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Abstract 
 
Nowadays, the financial investments in pharmaceutical research and development are an 

enormous increase. Drug safety is very important to health and drug development. Finding new 

uses for the approved drug has become important for the pharma industry. Drug classification 

accuracy helps identify useful information for studying drugs, also helps in accurate diagnosis 

of drugs. Gene expression data makes a possible study of biological problems and machine 

learning methods are playing an essential role in the analysis process. Meanwhile, many 

machine learning methods have been applied to classification, clustering, dynamic modeling 

areas of gene expression analysis.  

This thesis work is using R programming language and SVM machine learning method to 

predict the ATC class of drugs based on the gene expression data to see how well the gene 

expression patterns correlate after treatment within the therapeutic / pharmacological subgroup. 

A dimensionality reduction method will use to reduces the dimensions of the dataset that 

improves the classification performance. The classifiers built using SVM machine learning 

technique in this thesis study had limited with detecting drug groups based on the ATC system.   
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Chapter 1. Introduction 
 

Nowadays, the financial investments in pharmaceutical research and development are an 

enormous increase. Finding new uses for the approved drug and reducing costs to providing 

new treatments for unmet medical needs has become important for the pharma industry 

(Napolitano et al., 2013). The prediction of drug classification provides valuable information 

for drug discovery and repositioning, helps new drug development and helps to understanding 

of drugs’ chemical, pharmacological and therapeutic properties (Lin, Lin, & Weng, 2007). A 

large quantity of gene expression compounds which are approved by Food and Drug 

Administration, have been measured on several cultured human cell lines with the purpose to 

inquire into comparability between drugs mechanisms of action (Iorio et al., 2010; Lamb et al., 

2006; Napolitano et al., 2013). Computational approaches have been designed for drug 

repositioning to find correlations of expression signatures between drug associated and disease 

associated. Recently many comprehensive methods such as molecular, biological aspects of the 

drug-disease interactions and account chemical have been proposed (Gottlieb, Stein, Ruppin, & 

Sharan, 2011; Napolitano et al., 2013). For instance, Chen et al. were able to map the chemical 

substructure of drugs, described by the Anatomical Therapeutic Chemical (ATC) classification 

system to predict chemical similarities (Chen, Zeng, Cai, Feng, & Chou, 2012). The study used 

different benchmarks to predict level 1 of ATC codes by collecting chemical data for 3,883 

drugs with high classification performance (73% accuracy). Napolitano et al. proposed a novel 

computational method to predicts drug repositioning based on machine learning algorithms to 

predict the 2nd level (therapeutic class) of FDA-approved compounds with high accuracy levels 

(78%) (Napolitano et al., 2013). Therefore, drug classification accuracy helps identify useful 

information for studying drugs, also helps in accurate identification of drugs.  

 

Gene expression profile has been used to draw forth show cryptic subtypes of diseases. At the 

same time, potentially, it forecasts biomedical issues which significantly regards to human’s 

health (Khan et al., 2001). It measures the activity of genes and creates a global picture of 

cellular function. In drug discovery, gene expression profile may be used to diagnose a disease 

or condition. In order to study the effect of drug and small-molecule perturbations on different 

types of human cells, rich information is gathered from datasets generated from Library of 

Integrated Network-based Cellular Signatures (LINCS) (Genometry, 2017). All signatures are 
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represented by vectors measuring differential expression in the case of L1000 data (“LINCS 

Data Portal,” 2017).  

 

The Anatomical Therapeutic Chemical (ATC) classification system is an approved 

classification system for drugs which recommended by the World Health Organization 

Collaborating Center for Drug Statistics Methodology (WHOCC) (Z. Liu et al., 2015). 

According to the organ or system on which they act and pharmacological, therapeutic and 

chemical properties, drugs are classified into five different levels in the Anatomical Therapeutic 

Chemical (ATC) classification system (https://www.whocc.no/atc/structure_and_principles). 

For example, L (Antineoplastic and immunomodulating agents, the first level), L01 

(Antineoplastic agents, the second level), L01X (Other antineoplastic agents, the third level), 

L01XE (Protein kinase inhibitors, the fourth level) and L01XE01(Imatinib, the fifth level).  

 

In general, machine learning algorithms are a learning techniques deal with making intelligent 

decisions and drawing a conclusion based on the features of input data. Machine learning 

methods are usually used class labels to represent expression data (Alpaydin, 2010; Nilsson, 

1998). The most commonly used machine learning algorithms are Decision Tree, K nearest 

neighbors (KNN), K-Means, Linear Regression, Logistic Regression, Naïve Bayes, Random 

Forest (RF), Support Vector Machine (SVM), Dimensionality Reduction Algorithms and 

Gradient Boost & Adaboost (Shai & Shai, 2014). The Error estimation procedure determines 

the validity of the resulting classifier model, thus it is essential to classification (Dougherty, 

Chao, Hua, Hanczar, & Braga-Neto, 2010). Moreover, the distribution of sample size, features 

and labels, and the classification rule is used to design the classifier have an interactive effect 

on the performance of an error estimator (Dougherty et al., 2010). The most common 

performance evaluation used in classification models are confusion matrix and receiver 

operating curves (ROC) (Oprea, 2014). 

 

The aim of this thesis work is using SVM machine learning method to predict the ATC class of 

drugs based on the gene expression data to see how well the gene expression patterns correlate 

after treatment within the therapeutic / pharmacological subgroup. A dimensionality reduction 

method will use to reduce the dimensions of the dataset that improves the classification 

performance.   
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This thesis’s chapters are organized as follow: chapter 1 gives an introduction of ATC 

classification system and gene expression dataset, also simply described the technologies being 

used in this thesis work. Chapter 2 provides the literature review of several machine learning 

classification methods. Chapter 3 presents the objective of this thesis research. Chapter 4 

presents the material and several machine learning methods that applied to classification using 

gene expression data. Chapter 5 describes the prediction results of gene expression analysis. 

Chapter 6 discusses the experimental results based on the gene expression data. Finally, chapter 

7 is the conclusion of this thesis research.  
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Chapter 2. Literature Review  
 

Recently, the financial investments in pharmaceutical research are an immense increase. Drug 

safety is remarkably important to health and drug development. Finding new uses for approved 

drug and reducing costs to providing new treatments for unmet medical needs has become 

important for the pharma industry (Napolitano et al., 2013). Drug classification accuracy helps 

identify useful information for studying drugs, also helps in accurate examine of drugs.  

 

Recently machine learning approaches contribute to drug classification problem. Mostly, 

chemical features were used to classify drugs (El-Hachem et al., 2016). For instance, Chen et al. 

were able to map the chemical substructure of drugs, described by the Anatomical Therapeutic 

Chemical (ATC) classification system to predict chemical similarities (Chen et al., 2012). The 

study used different benchmarks to predict level 1 of ATC codes by collecting chemical data 

for 3,883 drugs with high classification performance (73% accuracy). Napolitano et al. proposed 

a novel computational method to predicts drug repositioning based on machine learning 

algorithms to predict the 2nd level (therapeutic class) of FDA-approved compounds with high 

accuracy levels (78%)  (Napolitano et al., 2013).  

 

 

2.1 ATC-codes 

 
The Anatomical Therapeutic Chemical (ATC) Classification system 

(http://www.who.int/classifications/atcddd/en/) was first published in 1976. In the ATC 

classification system, drugs are classified into 5 different levels. The structure of ATC system 

(https://www.whocc.no/atc/structure_and_principles) is illustrated using the example in Table 

1. For example, the classification is organized in five levels: A (Alimentary tract and metabolism, 

the first level, anatomical main group), A10 (Drugs used in diabetes, the second level, 

therapeutic subgroup), A10B (Blood glucose lowering drugs, excl. insulins, the third level, 

pharmacological subgroup), A10BA (Biguanides, the fourth level, chemical subgroup) and 

A10BA02 (Metformin, the fifth level, chemical substance) 

(https://www.whocc.no/atc/structure_and_principles). 

 

Table 1.  An example of detailed information of metformin at 5 levels in ATC system 
(https://www.whocc.no/atc/structure_and_principles) 
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A Alimentary tract and metabolism 
(1st level, anatomical main group) 

A10 Drugs used in diabetes 
(2nd level, therapeutic subgroup) 

A10B 
Blood glucose lowering drugs, excl. insulins 
(3rd level, pharmacological subgroup) 

A10BA Biguanides 
(4th level, chemical subgroup) 

A10BA02
    

metformin 
(5th level, chemical substance) 

 

 

 

2.2 Gene expression data 
 
Gene expression profiling has been applied to potentially predict biomedical issues which 

concerning human health conditions significantly (Khan et al., 2001). It measures the activity 

of genes and creates a global picture of cellular function. In drug discovery, gene expression 

profile may be used to diagnose a disease or condition. Liu et al., used the latest LINCS L1000 

data for breast cancer (MCF-7) cell lines, presented a “compound signature” based approach to 

analyzing the pharmacological potential of compounds (C. Liu, Su, Yang, Ma, & Zhou, n.d.). 

L1000TM expression profiling is a patented whole-genome gene-expression assay. Plentiful 

information is produced by datasets generated from Library of Integrated Network-based 

Cellular Signatures (LINCS). The information clarifies the small molecule perturbations and the 

response of different types of human cells to drug (Genometry, 2017). All signatures are 

represented by vectors measuring differential expression in the case of L1000 data (“LINCS 

Data Portal,” 2017). It measures 978 validated landmark genes in crude cell lysate in 384 well 

plate format, using an algorithm trained on tens-of-thousands of historical gene-expression 

profiles to calculate the levels of the remaining transcripts (Genometry, 2017). Using these gene 

expression databases, many compounds and their properties can be acquired to enhance the 

predictive power of the available computational methods.  
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2.3 Machine learning method 

 
In general, analyze an enormous amount of biological information by providing mathematical 

frameworks, machine learning as a valuable tool has shown widely used in resolving important 

issues in science (Genometry, 2017). A certain proportion of the whole data is used to train the 

predictor (classifier in classification) and then tested and validated to the newly built predictor 

through the rest part of the data. Support vector machines (SVM), Naïve Bayes, K Nearest 

Neighbors and Random Forest are popular methods of classification in machine learning (Shai 

& Shai, 2014).  

 

Dimensionality reduction approach refers to the process of converting a set of data having high 

dimensionalities into data having smaller dimensionalities, reduce and clean the data for 

supervised training, and solve machine learning problems to obtain better features for a 

classification (Ghodsi, 2006; Ray, 2015). The most common methods to perform dimensional 

reduction are high correlation, backward feature elimination, low variance and principal 

component analysis (PCA). 

 

 

2.4 Classification methods 

 
In machine learning, classification is one of the techniques used to predict which categorical 

class a data sample belongs to. It is a mapping from samples to predicted classes (David & 

Balakrishnan, 2010). This technique is based on supervised learning, which means using the 

unique features of the data to construct a classification model to identify the correct class by 

analyzing one or several sets of labeled training data. Then use new data that’s like the testing 

data in this classification model to predict which class they belong to. Some popular approaches 

for the classification techniques include Support Vector Machines, Random Forest, K-Nearest 

Neighbors and Naïve Bayes 

 

 

2.4.1 Support Vector Machine techniques 

 

Support vector machine (SVM) is a popular type of machine learning. Support vector machine 

(SVM) algorithm classifies each data based on its value obtained by the classifier function. SVM 
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builds a classification model that maximizes the margin between the data points that belong to 

each class. In 1963, Vapnik and Lerner presented the main concept of SVM is to constructs a 

hyperplane as the separator of the two classes (Cortes & Vapnik, 1995). Cortes & Vapnik (1995) 

developed SVMs for binary classification. The basic SVM supports only binary classification, 

when have more than two classes, by running the algorithm several times and testing all the one- 

against-one class-combinations, then using the support vector machine classifier classifying the 

data which had the highest performance. With a linearly separable data, a hyperplane can divide 

a data set into two classes correctly (Karatzoglou, Meyer, & Hornik, 2006). The distance 

between SVM classifier and data points called margin that illustrates the SVM solution. Support 

vector machine is defined by kernel function use an implicit mapping F of input data into a 

high-dimensional feature space (Karatzoglou et al., 2006). RBF kernel is the first choice in 

general, this nonlinear kernel maps samples into a higher dimensional space (Hsu, Chang, & 

Lin, 2016).  

 

 
2.4.2 Naïve Bayes 

 
A Naïve Bayes classifier it is a classification technique for binary and multi-class classification 

problem, with an assumption of independence among predictors based on Bayes’ Theorem. The 

calculation of the probabilities for each hypothesis are simplified to make their calculation 

tractable (Brownlee, 2016). It is a simple model and easy to builds for very large data sets, with 

no complicated parameter estimation. It is a family of an algorithm that all Naïve Bayes 

classifiers assume that the presence of a feature in a class is unrelated to the presence of any 

other feature (Ray, 2015). This classifier can be trained in a supervised learning setting 

efficiently and is known to perform highly sophisticated classification methods. 

 

 

2.4.3 Random Forest technique 

 
Random Forest (RF) is one of the commonly used predictive modeling and machine learning 

technique. RF can be used for classification and regression applications, such as performance 

score (Merrett, 2016). It reduces chances of over-fitting and gives higher model performance or 

accuracy. A random forest can be mathematically written as ℎ	
   𝑥, Θ& , 𝑘 = 1,…  where k 

means kth tree, Θ& is a random vector, resulting in a classifier ℎ	
   𝑥, Θ&  where x is an input 
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vector (Breiman, 1999; Merrett, 2016). It mainly performs well on classification model and 

listed as a top algorithm in Kaggle competitions. The random forest starts with a decision tree. 

On the top is an input data and it traverses down the tree, so the data gets divided into smaller 

sets (Benyamin, 2012). 

 

 

2.4.4 K-Nearest Neighbors 

 
K nearest neighbors (KNN) is a non-parametric algorithm that can be used for classification or 

regression. KNN is widely used in data science analytics as a supervised machine learning 

algorithm. KNN algorithm stores all available instances and classifies new cases by majority 

vote of its k neighbors (Ray, 2015; Vladimirov, 2013). The algorithm finds the k closest 

observations for each data point, then classifies the data point to the majority. The training 

dataset is used to classify each member of a target dataset in KNN classification.  

 

 

 

2.5 Evaluation methods 

 

2.5.1 K-fold Cross Validation techniques 

 
K-fold Cross Validation is the most commonly used method. Firstly, the initial dataset was 

partitioned randomly into a number (k) of subsets. Each subset has an approximate number of 

subsets. Afterward, the remaining subsets are combined to perform the role of the training 

partition while each subset is used as the test partition (Dernoncourt, 2015; Hastie & Tibshirani, 

2009; Jensen, 2016). k models are all trained on a different subset of the initial dataset during 

the whole process, and each of the subsets has been used as the test partition. The models’ 

accuracy can be computed as the average accuracy across the k model. K models are fit and k 

validate statistics are obtained and giving the best validation statistics is chosen as the final 

model.  

 

 

2.5.2 ROC 
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The receiver operating characteristic (ROC) curves are widely used in evaluating the 

discrimination ability of statistical methods for predictive purposes (Hanley & McNeil, 1982). 

The receiver operating characteristic curve (ROC curve) can be plotting with the fraction of 

false positives (FP) out of false positives rate (FPR) on the x-axis and the fraction of true positive 

(TP) out of true positive rate (TPR) on y-axis obtained at different threshold values. The receiver 

operating characteristic analysis enables us in choosing optimal models or parameters for 

classification. One point corresponds to an individual result of the classifier in the ROC space. 

The accuracy is measured by the area under the ROC curve. The resulting curve is called ROC 

curve, and the metric which needs to consider is the AUC of this curve called AUROC.  

Receiver-operating characteristic (ROC) plots to capture a unifying or central position in the 

process of test evaluation (Zweig & Campbell, 1993).  

 
 
 
2.6 Dimensionality Reduction method 

 
Dimensionality reduction method refers to the process of converting a set of data having high 

dimensions into smaller dimensions which simplify, reduce and clean the data for supervised 

training and solve machine learning problems to obtain better features for a classification 

(Ghodsi, 2006; Ray, 2015). It is helpful in noise removal, takes care of multicollinearity that 

improves the performance of models, removes redundant features and reducing data dimensions 

(Ray, 2015). The most common methods to perform dimension reduction are backward feature 

elimination, and principal component analysis (PCA). 

 

 
2.6.1 Principal Component Analysis 

 
Important variables were extracted from a large set of available variables in the data set for 

principal components analysis. The low dimensional set is extracted from a high dimensional 

data with the motive of capturing as much information as possible. At the same time, the 

visualization also becomes much more meaningful (Analytics vidhya content team, 2016).  

 

The main use of PCA is to reduce the size of the feature space while retaining as much of the 

information as possible by retaining the explained variance ratio of the PCs. If the full variance 
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of data set defines as 𝜎 = 	
   𝜆--  then the explained variance ratio of component j is defined as 

𝑟- = 	
  
/0
1

  (Otterbach, 2016). 
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Chapter 3. Objectives  
 

Expression data have been used to classify biological samples in many novel ways such as by 

pharmacological mechanism (Gunther, Stone, Gerwien, Bento, & Heyes, 2003). Meanwhile, 

ATC classification prediction is helpful for new drug development. This thesis evaluates the 

quality of the prediction of data. Several machine learning methods will use to predict the ATC 

class of drugs based on the gene expression data to see how well the gene expression patterns 

correlate after treatment within the 2nd level (2nd level: therapeutic / pharmacological subgroup). 

A dimensionality reduction method will use to reduces the dimensions of the dataset that 

improves the classification performance.   

 

The main objectives of thesis research are: 

•   Use gene expression data predicts the ATC classes of the drugs 

•   Apply suitable machine learning method to predict ATC classes based on gene 

expression data from the perturbation effects of the drugs. 

•   Apply the same machine learning method after dimensionality reduction method to 

improves the accuracy. 
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Chapter 4. Materials and Methods 
 

4.1 Drug Target Data 
 
A standard is provided by the Anatomical Therapeutic Chemical (ATC) classification system 

applied for classifying medical substances for drug utilization research. Moreover, the WHO 

Collaborating Centre (WHOCC) for drug statistics methodology has maintained the standard 

since 1976 (https://www.whocc.no/atc_ddd_index). It is a widely-approved classification 

system for drugs. The system divides drugs into 5 different groups according to their act and 

pharmacological, therapeutic and chemical properties. Recently, researches are usually focused 

on the first and second level of ATC groups, indicate the anatomical and the therapeutic main 

groups. This thesis mainly focuses on the 2nd level of ATC groups which indicate the 

therapeutic/pharmacological subgroup. The drug target data is obtained from DrugBank 

database (Wishart et al., 2006). DrugBank is a database containing bioinformatics and 

cheminformatics information. It combines detailed information about drugs and their targets. 

Table 2 presents some example target data for selected drugs. 

 

Table 2. Some example target data for selected drugs 

drugbank_id name type groups atc_codes categories 

DB00001 Lepirudin biotech approved B01AE02 

 

Antithrombins|Fibrinolytic 

Agents 

DB00002 Cetuximab biotech approved L01XC06 

 

Antineoplastic Agents 

DB00003 Dornase 

alfa 

biotech approved R05CB13 Enzymes 

DB00004 Denileukin 

diftitox 

biotech approved|investigational L01XX29 Antineoplastic Agents 

DB00005 Etanercept biotech approved|investigational L04AB01 Immunosuppressive 

Agents 

 

The “atc_codes” column is considered as a target (label) and it is being used to train the classifier 

and to evaluate the performance of the tested methods using cross-validation.  
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4.2 Drug Profile Dataset 

 

978 validated landmark genes were measured by L1000 expression profiling in crude cell lysate 

in 384-well plate format. In order to enable scaling and normalization, 80 invariant genes are 

explicitly measured additionally. The crude lysates of human cells in 384-well plates is the input, 

and the tab-delimited text files of log-transformed expression values for 22,000 genes × 380 

samples is the output (Genometry, 2017). The gene expression profiles of LINCS L1000 dataset 

are available to download via clue.io of the NCBI Gene expression Omnibus (accession number 

for phase I is GSE92742, accession number for phase II is GSE70138) 

(http://www.lincscloud.org). Raw fluorescence intensities were converted by the data into 

differential gene expression signatures processed through a computational system. The data are 

available at each stage of the preprocessing. Level 1 (LXB) refers to the raw data. For each well 

of a 384-well plate, one LXB file is generated. Level 2 (GEX) refers to the gene expression 

values per 1000 genes after the processing of deconvolution. Level 3 (Q2NORM) refers to the 

gene expression profiles which cover both directly measured landmark transcripts as well as 

inferred genes. They are normalized by quantile normalization using invariant set scaling. Level 

4 (Z-SCORES) refers to the signatures with differentially expressed genes. The signatures are 

computed by robust z-scores with the purpose to control for each profile relative. Level 5 (SIG) 

consists of the replicates (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742). 

 

The L1000 profiled gene expression was measured at different time points in cells treated with 

different dosages (Z. Wang, Clark, & Ma’ayan, 2016). The quantile-normalized gene expression 

profiles (level 3) were used for this thesis analysis. This thesis uses 2nd level of ATC codes as 

targets, combined with L1000 gene expression profiles. The gene expression data for the thesis 

research contains 1209 rows (drug samples) and 978 columns (features). Each gene is 

considered as one feature as well as one dimension and the ATC class (the 2nd level) is called 

target from the perspective of statistical learning. Considering a large number of features in the 

dataset, some of those features are useless information which would give rise to overfitting and 

consequential poor performance of the classifier. Table 3 presents a part of the dataset 

containing selected drug samples and genes. Row names are the drug samples, columns names 

are the features (genes). The last column contains the different classes at 2nd level of ATC codes. 

For example, X16 referring to alanyl-tRNA synthetase (Homo sapiens (human)); X10058 

referring to ATP binding cassette subfamily B member 6 (langereis blood group) (Homo sapiens 

(human)); X51385 referring to zinc finger protein 589 (Homo sapiens (human)) and X9183 
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referring to zw10 kinetochore protein (Homo sapiens (human)). DB00014 is an accession 

number of Goserelin. Goserelin is a synthetic hormone. This drug may stimulate the growth of 

cancer cells. When stop using this medication, hormone levels return to normal level. DB00091 

is an accession number of Cyclosporine. It used for the treatment of transplant rejection, 

rheumatoid arthritis, severe psoriasis, such as kidney, liver, and heart. DB00121 is an accession 

number of Biotin. Biotin is using for treating dietary shortage or imbalance, also for nutritional 

supplementation. DB00130 is an accession number of L-Glutamine. It is the principal carrier of 

nitrogen in the body and an important energy source for many cells. It used for reducing the 

acute complications of sickle cell disease in adult and the age of 5 and older pediatric patients. 

DB00131 is an accession number of Adenosine monophosphate. The adenine nucleotide that 

contains on phosphate group esterified to the sugar moiety locating in the 2,3,5-position. 

(https://www.drugbank.ca/drugs) 

 

Table 3. Part of the dataset containing selected drug samples and genes 

 X16 X10058 X51385 X9183 … Level_2 

DB00014 -1.1242093 0.5199319 -1.3167174 0.7545028 … L02 

DB00091 169.6886998 3.6738522 11.8406073 2.7333477 … C10 

DB00121 0.2777322 -2.8542680 0.7421095 -1.5298809 … C10 

DB00130 1.4300881 -1.1594369 1.5580980 -2.8821927 … N06 

DB00131 2.5383233 -1.1943148 1.6071767 1.6233860 … C09 

 
 

Each gene is considered as one feature as well as one dimension, and the ATC class (the 2nd 

level) is called target (Figure 8). Regarding the big number of a feature in the dataset, some of 

those features introduce useless information which would give rise to overfitting and poor 

performance of the classifier.  

 

 

4.3 Classification methods 

 
In machine learning, classification is a technique used to predict which categorical class of a 

data example belongs to. It is a mapping from samples to predicted classes (David & 

Balakrishnan, 2010). This means by analyzing one or several labeled training dataset and using 

the unique features of the data to construct a classification model to identify the correct class. 
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Then using testing data identical to the training data in this classification model to predict which 

class they belong to. Some popular methods for the classification techniques include Random 

Forest, K-Nearest Neighbors, Naïve Bayes and Support Vector Machines. 

 

 

4.3.1 Support Vector Machine(s) (SVMs) 

 
In 1990s, the computer science community has developed the support vector machine(s) (SVMs) 

approach for classification (Witten et al., 2013). In an n-dimensional space, a hyperplane is a 

flat affine subspace of dimension n-1. In n > 3 dimensions, the notion of (n -1) dimensional flat 

subspace applies, but it can be hard to visualize a hyperplane (Witten et al., 2013). It is 

particularly applicable for large dimensionalities (≥	
  105 ) of document classification and 

sentiment analysis (Halls-Moore, 2014). 

 

 

libSVM 

 

Chang & Lin developed the LIBSVM package as a library for the support vector machines 

approach. LIBSVM can prohibitive for datasets with hundreds of thousands of examples and 

achieve faster training times (Ben-Hur & Weston, 2010). LIBSVM involves two steps: training 

a data to obtain a model in the first, then predicts information of testing data with the trained 

model. LIBSVM solving SVM multi-class classification, parameter selection, theoretical 

convergence, probability estimates and optimization problems (Chang & Lin, 2011). LIBSVM 

supports C-support vector classification (C-SVC), distribution estimation (one-class SVM), ε-

support vector regression (ε-SVR), ν-support vector classification (ν-SVC) and ν-support vector 

regression (ν-SVR) (Chang & Lin, 2011).  

The basic ideas to utilize LIBSVM are: randomly split dataset into training data and testing data 

format to be classified according to the LIBSVM requirement; choose the appropriate kernel 

function k(𝑥6, 𝑥-) and determine the optimal parameter C and gamma through cross-validation; 

train the training data set using the computed C and gamma to get the SVM model; perform 

future predictions by utilize the computed model (Song, 2013). Using linear kernel (for the most 

common classes) and radial kernel (for 32 classes), parameter C and gamma to get SVM model. 
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The label is the target classes which corresponds to the 2nd level of ATC class (the 2nd level: 

therapeutic / pharmacological subgroup).  

 

Multiclass SVM 

 
One major method for the multi-class problem is the one-against-all. This approach is an 

alternative procedure for applying SVMs in the case of k > 2 classes (Witten et al., 2013). The 

idea for multi-class problems is building k two-class rules where the mth function 𝑤9:∅	
   𝑥 + 𝑏 

separates training vectors of the class m from the other vectors (Bottou et al., 1994; Hsu & Lin, 

2015). The mth SVM is trained with all the instances in the mth class which have positive labels 

while all other with negative labels  (Fazli, Afrouzian, & Seyedarabi, 2009).  

 

The one-against-one is another major method for the multi-class problem. The idea of this 

method is to builds k (k – 1) / 2 classifiers, so each one is trained on data from two classes (Hsu 

& Lin, 2015).  For instance, one such SVM might compare the k’th class, codes as +1, to the 

k’th class, codes as -1. Assigning the test observation to the class performed the final 

classification. It is most frequent to assign in these pairwise classifications (Witten et al., 2013).  

 

LIBSVM implements the “one-against-one” method to gain the accuracy of cross-validation 

(CV) for multi-class classification. The parameter selection tool proposes the same (C, g) for all 

k (k-1) / 2 decision functions (Chang & Lin, 2011; Knerr, Personnaz, & Dreyfus, 1990). Before 

minimizing the negative log likelihood, they conduct 5-fold cross-validation to obtain decision 

values. It first estimates pairwise class probabilities  

 

                                                        	
  𝑟6- 	
  ≈ 𝑃 𝑦 = 𝑖	
   	
  𝑦 = 𝑖	
  𝑜𝑟	
  𝑗, 𝒙)     (1) 

 

using an improved implementation of Platt (2000) (Lin et al., 2007).  

 

 

4.4 Evaluation methods 

 
4.4.1 K-fold Cross-Validation 
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The data is randomly split into k segments of equal size, one is used as test data for validating 

the model and remaining k-1 segments are used for predicting training model. Each of the k 

subsamples is being used as test data and the rest used as training dataset by repeated k times. 

Thus, it takes the average of k results from each fold of k-fold cross-validation and these k 

results to obtain a single measure of the performance of the trained model for the given data set. 

All the samples are used for testing (validation) and training where each observation is used 

during the whole process. 

 

In this thesis, 5-fold cross-validation is used for predicting. For each k=1,2,3…K, fit the model 

with parameter λ to the other K-1 parts, giving βFG(λ) and compute its error in predicting the K 

part (Hastie & Tibshirani, 2009): 

                         𝐸& λ = 	
   (𝑦6 −	
  C66	
  ∈&Mℎ	
  	
  NOPM 𝛽F&(λ))2      (2) 

The cross-validation error is given as (Hastie & Tibshirani, 2009) 

                          𝐶𝑉	
   𝜆 = T
U

𝐸&	
  (𝜆)U
&VT        (3) 

After obtaining the new interaction, calculate the performance of the trained model.  

 

 

4.4.2 Classification based on the machine learning 

 
In the data, each column represents the instances in a predicted class, and each row represents 

the instances in an actual class. The performance of a classification model on test dataset is often 

used confusion matrix to describe (Markham, 2014). The confusion matrix shows for each pair 

of classes. Table 4 shows an example of a confusion matrix for a two-class classifier. 

 

Table 4. An example of Confusion Matrix for two-class classifier 

 

*True Positive (TP): the number of positive samples which correctly predicted  
*False Negative (FN): the number of practical positive samples marked as negative 

 Predicted Condition Positive Predicted Condition Negative 

Prediction 

Positive 

True Positive 

(TP)* 

False Negative 

(FN)* 

Prediction 

Negative 

False Positive 

(FP)* 

True Negative 

(TN)* 
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*False Positive (FP): the number of practical negative samples marked as positive 
*True Negative (TN): the number of negative samples which correctly predicted  
 
 
Accuracy is calculated as the whole true predictions divided by the overall number of the dataset 

(Saito & Rehmsmeier, 2015). Accuracy (ACC):  

 

ACC = 𝑇𝑃 + 𝑇𝑁) (𝑃 + 𝑁           (4) 

 

The proportion of instances classified positive in relation to all instances tested positive is the 

calculation of true positive rate (Oprea, 2014; Saito & Rehmsmeier, 2015). Sensitivity (or True 

Positive Rate (TPR)):  

 

TPR = 𝑇𝑃 𝑃 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)        (5) 

 

The number of true negative predictions divided by the overall number of negatives is the 

calculation of the true negative rate (Saito & Rehmsmeier, 2015). Specificity (or True Negative 

Rate (TNR)):  

 

TNR = 𝑇𝑁 𝑁 = 𝑇𝑁 (𝐹𝑃 + 𝑇𝑁)        (6) 

 

The number of false negative predictions divided by the overall number of positives is the 

calculation of the false negative rate. Miss Rate (or False Negative Rate (FNR)):  

 

FNR = 𝐹𝑁 𝑃 = 𝐹𝑁 (𝐹𝑁 + 𝑇𝑃) = 1 – TPR       (7) 

 

The number of false negative predictions divided by the overall number of negatives is the 

calculation of false positive rate (Saito & Rehmsmeier, 2015). Fall-out (or False Positive Rate 

(FPR)):  

 

FPR = 𝐹𝑃 𝑁 = 𝐹𝑃 (𝐹𝑃 + 𝑇𝑁) = 1 – TNR       (8) 

 

The number of correctly predicted positive observation divided by the overall number of 

positive predictions is the calculation of positive predictive value (Saito & Rehmsmeier, 2015). 

Precision (or Positive Predictive value (PPV)):  
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PPV = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)         (9) 

 

The number of correctly predicted negative observation dived by the number of negative 

predictions is the calculation of negative predictive value.  (Myatt & Johnson, 2009). Negative 

Predictive value (NPV): 

 

NPV = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑁)         (10) 

 

F-measure is the harmonic mean of the two parameters which combines precision and sensitivity 

(Oprea, 2014). F-measure can be calculated using the formula: 

 

F-Measure =	
  (2	
  ×	
  TPR	
  ×	
  Precision)	
  /	
  (TPR	
  ×	
  Precision)	
       (11) 

 

The error rate is the number of every incorrect prediction divided by the overall number of the 

dataset  (Saito & Rehmsmeier, 2015). Error rate (ERR): 

 

ERR =  𝐹𝑃 + 𝐹𝑁) (𝑃 + 𝑁          (12) 

 

When the dataset is unbalanced it tends to be the misleading result, thus, the accuracy is not an 

affirmatively reliable metric for the actual performance of the predictor. A biased predictor 

would put all samples into the major class if one class size is significantly larger amount than 

the others, so the minor class will have a performance of 0%. 

 

 

4.4.3 ROC Analysis 

 
The binary classifier performance can be measured by using Receiver Operating Characteristic 

(ROC). The ROC curve is plotted with the fraction of positive samples correctly classified (TPR 

/ Sensitivity) on the x-axis and fraction of negative samples incorrectly classified (FPR / 

Specificity) on the y-axis (Grigorev, 2015). Figure 1 is an example of the ROC curve. The dotted 

line indicates the average performance of samples and the curve closer to left top corner 

indicates a good performance of the given classifier (Greg, 2015).  
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Figure 1. An example of the perfect classifier of Receiver Operating Characteristic Curve (ROC)	
  
(Greg, 2015). 

 

For two classes AUC is computed with ROCR package (Sing, Sander, Beerenwinkel, & 

Lengauer, 2015). Use prediction function to transform the predicted input data into a 

standardized format; then use performance function to get tpr, fpr and auc. Finally, use plot 

function to get ROC plot of two classes.  

 

Use SVM classification method to predict data, then attribute probabilities from svm prediction 

result. In the prediction function, predictions and labels need to be the same length. To get the 

ROC plot, the computed prediction is then put into performance function with tpr and fpr 

measures. Finally, plot method to plot the objects of class performance (Sing et al., 2015). The 
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AUROC measurement equals the value of the Wilcoxon-Mann-Whitney test statistic. This 

measure cannot be combined with other measures into a parametric curve since the output of 

auc is cutoff-independent (Sing et al., 2015).  

 

For multi-class classifier, assume that the multiple classes were labeled as 0,1, 2, 3, …, c -1 (c > 

2), estimates the probability of every test point belongs to each class 𝑝	
   𝑖 𝑥  for i = 0, 1, 2, 3, …, 

c – 1. Using either 𝑝	
   𝑖 𝑥  or 𝑝	
   𝑗 𝑥  to compute the measure 𝐴 for any pair of classes i and j, 

so that a randomly selected member of class j will have a higher probability of belonging to 

class i than a randomly selected member of class i is the probability of 𝐴	
   𝑗 𝑖  (Y. H. Wang & 

Cheng, 2010). For more than two classes 𝐴	
   𝑖 𝑗 	
  ≠ 	
  𝐴	
   𝑗 𝑖  (Hand & Till, 2001; Y. H. Wang & 

Cheng, 2010).  

 

The average of  all pairs (M) is calculated by the whole performance of the classification rule in 

separating the c classes (Hand & Till, 2001; Y. H. Wang & Cheng, 2010): 

 

    𝑀 =	
   j
k	
   kFT

	
   𝐴	
  (𝑖, 𝑗)6l-      (13) 

 

In the Mann-Whitney-Wilcoxon two-sample test, 𝐴 is an equivalent used to the test statistic. 

The measure 𝐴 is an overall measure of how well separated are the estimated distributions of 

𝑝	
  (𝑥) for different classes (Hand & Till, 2001).  

 

An average AUC is computed for multiclass AUC as defined (equation 14) (Hand & Till, 2001; 

Robin et al., 2011): 

 

auc	
  =	
   j
o	
   oFT

	
   aucs      (14) 

 

with aucs all the pairwise roc curves.  

 

The Area Under the Receiver Operator Curve (AUCROC) is a metric of model performance 

commonly used in machine learning and binary classification or prediction problems. It 

generates a threshold independent measure of the model able to differentiate between two 

outcomes. This means that for any model which makes continuous predictions of binary 
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outcomes, an arbitrary threshold above will be a prediction of 1, below will be 0. By integrating 

cross all possible thresholds, AUC gets around of this threshold. It is calculated by plotting the 

ROC curve and calculating the area under the curve.  

 

 

4.5 Dimensionality reduction methods 
 
Dimensionality reduction method is the process of converting a dataset having high dimensions 

into lesser dimensions which simplify, reduce and clean the data for supervised training (Ghodsi, 

2006; Ray, 2015). It is used to obtain better features for classification by solving machine 

learning problems. It is helpful in noise removal, takes care of multicollinearity that improves 

the performance of models, removes redundant features and reduces data dimensions (Ray, 

2015). The most common methods to perform dimension reduction are backward feature 

elimination and principal component analysis (PCA). 

 
 
 
4.5.1 Principal Components Analysis (PCA) 

 
Principal components analysis (PCA) method is one of the most popular techniques for 

dimensionality reduction. Principal components analysis extracts important variables from a 

large set of available variables in a dataset. These new variables are known as PCs. To catch as 

much information as possible is the motive of extracting low dimensional dataset from a high 

dimensional dataset (Analytics vidhya content team, 2016). For example, the attribute space is 

reduced with losing only the smallest possible amount of information in the original data 

(Janecek & Gansterer, 2008). PCA is performed on a symmetric correlation or covariance matrix 

and usually deals with 3 or higher dimensional data (Analytics vidhya content team, 2016). The 

main use of PCA is to reduce the size of the feature space while retaining as much of the 

information as possible by retaining the explained variance ratio of the PCs. If the full variance 

of data set defines as 𝜎 = 	
   𝜆--  then the explained variance ratio of component j is defined as 

𝑟- = 	
  
/0
1

  (Otterbach, 2016). 

 

For example, we have a set of predictors as 𝑋T, 𝑋j…, 𝑋N. The data is first centered on the means 

of each variable. The first principal component can be written as: 
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 𝑌T = 	
  𝑎TT𝑋T +	
  𝑎Tj𝑋j +	
  …+	
  𝑎TN𝑋N      (15) 

 

The accounts for the greatest possible variance in the dataset is the first principal component. 

Used constraint that their sum of squares is 1 to calculated weights (Holland, 2017). 

 
Uncorrelated with the first principal component which calculated with the conditions is the 

second principal component. It accounts for the second highest variance, it can be written as: 

 

  𝑌j = 	
  𝑎jT𝑋T +	
  𝑎jj𝑋j +	
  …+	
  𝑎jN𝑋N      (16) 

 

Alternatively, the total variation on all the principal components will be equal to the total 

variation among all the variables. The correlations of the original variables with the principal 

components are often useful. The correlation of variable 𝑋6 and principal component 𝑌6 is 

 

   𝑟6- = 	
   𝑎6-j 	
  𝑉𝑎𝑟 𝑌- /	
  𝑠66       (17) 

 

When the principal components have been calculated, use the scree plot of the eigenvalues to 

decide which principal components should be retained. The eigenvalues’ scree plot indicates 

whether there is an obvious cut-off between large or small eigenvalues (Cornish, 2007). 
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Chapter 5. Results 
 

The whole data set is a 1137 ´ 979-dimensional matrix, used Five-fold cross-validation to 

construct a multi-label classifier. The classification is organized in five levels. Figure 8 shows 

how those levels are organized. The first level describes an anatomical main group; the second 

level refers to the therapeutic main group; the third and fourth levels refer to 

therapeutic/chemical/pharmacological subgroups. The individual chemical substances are 

identified in the fifth level. This thesis uses the 2nd level of ATC codes (at 2nd level: therapeutic 

/ pharmacological subgroup) as targets for the classifier. I removed all the empty classes 

obtaining a 779 ´ 979-dimensional matrix representing 73 levels, because of several classes 

appeared highly under-represented or empty at that level in our dataset. Figure 9 shows the 

distribution of the numbers of ATC-classes and the drug samples may belong to.  

 

 

5.1 Two high-iterated classes classification 

 
In the very beginning, I used the most common two classes L01 (antineoplastic agents) and J01 

(Antibacterials for systemic use) with 106 samples for the first prediction to see how well those 

two classes classified based on the gene profile data. There are 57 samples in L01 class and 49 

samples in J01 class. The obtained dataset for these two classes classification is 106 ´ 979-

dimensional matrix. The data split into 70% training data and 30% testing data. First use 70% 

training data and svm model (without bootstrap or feature selection), with parameters 5 cross 

validation, C support vector, 0.5 cost and linear kernel to train data. Then use the result of svm 

model and 30% testing data for prediction. Additionally, perform dimensionality reduction 

method to improves the performance.   

 

The accuracy calculated obtained by using the SVM method is 87.1%. Figure 2 shows ROC 

curve by use SVM method, the area under the curve is 0.90.  
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Figure 2. ROC curve by SVM method. The graph indicates ROC curve by SVM method, the 
area under the curve is 0.90.  

 
The k-fold cross validation calculated the mean of 5-fold accuracies is 76%. Next, I used 

dimensional reduction method (PCA) to reduces the data dimensions and to improves the 

classification performance. Table 5 shows the proportion of variances explained by each 

component. For example, the first principal component explains 73.17% variance, the second 

principal component explains 18.90% variance, the third principal component explains 4.00% 

variance and so on.  

 

Table 5. The proportion of variances result 
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0.7316880550 0.1889474112 0.0399863290 0.0104919835 

0.0072207719 0.0044320653 0.0033602759 0.0028150862 

0.0025134913 0.0014972181 0.0011944287 0.0007778557 

0.0005495822 0.0004687764 0.0003834742 0.0003480590 

0.0003029497 0.0002953833 0.0002721552 0.0002556968 

  
 

Figure 3 shows the first component has the highest variance, something value around 70% while 

the 3rd component is around 0%.  So, it indicates that we should pick up the first three 

components.  

 
Figure 3. The graph shows the percentage of variance of each feature. the first component has 
the highest variance, something value around 70% while the 3rd component is around 0%. 
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Use the eigenvalues to construct a useful graph to decide which principal components need to 

choose. Figure 4 shows how many principal components should choose. 

 
Figure 4. Barplot of eigenvalues and percent of the proportion of variations of two classes. From 
this plot, there are only 3 components above the average line (red line). 	
  

 

Figure 4 shows that only three principal components should be chosen, because their bars are 

above the average eigenvalue line (red line). Figure 5 presents the ROC curve of SVM method 

after PCA. The accuracy calculated by SVM method is 64.52%, the area under the curve is 0.77.  
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Figure 5. ROC curve of SVM method after PCA. The x-axis represents FPR (specificity) and 
y-axis represents TPR (sensitivity) from the prediction object. The graph presents the area under 
the curve of SVM method is 0.77.  

 

 

5.2 32 classes classification 

 
In this dataset, a number of classes appeared highly under-represented at this level. For this 

reason, I removed all others ATC classes with less than 10 samples per class, obtaining a data 

of 619 ´ 979 dimensions with 32 classes. Figure 9 shows sample number per each class and 

detail information of ATC-codes.  
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Table 6. Sample numbers per each class and detail information 

Samples ATC-codes Detail information 
57 L01 Antineoplastic agents 

49 J01 Antibacterials for systemic use 

43 N05 Psycholeptics 
42 N06 Psychoanaleptics 

30 C01 Cardiac therapy 
22 M01 Anti-inflammatory and antirheumatic products 

22 R06 Antihistamines for systemic use 

20 J05 Antivirals for systemic use 
18 G03 Sex hormones and modulators of the genital system 

17 A03 Drugs for functional gastrointestinal disorders 
17 A10 Drugs used in diabetes 

17 C03 Diuretics 
17 C07 Beta blocking agents 

16 C10 Lipid modifying agents 

16 N03 Antiepileptics 
15 N07 Other nervous system drugs 

14 C09 Agents acting on the renin-angiotensin system 
13 A07 Antidiarrheals, intestinal antiinflammatory / antiinfective agents 

13 C08 Calcium channel blockers 
13 D01 Antifungals for dermatological use 

13 N04 Anti-parkinson drugs 

13 P01 Antiprotozoals 
13 R03 Drugs for obstructive airway diseases 

12 A02 Drugs for acid related disorders 
11 C02 Antihypertensives 

11 G04 Urologicals 
11 L02 Endocrine therapy 

11 N02 Analgesics 

11 R01 Nasal preparations 
10 B01 Antithrombotic agents 

10 M03 Muscle relaxants 
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The data then split into 70% training set and 30% testing set. The same method as the previous 

section is then used for prediction.  

 

The accuracy calculated by SVM method with the radial kernel is 16.37%. The area under the 

curve of SVM method is 0.66. The k-fold cross validation calculated the mean of 5-fold 

accuracies is 46.48%.  

 

Table 7 shows some information of proportion of variances. For example, the first principal 

component explains 66.01% variance, the second principal component explains 22.04% 

variance, the third principal component explains 3.93% variance and so on. 

 

Table 7. Some information of Proportion of variances results 

0.6601848424 0.2204012434 0.0393501227 0.0139816991 

0.0094117530 0.0084948216 0.0066827641 0.0043391264 

0.0040842748 0.0027268552 0.0021862980 0.0020204416 

0.0017985616 0.0016041122 0.0015450434 0.0012603670 

0.0010444086 0.0009174959 0.0008801428 0.0007918687 

 

Figure 6 shows the first component has the highest variance, something value around 66% while 

the 3rd component is around 0%.  So, it indicates that we should pick up the first three 

components.  
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Figure 6. The graph shows the percentage of variance of each feature. the first component has 
the highest variance, something value around 66% while the 3rd component is around 0%. 

 

Figure 7 shows that only the first three principal components should be chosen, because those 

bars are above the average eigenvalue line.  
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Figure 7. Barplot of eigenvalues and percent of proportion of variation for the 32 classes. The 
barplot shows that only the first three principal components should be chosen, because they are 
above the average line (red line). 

 

The accuracy calculated after dimensional reduction by SVM method is 16.37. The area under 

the curve calculated by SVM method is 0.65.  
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Chapter 6. Discussion 
 

Drug targets can be restricting the efficiency of clinical treatment and tolerance development 

(Iskar et al., 2010). Drug classification accuracy helps identify useful information for studying 

drugs, also helps in accurate diagnosis of drugs. Extracted the therapeutic class of each drug 

from the ATC classification (level 2: pharmacological/therapeutic subgroups) 

(https://www.whocc.no/atc/structure_and_principles/). This thesis research presented 

computational approaches that used newly LINCS L1000 dataset and ATC second level. The 

data obtaining an expression matrix of dimension 1137 ´ 979. I removed all the drugs falling 

into ATC classes with less than 10 drug samples per subgroup as our final prediction, because 

of The number of different ATC codes (Table 1 ) at level 2 is large compared with the number 

of drugs and highly under-represented classes or empty classes appeared at this level. By using 

the ATC 2nd level (pharmacological/therapeutic subgroups) and the classes with at least 10 

drugs, with SVM classification method, I have applied random re-sampling and re-training 

iterations both by using dimensional reduction method to improves classification performance 

and to reduce over-fitting. Table 8 presents the general interpretation of AUC (Morgan, 2016). 

For example, when AUC is £ 0.5, the result is not considerable; when AUC result is between 

0.6 to 0.7, the accuracy is poor; when AUC is between 0.7 to 0.8, the accuracy is fair; when 

AUC is between 0.8 to 0.9, the prediction result is good; when AUC is greater than 0.9 to 1.0, 

then the accuracy result is perfect.  

 

Table 8.  General interpretation of AUC 

AUC Interpretation 
0.9 to 1.0 Excellent accuracy 
0.8 to 0.9 Good accuracy 
0.7 to 0.8 Fair accuracy 
0.6 to 0.7 Poor accuracy 

0.5 No discriminating ability 
 
 
This thesis performed filtering and normalization steps. A total of 979 features were left for 

further processing. After pre-processing, using the average of all experiments in the 

corresponding  calculated mean centered of each probe in the gene expression profiles (Iskar et 

al., 2010). The area under the Receiver operator characteristic (ROC) curve (AUC) for drugs 

(average over all), and the 2nd level of the available ATC code is low (Iskar et al., 2010).  
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The first prediction used the two most high-represent classes with 106 samples for testing how 

well those classifiers classified. The ROC plot (Figure 2 ) presented by SVM method before use 

dimensional reduction. The area under the curve by SVM method is 0.77. The 5-fold cross 

validation result shows the mean of accuracy is 0.76. According to the table of general 

interpretation of AUC ( Table 8), the results are fair.  

 

Next, used the classes with at least 10 drug samples class obtaining data matrix of dimensions 

619 ´ 980, using the same computational approach (SVM method) as the final prediction. The 

result demonstrates a poor test. The area under the curve by SVM method is 0.65. 

 

The proper projections of the data by Principal component analysis (PCA) method is used to 

improves the performance of the machine learning modeling. There are two options to choose 

important and representative PCA axes, which are Kaiser-Guttman criterion and Broken stick 

model (Borcard, Gillet, & Legendre, 2011; MacArthur, 1960). They are both based on the 

eigenvalues which tell how much a principal component is able to explain from initial dataset.  

 
Figure 5 demonstrates a theoretically fair test for two classes. The area under the curve by SVM 

method is 0.77. For 32 classes, the area under the curve by used SVM method is 0.65. The PCA 

method has not improved the performance of the machine learning modeling, it may lose spatial 

information. So, the classification accuracy decreases.  
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Chapter 7. Conclusion 
 

This thesis presented a SVM approach to predict ATC classes of drugs based on their 

characteristic gene expression signature, alternatively evaluate the performance of machine 

learning result to see how much the ATC similarity of drugs is related to the gene expression 

patterns. Subtract different classifiers with different matrix dimensions, then applied SVM and 

Naïve Bayes methods, used multiclass ROC curve and k-fold cross validation to evaluated the 

classification accuracies. In addition, the proper projections of the data by Principal component 

analysis (PCA) method is used to improves the performance of the machine learning modeling.  

 

To improve the prediction performance, PCA method has been used to removes multi-

collinearity and improve the performance of the machine learning modeling. Kaiser-Guttman 

criterion and Broken stick model (Borcard et al., 2011; MacArthur, 1960) are performed based 

on the eigenvalues, which tell how much a principal component is able to explain from initial 

dataset, and how many principal components need to choose. To evaluate the prediction 

performance, the area under the ROC curve has been measured, which measures the sensitivity 

(TPR) and the specificity (FPR). Sensitivity (TPR) defined as TPTP + FN, corresponds to the 

correctly predicted positive data points while testing the model and specificity (FPR) defined as 

FPFP + TN, corresponds to the mistakenly predict negative data points during the test (Owen, 

2013). From the result of final prediction after PCA, the area under the curve of SVM method 

is 0.65. The result shows the effective of dimensional reduction. The classification accuracy 

decreased and it may lose spatial information.  

 

Recent research usually focuses on the anatomical main group and the therapeutic main group 

(first level) of ATC groups. For example, Chen L. et. al. were able to map the chemical 

substructure of drugs, described by the Anatomical Therapeutic Chemical (ATC) classification 

system to predict chemical similarities (Chen et al., 2012). The study used different benchmarks 

to predict ATC codes (level 1) by collecting chemical data for 3,883 drugs with high 

classification performance (73% accuracy). For this thesis, 65% accuracy is predicted by SVM 

method. Additionally, the evaluation is not significantly affected by the number of folds in cross-

validation (Z. Wang et al., 2016). From the final prediction result, I believe that target based 

predictive models are strongly dependent on the completeness, data size and drug target datasets 

qualities (Z. Wang et al., 2016).  According to the General interpretational of AUC table ( Table 

8 ), the accuracy result from this thesis computation approaches is low. The possible reasons 
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caused low accuracy can be: adverse drug reactions can be a result of a systemic malfunction, 

which cannot manifest at the gene expression level. Before inducing its global effect, the drug 

may be processed into various forms (Z. Wang et al., 2016). Because here used different gene 

expression dataset than Chen and Napolitano (Chen et al., 2012); thus, we cannot compare the 

performance directly from the result to recent research.  

 

The main conclusion is that classifiers built used support vector machine approach in this thesis 

study had limited with detecting drug groups, shows the relations between gene expression 

profile and the 2nd level of ATC system (Anatomical Therapeutic Chemical Classification) 

(Table 1 ). (https://www.whocc.no/atc/structure_and_principles/). Although this thesis mainly 

focused on the prediction of drugs, the similar methods can be used for drug repurposing to 

predict novel indications. With some simple modifications of prediction approach, new drugs 

and small molecules for the treatment of many diseases can be identify (Z. Wang et al., 2016).  
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Appendix 
 

 
Figure 8. Distribution about the numbers of ATC-classes and drug samples may belong to. 
There are 358 samples belong to empty class, 592 belong to one class, 115 belong to two 
classes, 34 belong to three classes, 11 belong to four classes and five classes, 6 belong to six 
classes, 1 belong to seven classes, 3 belong to eight classes, 1 belong to nine classes, 1 belong 
to eleven classes, 1 belong to twelve classes, 1 belong to fourteen classes and 1 belong to 
twenty-two classes.  
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Figure 9. Distribution of 2nd level ATC-classes and drug samples may belong to. The x-axis 
presents all classes at 2nd level of ATC codes. The y-axis presents the count per class. There 
are 57 samples belong to L01 class, 49 samples belong to J01 class, 43 samples belong to N05 
class, 42 samples belong to N06 class, 30 samples belong to C01 class, 22 samples belong to 
M01, R06 and S01 classes, 20 samples belong to J05 class, 18 samples belong to C10 and N03 
classes, 15 samples belong to N07 class, 14 samples belong to C09 class, 13 samples belong to 
A07, C08, D01, N04, P01 and R03 classes, 12 samples belong to A02 class, 11 samples 
belong to C02, G04, L02, N02 and R01 classes, 10 samples belong to B01 and M03 classes, 9 
samples belong to A01, D06, G02, J04 and L04 classes, 8 samples belong to P02 class, 7 
samples belong to A11 class, 6 samples belong to D07 and V03 classes, 5 samples belong to 
A04, A08, C04, C05, H03 and N01 classes, 4 samples belong to B02 and D05 classes, 3 
samples belong to A05, A14, D04, D10, D11, J02, M04, M05, R05, V04 and V08 classes, 2 
samples belong to A06, A16, G01 and M02 classes and 1 sample belong to A12, B05, D08, 
H02, M09, R07, S02 and V09 classes.  

 
 
 
 
 
 
 
 
 
  


