Scientific) in DMEM/F12 (basic medium, BM; Thermo Fisher Scientific) supplemented

with 5% human serum (Biowest, Nuaillé, France), 1% GlutaMAX (Life Technologies) and 1% of anti-

biotics (100 U ml21 penicillin and 0.1 mg ml21 streptomycin; Lonza), resulting human vaginal SC line.

The remaining cells were treated a second time with TrypLE Select and passaged to T75 flasks with Epi-

Life medium, resulting human vaginal EC line. The cells were passaged when confluent and the vaginal

ECs and SCs in passages 2–3 were used in all in vitro tests except flow cytometric analysis.

Prior to experiments, four different medium compositions; EpilLife, 3% HS in EpiLife, EpiLife and

BM 1 : 1 and CnT prime CC (CELLnTEC Advanced Cell Systems AG, Bern, Switzerland) were tested

with the ECs, SCs and vaginal-SC co-cultures for 7 days. According to the live/dead staining results

(electronic supplementary material, figure S1), EpiLife was chosen as the culture medium for co-cultures.
2.4. Flow cytometric surface marker expression analysis
The human vaginal ECs and SCs (n ¼ 3, passages 3–4) were harvested and analysed after cell culture

with fluorescence-activated cell sorter (FACS; FACSAria Fusion Cell Sorter, BD Biosciences). Monoclonal

antibodies against CD44-PE, CD73-PE, CD90-APC (BD Biosciences), CD105-PE (R&D Systems, Oxon,

UK), CD133-PE (Miltenyi Biotech, Bergisch Gladbach, Germany), CD166-PE (BD Biosciences) and

http://rsos.royalsocietypublishing.org/
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CD326-PE (Miltenyi Biotech) were used. In total, 10 000 cells per sample were analysed and unstained

cell samples were used to compensate the background autofluorescence levels.

2.5. Cell seeding
Before the cell seeding, the scPLCL scaffolds were pre-incubated in medium at 378C for 24 h in order to

pre-wet the samples and placed on 48-well plates (NuncTM, Thermo Fisher Scientific). The cell culture

studies were performed either by culturing vaginal ECs and SCs on separate scaffolds or co-culturing

the ECs and SCs.

In separate culturing, 40 000 ECs or SCs in 10 ml of medium were seeded on both sides of PLCL scaf-

folds. The cells were seeded into the scaffold in a small amount of medium in order to be certain of

getting the cell on the scaffold. The cells were allowed to adhere for 2.5 h, after which 500 ml of EpiLife

medium or BM was added to vaginal EC or SC wells, respectively. The medium was changed three times

per week and the cell-seeded scaffolds were cultured at 378C in a humidified atmosphere until analyses.

The analyses for vaginal EC and SC cultures were performed after 1, 7 and 14 days of cell culturing.

For co-culture wells, 40 000 SCs were implanted on scPLCL and pre-cultured for 5 days in BM in

order to increase the SC amount. Thereafter, 40 000 ECs were implanted on the other side of the scaffold

and the co-cultures were maintained in EpiLife medium at 378C in a humidified atmosphere until ana-

lyses and the medium was changed three times per week. The analyses for co-cultured cells were

performed at 1, 7 and 14 day time points, which are following the culturing time of vaginal ECs. The

SCs were allowed to proliferate on serum containing medium for 5 days before implanting the vaginal

ECs; thus, the corresponding cell culture times for SCs both in separate and in co-cultures were 6, 12 or

19 days.

2.6. Scanning electron microscopy imaging
The scanning electron microscopy (SEM) was used to evaluate the attachment and morphology of the

ECs and SCs in co-cultures at 1, 7 and 14 day time points. Additionally, the SCs were evaluated after

1-day pre-culturing. Briefly, the cells were washed with Dulbecco’s phosphate-buffered saline and

fixed with 5% glutaraldehyde (Sigma-Aldrich) in 0.1 M phosphate buffer (pH 7.4, Sigma-Aldrich) at

room temperature for 48 h. Thereafter, the samples were dehydrated through a sequence of increasing

concentrations (30, 50, 70, 80, 90, 95 and 100%) of ethanol for 5 min. For drying, the samples were trans-

ferred into a solution of 1 : 2 hexamethyldisilazane (HMDS, Sigma-Aldrich) and 100% ethanol (Altia Oyj,

Helsinki, Finland) for 20 min following an incubation in 2 : 1 HMDS and ethanol for 20 min. Thereafter,

the samples were dried twice in 100% HMDS for 20 min. Finally, the samples were allowed to evaporate

in a fume overnight, gold sputtered and examined with SEM (Zeiss ULTRAplus, Oberkochen, Germany).

2.7. Live/dead staining and cell proliferation
The viability of ECs, SCs and co-cultured cells was evaluated with qualitative live/dead staining at 1, 7

and 14 day time points, which was performed as previously represented by Sartoneva et al. [31] with

minor modifications. The scPLCL without cells was used to exclude false-positive staining caused by

material.

The DNA amount of both ECs and SCs cultured on scPLCL (n ¼ 9) was determined using quantitat-

ive CyQUANT Cell Proliferation Assay kit (Invitrogen, Paisley, UK) at 1, 7 and 14 day time points as

previously described by Vuornos et al. [25].

2.8. Immunostaining in co-cultures
The immunostaining was used to evaluate the expression of cytokeratins (AE1/AE3 pancytokeratin, 1 : 250,

Cytokeratin Pan Ab, Thermo Scientific) and actin cytoskeleton organization (phalloidin-tetramethylrhoda-

mine B isothiocyanate, 1 : 500, Sigma-Aldrich) in co-cultures of ECs and SCs at 7 and 14 day time point.

Briefly, the samples were fixed with 4% paraformaldehyde (Sigma-Aldrich) and incubated overnight in

pancytokeratin primary antibody dilutions. The next day, the samples were incubated in a mixture of

secondary antibody (1 : 800 Alexa-488 donkey, green fluorescence) and phalloidin. Finally, the cell nuclei

were stained with DAPI (1 : 2000, blue fluorescence, Sigma-Aldrich), and the cells were imaged with a

fluorescence microscope (Olympus).

http://rsos.royalsocietypublishing.org/


Table 1. qRT – PCR primer sequences used in this study.

name 50-sequence-30 product size (bp) accession number

CK7 forward CATCGAGATCGCCACCTACC 80 NM_005556.3

reverse TATTCACGGCTCCCACTCCA

CK8 forward CCATGCCTCCAGCTACAAAAC 68 M34225.1

reverse AGCTGAGGTTTTATTTTGGACC

CK19 forward ACTACACGACCATCCAGGAC 80 NM_002276.4

reverse GTCGATCTGCAGGACAATCC

UPla forward GGGATCTCCAGTTGGTGG 80 NM_007000.3

reverse TCTCAGCAAACAGGGACAGG

UPlb forward AGTCACCAAAACCTGGGACAG 64 NM_006952.3

reverse TGATGGACCATTTACGCCACA

UPIII forward TCAGTGCAAGACAGCACCAA 65 AB010637.1

reverse GTCCTCCCACCCTCTGTTTG

RPLP0 forward AATCTCCAGGGGCACCATT 70 NM_001002

reverse CGCTGGCTCCCACTTTGT
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2.9. Real-time quantitative polymerase chain reaction
The relative expression of cytokeratin (CK) 7, CK8, CK19, uroplakin (UP) Ia, UPIb and UPIII genes was

studied using real-time reverse transcription–polymerase chain reaction (qRT–PCR). For the qRT–PCR

analysis, the ECs and SCs were cultured on scPLCL until 14 day time point. The ECs and SCs cultured on

polystyrene (PS) served as a control. Briefly, total RNA was isolated with Nucleospin kit reagent

(Macherey-Nagel GmbH & Co. KG, Düren, Germany). Thereafter, the mRNA was reverse transcribed

to cDNA with the high-capacity cDNA Reverse Transcriptase Kit (Thermo Fisher Scientific). The

expression of genes, CK7, CK8, CK19, UPIa, UPIb and UPIII was analysed and the expression data

were normalized to the expression of housekeeping gene RPLP0 (large ribosomal protein P0). The

primer sequences and the accession numbers are presented in table 1 (OligomerOy, Helsinki, Finland).

The qRT–PCR mixture contained cDNA, forward and reverse primers, and SYBR Green PCR Master

Mix (Applied Biosystems, CA, USA). The AbiPrism 7000 Sequence Detection System (Applied Biosys-

tems) was used to conduct the reactions. The initial enzyme activation was performed at 958C for

10 min, followed by 45 cycles at 958C for 15 s and 608C for 60 s. The relative expression was calculated

using a previously described mathematical model [32].

2.10. Statistical analyses
Statistical analysis was performed with SPSS v. 23 (IBM SPSS Statistics for Windows, NY, USA). The cell

proliferation measurement CyQUANT was repeated with three different cell lines using three parallel

cell samples for each cell line (n ¼ 9). The data inspection showed that the CyQUANT data were non-

normally distributed; therefore, the differences between culturing periods were analysed using the

non-parametric Kruskal–Wallis test. The qRT–PCR was done with three different cell lines using two or

three parallel samples (n ¼ 6). The non-parametric Mann–Whitney U-test, which analyses the differences

between non-normally distributed data samples, was used to analyse the qRT–PCR data. Data from

CyQuant and qRT-PCR were reported using median and quartiles; p , 0.05 was considered significant.
3. Results
3.1. Scaffold characterization
The structure of three-dimensional scaffold is illustrated in figure 1a. The average porosity and average

pore size of the three-dimensionally imaged samples were 65+ 4% and 350+ 150 mm, respectively

http://rsos.royalsocietypublishing.org/
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Figure 1. (a) The X-ray microtomography imaging illustrates the structure of porous PLCL scaffolds (scale bar, 500 mm). The column
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(figure 1b). Interconnectivity of scaffold pores was 98% for a ball with 100 mm in diameter indicating that

the 100 mm ball is able to reach 98% of the scaffold’s total pore space from outside of the scaffold.

The initial melting enthalpy (zero weeks) was 5.6+0.9 J g21 and after four-week incubation at 378C, the

melting enthalpy was 15.3+0.8 J g21. The elastic modulus for the dry samples in the ambient environment

was 2.8+0.4 MPa. After 2 days of incubation in phosphate buffer at 378C, the elastic modulus was slightly

decreased, being 2.4+0.3 MPa. However, as presented in figure 2, the stress increase as function of strain

was linear up to 20%, after which the slopes of the stress/strain curves changed to follow an environment-

dependent new trend up to 300% strain. The materials did not break during the tensile test, but elastically

returned to their original dimensions when the straining load was released. During the tensile test, the

materials responded to even small dimensional changes in both ambient and in 378C aqueous environment.

3.2. Flow-cytometric surface marker expression analysis
Based on the flow cytometric analysis, the populations of vaginal ECs and SCs were relative homo-

geneous between the donors. The vaginal ECs strongly (greater than 60%) expressed the cell surface

molecules CD44, CD73, CD166 and CD326 (table 2). The moderate expression (20–60%) was detected

on surface markers CD90 and CD105. The ECs illustrated low (2–20%) expression of CD133.

The vaginal SCs strongly expressed the cell surface molecules CD44, CD73, CD90 and CD105.

Additionally, strong expression of SCs was detected with CD166 and low expression of marker CD326

was detected with SCs. Further, the cells lacked (less than 2%) the expression of CD133.

3.3. Scanning electron microscopy
SEM was used to examine the attachment and morphology of ECs and SCs in co-cultures on scPLCL

(figure 3). After 1 day of cell seeding, the SCs were attached on scaffold surface (data not shown). The

http://rsos.royalsocietypublishing.org/


Table 2. Surface marker expression of vaginal stromal and epithelial cells after cell isolation. The expression level of greater than
60% was considered as strong, 20 – 60% as moderate and 2 – 20% as low expression.

cell type donor CD44 CD73 CD90 CD105 CD133 CD166 CD326

stromal cells donor 1 100 100 99.9 99.9 1 98.8 7.2

donor 2 100 100 99.8 99.9 1 96.9 13.3

donor 3 100 100 99.6 99.9 1 97.3 12

epithelial cells donor 1 99.4 100 18.6 69.8 0.8 99.9 95.2

donor 2 95.9 99.9 21.5 52.1 3.2 99.7 99.3

donor 3 94.7 100 61.4 44.2 2.9 99.7 87.5

(a) (c) (d )(b)

(e) ( f ) (g) (h)

Figure 3. SEM images of the ECs and SCs in co-cultures on scPLCL at 1, 7 and 14 day time points. The SCs were pre-cultured in BM 5
days before seeding the ECs; therefore, the corresponding culturing times for SCs are 6, 12 and 19 days. (a – c) ECs at 1, 7 and 14 day
time points, respectively (scale bar, 100 mm). (d ) ECs at day 14, scale bar, 20 mm. (e – g) Fibroblasts at 1, 7 and 14 day time points,
respectively (scale bar, 100 mm). (h) Fibroblasts at 14 day time point (scale bar, 20 mm).
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SCs were pre-cultured on scaffolds for 5 days before seeding the ECs. At 1 day time point, the vaginal SCs

were cultured for 6 days and the vaginal ECs for 1 day on the scPLCL. The SCs were mostly adhered on the

surface of the scaffolds; however, these cells also seemed to form cell cluster and cover the pores of the

scPLCL. Further, the vaginal ECs were adhered on the surface of scPLCL. At 7 day time point, the ECs

were spread homogeneously on the surface of the scPLCL, especially favouring the pores of the scaffold.

At 14 days, the ECs had formed several layers (figure 3c) and were distributed evenly on the scaffold.

At 7 and 14 day time points, the SCs favoured cell clusters and to form bridges between adjacent cells.

3.4. Cell viability and proliferation
The viability of vaginal ECs and SCs and co-cultures was evaluated at 1, 7 and 14 days. Both vaginal ECs

and SCs remained viable on scPLCL during the assessment period and the amount of dead cells was

negligible. Further, the minor amount of dead cells after 1 day also indicates that the cells did not

suffer from the 2.5 h adhesion period. Furthermore, the ECs and SCs were viable in co-cultures and

no increase in the amount of dead cells was detected after 14 day time point (figure 4).

The cell proliferation in separate cultures was quantified based on DNA amount (figure 5). The prolifer-

ation assay indicated that the amount of vaginal ECs increased during the 14-day assessment period and the

cell amount was significantly increased after 7 and 14 days when compared with 1 day. However, the amount

of vaginal SCs reached the maximum at 1 day time point, after 6 days of cell culturing. The amount of SCs was

significantly higher after 6 and 12 days of cell culturing compared with 1 day after cell seeding.

3.5. Immunostaining in co-cultures
The expression of cytokeratins (pancytokeratin AE1/AE3) and organization of actin filaments (phalloi-

din) were assessed in vaginal ECs and SCs co-cultures at 7 and 14 day time points (figure 6). The vaginal

http://rsos.royalsocietypublishing.org/
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Figure 4. Live/dead images of ECs (a – c) and SCs (d – f ) in separate cultures and of ECs (g – i) and SCs ( j – l) in co-cultures at
1, 7 and 14 day time points, respectively. The majority of cells were viable (green fluorescence) and hardly any dead cells
(red fluorescence) were detected on scPLCL both separate and co-cultures. Scale bar, 200 mm.
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ECs expressed cytokeratins strongly in both time points and there was no remarkable alteration in the

expression intensity. Further, the cytokeratin expression was absent in vaginal SCs. In SCs, the actin fila-

ments were aligned in parallel, whereas, in the ECs, the actin seemed to accumulate on the edge of the

cell cytoskeleton.
3.6. Real-time quantitative polymerase chain reaction
The expression of epithelial markers was studied at 14 day time point in vaginal ECs cultured on scPLCL

and the PS, which served as a control material (figure 7). The vaginal ECs expressed all the cytokeratin mar-

kers, CK7, CK8 and CK19. The expression of CK7 and CK8 was significantly lower on PLCL scaffold

compared with PS, whereas the CK19 expression was similar on both materials. Interestingly, the
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scPLCL supported the gene expression of UPIa and UPIII significantly more compared with PS in vaginal

ECs. In addition, we evaluated the expression of the same epithelial markers in vaginal SCs cultured on

scPLCL or PS. The SCs lack or indicated only low expression of cytokeratin and uroplakin genes on both

scPLCL and PS cell culture wells.
4. Discussion
The surgical reconstruction of vaginal tissue is highly challenging and susceptible to complications. Various

non-vaginal tissues such as skin grafts, intestinal tissue, vulvar skin flaps or inverted penile skin have been
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used to reconstruct a neovagina. However, it has been reported that neovagina contains higher risk for malig-

nancy and the type of cancer seems to be related to the transplanted tissue [33,34]. The rising numbers of

transgender reconstruction, the advancing cancer detection and treatment, and the modern expectations

for the quality of life will bring more patients in need for safe and efficient treatment methods for vaginal

deformity [35,36]. Owing to these challenges, it is highly important to develop new treatment techniques.

Previously, both natural and synthetic materials have been tested for vaginal tissue engineering

[37–39]. In general, the natural biomaterials are highly biocompatible and contain natural cell adhesion

molecules. However, natural biomaterials are usually xenogenic, which could elicit immunological reac-

tions and contain a minor risk of viral infection transmission. In comparison, the synthetic materials are

less bioactive but large-scale manufacturing of even quality products is fairly easy and the mechanical

properties are more easily tailored. Previously, DeFilippo et al. studied vaginal epithelial and smooth

muscle cells cultured on poly-lactide-co-glycolide-coated polyglycolic acid scaffold in a rabbit model.

They compared the tissue-engineered scaffold to unseeded scaffold for vaginal reconstruction in a

rabbit model. After six months, the tissue-engineered vagina revealed normal histology and maintained

the vaginal calibre, whereas, on unseeded scaffold group, the strictures or graft collapse occurred one

month after surgery [37]. In addition, Raya-Rivera et al. have treated four patients suffering from vaginal

aplasia using small intestinal submucosal graft seeded with patient’s own epithelial and SCs acquired

from vulvar biopsy. The histology of neovagina remained normal in yearly biopsies over the 5–8-year

follow-up period; also, the variables in the sexual function index questionnaire remained in normal

range with all patients and no long-term post-operative complications were reported [39]. Despite

encouraging results, there are only a few studies in the field of vaginal tissue engineering.

For this study, we isolated normal vaginal ECs and SCs from vaginal biopsy, after which the cells

were characterized in order to control the success of our isolation protocol. At best, to our knowledge,
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vaginal ECs or SCs have not been previously characterized with flow cytometry. Thus, this study pro-

vides novel findings on the CD surface marker expression pattern of these cells. The vaginal ECs

strongly expressed the extracellular matrix adhesion molecule CD44, surface molecule CD73 and epi-

thelial markers CD166 and CD326. Previously, we have detected that these markers are strongly

expressed in urothelial cells; therefore, we assumed that these markers would also be expressed in vagi-

nal EC [20,31,40]. The vaginal SCs strongly expressed the markers CD44, CD73, CD90 and CD105,

illustrating the mesenchymal origin of the SCs [41,42]. Additionally, the strong expression of marker

CD166, which is known to be expressed also in fibroblast cells, was also detected in vaginal SCs [43].

The differences in CD marker expression profile also showed that the isolated vaginal EC and SC

populations were different, indicating the success of our cell isolation protocol.

According to our knowledge, neither PLCL nor scCO2 foaming as a scaffold manufacturing method

has been previously studied for vaginal tissue engineering. The scaffold for vaginal tissue engineering

should be elastic, easy to form and suture and mimic the properties of natural extracellular matrix as clo-

sely as possible. Lei et al. [44] have compared the mechanical properties of normal and prolapsed vaginal

tissue and according to their result, the elastic modulus of normal vaginal tissue in pre-menopausal

women is 6.65+1.48 MPa. According to our results, the elastic modulus of scPLCL after 2 days in
vitro was 2.4+ 0.3 MPa, which can be considered sufficient for vaginal tissue engineering application

because too stiff scaffold may lead to biomaterial erosion [37,44,45]. Our tensile test demonstrated the

high elasticity of scPLCL, which is important property for vaginal as well as other soft tissue engineering

applications. Further, the results with scPLCL are comparable with previous results for PLCL

[20,24,46,47]. The plasticizing effect of water in combination of hydrolytic degradation increased the mol-

ecular movement in aqueous environment at 378C and increased crystallinity of the scCO2-foamed

scaffold [48]. The crystallinity after 4-week incubation was at the same level as previously reported

[49], but due to porous structure, the mass loss and overall degradation profile may differ and thus

has to be investigated in future studies.

We evaluated the viability and proliferation of vaginal ECs and SCs on scPLCL. We also studied how

the vaginal ECs and SCs attach and retain their morphology and viability in co-cultures. The PLCL is

known to be a biocompatible material [20,21,24], which is further demonstrated in this study, because

both vaginal ECs and SCs maintained their viability and proliferated in separate cultures during the

14-day culturing period. The scPLCL seemed to support especially the proliferation of ECs and the

cell amount increased during the whole 14-day assessment period. Interestingly, the SCs reached their

proliferation maximum after 6 days of cell culturing and the amount of cells slightly decreased after

that. Moreover, the cells remained viable in vaginal EC and SC co-cultures and no increase in dead

cell amount was detected. The SEM imaging showed that the ECs attached and spread evenly on the

scPLCL and especially the ECs seemed to favour the pores. In addition, after 14 days, the vaginal ECs

seemed to form layers. At 7 and 14 day time points, the vaginal SCs seemed to form clusters and

were not so evenly distributed on the surface of the scaffold as ECs, at least in co-culture conditions,

suggesting that PLCL supports the vaginal ECs over the SCs. However, this might be due to the used

medium because epithelium medium, EpiLife, was used in co-cultures after EC seeding.

We used qRT–PCR to study the gene expression of CK7, CK8, CK19, UPIa, UPIb and UPII in vaginal

ECs and SCs after 14 days of cell culture on the scPLCL, cell culture plastic (PS) serving as a control. The

CKs are cluster of intermediate filament proteins, which are widely expressed in EC. Based on the results

of this study, CK7, CK8 and CK19 are also expressed in vaginal ECs, as expected [50–52]. Interestingly,

the expression of CK7 and CK8 was lower on scPLCL compared with PS, whereas the CK19 expression

was similar in both materials. The UPs are a group of transmembrane proteins, which are expressed in

urothelial cells and are mainly present in the superficial urothelial cells; however, UPs may also have a

role in the urogenital tract and vaginal development [53–55]. Therefore, we wanted to study if the vagi-

nal ECs express the UP genes. Interestingly, we detected that the vaginal ECs expressed UPIa and UPIII

markers significantly more on scPLCL compared with PS, whereas the SCs seemed to express marker

UPIa significantly more on scPLCL compared with PS.

In addition to gene expression, we also studied the maintenance of CK expression and actin cyto-

skeleton arrangement by phalloidin staining on scPLCL at 7 and 14 day time points in vaginal EC and

SC co-cultures. The actin filaments in SCs were parallel aligned according to the cell cytoskeleton and in

ECs, the actin filament staining was detected on the edge of the ECs. However, no remarkable changes

were detected in the actin organization between the time points. The pancytokeratin staining showed

that ECs expressed cytokeratins equally in both time points indicating that the cells remain their epithelial

phenotype during the co-culture; further, the SCs lacked the expression of cytokeratins marker. Thus, both

vaginal ECs and SCs seemed to maintain their phenotype during the assessment period.
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5. Conclusion
Both vaginal ECs and SCs retained their viability, phenotype and morphology during the assessment

period both in separate and in co-culture conditions in scPLCL scaffolds. Hence, this study demonstrates

that scPLCL is a potential scaffold material for vaginal tissue engineering further illustrating the good

biocompatibility of PLCL. The Epilife medium, which was used in the co-cultures of ECs and SCs,

was not optimal for SCs. Therefore, it is highly important to further develop cell culture conditions

and medium compositions that are more favourable for EC and SC co-cultures.
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Kellomäki M, Huhtala H, Miettinen S,
Seppänen-Kaijansinkko R, Haimi S. 2016 Human
adipose stem cells differentiated on braided
polylactide scaffolds is a potential approach for
tendon tissue engineering. Tissue Eng. Part A
22, 513 – 523. (doi:10.1089/ten.tea.2015.0276)

26. Atala A. 2011 Tissue engineering of human
bladder. Br. Med. Bull. 97, 81 – 104. (doi:10.
1093/bmb/ldr003)

27. Kim SH, Jung Y, Kim SH. 2013 A biocompatible
tissue scaffold produced by supercritical fluid
processing for cartilage tissue engineering.
Tissue Eng. Part C Methods 19, 181 – 188.
(doi:10.1089/ten.TEC.2012.0170)

28. Schindelin J et al. 2012 Fiji: an open-source
platform for biological-image analysis.
Nat. Methods 9, 676 – 682. (doi:10.1038/
nmeth.2019)

29. Doube M, Klosowski MM, Arganda-Carreras I,
Cordelieres FP, Dougherty RP, Jackson JS,
Schmid B, Hutchinson JR, Shefelbine SJ. 2010
BoneJ: free and extensible bone image analysis
in ImageJ. Bone 47, 1076 – 1079. (doi:10.1016/
j.bone.2010.08.023)

30. De Filippo RE, Yoo JJ, Atala A. 2003 Engineering
of vaginal tissue in vivo. Tissue Eng. 9, 301 –
306. (doi:10.1089/107632703764664765)

31. Sartoneva R, Haimi S, Miettinen S, Mannerström
B, Haaparanta AM, Sandor GK, Kellomäki M,
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