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Abstract: In this article we consider the general linear model {y,Xβ,V}, where y is the observable random
vector with expectation Xβ and covariance matrix V. Our interest is on predicting the unobservable random

vector y∗, which comes fromy∗ = X∗β+ε∗, where the expectation of y∗ isX∗β and the covariancematrix of y∗
is known aswell as the cross-covariancematrix between y∗ and y. The randomvector y∗ can be considered as
a kind of unknown future value. We introduce upper bounds for the Euclidean distances between the BLUPs,

the best linear unbiased predictors, when the prediction is based on the original model and when it is based

on the transformed model {Fy, FXβ, FVF′}. We also show how the upper bounds are related to the concept

of linear sufficiency, and we apply our results into the mixed linear model.

Keywords: Best linear unbiased estimator, best linear unbiased predictor, Euclidean norm, linear sufficiency,

transformed linear model.

1 Introduction
Let us beginwith somewords about thenotation. The symbolRm×n denotes the set ofm×n realmatrices,while

A′, A−, A+, C(A), and C(A)⊥, denote, respectively, the transpose, a generalized inverse, the (unique) Moore–
Penrose inverse, the column space, and the orthogonal complement of the column space of the matrix A. By

(A : B) we denote the partitioned matrix with Aa×b and Bc×d as submatrices, where a = c. The symbol A⊥

stands for anymatrix satisfyingC(A⊥) = C(A)⊥. Furthermore,wewill usePA = AA+ = A(A′A)−A′ to denote the
orthogonal projector (with respect to the standard inner product) onto the column spaceC(A), andQA = I−PA,

where I refers to the identity matrix of conformable dimension. In particular, we use notationM = In − PX,

where Xn×p refers to the model matrix, see (1.1). One convenient choice for X⊥ is obviouslyM; convenience

follows from the symmetry and idempotence ofM.

We will consider the general linear model

y = Xβ + ε , or shortly the tripletM = {y,Xβ,V} , (1.1)

where X ∈ R
n×p is a known model matrix, the vector y is an observable n-dimensional random vector (so-

called response vector), β ∈ R
p is vector of unknown parameters, and ε is an unobservable vector of random

errors with expectation E(ε) = 0, and covariancematrix cov(ε) = V. Often the covariancematrix is of the type

cov(ε) = σ2V, where σ2 is an unknown nonzero constant. However, in our considerations σ2 has no role and

hence we omit it. The nonnegative definite matrix V is known and can be singular.

Let y∗ denote a q × 1 unobservable random vector containing new future observations. The new obser-

vations are assumed to be generated from

y∗ = X∗β + ε∗ , (1.2)
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where X∗ is a known q × p matrix, β ∈ R
p is the same vector of fixed but unknown parameters as inM, and

ε∗ is a q-dimensional random error vector with E(ε∗) = 0. We will also use the notation μ = Xβ , μ∗ = X∗β.
The covariance matrix of y∗ and the cross-covariance matrix between y and y∗ are assumed to be known and

thus we have

E

(
y

y∗

)
=

(
μ
μ∗

)
=

(
X

X∗

)
β , cov

(
y

y∗

)
= cov

(
ε
ε∗

)
=

(
V V12

V21 V22

)
= Γ ∈ NNDn+q , (1.3)

where NNDn+q refers to the set of (n + q) × (n + q) nonnegative definite matrices. This setup can be denoted

shortly as

M∗ =

{(
y

y∗

)
,

(
X

X∗

)
β,
(

V V12

V21 V22

)}
. (1.4)

We are particularly interested in predicting the unobservable y∗ on the basis of the observable y. While doing

this, we look for linear predictors of the type By, where B ∈ R
q×n, that would “conveniently” utilize the

knowledge of (1.4). It is noteworthy that, literally taken, M∗ in (1.4) is not a standard linear model—this is

due to the fact that the y∗-part is not a proper response variable which in usual linear model is assumed to

be observable. To clarify the situation, we will callM∗ “the linear model with new future observations”.

One of the first articles to consider the setupM∗ was Goldberger [9, 1962], who assumed Γ to be positive

definite and y∗ a scalar so that y∗ = x′∗β + ε∗. Goldberger called x∗ the vector “prediction regressors” and ε∗
the “prediction disturbance”.

Premultiplying the modelM by an f × n matrix F yields the transformed model

Fy = FXβ + Fε , or shortlyMt = {Fy, FXβ, FVF′} . (1.5)

Suppose we wish to do the prediction using the transformed modelMt. Corresponding toM∗, we then have
the following transformed setup:

Mt∗ =

{(
Fy

y∗

)
,

(
FX

X∗

)
β,
(
FVF′ FV12

V21F
′ V22

)}
. (1.6)

We shall concentrate on the linear unbiased estimators, LUEs, and predictors, LUPs, and hence we need

the concept of estimability. For example,X∗β is estimable underM if there exists amatrixB such that E(By) =

X∗β for all β ∈ R
p. Such a matrix B ∈ R

q×n exists only when C(X′∗) ⊂ C(X′). The LUE By is the best linear

unbiased estimator, BLUE, of estimable X∗β if By has the smallest covariance matrix in the Löwner sense

among all linear unbiased estimators of X∗β:

cov(By) ≤L cov(B#y) for all B# : B#X = X∗ , (1.7)

that is, cov(B#y) − cov(By) is nonnegative definite for all B# : B#X = X∗ .
Correspondingly, the random vector y∗ is called predictable underM∗ if there exists amatrixD such that

the expected prediction error is zero, i.e., E(y∗−Dy) = 0 for all β ∈ R
p . ThenDy is a linear unbiased predictor

(LUP) of y∗. Such a matrix D ∈ R
q×n exists if and only if C(X′∗) ⊂ C(X′), that is, X∗β is estimable under M.

Thus y∗ is predictable under M∗ if and only if X∗β is estimable. Now a LUP Dy is the best linear unbiased

predictor, BLUP, for y∗, if we have the Löwner ordering

cov(y∗ − Dy) ≤L cov(y∗ − D#y) for all D# : D#X = X∗ . (1.8)

The Lemma 1.1 below provides so-called fundamental BLUE- and BLUP-equations. For the BLUP, see,

e.g., Christensen [6, p. 294], and Isotalo & Puntanen [18, p. 1015], and for the BLUE, Drygas [7, p. 55], Rao [28,

p. 282], and Puntanen et al. [27, Th. 10]. For the reviews of the BLUP-properties, see, Robinson [31] andHaslett

& Puntanen [14].

Lemma 1.1. Consider the linear model with new observations defined asM∗ in (1.4), where C(X′∗) ⊂ C(X′), i.e.,
y∗ is predictable.
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(a) The linear predictor Ay is the BLUP for y∗ if and only if A ∈ R
q×n satisfies the equation

A(X : VX
⊥
) = (X∗ : V21X

⊥
) . (1.9)

(b) The linear estimator By is the BLUE of μ∗ = X∗β if and only if B ∈ R
q×n satisfies the equation

B(X : VX
⊥
) = (X∗ : 0) . (1.10)

In particular, Cy is the BLUE for μ = Xβ if and only if C ∈ R
n×n satisfies the equation

C(X : VX
⊥
) = (X : 0) . (1.11)

(c) The linear predictor Dy is the BLUP for ε∗ if and only if D ∈ R
q×n satisfies the equation

D(X : VX
⊥
) = (0 : V21X

⊥
) . (1.12)

We will use the following short notations:

ỹ∗ = BLUP(y∗ | M∗) , μ̃∗ = BLUE(μ∗ | M∗) , ε̃∗ = BLUP(ε̃ | M∗) . (1.13)

Notice that obviously BLUE(μ∗ | M∗) = BLUE(μ∗ | M).

Lemma 2.2.4 of Rao & Mitra [30] appears very useful for our considerations. It says that for nonnull ma-

trices A and C the following holds:

AB
−
C = AB

+
C ⇐⇒ C(C) ⊂ C(B) & C(A′

) ⊂ C(B′
) . (1.14)

In other words, (1.14) characerizes when the matrix product AB−C is invariant with respect to the choice of

B−. In particular, we observe the following:

AB
−
B = AB

+
B ⇐⇒ C(A′

) ⊂ C(B′
) . (1.15)

One well-known solution for C in (1.11) is

PX;W− := X(X
′
W

−
X)

−
X
′
W

−
, (1.16)

whereW is a matrix belonging to the set of nonnegative definite matrices defined as

W =
{
W ∈ NNDn :W = V + XUU

′
X
′
, C(W) = C(X : V)

}
. (1.17)

In (1.17) the matrix U (having p rows) can be chosen arbitrarily subject to the condition C(W) = C(X : V). One

obvious choice is Ip and we can choose U = 0 if C(X) ⊂ C(V). We could replaceW with a set of matrices of

the typeW = V +XUX′, where C(W) = C(X : V), U ∈ R
p×p, and thusWwould not necessarily be nonnegative

definite. However, to simplify our considerations, we will use (1.17) to define the setW. In view of (1.14), the

matrix X(X′W−X)−X′ is invariant for any choices of the generalized inverses involved and the same concerns

PX;W−y for y ∈ C(X : V). For a review of the properties ofW, see, e.g., Puntanen et al. [27, Sec. 12.3].

We assume the modelM to be consistent in the sense that the observed value of y lies in C(X : V) with

probability 1. Hence we assume that under the modelM,

y ∈ C(X : V) = C(X : VX
⊥
) = C(X : VM) = C(X)⊕ C(VM) , (1.18)

where ⊕ refers to the direct sum. For the equality C(X : V) = C(X : VM), see, e.g., Rao [29, Lemma 2.1]. The

corresponding consistency as in (1.18) is assumed in all models that we will deal with.

Let A and B bem × nmatrices. Then, in the consistent linear modelM, the estimators Ay and By are said

to be equal with probability 1 if

Ay = By for all y ∈ C(X : V) , (1.19)

which will be a crucial property in our considerations. For the equality of two estimators, see, e.g., Groß &

Trenkler [11].
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As for the structure of this article, ourmain goal is to introduce upper bounds for the Euclidean distances

between the best linear unbiased predictors (BLUPs) of y∗ when the prediction is based on the original model

M∗, defined in (1.4), and when it is based on the transformed model Mt∗, defined in (1.6). Corresponding

considerations aremade for the BLUPs of ε∗. Our attempt has been tomake the paper self-readable so that the

necessary background concepts, starting fromBLUP and BLUE, have been presented to a reasonable amount.

In Section 2 we introduce, review and comment on some presentations for the BLUPs under the original and

the transformed model. Because the concept of linear sufficiency is strongly connected with the transformed

model, we devote Section 3 for this topic. In Section 5 we apply our results into the mixed linear model which

is a special case of the model with new future observations. Our considerations are rather mathematical and

for this paper, we have no practical statistical applications in mind.

2 Representations for the BLUPs under the original and the
transformed model

If B1y = BLUE(X∗β) and B2y = BLUP(ε∗) underM∗, then, in view of Lemma 1.1, we have(
B1

B2

)
(X : VM) =

(
X∗ 0

0 V21M

)
. (2.1)

Premultiplying (2.1) by (Iq : Iq) leads to

(B1 + B2)(X : VM) = (X∗ : V21M) , (2.2)

and thereby (B1 + B2)y = BLUP(y∗), i.e.,

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) , or shortly, ỹ∗ = μ̃∗ + ε̃∗ . (2.3)

Recall that equations of the type (2.3) hold “with probability 1”, that is, they hold for all y ∈ C(X : V).

Now one solution for B2 satisfying B2(X : VM) = (0 : V21M) is B2 = AM, where A satisfies AMVM =

V21M. Thus one expression for the BLUP of ε∗ is

BLUP(ε∗) = V21M(MVM)
−
My = V21Ṁy , (2.4)

where we have denoted

Ṁ = M(MVM)
−
M . (2.5)

The matrix Ṁ appears to be very useful in this context. As noted by Isotalo et al. [17, p. 1439], the matrix Ṁ is

not necessarily unique with respect to the choice of the generalized inverse (MVM)−. It is unique if and only

if C(M) ⊂ C(MV), which further is equivalent to R
n = C(X : V). However, in view of (1.14) and the fact that

y ∈ C(X : V), the expressionV21Ṁy is invariant with respect to the choice of (MVM)−. For theMoore–Penrose

inverse we have

M(MVM)
+
M = (MVM)

+
M = M(MVM)

+
= (MVM)

+
. (2.6)

Hence in light of (1.14) and (2.6),

BLUP(ε∗) = V21M(MVM)
−
My = V21(MVM)

+
y for all y ∈ C(X : V). (2.7)

For further properties of Ṁ, see Isotalo et al. [17] and Puntanen et al. [27, Ch. 17].

It is also of interest to substitute y = Xa + Vb (for some vectors a and b) into (2.4) and obtain

BLUP(ε∗) = V21M(MVM)
−
M(Xa + Vb)

= V21V
+1/2

PV1/2MV
+1/2

Vb

= V21V
+1/2

PV1/2M0
V
+1/2

Vb
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= V21M0(M
′
0VM0)

−
M

′
0y, (2.8)

where M0 is any matrix satisfying C(M0) = C(M); here V+1/2 is the nonnegative definite square root of V+,

and thereby V+1/2V1/2 = V1/2V+1/2 = PV. Observe that V21PV = V21 because C(V12) ⊂ C(V) in light of the

nonnegative definiteness of Γ in (1.3).

In view of the identity, see Haslett et al. [13, Sec. 2],

X(X
′
W

−
X)

−
X
′
W

+
= PW − VM(MVM)

−
MPW , (2.9)

the residual of the BLUE(μ | M) can be written as

y − BLUE(μ | M) = (In − G)y = VM(MVM)
−
My for all y ∈ C(W) , (2.10)

and the BLUP(ε∗) can be expressed, for example, as follows:

BLUP(ε∗) = V21M(MVM)
−
My = V21W

−
(In − G)y = V21V

−
(In − G)y, (2.11)

whereW ∈ W, y ∈ C(W), and G = X(X′W−X)−X′W− = PX;W− .

For our purposeswe assume that the parametric function μ∗ = X∗β is estimable underM aswell as under

Mt, which happens if and only if C(X
′∗) ⊂ C(X′) ∩ C(X′F′) = C(X′F′) so that

X∗ = LFX for some matrix L ∈ R
q×f

, μ∗ = X∗β = LFXβ = LFμ . (2.12)

In other words, estimability underMt implies the estimability underM. The parametric function μ = Xβ is

of course always estimable underM while underMt it is estimable whenever

C(X′
) = C(X′

F
′
) , i.e., rank(X) = rank(FX) . (2.13)

In light of (2.12), one expression for BLUE(X∗β) underM is

BLUE(X∗β | M) = BLUE(LFXβ | M) = LFBLUE(Xβ | M) = LFGy , (2.14)

where G = X(X′W−X)−X′W− = PX;W− .

If Xβ is estimable underMt, then, in view of part (b) of Lemma 1.1, the statistic BFy is the BLUE for Xβ
underMt if and only if B satisfies

B(FX : FVF
′
QFX) = (X : 0) . (2.15)

Thus, see Kala et al. [19, Sec. 6] and Markiewicz & Puntanen [24, Sec. 3], the BLUE of Xβ underMt has, for

example, the representation

BLUE(Xβ | Mt) = BLUE(μ | Mt) = μ̃t = Gty , (2.16)

where

Gt = X[X
′
F
′
(FWF

′
)
−
FX]

−
X
′
F
′
(FWF

′
)
−
F. (2.17)

Correspondingly,

BLUE(X∗β | Mt) = BLUE(LFXβ | Mt) = LFGty = μ̃t . (2.18)

The BLUP of ε∗ underMt∗ is CFy if and only if C satisfies

C(FX : FVF
′
QFX) = (0 : V21F

′
QFX) , (2.19)

that is, C = AQFX, where A satisfies AQFXFVF
′QFX = V21F

′QFX. Thus one expression for BLUP of ε∗ under
Mt∗ is

BLUP(ε∗ | Mt∗) = V21F
′
QFX(QFXFVF

′
QFX)

−
QFXFy . (2.20)

According to Markiewicz & Puntanen [24, Sec. 2], we have

C(F′QFX) = C(F′) ∩ C(M) , MF
′
QFX = F

′
QFX . (2.21)
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Denoting

N = PF′QFX
= PC(F′)∩C(M) , (2.22)

and proceeding as in (2.8) we get the following expression:

BLUP(ε∗ | Mt∗) = V21N(NVN)
−
Ny. (2.23)

Thus, see also Isotalo et al. [16, Sec. 4], the BLUP(y∗) underM∗ can be written as

BLUP(y∗ | M∗) = BLUE(μ∗ | M) + V21V
−
[y − BLUE(μ | M)]

= LFGy + V21V
−
(In − G)y

= LFGy + V21M(MVM)
−
My

= BLUE(μ∗ | M) + BLUP(ε∗ | M∗) , (2.24)

or shortly, ỹ∗ = μ̃∗ + ε̃∗, and

BLUP(y∗ | Mt∗) = BLUE(μ∗ | Mt) + V21F
′
(FVF

′
)
−
F[y − BLUE(μ | Mt)]

= LFGty + V21F
′
(FVF

′
)
−
F(In − Gt)y

= LFGty + V21N(NVN)
−
Ny

= BLUE(μ∗ | Mt) + BLUP(ε∗ | Mt∗) , (2.25)

or shortly, ỹt∗ = μ̃t∗ + ε̃t∗. Recall that N = PF′QFX
= PC(F′)∩C(M) and that N has properties

C(N) = C(F′QFX) = C(F′) ∩ C(M) , N = MN = NM = N
2
. (2.26)

Notice that the use of term BLUE(Xβ | Mt), as in the first two expressions in (2.25), requires, of course,

thatXβ is estimable under the transformedmodelMt. The use of other expressions in (2.25) does not require

this assumption; the estimability of X∗β underMt is only needed.

We observe that the random vectors μ̃∗ and ε̃∗ are uncorrelated and the corresponding property holds

also for μ̃t∗ and ε̃t∗. Hence we have

cov(ỹ∗) = cov(μ̃∗) + cov(ε̃∗) , cov(ỹt∗) = cov(μ̃t∗) + cov(ε̃t∗) . (2.27)

Now we have ε̃∗ = V21M(MVM)−My, and ε̃t∗ = V21N(NVN)
−Ny, with covariance matrices

cov(ε̃∗) = V21M(MVM)
−
MV12 , cov(ε̃t∗) = V21N(NVN)

−
NV12 . (2.28)

Straightforward calculation shows that cov(ε̃∗, ε̃t∗) = cov(ε̃t∗) , and

cov(ε̃∗ − ε̃t∗) = cov(ε̃∗) − cov(ε̃t∗) , (2.29)

and thereby we have the Löwner ordering cov(ε̃∗) ≥L cov(ε̃t∗). It is worth noting that for μ̃∗ and μ̃t∗ we have
the reverse Löwner ordering cov(μ̃∗) ≤L cov(μ̃t∗).

3 Conditions for linear sufficiency
Consider themodelM = {y,Xβ,V} and letFbean f×nmatrix. ThenFy is called linearly sufficient (sometimes

called BLUE-sufficient) for estimable X∗β, where X∗ ∈ R
q×p, if there exists a matrix Aq×f such that AFy is the

BLUE for X∗β. We use the notation Fy ∈ S(X∗β) do indicate that Fy is linearly sufficient for X∗β.
Let y∗ be predictable under the model M∗, i.e., C(X′∗) ⊂ C(X′). Then Fy is called linearly (prediction)

sufficient (BLUP-sufficient) for y∗ if there exists a matrix Aq×f such that AFy is the BLUP for y∗; that is, there
exists A such that

AF(X : VM) = (X∗ : V21M) . (3.1)
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If we want to emphasize that we are dealing with the prediction, we could talk about linear prediction suffi-

ciency. We use the short notation Fy ∈ S(y∗).
The transformedmodelMt has very strong connectionwith the concept of linear sufficiency. The equality

of BLUEs under the original model and the transformedmodel can be characterized via the linear sufficiency

and correspondingly the equality of the BLUPs. For the following Lemma 3.1 collects some useful results. For

(a)–(c), see, e.g., Baksalary & Kala [3, 4], Drygas [8], Tian & Puntanen [32, Th. 2.8], and Kala et al. [20, Th. 2],

and for (d)–(f), see Isotalo & Puntanen [18], and Isotalo et al. [16].

Lemma 3.1. Let μ∗ = X∗β be estimable underMt (and thereby underM). Then the following statements are

equivalent:

(a) Fy is linearly sufficient for μ∗ = X∗β, i.e., Fy ∈ S(X∗β),
(b) BLUE(X∗β | M∗) = BLUE(X∗β | Mt∗), or shortly, μ̃∗ = μ̃t∗ with probability 1,
(c) cov(μ̃∗) = cov(μ̃t∗).

Moreover, the following statements are equivalent:

(d) Fy is linearly sufficient for y∗, i.e., Fy ∈ S(y∗),
(e) BLUP(y∗ | M∗) = BLUP(y∗ | Mt∗), or shortly, ỹ∗ = ỹt∗ with probability 1,
(f) cov(ỹ∗ − ỹt∗) = 0.

The following lemma gives some BLUP-sufficiency properties of Fy for ε∗; see Isotalo et al. [16].

Lemma 3.2. The following statements are equivalent:

(a) Fy is linearly sufficient for ε∗, i.e., Fy ∈ S(ε∗),
(b) C(MV12) ⊂ C(MVF′QFX),

(c) BLUP(ε∗ | M∗) = BLUP(ε∗ | Mt∗), or shortly, ε̃∗ = ε̃t∗ with probability 1,
(d) cov(ε̃∗) = cov(ε̃t∗),
(e) C(V12) ⊂ C(VN : X) = C(VF′QFX : X), where N = PF′QFX

,

(f) V21M = V21N(NVN)
−NVM.

Details of Lemma 3.2 are proved in Markiewicz & Puntanen [25] but let us take a brief look at the claim (f),

which will be needed later on. To confirm (f), we can start from (c):

BLUP(ε∗ | M∗) = BLUP(ε∗ | Mt∗) with probability 1, (3.2)

i.e.,

V21M(MVM)
−
My = V21N(NVN)

−
Ny for all y ∈ C(X : VM) , (3.3)

where N = PF′QFX
and N has properties like in (2.26). Choosing y ∈ C(X) yields zeros on both sides of (3.3).

For y ∈ C(VM) the left-hand side of (3.3) becomes

V21M(MVM)
−
MVM = V21M , (3.4)

where we have used (1.15). Hence (3.3) can be expressed as

V21M = V21N(NVN)
−
NVM = V21MN(NVN)

−
NVM := V21ME , (3.5)

where E = N(NVN)−NVM ∈ R
n×n .

4 Some upper bounds for the Euclidean distance between the
BLUPs

In this section we provide new results giving upper bounds for the Euclidean norms of differences

BLUP(ε∗ | M∗) − BLUP(ε∗ | Mt∗) and BLUP(y∗ | M∗) − BLUP(y∗ | Mt∗) . (4.1)
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For this purpose, let ch1(·) denote the largest eigenvalue of the matrix argument and let the matrix norm be

defined as ‖A‖2 =
√
ch1(AA′). In particular, ‖a‖22 = a′a, where a ∈ R

n.

Denoting ε̃∗ = BLUP(ε∗ | M∗), ε̃t∗ = BLUP(εt∗ | Mt∗), and N = PF′QFX
= MN , we have

ε̃∗ − ε̃t∗ = V21[M(MVM)
−
M − N(NVN)

−
N]y = S0y , (4.2)

where

S0 = V21[M(MVM)
−
M − N(NVN)

−
N] . (4.3)

Putting y = Xa + VMb and denoting E = N(NVN)−NVM, gives, on account of (3.5),

‖ε̃∗ − ε̃t∗‖22 = ‖S0(Xa + VMb)‖22
= ‖V21M[In − N(NVN)

−
NVM]Mb‖22

= ‖V21M(In − E)Mb‖22
:= ‖SMb‖22
≤ ‖S‖22 ‖Mb‖22
= ch1(SS

′
)b

′
Mb , (4.4)

where

S = S0VM = V21M(In − E) . (4.5)

The inequality in (4.4) follows from the consistency and multiplicativity of the matrix norm ‖·‖2; see, for
example, Ben-Israel & Greville [5, pp. 19–20]. In view of part (f) of Lemma 3.2, we know that S = 0 if and only

if Fy ∈ S(ε∗). The scalar b′Mb is obviously zero if and only if b ∈ C(X). Thus we have proved the following

theorem.

Theorem 4.1. Consider the modelM∗. Then for all y = Xa + VMb,

‖ε̃∗ − ε̃t∗‖22 = ‖BLUP(ε∗ | M∗) − BLUP(ε∗ | Mt∗)‖22
≤ ch1(SS

′
)b

′
Mb := α1 , (4.6)

where

S = V21M(In − E) ∈ R
q×n

, E = N(NVN)
−
NVM ∈ R

n×n
. (4.7)

If b /∈ C(X), then the upper bound α1 in (4.6) is equal to zero if and only if S = 0, i.e., Fy is linearly sufficient for

ε∗.

An alternative upper bound can be found out as follows:

‖ε̃∗ − ε̃t∗‖22 = ‖S0My‖22 ≤ ‖S0‖22 y′My

= ch1(S0S
′
0)y

′
My = ch1(S0S

′
0)b

′
MVMVMb := α2 , (4.8)

where S0 = V21[M(MVM)−M−N(NVN)−N]. It is easy to conclude that y′My = 0 for all y ∈ C(X : V) if and only

if VM = 0, or, equivalently, C(V) ⊂ C(X). Groß [10, p. 317] calls a model with property VM = 0 a degenerated

model.

Remark 4.1.As one of the referees pointed out, the upper bounds in (4.6) and (4.8) depend on vector y, which

is an arbitrary vector inR
n belonging to the column space C(X : V). IfVM = 0, then α1 = α2 = 0, but of course

the situation is somewhat pathological as y′My = 0 for all y ∈ C(X : V).

IfM∗ is not a degenerated model, then the upper bound α2 in (4.8) is equal to zero if and only if

S0 = V21[M(MVM)
−
M − N(NVN)

−
N] = 0 , (4.9)

or, equivalently,

S0S
′
0 = V21[M(MVM)

−
M − N(NVN)

−
N]

2
V12 = 0 . (4.10)
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Of course, (4.9) implies

V21[M(MVM)
−
M − N(NVN)

−
N]V12 = cov(ε̃∗) − cov(ε̃t∗) = 0 , (4.11)

as well as

S0VM = V21[M(MVM)
−
M − N(NVN)

−
N]VM = S = 0 , (4.12)

which both are necessary and sufficient conditions for Fy being linearly sufficient for ε∗. Interestingly, but
somewhat unwishfully, the linear sufficiency, i.e., (4.12), does not imply that α2 = 0; exception for this is the

case when C(X : V) = R
n. It remains an open question which upper bound α1 or α2 is sharper.

Let us take a look at the Euclidean distance between the BLUEs of μ∗ = X∗β in the original and the

transformed model. As in Kala et al. [19, Sec. 6], we can observe that GtG = G and hence

(Gt − G)y = (Gt − GtG)y = Gt(In − G)y = GtVM(MVM)
−
My for all y ∈ C(W) , (4.13)

where we have used (2.10). Then, for all y ∈ C(W), and μ∗ = LFXβ, we have

‖μ̃∗ − μ̃t∗‖22 = ‖LF(Gt − G)y‖22
= ‖LFGtVM(MVM)

−
My‖22

≤ ‖LFGtVM‖22 ‖(MVM)
+‖22 ‖My‖22

= ‖R‖22 ‖(MVM)
+‖22 ‖My‖22

=
a

b2
y
′
My := γ2 , (4.14)

where R = LFGtVM, the scalar a is the largest eigenvalue of RR′, and b is the smallest nonzero eigenvalue of

MVM. Moreover, ifM is not a degeneratedmodel then γ2 is zero if and only if Fy is linearly sufficient forX∗β.
An alternative upper bound for ‖μ̃∗ − μ̃t∗‖22 can be obtained by substituting y = Xa + VMb into (4.14).

This yields

‖μ̃∗ − μ̃t∗‖22 = ‖LFGtVM(MVM)
−
MVMb‖22

= ‖LFGtVMb‖22
≤ ‖LFGtVM‖22 b′

Mb

= ‖R‖22 b′
Mb = a b

′
Mb := γ1 , (4.15)

where a = ch1(RR
′). Similarly as for α1 and α2 in (4.6) and (4.8), the question whether γ1 is a sharper upper

bound than γ2 remains open.

The BLUPs of y∗ in the original and the transformed model, respectively, are

BLUP(y∗ | M∗) = LFGy + V21M(MVM)
−
My , or shortly, ỹ∗ = μ̃∗ + ε̃∗ , (4.16a)

BLUP(y∗ | Mt∗) = LFGty + V21N(NVN)
−
Ny , or shortly, ỹt∗ = μ̃t∗ + ε̃t∗ . (4.16b)

Putting y = Xa + VMb and using earlier notation, gives, in light of the triangle inequality,

‖ỹ∗ − ỹt∗‖2 = ‖BLUP(y∗ | M∗) − BLUP(y∗ | Mt∗)‖2
= ‖(μ̃∗ − μ̃t∗) + (ε̃∗ − ε̃t∗)‖2
≤ ‖μ̃∗ − μ̃t∗‖2 + ‖ε̃∗ − ε̃t∗‖2
= ‖RMb‖2 + ‖SMb‖2
=
√
ch1(RR′)b′Mb +

√
ch1(SS′)b′Mb

= γ1 + α1 := α . (4.17)

We can now write the following theorem.
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Theorem 4.2. Consider the modelM∗ where μ∗ = LFXβ. Then for all y = Xa + VMb,

‖ỹ∗ − ỹt∗‖2 ≤
√
ch1(RR′)b′Mb +

√
ch1(SS′)b′Mb

= γ1 + α1 = α , (4.18)

where R = LFGtVM ∈ R
q×n and

S = V21M(In − E) ∈ R
q×n

, E = N(NVN)
−
NVM ∈ R

n×n
. (4.19)

If b /∈ C(X), then the upper bound α in (4.18) is equal to zero if and only if S = R = 0, i.e., Fy is linearly sufficient

for μ∗ and for ε∗.

Another formulation for the upper bound ‖ỹ∗ − ỹt∗‖2 can be formulated using (4.6) and (4.14).

It is interesting to observe that S = R = 0 is sufficient but not necessary for the equality

ỹ∗ − ỹt∗ = 0 , (4.20)

which holds (with probability 1) if and only if Fy ∈ S(y∗). However, Fy ∈ S(y∗) does not necessarily imply

that Fy ∈ S(μ∗) ∩ S(ε∗), i.e., S = R = 0. For further discussion in this matter, see Markiewicz & Puntanen [25,

Sec. 5].

5 BLUPs under mixed linear models
Consider the mixed linear model

y = Xβ + Zu + e , denoted as L = {y,Xβ + Zu, Δ,Φ,Ψ} , (5.1)

where Xn×p and Zn×q are known matrices, β ∈ R
p is a vector of unknown fixed effects, u is an unobservable

vector (q elements) of random effects with E(u) = 0q , cov(u) = Δq×q , e is a random error vector (n elements)

with E(e) = 0n , cov(e) = Φn×n, and cov(e, u) = Ψn×q. Denoting g = Xβ + Zu, we have

cov(y) = cov(Zu + e) = ZΔZ′ +Φ + ZΨ ′
+ ΨZ

′
= Σ , (5.2a)

cov

(
y

g

)
= cov

(
y

Zu

)
=

(
Σ (ZΔ + Ψ)Z′

Z(ZΔ + Ψ)′ ZΔZ′

)
=

(
Σ Σ12
Σ21 Σ22

)
:= Ω ∈ NND2n . (5.2b)

Now the mixed linear model can be expressed as a version of the model with “new observations”, the new

observations, corresponding y∗ in (1.2), being in g = Xβ + Zu:

L∗ =

{(
y

g

)
,

(
X

X

)
β,
(

Σ Σ12
Σ21 Σ22

)}
. (5.3)

Notice that Ω in (5.2b) corresponds to Γ in (1.3).

Transforming the mixed model L by premultiplying it by F ∈ R
f×n gives

Fy = FXβ + FZu + Fe , denoted as Lt = {Fy, FXβ + FZu, Δ, FΦF
′
, FΨ} . (5.4)

Our aim is to do the prediction of g = Xβ + Zu using this transformed model Lt. Corresponding to L∗, the
resulting transformed setup is

Lt∗ =

{(
Fy

g

)
,

(
FX

X

)
β,
(
FΣF′ FΣ12
Σ21F′ Σ22

)}
. (5.5)

Remark 5.1. It is worth noting that L and L∗ refer to the same mixed model. The difference is that when

using L∗ we wish to emphasize that the “new observation” (corresponding to y∗ inM∗) is g. It is clear that
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BLUP(g | L∗) means precisely the same as BLUP(g | L) and thus we can drop the subscript ∗ from L∗ and
Lt∗.

Corresponding toM∗, we can express the BLUP for g = Xβ + Zu as follows:

BLUP(g | L) = g̃ = BLUE(μ | L) + ZBLUP(u | L)

= Ty + Z(ZΔ + Ψ)
′Σ−(In − T)y

= Ty + Σ21M(MΣM)
−
My

= μ̃ + Zũ , (5.6)

where T = X(X′W−
ΣX)

−X′W−
Σ andWΣ ∈ WΣ ,

WΣ =
{
WΣ ∈ NNDn :WΣ = Σ + XUU′

X
′
, C(WΣ) = C(X : Σ)

}
. (5.7)

In (5.7) the matrix U is free to vary subject to condition C(WΣ) = C(X : Σ). The BLUP of g = Xβ + Zu under the
transformed model Lt can be expressed as

BLUP(g | Lt) = g̃t = BLUE(μ | Lt) + ZBLUP(u | Lt)

= Tty + Z(ZΔ + Ψ)
′
F
′Σ−(In − Tt)y

= Tty + Σ21N(NΣN)−Ny
= μ̃t + Zũt , (5.8)

where N = PF′QFX
and

Tt = X[X
′
F
′
(FWΣF

′
)
−
FX]

−
X
′
F
′
(FWΣF

′
)
−
F. (5.9)

Theorem 4.2 gives immediately Corollary 5.1.

Corollary 5.1. Consider the mixed linear model L where C(X′) = C(F′X′). Then for all y = Xa + ΣMb,

‖g̃ − g̃t‖2 = ‖BLUP(g | L) − BLUP(g | Lt)‖2
= ‖(μ̃ − μ̃t) + Z(ũ − ũt)‖2
= ‖RmMb‖2 + ‖SmMb‖2
≤
√
ch1(RmR′

m)b
′Mb +

√
ch1(SmS

′
m)b

′Mb , (5.10)

where Rm = TtΣM ∈ R
n×n and

Sm = Σ21M(In − Em) ∈ R
n×n

, Em = N(NΣN)−NΣM ∈ R
n×n

. (5.11)

If b /∈ C(X), then the upper bound in (5.10) is equal to zero if and only ifRm = Sm = 0, i.e., Fy is linearly sufficient

for μ and for Zu.

Remark 5.2.One of the referees suggested that in addition to predicting y∗ = Xβ+Zu, one could also consider
predicting the vector of new observations of the type

η = X∗β + Z∗u + e∗ , (5.12)

where X∗ and Z∗ are given matrices, e∗ is a random error vector with E(e∗) = 0, cov(e∗) = Φ∗ , cov(e, e∗) = 0

and cov(u, e∗) = 0. Now we have

cov

(
y

η

)
= cov

(
y

Z∗u + e∗

)
=

(
Σ (ZΔ + Ψ)Z′∗

Z∗(ZΔ + Ψ)′ Z∗ΔZ′∗ +Φ∗

)
, (5.13)

and thus the prediction of η can be based on the model

K =

{(
y

η

)
,

(
X

X∗

)
β,
(

Σ (ZΔ + Ψ)Z′∗
Z∗(ZΔ + Ψ)′ Z∗ΔZ′∗ +Φ∗

)}
. (5.14)

The setup (5.14) offers interesting further problems but hey go beyond our main focus and are thus left for

further research.

Brought to you by | Tampere University Library
Authenticated

Download Date | 6/26/18 1:39 PM



260 | Augustyn Markiewicz and Simo Puntanen

6 Concluding remarks
In this article we have introduced upper bounds for the Euclidean distances between the best linear unbiased

predictors (BLUPs) of y∗ when the prediction is based on the original modelM = {y,Xβ,V} and when it is

based on the transformed model Mt = {Fy, FXβ, FVF′}. The unobservable “new future” random vector y∗
is generated from y∗ = X∗β + ε∗. Corresponding considerations are made for the BLUPs of ε∗. The original
setup and the transformed setup for a linear model with new observations can be described, respectively, as

M∗ =

{(
y

y∗

)
,

(
X

X∗

)
β,
(

V V12

V21 V22

)}
, Mt∗ =

{(
Fy

y∗

)
,

(
FX

X∗

)
β,
(
FVF′ FV12

V21F
′ V22

)}
. (6.1)

We also consider the mixed linear model which is a special case of M∗. We show how the upper bounds

are related to the concept of linear sufficiency. The concept of linear sufficiency is strongly connected to the

transformed model Mt, because for example, if Fy is linearly sufficient for y∗, then every representation of

the BLUP for y∗ based on the transformed model is BLUP also under the original model.

Our attempt has been to make the paper self-readable so that the necessary background tools have been

presented to a reasonable amount. Considerations are pretty mathematical and for this paper, we have no

practical statistical applications in mind.

The Euclidean distances between estimator/predictors in linearmodels have not been studied verymuch

in literature. However, we wish to mention some related articles. Baksalary & Kala [2, p. 680] provided an

upper bound for the Euclidean distance of the difference of the ordinary least squares estimator (OLSE) and

the BLUE of of Xβ, i.e., ‖OLSE(Xβ) − BLUE(Xβ)‖2 under M; see also Haberman [12], Baksalary & Kala [1],

Mäkinen [21, 22], and Trenkler [33, p. 261]. The corresponding considerations for the BLUEs under two linear

models {y,Xβ,V1} and {y,Xβ,V2}, have been made by Hauke et al. [15], and for

‖BLUP(y∗) − BLUE(X∗β)‖2 and ‖BLUP(y∗) − OLSE(X∗β)‖2 (6.2)

underM∗ by Haslett et al. [13, Sec. 3]. See also Kala et al. [19, Sec. 6], and Pordzik [26].
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