

Problems preventing the adoption of requirements

engineering methods in game development

Miikka Lehtonen

 University of Tampere

 Faculty of Natural Sciences

 Computer Science

 Master’s thesis

 Supervisor: Timo Nummenmaa

 15.6.2018

University of Tampere

Faculty of Natural Sciences

Degree Programme in Software Development

Miikka Lehtonen: Problems preventing the adoption of requirements engineering

methods in game development

M.Sc. thesis, 52 pages, 5 index pages, 4 appendix pages

June 2018

As the game industry continues to grow in size and revenue, the cost of creating games

increases as well, and the successful outcome of game development projects becomes

ever more important.

In traditional software engineering it is generally agreed that a successful requirements

engineering process (or lack thereof) has a significant impact in the outlook and outcome

of the project. The methods and processes employed in requirements engineering have

been discussed, debated and fine-tuned over decades of use, and can be successfully

utilized in both traditional waterfall type software development projects, as well as agile

and lean projects, which game development usually falls under.

Yet in game development, requirements engineering methods do not seem to be

commonly used in any way. As game development is a specialized form of software

development, it seems intuitively likely that game developers could benefit from adopting

these techniques and processes. Clearly, then, something is preventing them from

utilizing these methods and processes which could help them, but what?

This thesis explores the issue by performing a thorough reading of central and current

academic research on the topic, and attempts to form a holistic picture of the issues and

problems preventing the adoption and widespread use of requirements engineering

processes and methods in game development.

In addition to identifying these central problems and issues, the thesis also attempts to

verify the existence of these problems by conducting an algorithmic analysis of 315 post-

mortems written by game developers and published on industry websites. These post-

mortems discuss the factors which contributed to or hindered the successful outcome of

these game development projects. They could therefore offer evidence either for or

against the significance of these problems and issues.

Keywords: game development, software development, requirements engineering, requirements, post-mortem

Acknowledgements

I would like to thank my instructors Timo Nummenmaa and Zheying Zhang for the

guidance and instruction they gave to me during this process. Additionally, I would like

to thank Professor Jaakko Peltonen and Chien Lu for their help with the algorithm used

in this thesis work. Finally, I would like to thank my partner Kati Alha for the support she

has given me.

Table of Contents

1 Introduction ... 1

2 An overview of requirements engineering concepts and processes 3

2.1 Top-down vs. bottom-up design .. 4

2.2 Different types of requirements ... 5

2.2.1 Functional requirements ... 5

2.2.2 Non-functional requirements .. 6

2.3 Defining good requirements .. 6

2.4 The phases of requirements engineering ... 10

2.4.1 Eliciting requirements... 11

2.4.2 Analysing and modelling requirements .. 13

2.4.3 Validating and verifying requirements ... 18

3 Game development from a software development perspective 20

3.1 Literature in this study ... 21

3.1.1 Traditional requirements engineering ... 22

3.1.2 Game Development literature ... 23

4 Key differences and problems ... 30

4.1 Emphasis on non-functional requirements and affective requirements 30

4.2 The incompatibility of the game design document and requirements engineering

documentation ... 31

4.3 Iteration, scope and change management .. 33

4.4 Lack of formal methods and processes .. 34

5 Post-mortem analysis .. 37

5.1 Data gathering .. 38

5.2 The first study .. 39

5.3 The second study ... 40

5.4 Findings ... 41

6 Discussion ... 44

6.1 Background and context .. 44

6.2 Contributions ... 45

7 Conclusions ... 48

References .. 49

Appendix I: Co-occurrence of words within post-mortems ... 53

1

1 Introduction

Requirements engineering has been a part of software development for decades, and much

has been written on its applications in various domains. Digital game development is no

exception. As game development is a specialized form of software development, it

logically follows that at least some portions of requirements engineering could be applied

to the game development process.

Several articles and papers have been written on this topic, presenting problems,

limitations and concerns which need to be addressed if such an attempt were to be

successful.

Academic research on the topic covers a wide spectrum from purely theoretical academic

works to research which focuses on the developers and their practices and concerns

through questionnaires and interviews. This thesis aims to form a holistic picture of this

current research, and to tie together knowledge from multiple sources to discover and

present central problems and limitations.

To verify the validity of these problems and limitations, 315 developer-written post-

mortems were analysed. Post-mortems are a common industry practice where developers

reflect on completed software development problems and bring up problems, concerns

and issues which affected the outcome of the project, either positively or negatively.

The research questions this thesis seeks to answer are therefore:

1. Based on a reading of current academic research on the topic, can central

problems, concerns and issues be identified?

2. Can these findings be supported by analysing developer-written post-mortems?

The 315 post-mortems were analysed algorithmically to determine whether keywords

related to the discovered problems appear in them. In addition, a word co-occurrence

analysis was conducted to determine the contexts these keywords might be used in. This

analysis would help to assess if the problems related to these concepts and keywords are

common in the industry, as the expectation was that if game developers are frequently

encountering these issues and problems, they would also mention them as contributing

factors in their post-mortem writings.

Chapter 2 of this thesis gives a brief overview of the central concepts, theories and phases

of the requirements engineering process. Chapter 3 presents a literature review of both

traditional requirements engineering literature and current academic research on game

development issues and applying requirements engineering concepts to game

development, with the focus being on the latter. Chapter 4 presents four issues and

problems which were perceived to be central issues. Some of them prevent the successful

2

application of requirements engineering concepts, while some of them are problems

which could possibly be alleviated with them. Chapter 5 presents the study where 315

developer-written post-mortems were analysed to see if the problems and concepts

presented in Chapter 4 are present in them. It also introduces the results of this study, and

Chapter 6 discusses them in a wider context. Finally, Chapter 7 draws everything

together.

3

2 An overview of requirements engineering concepts and

processes

Before any system – be it hardware or software based, or a mixture of the two – can be

designed and built, the engineering team needs to understand what it is they are building

in the first place. This process of gathering understanding and processing it into an

actionable plan is referred to as requirements engineering.

In actuality, what is referred to as requirements engineering is in fact a collection of

different phases, processes and methodologies, which seek to take in information from a

variety of sources and transform it into concrete requirements, singular and unambiguous

physical or functional needs that the product or service must be able to perform. Together,

these requirements form the specification of the project, essentially the blueprint the

engineers can design according to and refer to when there is ambiguity [Hofman & Lehner

2001].

Additionally, a successful requirements engineering process will give the team valuable

data to refer to later, making change management, tracking responsibility and attaching

documentation to features easier.

The process of requirements engineering can be broken into four steps: elicitation,

modelling, validation and verification, although often the last two form a single step

[Hofman & Lehner 2001]. Since each step has its own aims, methods and processes, it is

useful to consider them individually. It is also worth noting that although the steps do

follow each other, the process is iterative rather than something the team runs through

once.

It is typical that after requirements have been gathered, modelled and verified, they can

generate new considerations and require further rounds of eliciting, modelling and

verifying new requirements. There is no hard rule for the number of iterations that should

be taken, as these details vary from project to project depending on the system that is

being specified, the team that is gathering the requirements and the methods they use.

[Hofman & Lehner 2001].

It is also worth noting that the relationship between requirement quality and the number

of iterations is not directly linked. The specification of a system does not automatically

become better the more time is spent on them [Hofman & Lehner 2001]. It is easy to get

bogged down in trying to model the system at a far too granular level and to get caught

up in refining for refinement’s sake. The team should rely on their own expertise and

prior knowledge to understand when they have reached a sufficient level of specification

to begin the actual work of implementing the system [Hofman & Lehner 2001].

4

2.1 Top-down vs. bottom-up design

A central philosophical divide in software development is the decision between using top-

down (diagram 1) and bottom-up design strategies (diagram 2).

In top-down design the system is broken down into ever smaller and more granular pieces,

which ultimately end up being the individual features that need to be completed. This is

the traditional software engineering model.

Top-down design places a lot of emphasis on pre-planning and trying to map out the

system to a significant degree before any actual production work is done. In theory at

least, this makes it easier to create a cohesive plan, to see how the individual components

and their dependencies work. This makes scheduling and planning easier, but naturally

means that there is a longer lead-in period before anything concrete is produced.

[Faulconbridge & Ryan 2003].

Figure 1 Depicting a partially specified system using the top-down methodology.

Figure 1 depicts a partially designed system using the top-down methodology. Although

the specification is by no means complete, it already illustrates the interconnectivity and

relations between different components.

As the name suggests, bottom-up design is focused on creating smaller components and

trying to get them operational as quickly as possible, then combining them into larger

assemblies. This method is well suited for prototyping and is popular in agile

development, because the team will quickly get at least something working and can

possibly get some idea of how their ideas work in practice. [Faulconbridge & Ryan 2003]

A significant drawback is that what the team built quickly might not be exactly what was

needed. With less of an overall plan in place, it may turn out later that something needs

to be overhauled to fit in with the larger plan. From a software production perspective, a

5

bottom-up design process may also create scheduling problems, when unforeseen

dependencies mean that some components cannot be completed, because work they

depend on has not been completed yet [Faulconbridge & Ryan 2003].

Figure 2 A system designed using bottom-up design.

Figure 2 illustrates the same system as Figure 1, but this time using the bottom-up design

philosophy. It lacks the overall structure and clarity of the same system designed with the

top down design, but as the design starts from the lowest possible level, individual

components can already be worked on in more detail.

Neither system is “better” than the other, and there are benefits and drawbacks to using

either. Depending on other philosophies being used in the project (for instance agile

development methods), one or the other may be more suitable, but often features from

both are mixed together.

2.2 Different types of requirements

Before delving into the different phases and methods of requirements engineering, it is

important to understand the different types of requirements and how they differ from one

another. Different fields and applications can have their own, increasingly granular

categories of requirements. However, a more general division between functional and

non-functional requirements usually suffices [Faulconbridge & Ryan 2003].

2.2.1 Functional requirements

Functional requirements describe what a system should do. They are directly related to

actions, functions and responses.

• The system shall send an SMS to all registered operators when a system fault is

encountered

6

• Users shall be able to add items to the database

• Users shall be able to delete items from the database

• System operators shall be able to change existing items in the database

• Clicking the “log out” button shall return the user to the front page of the website

• Every page on the website shall have a link to the help section

2.2.2 Non-functional requirements

Non-functional requirements relate to performance characteristics, constraints and

environmental concerns. Some examples of non-functional requirements might include

• The time between clicking “log in” and the system processing the action must not

exceed 15 seconds

• The system must be usable in both Finnish and Swedish

• The system must be able to function for a minimum of 8 hours in -22 degrees

Celsius weather

• The access speed for hard drives must not exceed 15 milliseconds

• The system must be able to handle at least 250 concurrent users

• The system must be compliant with European Union privacy laws, specifically

article §42.65

• The system must be able to be extended by connecting further server instances

2.3 Defining good requirements

Regardless of the type of requirement being modelled, the outcome of a successful

requirements engineering process is a collection of so called “good requirements” [Hull

et al., pp. 73]. This term refers to certain traits all requirements should share in order to

be acceptable. As these traits are commonly considered best practices, they should be

strived for in all cases.

Additionally, the whole requirements documentation itself should also be held up to

certain standards. The goal of a successful requirements engineering process is not to

produce as much data as possible, but something that is easily readable, can function as a

useful reference tool and ultimately help the team accomplish their goals the in the best

way possible. [Hull et al., pp. 73]

To this end, the document as a whole should be consistent, non-redundant and complete.

That is to say, all language, terminology and structure should be consistent throughout

the document, no requirements should conflict with each other, everything included in

the document should be included for a reason, and it should not be missing any

information. [Hull et al., pp. 75]

7

The definition of a good requirement according to Hull et al. [2011, pp. 85] is a

requirement that is unambiguous, testable, clear, correct, understandable, feasible,

independent, atomic, necessary and abstract.

The requirement should be unambiguous

The meaning of the requirement should not be open to interpretation, and instead it should

only be able to be interpreted in a single way [Hull et al., pp. 85]. Common causes for

ambiguity include use of undefined acronyms and poorly formatted sentences. Consider,

for example, the following:

NET1: The System should make use of ABR.

Some possible definitions for ABR include “Area Border Router”, “Auto Baud-Rate

detection” and “Available Bitrate”. While it would probably be possible to determine the

exact meaning by reading the full requirement text, such ambiguity can lead to problems

and is bad practice. Instead, the requirement should be written so that its full meaning is

obvious at a glance.

NET1: The system should make use of ABR (Auto Baud-Rate

detection).

The requirement should be testable (or verifiable)

Every requirement included in the requirement document should be verifiable in a way

that allows the team to determine in a concrete pass / fail fashion whether the feature has

been completed successfully [Hull et al., pp. 85]. Ambiguous language and incomplete

specification are common points of failure here.

UX4: The user must be able to search for books by author name, book

title etc.

Since more than two categories of search terms are desired, they should all be listed out

explicitly so they can be verified. As it is currently written, the requirement cannot be

completely tested, because all the necessary information is not written out.

The requirement should be clear and concise

Since the requirement document is intended to be a quickly and easily readable reference

manual, it should be written in clear and concise language. Avoid unnecessary verbiage

and information that is not actually relevant to convey the full meaning of the

requirement. [Hooks 1994]

UX8: After entering their user name and password the user can click

on the login button and be allowed to enter the website, but only if

8

their user name and password were correct. Otherwise the system will

display an error message and prompt them to enter their user name

and password again.

In this case it would be hard to even understand what the actual requirement is about.

Does it relate to a successful login action or an unsuccessful one? It might be better to

break to break the requirement down further, and generate two new ones – one for each

outcome. This way it is immediately much more readable:

UX8: After supplying their correct user name and password, the user

can enter the website with the login button.

UX9: If either the user name or the password are not correct, the

system shall prompt the user to re-enter them.

The requirement should be correct

It almost goes without saying that any requirement and their relevant restrictions and facts

should be correct. If this is not the case, the requirement document cannot be relied upon

and everything in it must be checked at every turn, rendering it unusable. Instead, the

work of fact checking anything that goes in the document should be front loaded.

[Zielczynski 2007]

UX9: The lock screen shall include an UI element which calls the

emergency number (112) even when the phone is locked.

The emergency number listed here would be correct for Finland, but probably not

elsewhere in the world. The requirement should be rewritten and handled case by case for

all markets.

The requirement should be understandable

Since the requirement document is intended to be a working and useful reference material,

all language used in it should be easily understandable. Overly complicated language and

terminology should be avoided where possible to ensure readability and

understandability. [Zielczynski 2007]

The requirement should be feasible

Since the requirement document is intended to be the blueprint by which the final system

is built, anything included in it should be a realistic goal for the intended development

time. It is naturally extremely difficult if not downright impossible to predict with full

accuracy what the team will ultimately be able to implement, but the team should use

their expertise to evaluate requirements to ensure nothing obviously unrealistic gets

9

included in the document. It is better to re-evaluate goals and set them to a realistic level

before implementation even begins than to discover later that a core component was never

a realistic target. [Zielczynski 2007]

SCOPE1: The game shall include 1000 star systems each with at least

100 procedurally generated planets.

The requirement should be independent

Each requirement should be self-contained. While features will inevitably link together

and have dependencies, the requirement texts themselves should not [Zielczynski 2007].

UX12: The lock screen shall display the current time and date in the

user’s time zone.

UX13: The font shall be user-defined.

While these requirements might be readable at the moment, despite being obviously poor,

the document might be reorganized at some later point. New requirements might be

introduced and suddenly it will become very difficult to decipher precisely which font is

being referred to in requirement UX13.

UX13: The user should be able to define the font used for lock-screen

time and date display.

The requirement should be atomic

Every requirement should be a single traceable element [Zielczynski 2007]. Consider the

following:

UX3: The main UI should display the calendar, have a list of apps the

user can open by clicking on them, have a menu button and a link to

the settings app.

This requirement should really be broken down into at least four smaller requirements,

one for each of the desired main UI elements. In general, words such as “and” or “but”

are good indicators that the requirement could and should be broken down further into

smaller components.

The requirement should be necessary

Anything included in the requirement document should be in it for a reason. For example,

just because the team thinks the customers might want a certain feature included is not

reason enough to include it. Everything in the document should be included because at

10

least some of the stakeholders need the requirement, and removing it would affect the

system. [Zielczynski 2007]

The requirement should be abstract

Requirements should not include design and implementation information.

REQ9: User settings should be stored on the hard drive in an XML

file.

When possible, it should be left up to the developers to decide practical issues such as the

format of the user settings, since it is transparent to the user.

2.4 The phases of requirements engineering

At the start of the requirements engineering process, the team will only have a very

barebones idea of what they are building, commonly possibly only a very high level and

informal mission statement which serves as their entry point. This mission statement can

describe in rough detail the problems to be solved, or the context in which the system will

function. [Zowghi & Coulin 2005].

From this starting point the team needs to understand the system and the stakeholders that

are attached to it, as well as the constraints and external factors which will affect the

system and their work. As this understanding is gained, the system can be modelled with

requirements, which are then verified to be correct and relevant.

The actual requirements engineering process, as illustrated in Figure 3, is often iterative,

or at least it should be. It is highly unlikely that the team will manage to produce a

functional requirements document with just one iteration of process. What is more likely

is that after each iteration the team can understand the system better, and can return to

elicit more information, possibly from new stakeholders, and thus produce further

requirements, as illustrated below [Zowghi & Coulin 2005].

11

Figure 3 The iterative nature of the requirements engineering process

The end product of this process will the requirements document, which will then serve as

the blueprint and a general reference manual for the system that is to be built.

2.4.1 Eliciting requirements

The focus of the elicitation phase is information gathering. Before the system that is being

worked on can be modelled as requirements, the team needs to understand what it is they

are designing.

According to Zowghi and Coulin [2005], there are five fundamental activities to be

conducted in this phase of the requirements engineering process:

1. Understanding the application domain

2. Identifying the sources of requirements

3. Analysing the stakeholders

4. Selecting the techniques, approaches and tools to use

5. Eliciting the requirements from stakeholders and other sources

Understanding the application domain

This activity certainly includes understanding the actual system you are building, but goes

beyond that. No system exists in a vacuum, so it is important to consider the real-world

situation the system will function in. In addition to describing business goals and issues,

possibly already existing solutions (or partial solutions) need to be considered as well as

the wider surroundings: political, organizational, social and environmental factors need

to be considered as well, to name a few [Zhang 2007, Zowghi & Coulin 2005].

12

Identifying the sources of requirements

End users and clients are by no means the only source of requirements, because

information can be acquired from other sources as well. Especially if the system being

designed is intended to replace or supplement an existing solution, its documentation and

processes can be valuable sources of information. It can also be worthwhile to examine

the wider organizational structures and documentations of the client and the environment

in which the system is being developed, and into which it will be deployed. [Zowghi &

Coulin 2005].

Additionally, domain experts in areas directly and closely related to the system can

produce useful requirements and help in refining them, even if they will not be direct

stakeholders in the actual project.

Analysing the stakeholders

It would be easy to understand the concept of “stakeholders” to mean the end users of the

project, and the team’s customers, but this definition is too narrow.

There is some debate on what encompasses the term. In their 1999 paper, Sharp et al.

propose a guideline for a more thorough acquisition of different stakeholder groups. They

propose four baseline stakeholder groups: users, developers, legislators and decision-

makers. Additionally, their method calls for identifying specific roles within each

baseline group, then forming relations between those roles and further stakeholders who

either supply something to those roles, or benefit from the work those roles do.

Without delving too deep into this vast topic, we can already see that the actual list of

stakeholders is quite large. In fact, one of the dangers involved in this process is getting

too bogged down in creating an ever-increasing list of sources to be considered [Sharp et

al. 1999], thus derailing the actual intended role of the elicitation phase: understanding

the system that is being developed.

Selecting the techniques, approaches and tools to use

A wide variety of different techniques, tools and approaches exist for requirements

engineering. There are no “magic bullets”, or in other words single solutions that apply

to all situations. Rather, techniques and methodologies should be considered on a case by

case basis.

Hickey and Davis [2003] have explored the various factors that contribute to choosing

the techniques that will be utilized, and an objective weighing of merits is not the leading

factor. Rather, their studies have shown that the chosen technique may be the only one

13

the analyst knows or their favourite technique, or is recommended in a specific

methodology that is being followed in the requirements engineering process.

These methods of choosing are not necessarily incorrect, because familiarity and

comfortability with techniques can help produce better results. More important than

trying to chase a platonic ideal is remembering to use a variety of techniques, depending

on the source of information and the stage of the project. [Zowghi & Coulin 2005, Zhang

2007].

Commonly used techniques include, but are not limited to [Gunda 2008]:

• interviews

• questionnaires

• prototyping

• reusing existing techniques for inspiration

• scenarios

• brainstorming

• use cases

• and user stories.

Eliciting the requirements from stakeholders and other sources

Once the team feels they have a good understanding of the stakeholders that are relevant

to their project and have decided on some techniques that would be appropriate for their

situation, the actual elicitation process can begin.

Using the agreed upon methods, the team gathers information from their stakeholders and

other sources, trying to understand the system they will be designing. What features must

it have, should it have and could it have? What shouldn’t it have? What constraints will

apply to the system and the development process itself? [Zhang 2007, Zowghi & Coulin

2005]

This information by itself is not yet a finished requirement, but it will function as the

starting point for the actual process of modelling the requirements.

2.4.2 Analysing and modelling requirements

The analysis and modelling process can be the most technical of the three main processes

of requirements engineering. During this process, a lot of information that possibly only

exists as natural text or in several different formats is analysed and specified.

During the modelling process the team can make use of a variety of different techniques,

depending on their preferences and the demands of the situation. This thesis cannot cover

all of them, but will instead aim to give an overview of central concepts and techniques.

14

These techniques can be roughly divided into four categories, as described by Sannier

[2014] in Modeling Requirements: Requirements Verification and Validation, from the

least formal to the most formal.

Natural language

While natural language is not a formal technique, it can certainly be useful as part of the

analysis and modelling process as either a dedicated tool, or more commonly as part of

converting original user stories, use cases and other elicited information into more

formally specified requirements. Natural language can be used to specify requirements to

a desired level of detail [Sannier 2011].

The obvious benefit of using natural language to describe requirements is that it requires

no special training and can therefore be accessed and read by almost anyone. However,

because there is no universally agreed upon structure or notation for describing and

specifying features, natural language is also often ambiguous and vague. [Sannier 2011]

Ad hoc notation

Ad hoc notation, as seen in Figure 4, is also commonly used as part of the analysis and

modelling process, often to support more formalized methods or to help translate natural

language and ambiguous concepts into more formal structures. The term simply refers to

the process of modelling a system on a whiteboard or piece of paper using bubbles,

squares, arrows and other simple elements.

Much like natural language, ad hoc notation requires no special training and can be easily

used by anyone. Again, much like natural language, from this it also follows that since

there is no formal syntax, ad hoc notation can be vague. Notation can vary from person

to person and from one use to another, making ad hoc notation a poor fit for any kind of

official or formal models. [Sannier 2011]

15

Figure 4 An incomplete and informal ad hoc diagram describing the structure of an online store.

Semi-formal notation

Semi-formal notation is a step up from ad hoc notation. Using an agreed upon and defined

notation language such as UML, complex systems can be represented as diagrams. These

languages offer well defined and universally agreed upon notation systems and can

therefore be used to consistently model and represent systems, and the processes of

creating and modifying them can be automated to a degree [Sannier 2011, pp. 18-30].

Semi-formal notation requires some learning, but since the technique is universally used,

resources and tools, are widely (and freely) available. The sample image in Figure 5 was

created with the online tool LucidChart [LucidChart 2017]. Once learned, these tools and

techniques allow for the easy and quick creation of models, which makes languages such

as UML very popular and useful in many modelling tasks [Sannier 2011, pp. 18-30].

16

Figure 5 A use case translated into an UML Activity Diagram, which allows designers to follow the logic of a customer

trying to find and buy a book at an online store. [LucidChart 2017]

Formal specification and notation

The concept of formal specification and notation covers a wide spectrum of different

tools, languages and methods designed and formulated for the specific purpose of

specifying and notating complex systems.

Some examples of formal specification and notation methods include complex languages,

logical systems and finite state machines. As we can see from their descriptions, these

systems must follow formal notation correctly in order to work in the first place, which

makes them useful not only for modelling requirements, but also for verifying them.

[Sannier 2011, pp. 70]

Complex languages

Complex languages such as Specification and Description Language, or SDL, have been

created for the specific purpose of formally representing complex, interactive real-time

applications – such as software systems [IEC 2010]. The SDL specification is not the only

example of formal languages, but it is widely used and actively maintained by a dedicated

specification committee.

It allows for the representation of modern systems in either graphical or textual form, with

the intent being that if proper notation is followed correctly, both versions will describe

the system identically and can be used interchangeably.

17

Logic systems

Logic systems have been traditionally used in many computer science applications and

notations, because at its essence all computational actions distil down to logical

components. While traditional mathematical logic is useful in requirements engineering

and in other areas of computer science, expanded systems also exist that have been

tailored for the requirements of computer software.

For example, Computation Tree Logic, or CTL, is a system of branching-time logic,

which is used to model systems and situations in action [Fourman 2005]. This is in

contrast with traditional logic which exists as static statements, the outcomes of which

are already known. CTL offers different paths to different futures, any one of which might

become the actual outcome.

It is used to model and verify system behaviour and check liveness and safety conditions.

Finite State Machines

Finite State Machines are in a way an extension of complex languages and logic systems.

Using predefined notation and language, programmers can create simple representations

of complex systems, which can exist in various states. Execution of this code allows the

state of the machine to be changed, mimicking user actions, input and output actions and

other operations.

A wide variety of dedicated languages and tools (for example, LTSA, or the Labelled

Transition System Analyzer [Magee & Kramer 1999]) exist for creating these machines

and automating large numbers of operations. This allows designers to test the architecture

of the system at a very early phase of the project, ensuring everything works as planned

and catching possible design problems, bottlenecks and dependencies early on.

Software tools for requirements modelling and storage

A wide variety of software exists for requirements engineering. Some of it may have

originally been crated for other purposes, and some was designed for the specific purpose

of creating and storing requirements. These tools offer an object-oriented approach to

requirements, allowing users to create discrete objects for individual requirements, cross

reference between them, refer to relevant documentation – for instance Wiki pages – and

maintain a persistent path of change requests and changes. Sample views from two

popular options, Open Source Requirements Management Tool [OSRMT 2017], and

JIRA [JIRA 2017], are included as Figures 6 and 7 below.

18

Figure 6 An example view of the free Open Source Requirements Management Tool displaying a list of requirements.

Figure 7 JIRA, a popular issue and project tracking software, can also be extended to support requirements engineering

specific features. In this view we see a Traceability matrix, which allows for the easy monitoring of requirements and

their statuses and connectivity.

2.4.3 Validating and verifying requirements

Although validation and verification are listed as their own step in the requirements

engineering process, they are something that should be done throughout the process.

Leaving all validation at the end of an iteration will make it harder to correct errors that

could have been caught earlier in the process.

During the elicitation step, it can be a good idea to check and re-check information with

sources, to ask clarifying questions, make sure the stakeholders and their needs were

19

correctly understood and written down during interviews and other more free-form

elicitation methods and so on.

During the modelling step, it is a good idea to maintain quality control on the verifications

themselves. It may seem redundant, because requirements will be verified during the

validation and verification step anyway, the earlier a mistake is caught the easier and

quicker it will be to fix [Sannier 2011]. As an example, if someone on the team has not

understood notation correctly or is not following style guidelines, it will be simple to

correct the problem with some tutoring and instruction during the modelling process, after

which they will hopefully produce better work. If the mistake is caught only during

verification, a lot of work will have to be redone.

The validation and verification step should focus on answering two questions: has the

team written good requirements and is the system actually conforming to the requirements

written. For validating requirements, the team should essentially consult the list of

characteristics a good requirement has, and go through their list of generated

requirements, making sure everything they have generated meets these criteria. The

objective of this task is to ensure that every requirement achieves the objectives set out

in the initial mission statement, meets the needs of relevant stakeholders and is clearly

understood by the developers. [Sannier 2011].

Requirement verification is a process that should be ongoing and repeated as the actual

design and development work is undertaken. As with other types of errors, the sooner

they are caught, the easier and cheaper they are to fix.

20

3 Game development from a software development perspective

In the year 2017 the video games industry was bigger than ever. According to market

analyst company Newzoo, there are over 2.2 billion video game players across the world.

The games industry is expected to generate over 108 billion dollars in revenue,

representing a growth of 7.8% of 2016 [Newzoo, 2017].

This growth industry contains innumerable game development studios ranging from lone

developers to small companies and large multinational corporations. According to the

Entertainment Software Association’s 2017 report on the American video game industry,

in 2016 there were over 2450 active game companies in the United States along. 99.7%

of them qualify as small businesses, meaning they have under 250 employees and less

than $7.5 million in annual revenue [ESA, 2017]. Similar numbers have been reported

elsewhere in the world, as according to UKIE, there were 2175 active game companies

in the United Kingdom alone [UKIE, 2017].

These thousands of game developers are working on varied games ranging from huge

titles with budgets in the hundreds of millions to eSports titles, mobile games, small

independent projects and everything between.

These factors represent a unique challenge from a software development perspective.

Contrary to the more disciplined and theory driven world of traditional software

development, games development is a more fractured landscape. Whereas large

corporations such as Electronic Arts or Activision, or even larger independent developers,

might adhere to traditional software development roles and practices – agile

methodologies and Scrum being particularly popular in game development – for smaller

independent studios development is probably less regimented and more free form

[Koutonen & Leppänen 2013].

Games as a form of software development also have several other unique characteristics.

As an example, whereas traditional software engineering teams consist of software

developers of various disciplines, a game development project will usually have the

normal complement of software developers, but additionally artists, writers and other

purely creative people. These disciplines do not often share a vocabulary and might differ

widely in their needs, methods and work flows. Yet all these disciplines need to find

common ground if the project is to succeed.

Additionally, these very multi-disciplinary teams seek to create software which

philosophically differs greatly from traditional software. Traditional software

development projects aim to create solutions to discrete problems, whereas games are

mass-marketed products aimed to entertain and prompt emotional responses [Kasurinen

et al., 2014].

21

From this it follows that the models and theories which drive traditional software

development projects might not be directly and fully applicable to game development.

This is also true for requirements engineering.

3.1 Literature in this study

While requirements engineering in traditional software development is a heavily covered

field with academic publications, books, magazines and even conferences dedicated to

the subject, this is not the case for requirements engineering as part of the game

development process.

In order to map the current state of academic writing on requirements engineering and

game development, academic search engines such as Google Scholar and the University

of Tampere’s Tamcat1 search were utilized. The latter allowed access to various digital

libraries, which further widened the field of possible results.

The goal of these searches was to discover peer reviewed articles, academic publications,

conference proceedings and published books which dealt with games development and

requirements engineering. No specific time constraints were placed on the results.

Software development is a field which moves fast, which means that some of the older

findings might be outdated. Despite this, they might be used to reveal newer research

which builds on their findings or expands upon it. Searches were conducted using a wide

array of different search terms in combinations and with wildcards, as shown in Table 1.

"game development" OR "games development" AND ("requirements" or

"requirements engineering")

"game development" OR "games development" AND ("software engineering" OR

"engineering")

"game development" OR "games development" AND ("R.E")

"game development" OR "games development" AND (“specification” OR “formal

specification”)
Table 1 Some of the search terms used to find articles

Together, these searches produced a pool of over 16 000 results. As is to be expected with

such broad search terms, most of these results were either marginally related to the actual

research question, or not at all related. Even after discarding most of the less applicable

results, the pool still contained several hundred articles which might be tangentially

related to the research questions. Any articles with titles or abstracts which seemed

promising were stored in a separate list to be more carefully examined later.

As these promising articles were read, references that seemed relevant or interesting were

noted down and added to the list of articles to be read. The list was also somewhat

1 https://tamcat.finna.fi/ (retrieved on 21.5.2018)

https://tamcat.finna.fi/

22

prioritized based on these findings: articles which were cited by others were given

priority.

This strategy proved to be fruitful, and helped avoid a critical problem. A pure keyword

search quite probably would have either missed certain central works, or at the very least

they might not have been given the weight and consideration they deserved.

Based on this study, the state of research on the topic proved to be rather healthy, if not

comprehensive. There is certainly a larger volume of research than anticipated, and

requirements engineering proved to be a central topic: as of 2014, 39% of papers

submitted on the topic dealt with requirements engineering in some way [Ampatzoglou

2010]. This does not mean there are no gaps to be found in current research.

One notable problem area is that many articles bring up problems in processes and

methods, but rarely offer any concrete suggestions beyond vague calls to adapt best

practices from the world of traditional software engineering. Due to the central

differences between traditional software development and games development, this

adaptation would have to be handled with care and consideration, so academic research

on the topic would be beneficial.

3.1.1 Traditional requirements engineering

Traditional requirements engineering is also a part of this thesis, as a portion of it is

dedicated to explaining the methods and processes, as well as discussing best practices

and goals. A central source for this portion of the thesis was Klaus Pohl’s Requirements

engineering: Fundamentals, principles and techniques [2010]. It is still viewed as one of

the defining works in the field and is referred to in many articles as well as widely used

as a source of information in the industry and non-academic fields.

Additional noteworthy sources for this portion of the thesis include Requirements

Elicitation: A Survey of Techniques, Approaches and Tools [Zowghi 2005] which, as the

name suggests, deals with a wide survey conducted among industry professionals to map

which methods and tools they feel are most applicable to each portion of the requirements

engineering process. There are almost as many tools and techniques as there are

practitioners, so selecting the most fitting one for each task is challenging. Research has

shown that many professionals have a habit of falling back on their favourite methods –

i.e. methods which they have had success in the past and which they feel familiar with –

regardless of how suited those methods are for the demands of their current task, so

considering other alternatives is always useful.

Likewise, stakeholder identification is a question that would almost be worth a thesis all

on its own. In requirements engineering “stakeholder” does not refer to just the end-user

of the product being developed, nor the client. The term covers a vast field of different

23

possibilities, many of whom should be considered and investigated for a successful

requirements engineering process. Stakeholder Identification in the Requirements

Engineering Process [Sharp et al. 1999] was a good refresher on the subject, and offered

a lot of practical suggestions on efficient techniques on mapping stakeholders and the

dependencies between them.

3.1.2 Game Development literature

There does seem to be a gap in the current academic research on requirements engineering

and the software development process as it relates to game development. Namely, while

there is a lot of research on the topic, the quality differs greatly.

Some large studies, such as those conducted by Jussi Kasurinen and his team at the

University of Lappeenranta, have been conducted on actual industry practices among

various groups of developers, and the findings of these studies were extremely useful and

enlightening [Kasurinen 2016, Kasurinen & Laine 2014, Kasurinen et al. 2014]. They

highlight actual issues developers grapple with, as well as the methods and practices used

to deal with these issues. On the other hand, some articles and papers, such as Kanode

and Haddad’s Software engineering challenges in game development [2009], present

conflicting claims, often with very little to support their contrary claims.

A possible conclusion would be that these articles and papers may be too grounded in

academic theory and operate too much in an ideal world, and thus may not be directly

applicable in real world situations.

Games as a form of software development

Game development is clearly a part of the larger field of software development, which

has been dealing with problems related to the processes, methods and demands of the

software development process for decades. It stands to reason, then, that many of these

same processes, methods and demands might also apply to game development. However,

due to several factors this is not always so easy.

For one, game development is a much more ad-hoc and informal field than traditional

software development. Methods, processes and practices which were formalized and

honed if not to perfection, then at least to comfortable routine, decades ago in traditional

software development might be rarely utilized in game development.

The very act of developing games also differs from traditional software development in

many ways. To name a few examples, whereas traditional software development aims to

create a solution to a specific problem, game development aims to create entertainment

products which are enjoyed for prolonged periods of time by a variety of people.

Additionally, whereas traditional software development is very much the world of

24

engineers and developers, game development projects employ people from a wide variety

of artistic fields, which may not be easily compatible with software engineering or even

share a common language, as it were. [Kasurinen 2016, Callele et al. 2005].

It is therefore natural, that the questions of “to which degree is game development similar

to traditional software engineering” and “which methods and processes could carry over

to game development, and what could not” are so frequent in academia. It is also good

that a lot of the research that is being carried out is being carried out in collaboration with

actual game developers.

Not always, though. The article by Kanode and Haddad [2009] is a good example of a

paper which seems to go against many of the findings of papers based on actual industry

experiences, such as Callele et al., [2005].

The views presented in Kanode and Haddad’s [2009] article on the game development

document seem to be contrary to evidence presented in other papers. In game

development, the game design document is a repository of information about the game.

It details the setting, plot, gameplay, characters and themes of the game. It is not a formal

document, and as such is poorly suited for actual software development.

One of the problems explored by Callele et al. [2005] is that translating this informal

document into something resembling a requirements document is a massive and

complicated process. Even a short, simple gameplay description in the game design

document can generate dozens of pages of requirements, and even more problematically

generating those requirements requires unrealistically strong and specialized domain

knowledge in many fields.

Based on strong research, studying real-life game design documentation, discussions with

actual game developers and observing actual development processes Callele et al. [2005]

conclude this transition from pre-production to production, i.e. taking informal and often

very casual documentation, turning it into a formal document suitable for development,

and then beginning to realize the vision outlined in that document, is one of the biggest

problems in game development and alone responsible for many project failures. They

state that a lot of research and work needs to be done to create more formal and functional

processes and methods for generating this documentation, so it is very much a central and

unresolved problem in the field.

Considering all this, Kanode and Haddad’s [2009] suggestion that a game designer needs

to capture all the requirements from a game design document before the actual production

work on the game can begin, seems optimistic to say the least.

25

Some notable research is being carried out at the Lappeenranta University of Technology

by Jussi Kasurinen and his team [Kasurinen et al. 2014, Kasurinen & Laine 2014,

Kasurinen 2016]. They have conducted large scale surveys among Finnish industry

professionals, and backed these findings up with several rounds of interviews conducted

among project managers, developers, managers and designers. This research has

generated several publications.

Kasurinen [2016] explores the very central question of how similar – or different – to

traditional software development projects game development is. It was found that there

are several similarities, but also meaningful differences which mean that traditional

software development methods and lines of thinking will not apply directly.

For example, whereas change to the original specification is something needs to be very

carefully managed in traditional software development, in game development changes

through iteration are a desired outcome. As the developers try to “find the fun”, i.e. create

the combination of gameplay and features which makes the game fun, they must be

prepared to make even drastic changes late in the project.

Based on these findings, Kasurinen [2016] concludes that while some common traditional

software development methods such as Scrum can very easily work with game

development, others are not so easily compatible and need special consideration.

Problems in Game Development Methods

Whereas traditional software development and its issues are a topic of some 40+ years of

discussion, the same is not true for games. It is generally accepted that there are

similarities and unique factors between the two, but concrete solutions and suggestions

are few and far between. In recent years more studies have been conducted as to what

actual problems game developers are facing, which is a crucial area of research

[Kasurinen et al 2014, Kasurinen & Laine 2014, Kasurinen 2016, Petrillo et al 2008 etc.].

Even if this research does not directly lead to solutions, we must first discover what the

issues are. Additionally, understanding these real-life problems and the realities of game

development is the ground upon which all meaningful research must be built. What use

are solutions which were created in a kind of academic bubble, only to be dismissed out

of hand by actual developers because they are not applicable?

Since the development methods and processes employed by especially larger publishers

and developers are considered actual trade secrets, they are not something developers can

always discuss openly with researchers. This means sometimes the researchers must do a

bit of detective work to get results. Petrillo and Pimenta [2008] explored post-mortems

published on Gamasutra, an industry-focused website by developers for developers.

26

Post-mortems are a common practice in the world of software development and are

intended to offer candid and honest discussions on what went right and what went wrong

on a given project. By parsing these post-mortems, we can learn a great deal about the

actual problems faced by real developers.

Petrillo and Pimenta [2008] grounded their research by citing studies which catalogue

traditional software development problems, and then compare these with their own

findings. The results are not surprising: game development does indeed share many of the

same problems as traditional software projects. Some key issues include project

management, scope creep (the bad habit of adding new features to a project during

production, thus generating new problems and lot of work) and scheduling.

Rather dishearteningly despite 40+ years of discussion and research, these issues still

plague traditional software development, so the hopes of game developers solving them

any time soon, especially when keeping in mind the peculiarities of game development,

are not very strong.

One of the central problems in game development is the composition of teams. As

discussed earlier, a game development team is composed of engineers, managers and

other technical personnel as well as artists of various types. Even finding common ground

and a common language to effectively communicate between these teams can be

extremely challenging [Callele et al. 2005], but an even bigger problem is scheduling.

Game development is a vastly complicated process where dependencies between

drastically different and often seemingly fundamentally incompatible workflows and

processes must be created, maintained and accomplished. As games development moves

from traditional waterfall type development models towards various agile philosophies,

these problems are compounded even further. The act of generating artistic assets and

preparing them for inclusion in a game is a slow and complicated process, which is by

nature incompatible with the sprint-driven iterative world of Scrum.

Musil et al. [2010] propose a unified development model consisting of essentially three

phases: pre-production, production and closure. This model bears a strong resemblance

to Scrum, upon which it is built.

The ideas presented in the paper are interesting, especially the suggestion to make the

pre-production phase longer than it often is now, and to have it be a period of strong

iteration and rapid prototyping, aiming to not only produce a rough game concept but to

also iterate upon it and generate a semi-formal design document based on this. Of note is

also the authors’ suggestion to more formally include testing in every phase of production,

and to implement the receiving and processing of testing feedback at all levels.

27

Despite this, the article has some omissions. The main suggestion presented in the article

for fixing the incompatibility between different types of sub-teams in the development

team is to essentially run separate and independent homogenous teams of artists, writers

and developers, and to sync their work between sprints. This seems impractical at best,

and Clinton Keith [2010] seemed to have the better idea in suggesting that because asset

generation is by nature unfit for iterative work, it should be separated into its own

pipeline, which could use other agile methods such as Kanban to function.

Agile Methods in Games

Game development is becoming increasingly agile. Historically games have been

developed with some variations of the traditional waterfall model, i.e. a structured and

phased development process, where the whole project moves from one stage to the next.

This has largely been replaced by various agile methods [Leppänen et al. 2013].

For instance, a study was conducted in Finland among game developers [Leppänen et al.

2013] to see how they applied agile methods and practices. These findings, which proved

to be quite typical, indicate that the clear majority of developers utilize agile methods,

typically Scrum. Scrum is the most popular agile methodology in traditional software

development, so this is not surprising. Additionally, some practices and methods such as

extreme programming (or XP for short] and Kanban are employed partially.

However, according to Leppänen et al. – and this view is backed by for instance Petrillo

and Pimenta’s similar study [Petrillo & Pimenta 2010] – most teams actually practice

some type of “adapted Scrum”, i.e. they have cherry picked some of the ceremonies, roles

and methods of Scrum and then apply them to an ad-hoc agile development process.

According to the results of the survey, teams self-reported for instance only following

one process from what was intended to be a pairing or supporting practices and methods.

These findings are not surprising as such. Project management in general is a problem in

game development [Callele et al. 2005] especially in smaller companies, because there

simply are not that many trained and experienced project managers available. Instead,

these positions are filled by people who were assigned or promoted to these roles for other

reasons and therefore may lack the understanding and experience to best make these

decisions.

Related to this, Stacey and Nandhakumar [2008] conducted a survey among three well

known game development studios. The researchers hypothesized that many studios might

be agile in spirit even if they might not be intentionally observing all the ceremonies of,

say, Scrum. They had open ended discussions during nearly 40 interview sessions

regarding the work practices of developers. Based on their discussions and findings they

make four concrete recommendations for fostering a more agile atmosphere at a company.

28

Their findings are quite interesting from a requirements engineering perspective, as their

findings deal with creating an atmosphere where soliciting and receiving honest

suggestions and feedback is as easy as possible. For example, they prompt developers to

seek and accept feedback from non-traditional sources, citing an example of a studio

having company-wide milestone testing sessions, during which the company secretaries

ended up making suggestions which ended up improving the quality of the game.

Requirements engineering and games

The place and role of game development in the hierarchy of software development is an

interesting topic of discussion, as is that of the role of requirements engineering in game

development. Kasurinen et al. [2014] explored the actual practices employed by several

Finnish developers and companies. Based on the interviews they discovered that most

Finnish developers seem to use iterative, agile methods to create games, whereas a few

holdouts still use methods which bear a strong resemblance to older waterfall models.

Interestingly the authors found that despite their actual work practices, all interviewed

developers self-reported using agile methods and iterative practices. The authors created

two rough schools of thought based on the actual methods and processes used by Finnish

developers, and then considered the role requirements engineering plays in each.

They discovered that the specifics vary quite a lot. In traditional waterfall-type

development (i.e. where development moves from one phase of the project to the next in

a linear fashion) requirements engineering is closer to that found in traditional software

development. Emphasis is placed on creating specifications at the beginning of the

project, and then to sticking to these specifications. Of course, this is not always realistic,

as all game development is iterative and has more change than traditional software

development. As Callele et al. [2005] also illustrated, creating this document is no easy

feat. This problem is heightened in iterative development, where change is an outright

goal.

The authors discovered that the requirements engineering processes used by Finnish

companies are in general very informal and relaxed, and proposed that game developers

could probably benefit from a more formalized and structured requirements engineering

process, but that the current models and methods used in traditional software development

are not directly applicable, and therefore these formal processes and structures need to be

created before they can be used.

One interesting common theme in the discussion of requirements engineering and games

is the unique nature of requirements in games. Traditional software development places

a heavy emphasis on functional requirements (i.e. concrete features in a project), whereas

in game development these are almost standardized among games of the same genre.

29

Instead, the differences between games come largely from non-functional requirements,

which play a heavier role. Of special interest are so called affective, or emotional

requirements [Callele et al. 2005].

Games are intended to prompt emotional responses in their players, and these should also

be modelled through requirements engineering. However, the tools and techniques to do

so are still in their infancy and a discussion is ongoing as to how best accomplish these

goals.

The role of non-functional requirements is an interesting and open field of research, but

a few studies have been conducted. Notably Paschali and Ampatzoglou [2014] conducted

a study into the role non-functional requirements play in the player experience. They

explored various game genres and what types of non-functional requirements players of

that genre found important. The results are not hugely surprising, as for instance players

of role-playing games or adventure games place more emphasis on characters and story

coherency than those of sports games. Further research would be called for, as the study

conducted for this article seems a bit too superficial and generalized.

30

4 Key differences and problems

Game development and traditional software development methods and tools, for instance

requirements engineering, are not fundamentally incompatible. There is evidence that

game developers make use of these methods, and get benefits from them [Kasurinen et

al., 2014].

That being said, there do seem to exist some fundamental differences and problems,

which make adapting these traditional processes and methods to game development

difficult. Game developers do seem to suffer from many problems which could be

alleviated or eliminated through better requirements engineering processes and methods.

For example, in post-mortems published on Gamasutra.com, game developers cite factors

such as “inadequate planning”, “underestimating the scope of tasks” and a schedule that

was “too aggressive” [Callele et al. 2005] as aspects of the project which went wrong and

hindered them.

It is worth noting that these findings are not universal. Game development is a wildly

varied field, with studios ranging from one-person teams to massive international

companies. Many developers, especially larger companies, tend to regard their methods

and practices as trade secrets and are not open to discussing them with journalists or

academics. Despite this, from merely reading recruitment posts and requirements for open

positions, it is clear that at least larger companies do value degrees and formal training

when seeking to hire developers.

It is also worth noting that these issues are heavily linked and could also be thought of as

different aspects of the same problem. After all, any differentiation between “a lack of

formal processes and methods” and “poor change control” is going to be somewhat

arbitrary, as the latter could easily be considered a part of the former.

What, then, could be some of these key differences that need to be considered, and key

problems that need to be overcome?

4.1 Emphasis on non-functional requirements and affective requirements

In traditional software engineering, the emphasis is very much on functional

requirements. They describe the key features of the system to be implemented, and are

what ultimately distinguishes it from its competition and allows it to fulfil its stated and

desired goals.

In game development, non-functional requirements are considered much more important.

In what is called “horizontal differentiation”, it is claimed that the functional requirements

for games of a particular genre of game are often quite similar to begin with, and non-

functional requirements make the difference and help distinguish a game from its peers

[Paschali et al. 2014, Callele et al. 2005].

31

Additionally, unlike in traditional software engineering, more and more game developers

are using pre-made game engines such as Unity2, Unreal Engine3 or CryEngine4, which

further removes emphasis from functional requirements, as these requirements are

already fulfilled by the pre-packaged engine. [Kasurinen et al. 2014].

This in and of itself might not be a problem, as tools for capturing and modelling non-

functional requirements have existed for decades. In game development, however, non-

functional requirements deal with more difficult concepts. In traditional software

engineering, requirements generally refer to concrete and measurable real-world

conditions, whereas game-domain specific requirements are more abstract and harder, if

not impossible, to measure [Kasurinen & Laine 2016]. Requirements related to concepts

such as fun, storytelling, aesthetics and so on are key concepts in video game projects,

but of course not at all relevant in traditional software engineering [Callele et al., 2005].

These requirements also vary from genre to genre [Paschali et al., 2014]. What is

important in a racing game might not be at all relevant in a puzzle game, or an adventure

game.

Unlike traditional software projects, games are intended to produce emotional responses

in their users. Requirements relating to these emotions are referred to as emotional, or

affective, requirements and they are viewed as a key component in creating an engaging

gaming experience [Callele et al., 2005].

Sadly, the tools and techniques for capturing and modelling these requirements either do

not exist, or are not as developed as they should be. Additionally, validating these

requirements is also extremely difficult, as they deal with highly subjective concepts.

Traditional validation methods such as testing are not easy to implement or very reliable

[Callele et al., 2005].

4.2 The incompatibility of the game design document and requirements

engineering documentation

In traditional software engineering projects which utilize requirements engineering

methods and processes, a common guideline for the design work is the requirement

documentation. It is essentially the blueprint against which the product and its features

are compared for specifications and verification.

In game development, a similar role is played by the game design document [Callele et

al., 2005]. While its contents and size vary from team to team and project to project,

commonly it includes descriptions for plot, characters and events as well as gameplay

2 https://unity3d.com/ (retrieved on 21.5.2018)
3 https://www.unrealengine.com (retrieved on 21.5.2018)
4 https://www.cryengine.com/ (retrieved on 21.5.2018)

https://unity3d.com/
https://www.unrealengine.com/
https://www.cryengine.com/

32

mechanics, puzzles and so on. Much like the requirement document, the game design

document is often created during pre-production [Callele et al., 2005].

While these two documents share a similar role, they are not stylistically equal or even

similar. A game design document is usually more free form and written in natural

language [Callele et al., 2005].

Since it is the primary design document for game development, it stands to reason – and

has been proposed – that the game design document would also be a major source for

requirements [Callele et al. 2005, Kanode & Haddad 2009]. This is logically sound, after

all if the document contains descriptions of gameplay mechanics and elements, it stands

to reason that requirements could be generated from these descriptions. In fact, some have

gone as far as stating that all of the game design document should be captured as

requirements before production should start [Kanode & Haddad 2009].

Evidence has shown this to be an unrealistic expectation, however. Even a single

paragraph length description of a game design element from the game design document

could end up producing several pages of requirements. Even worse, many of these

requirements are merely implied, and capturing them requires high level domain

knowledge in game design, genre conventions, technical matters and many other fields

[Callele et al. 2005]. A skilled and experienced game developer will be able to pick up

on some of these cues and implications, depending on how well versed they are in the

different disciplines of game development (e.g. programming, art and sound design,

writing), their team’s own culture, the capabilities, features and limitations of the game

engine the team is using, and the genre of the game they are working on.

Expecting this kind of expertise from a single person is unrealistic, as is the expectation

of being able to generate good requirements based on heavily implicational natural

language. The latter half of the problem could possibly be alleviated by employing

technical writers, who are skilled in writing precise and unambiguous language, but they

would probably not have the required domain knowledge. The common feeling is that it

is “easier to do it myself than to explain it to someone else” [Callele et al. 2005] which

may be true, but does not help eliminate the problem.

Even if suitable candidates could be found, or if the job of capturing the implied

requirements were divided among a versatile group of skilled developers, the process

would be extremely time consuming. Game development projects are usually executed

under extremely tight, publisher-driven deadlines, and extending the pre-production

phase to accommodate a lengthier requirements engineering process would probably not

be welcomed [Callele et al. 2005]. For example, according to a study conducted in

33

Finland, most Finnish game development projects last under 12 months, with many of

them lasting less than 6 months [Koutonen & Leppänen 2013].

It would therefore seem that there is a base level incompatibility between traditional

requirements engineering documentation and the artefacts of game development.

4.3 Iteration, scope and change management

Change is an inevitable part of almost any software product. No matter how thorough the

pre-production planning, how well executed the requirements engineering process and

how accurate the model, something will eventually change. Change control and

management are considered essential parts of the requirements engineering process, and

significant work both during pre-production and production is carried out to ensure

changes can be tracked and managed as efficiently as possible [Pohl 2010, Paetsch et al.

2003, Cao & Ramesh 2008].

Despite this, change is not seen as an outright goal, and instead more of an unavoidable

necessity. This is in contrast with game development, where change is often outright

desired. Game development is a heavily iterative endeavor, as the developers try to find

the magical formula of features and gameplay executed just right to make the game as

fun as possible [Kasurinen & Laine 2016, Stacey & Nandhakumar 2008]. This will

inevitably lead to many and in some cases quite drastic changes to the design and scope

of the project.

As discussed in Chapter 4.1, due to the emphasis on non-functional and affective

requirements, change is also often the outcome of testing. A version of the game is given

to testers, and based on their feedback changes can be made. Sometimes these changes

can be quite drastic, and in many cases these iterations will carry on quite late in the actual

development phase of the game and changes will occur very close to the end of the

project. This is in part due to the fact that this user-driven testing is not only a tool for

validation, but also defining the quality of the product [Kasurinen & Laine 2016, Stacey

& Nandhakumar 2008].

With this in mind, it would stand to reason that game development could benefit from

more robust change management procedures and methods. A common problem in game

development is scope management. The game will be designed to have a certain set of

features, and time and resources are budgeted to fulfil these design criteria in the available

time.

During development features get added either due to outright planning, because testing

suggested they might work well in the game, or sometimes even because individual

developers felt they were “cool”. Suddenly there are no longer enough resources or time

to finish the game as specified, and sometimes the revised and changed version of the

34

game no longer works as well as originally planned. This process is referred to as “feature

creep”, and according to some sources, it is one of the biggest problems in game

development [Petrillo et al., 2008].

Feature creep is seen as a large problem not only because it creates scheduling problems,

causes games to be delayed and costs money, but also because of its human cost. Game

development is a massive industry, and publishers will often not be willing to delay

projects significantly. Instead what happens is, game developers will work longer and

longer days as deadlines approach. There are stories of people literally living at work,

sleeping under their desks for a few hours when they can [IGDA 2004]. Burnouts and

people quitting the games industry inevitably follow because of these heavy periods of

crunch, as it is called.

However, at the same time, this iteration and change is both desired and necessary. Often

developers will “find the fun” quite late in the development process, which means that if

change and experimentation were to be avoided, these games might never have been

finished, or at least not in their final conditions.

This issue is compounded by game development being notoriously difficult for

scheduling in general. Evidence suggests many possible factors as the reasons. One

popular suggestion is the multidisciplinary nature of games development. Different types

of developers (e.g. artists, coders, writers, designers) have different workflows and

different types of “production pipelines”, which can cause delays when some parts of the

development team must wait for dependencies to be completed [Petrillo et al., 2008].

In traditional software development, several processes and methods exist for managing

changes and maintaining scope and product integrity despite changes. Therefore, it seems

that game development could benefit from more robust change and scope control and

scheduling mechanisms. Unfortunately, it seems that right now these mechanisms either

do not exist, or are not utilized frequently, in game development.

4.4 Lack of formal methods and processes

According to two studies conducted in Austria [Musil et al. 2010] and Finland [Koutonen

2013], game developers do not make good or widespread use of typical methods and

processes. In Finland, 61% of the respondents to the survey indicated that they did not

use any systematic development methods. In Austria, 23% of respondents indicated they

did not use any kind of formal methods or processes.

Even those who did self-report using formal methods and processes mostly used adapted

and flexible processes which were “comparable to Scrum and XP” [Musil et al. 2010,

Kasurinen 2016]. Further, according to the Finnish study, developers do not collect

metrics or document their activities [Kasurinen 2016].

35

This kind of laissez-faire approach permeates all levels of development. For instance,

developers prefer to not engage with traditional requirements engineering activities and

instead prefer the approach of “test and tune” to replace it. As established, this testing is

largely user-driven, as feedback received from users is used to gauge quality and drive

development. Despite this, the feedback is not commonly collected in any kind of formal

or systematic fashion [Kasurinen et al. 2014].

Some of this approach can be explained by base level incompatibilities in game

development and traditional software engineering. Whereas traditional software

engineering projects are launched to answer specific problems, game development can be

iterative even at the ideation stage. It is common for developers to briefly explore tens of

ideas initially, but only choose a few for detailed implementation, at which point the

project has already moved to informal production and formal methods and processes are

incompatible [Kasurinen et al. 2014].

There could also be other explanations. A lack of formal training and the tendency to

promote from within could play a role. If a project manager does not have any training or

knowledge about formal methods and processes, how could they hope to make use of

them?

Despite this, there is evidence to support the claim that game development could benefit

from adopting formal methods and processes. According to research conducted in

Finland, many developers do already utilize some aspects of project management

processes, but do so informally and in an ad-hoc fashion [Kasurinen et al. 2014]. This

would seem to indicate that the need for these processes and their benefits exists within

the developer community. The problems formal processes and methods are intended to

fix are observable within the game development community: difficulty transitioning from

pre-production to production, difficulty in capturing requirements, difficulty in change

and scope management and so on [Petrillo et al. 2008].

According to research, game development falls into two broad and informal categories.

Larger, more traditional developers still make use of more linear processes which bear a

strong resemblance to the traditional waterfall model, whereas increasingly especially

smaller developers are making use of agile and flexible methods. These agile methods are

often self-created to some degree and might mostly draw inspiration from more formal

schools of thought such as Scrum, Kanban and XP [Musil et al. 2010, Kasurinen et al.

2014].

Both styles of development could benefit from requirements engineering processes. For

the more traditional project style, structured requirements engineering processes could be

utilized in largely the same way as in traditional software engineering projects, hopefully

36

with similar results. Even the more informal projects, which are driven by iteration and

user feedback, could benefit from structured processes and methods to capture and

document this feedback and the requirements it generates [Kasurinen et al. 2014].

37

5 Post-mortem analysis

Based on the reading conducted on 15 current academic articles and white papers on game

development, certain key problem areas and problems could be identified. As some of

these academic writings leaned on industry-focused studies and were based on the

thoughts and opinions of actual game developers, it can be assumed that these problems

do in fact exist in actual game development at least to some degree. It was felt, however,

that it would be beneficial to get more context for these findings. How common are these

problems in actual game development?

Ideally the matter would have been studied with a larger study, perhaps one where

industry professionals could have been interviewed or surveyed on these topics, but

schedules did not allow for such an extensive study. Developer-written post-mortems on

websites such as Gamasutra.com5 and Gamecareerguide.com6 offer some insight to actual

industry professionals’ opinions and thoughts on game development. It was felt that they

could provide an adequate alternative option.

Post-mortems are a common industry practice, where a developer who served a central

role in the project is invited to reflect on their project. According to Gamasutra.org’s

instructions [Shirinian 2011], each post-mortem should include a few aspects that went

right in the project, as well as a few aspects that went wrong. These should be unique to

the project, and should offer concrete thoughts other developers can learn from.

Due to their nature, these post-mortems were assumed to provide a valuable and reliable

insight to the pros and cons of a wide variety of game development projects. They were

therefore fetched and analysed algorithmically using custom Python and C# classes and

scripts, as well as the statistical programming language R. The purpose of this analysis

was to see if key topics and words related to what were perceived as central problems in

the field, were present in these post-mortems.

The tests were conducted to test two assumptions.

1. If, for instance, requirements engineering methods and practices are not widely

used in game development, keywords related to the topic would not appear

frequently (or at all) in post-mortems.

2. If game development could benefit from requirements engineering methods and

practices, common problems believed to be alleviated using these methods would

appear at least relatively frequently.

This approach does have some limitations. As each developer is instructed to only include

a few problems in each article, post-mortems are not exhaustive. Problems may not have

5 https://www.gamasutra.com/features/post-mortem/ (retrieved on 21.5.2018)
6 https://www.gamecareerguide.com/archives/post-mortems/1/index.php (retrieved on 21.5.2018)

https://www.gamasutra.com/features/post-mortem/
https://www.gamecareerguide.com/archives/post-mortems/1/index.php

38

been brought up among the few listed in a post-mortem despite influencing the actual

development process.

An actual interview or even a survey would give more focused information on the topics

of the thesis, but this does not necessarily have to be a weakness. As these post-mortems

are not guided or directed by research questions or prompts, they do offer a view into

what the developers themselves viewed as central and significant factors in the success

or failure of their games.

Additionally, it is worth noting that correlation does not necessarily equal causation. Even

if both assumptions turned out to be true, it does not automatically mean that all these

problems are caused by the lack of requirements engineering methods and processes, nor

that would they be fixed merely by adopting these methods and processes. Again, a much

more exhaustive study would be required for any conclusive results, but it was felt that

even a simple study like this might produce valuable findings.

5.1 Data gathering

As of March 2018, Gamasutra.com offers 218 separate post-mortem articles, but no easy

way to access them beyond individual hyperlinks on a catalogue page. There is no way

to access the plain text of each article, or even to access the articles themselves without

all the surrounding, non-relevant website elements.

To get around these limitations, the HTML files for each article were retrieved using a

custom script and the Linux program wget. Each file was saved locally as a PHP file,

which contained the article text as well as non-relevant other data. These HTML files

were then parsed with a custom Python script, which extracted the plain text using the

Beautiful Soup library and exported it into TXT files.

Additional post-mortems were retrieved from GamecareerGuide.com [2018], which

offers their own selection of unique post-mortems written in the same style as those found

on Gamasutra.com. This second source produced 129 additional post-mortems.

The 347 post-mortems retrieved range from 1997 to 2018, and cover everything from

small independent teams to large studios, and everything from small browser games to

large, big budget productions. Games from a variety of different genres are included. Not

all the post-mortems are suitable for this study, as some of them are small “post cards”

from industry events. After eliminating these obviously non-related articles, there were

315 post-mortems left for analysis. These post-mortems cover roughly 300 unique games,

as a few projects were discussed from different perspectives, such as general design and

audio design.

39

5.2 The first study

Based on the central problems in game development presented in Chapter 4, a list of

keywords was created. These keywords, which can be seen in Table 2, were thought to

be related to these central problems based on existing domain knowledge on the topic.

There was no specific methodology for creating this initial list of keywords, and instead

it was always intended as a simple jumping off point which would hopefully generate

interesting and promising articles, based on which additional keywords could be

discovered.

The initial intent was to narrow down the list of 315 post-mortems to find which post-

mortems should be studied more closely, and which could be discarded, as analysing all

the post-mortems would not have been practical and quite probably also not useful.

Therefore, the intent was to prioritize the post-mortems based on how many of these

keywords appeared in them.

Table 2 Keywords used in the searches, divided into three broad categories

This analysis was conducted using custom built tools. First, a custom Python script,

again using the Beautiful Soup library, iterated through all 315 post-mortems. The script

searched for instances of keywords, noting down the articles in which they appeared,

and exporting the results into a separate file. This file was then input into a custom C#

application, which combined the results into custom objects, each representing the

search results for a given article. These results could then be analysed and manipulated

as desired.

As these custom tools were created and refined, the study evolved beyond simply trying

to narrow down the list of post-mortems. It became apparent that getting statistical

Project Management Methods and processes Requirements Engineering

crunch Agile requirement

schedule Process emotional

management Method affective

overtime Scrum game design document

estimation Kanban pre-production

feature creep Engineering production

creep Development requirement engineering

feature transition requirements engineering

scope extreme programming specification

communication backlog

multi-disciplinary formal

40

information about how often given keywords appeared in articles would be easy, and the

focus was shifted towards this approach.

This approach has some obvious problems and limitations. The first of these is the list of

keywords used. If some relevant or useful term was not thought of, it would not be

included on the list of search terms. As this study was created and conducted by a single

person, albeit with some supervision, it is quite probable that something was overlooked.

This problem was probably compensated at least in part for by repeated versions the

keyword list and repeated analysis of the subject text. The list of keywords grew

significantly over time as additional terms were discovered through further readings of

the source texts, or derived from results of earlier iterations of the analysis.

Additionally, this approach offers next to no context. While the algorithm will find all

instances of, say, the keyword “scope”, it has no way of knowing the context the term

was used in. Did the article refer to the scope of the project, or was the author talking

about a physical scope item in the game? Many of the terms used have multiple meanings,

only some of which are relevant to this thesis, so this could have been a real problem.

To compensate for this lack of context, a second test was devised and run.

5.3 The second study

Whereas the first test relied on self-created Python and C# classes, the second test made

use of R, a free software environment for statistical computing. A researcher from the

University of Tampere who specializes in text analysis was asked to create an R algorithm

suitable for the purposes of this thesis. This algorithm was then fine-tuned over time in

collaboration with the researcher.

The algorithm first breaks the input text into smaller, sentence length chunks. Next, the

text was lemmatized (i.e. the inflected forms of each word were grouped together in their

dictionary form), and so called “stop words”, or common, short function words such as

the, is, that and which, were removed. After these steps the remaining text was analysed.

Sentences which contained words from the keyword list were kept, while the others were

discarded. The remaining sentences were analysed for word co-occurrence, producing a

list of found search terms as well as lists of words they appear together with. This would

then give context to these results.

Due to the way the algorithm parses words, it will distinguish between multiple word

keywords such as “feature creep” and individual components of the keyword, in this case

“feature” and “creep”. Thus, the algorithm will not produce skewed false hits for these

component words.

41

As with the first test, this test was also run several times. The original list of keywords

grew and changed after each iteration as new keywords were discovered externally,

prompting repetitions of the first study as well. Additionally, the results of this test also

helped refine the list of keywords, as interesting or relevant terms appeared in co-

occurrence with original keywords and were subsequently included as keywords

themselves.

5.4 Findings

The two studies produced several outputs: a full list of all 315 post-mortems, and the

keywords which appear in them, the total count of how often any keyword appears in

each post-mortem, a list of all the keywords and the most common words that appear near

them, and statistical information about the total number of occurrences for each keyword

across all 315 articles (Table 4), as well as the percentage of articles each keyword

appears in (Table 3).

Table 4 Total occurrences across all articles for a given keyword.

It becomes apparent that some terms were too broad especially for the initial intent of the

studies even from a cursory glance at the list of keywords. The words “development”,

“feature” and “process” appear in almost all of the articles. However, due to the word co-

occurrence analysis (full findings in Appendix I), it is apparent that they do not appear

Keyword Total occurrences

development 2476

feature 1178

process 969

production 960

schedule 532

document 480

communication 322

management 290

scope 261

engineer 259

method 218

crunch 149

requirement 134

engineering 118

pre-production 102

emotional 79

discipline 69

Keyword

Total

occurrences

scrum 65

creep 64

formal 64

transition 52

agile 43

feature creep 39

overtime 38

specification 30

game design document 21

estimation 14

backlog 6

multi-disciplinary 3

affective 2

extreme programming 1

kanban 0

requirement engineering 0

requirements engineering 0

42

without context and were as such deemed interesting enough to be left in the pool of

keywords.

The word co-occurrence analysis produced a list of each keyword and the most common

words they appear together with in the analysed material (see Figure 8). The number of

times each word appeared together with the term is also included, and if any other search

terms appeared together with each search term, this is also indicated with italics. From

the example in Figure 8 we can see that the term schedule appears together with terms

like project and time 116 times, and with the search term “development” 79 times. Based

on this example we can assume that at least 116 times this term was included in the source

material in the desired context, ie. that of the project’s schedule, instead of for instance

the schedule for cleaning the studio’s coffee machine.

Figure 8 An extract from the word co-occurrence analysis results. Each search term is listed along with the words it

appeared together with, as well as how often each co-occurring word appeared. If another search term appeared as a

co-occurring word, it was indicated with italics and an identifying label signifying whether the keyword was related to

project management, requirements engineering or methods and practises.

In general, terms thought to be related to the requirements engineering process and its

methods appear either very rarely or not at all. “Requirements engineering” (and its

alternative spelling “requirement engineering”) do not appear once. The broader keyword

“requirement” appears in 28.3% of the articles, but it is practically always used in the

non-requirements engineering sense. “Affective” is used precisely once, and while the

keyword “emotional” does appear in 11.1% of the articles, it is not used to talk about

emotional requirements.

Terms related to agile methods and Scrum appear quite rarely. “Agile” is used in 10.2%

of the articles, “Scrum” in 10.5%. “Extreme programming” is mentioned once. Formal

methods and specifications in general do not seem to be a frequent topic in post-mortems,

as the keyword “formal” is used in 13% of the articles. Context analysis suggests that

when the term is used, it is rarely used in the context of formal processes: it appears three

times close to the term “process”, and three times close to the term “development”.

“Specification” is used in 6.3% of the articles, and is usually used in the context of formal

design methods.

These findings would seem to back up the arguments presented in current academic

research, and suggest that formal methods and practices, requirements engineering and

other accepted industry best practices are not widely used in game development.

43

The problems these methods and processes are thought to alleviate appear in the post-

mortems quite frequently. The keyword “crunch” appears in 26.3% of the post-mortems,

and when it appears it is often mentioned several times in the same post-mortem.

Additionally, the term “overtime” appears in 7.6% of the post-mortems, usually in the

context of having to work overtime.

“Feature creep” is used in 9.8% of the post-mortems, and additionally “creep” is used in

15.9% of the articles, often in a context which suggests it is used to describe feature creep

rather than an action by a game character.

Terms such as “schedule” (56.8%), “management” (43.8%), “communication” (47.3%)

and “document” (69.2%) appear very often, both in positive and negative contexts,

indicating they are factors in the successes or failures of game development projects.

44

6 Discussion

The topic of requirements engineering and game development is by no means a new one.

As game development is a specialized field of software development, and requirements

engineering is an accepted and commonly used part of the software engineering process,

the assumption that game development could benefit from requirements engineering

processes and methods is only natural.

Along with this long-standing interest in the topic comes a lot of previous research. This

body of work varies greatly in scope and style. As game development is a practical real-

world problem, it stands to reason that for it to truly be useful, research carried out on the

topic should be conducted with the realities of the discipline in mind, if the goal is to

solve real problems faced by developers.

With this in mind, this thesis set out to explore two research questions:

1. Based on a reading of current academic research on the topic, can central

problems, concerns and issues be identified?

2. Can these findings be supported by analysing developer-written post-mortems?

6.1 Background and context

Key problems and issues were identified based on academic research conducted through

interviews and studies conducted among game developers and game publishers. Some of

these problems make it harder to adopt requirements engineering processes as a part of

the game development process, while some are areas where game development could

clearly benefit from adopting these processes.

It is worth stressing that the findings in this thesis apply mostly to smaller independent

developers, the most common type of developer for instance in Finland. Larger and more

organized studios probably have their methods and processes for dealing with these issues

and approach the development process much in the same ways as a traditional software

development project would, but as these larger studios and corporations tend to regard

their practices and methods as trade secrets, little information is available on the subject.

Of the problems discovered, the general lack of formal processes and methods among

developers seems to be the most fundamental one. While the emphasis on non-functional

requirements and the lack of tools for capturing and modelling affective requirements are

also significant problems, they can be overcome with work.

That work will not be conducted if developers are not interested in utilizing formal

methods and processes, or applying requirements engineering techniques to their work.

The reasons for this perceived lack of interest and its remedies are beyond the scope of a

thesis work, and a large survey would be needed to chart attitudes and problems before

45

even any educated guesses could be made. It could be that developers are interested and

willing to utilize more formal methods, but do not have the knowledge and skills required,

or they might not even be aware of the possibility, having grown used to doing things

their own way.

It is worth noting that these are by no means the only significant challenges or problems

game developers are facing, nor are they the only factors making it harder to adapt

requirements engineering methods and processes to game development. As an example,

game development is a much more multi-disciplinary activity than normal software

development.

Game development teams employ software engineers, designers, producers, project

managers and other computer science professionals just like traditional software

engineering teams, but additionally make use of different types of artists (e.g. writers,

graphical artists, musicians, animators, sound technicians) and others.

It was briefly mentioned earlier in Chapter 4 that merely finding common vocabulary

among these wildly varied disciplines can be challenging, but their variety alone

introduces difficulties into the requirements engineering process. Capturing and

modelling requirements specific to each of these disciplines requires strong domain

knowledge.

Beyond the need for specialized knowledge, all the disciplines of game development may

have their own considerations that need to be taken into account, and scheduling can also

be challenging. Not all of these components might even be actively worked on during the

pre-production phase, where most of the requirements engineering work takes place.

While a significant problem, this is not unique to game development, as traditional

software development projects need specialized domain knowledge for requirements

engineering work as well. For instance, experts on legal concerns, data privacy or

sociology might have specialized domain knowledge needed in the project.

As so many different problems could be discovered so easily, the topic is clearly rife for

further research and discussion. The scope of this thesis could have been far larger, as

many of these problems would have been interesting topics of research and discussion. It

is clear that there is much work left to be done in this area.

6.2 Contributions

To evaluate if these identified key problems are actual issues for game developers, 315

post-mortems were analysed. The results of this analysis are not conclusive by any means,

but do seem to give validity to the idea that these are real issues and factors affecting

actual game development projects. This is not surprising, as the reference materials used

46

for this thesis leaned heavily towards more practical studies [Kasurinen & Laine 2014,

Kasurinen et al. 2014, Kasurinen 2016, Koutonen & Leppänen 2013, Petrillo et al. 2008]

and therefore were already based on the experiences and opinions of developers.

From the perspective of this thesis, it is especially interesting to note the almost complete

lack of keywords relating to requirements engineering. The topic itself was not mentioned

once in the 315 post-mortems, which include everything from big budget PC games to

smaller indie products, games created using traditional waterfall methods to agile projects

and so on.

As post-mortems deal with factors which contributed, positively or negatively, to the

outcome of each individual project, the total lack of mentions could mean that

requirements engineering is simply not a concern to any of these developers. This result

is not conclusive, of course, as post-mortems are not all-inclusive lists of all contributing

factors. However, the fact that no developer mentioned requirements engineering as a

factor – positive or negative – in the outcome of the project, does give validity to the

claim that game developers do not utilize, nor even think to utilize, requirements

engineering methods or processes.

As there is next to no discussion on keywords related to requirements engineering, this

study did not reveal any conclusive evidence for or against the incompatibility between

requirements engineering and the game design document. Keywords such as scope

(41.9%) and document (69.2%) are often mentioned in post-mortems, so clearly some

kind of issue exists, but based on this study little can be said on the topic.

The keyword “crunch” appeared in 26.3% of the articles, and the clearly related term

“overtime” appeared in 7.6% of the articles. The algorithm does not guarantee that there

is no crossover between these results, so both keywords could appear together in at least

some of the post-mortems. Phrases such as “It was an expensive lesson, given the amount

of overtime we had to work to finish the game”, “building several levels, working a

tremendous amount of overtime” and “others were totally fried from the tremendous

amount of overtime” indicate that “overtime” usually appears in the intended sense rather

than describing, for instance, a system working overtime.

This figure seems low, as crunch is generally considered an extremely widespread

problem in the industry. According to a 2016 survey conducted among the International

Game Developers Association members, 65% of developers reported having experienced

crunch, with 52% reporting having experienced it more than twice in the previous year

[IGDA 2016].

This inconsistency could be explained by several factors. The post-mortems deal with

individual projects, rather than individual developers, the contrary of which is true on the

47

IGDA survey. Thus, even a project where multiple developers reported experiencing

crunch would only represent a single item in the post-mortem data. The post-mortems

also include many smaller indie projects, which might be more loosely scheduled and

could afford to postpone the project rather than crunch to finish it on an external schedule.

Finally, the post-mortems include material from 1997 to 2018, and it could be that in the

earlier material crunch simply was considered an inevitable part of working in the game

industry and not worth reporting as a factor.

Terms related to formal project management processes and methods appear in the post-

mortems quite often, and in contexts which relate to project management.

▪ document (69.2%)

▪ production (63.5)

▪ schedule (56.8%)

▪ management (43.8%)

▪ communication (47.3%)

▪ scope (41.3%)

This means that these issues were considered by developers to be a key factor in the

success of the project, whether a positive or negative one. This would seem to be in line

with Kasurinen’s claim that game development would benefit from more formal,

commonly used methods and practices, as they are generally agreed to improve and

facilitate these key areas of the development process [Kasurinen et al. 2014].

These findings demonstrate that there is clearly need for further and deeper studies on the

issue. Game development is a growth industry where ever-increasing amounts of money

are on the line, depending on the successful outcome of large, expensive and extremely

complex software development projects. It is clear that game development could benefit

from additional formalization, but in order for that to happen, several hurdles need to be

crossed.

Developers need training, and methods and processes need to be adapted and created to

better suit the needs of the industry. While these initiatives probably need to be driven by

developers themselves, academic research has an important role to play as well. Studies

conducted by academics could hopefully breach the wall of secrecy surrounding many

developers and help discover both the causes and eventual fixes for these problems.

48

7 Conclusions

This thesis explored the question of adapting requirements engineering methods and

processes to game development projects. Based on a thorough reading of state-of-the-art

academic research, key problems and limitations were identified. These included

▪ a general lack of formal processes and methods in game development

▪ the emphasis on non-functional, affective requirements, which traditional

requirements engineering methods and processes are not well suited to

▪ emphasis on change as a central development tool, and the need for better change

control, which requirements engineering could provide

▪ the incompatibility between the requirements document and the game

development document, central artefacts in requirements engineering and game

development respectively.

To study the validity of these claims, 315 developer-published post-mortems were

analysed algorithmically, using custom programs created for the purposes of this thesis.

Keywords based on academic findings were searched for, and their total number of

appearances, as well as the frequency of these appearances, were noted. Additionally,

they were analysed for word co-occurrence to discover, which words the keywords

commonly appeared with.

While the findings of this analysis were not conclusive, they did seem to offer support to

the key problems identified in Chapter 4. These problems would therefore seem to be real

issues being faced by game developers. Much work remains to both discover, and more

importantly implement, best practises and guidelines for solving these issues.

49

References

[Ampatzoglou & Stamelos 2010] Ampatzoglou, A., & Stamelos, I. (2010). Software

engineering research for computer games: A systematic review. Information and

Software Technology, 52(9), 888-901

[Callele et al. 2005] Callele, D., Neufeld, E., & Schneider, K. (2005, August).

Requirements engineering and the creative process in the video game industry. In

Requirements Engineering, 2005. Proceedings. 13th IEEE International Conference on

(pp. 240-250). IEEE.

[Cao et al. 2008] Cao, Lan, and Balasubramaniam Ramesh. "Agile requirements

engineering practices: An empirical study." IEEE software 25.1 (2008).

[ESA 2016] Entertainment Software of America: Analysing the American Video Game

Industry 2016. http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-

2016-FINAL-Report.pdf (retrieved on 20.12.2017)

[Faulconbridge & Ryan 2003] Faulconbridge, R. I., & Ryan, M. J. (2003). Managing

complex technical projects: A systems engineering approach. Artech House.

[Fourman 2005] Fourman, M (2005). Propositional methods: Computational Tree Logic

[PowerPoint sliders]. Retrieved from

http://www.inf.ed.ac.uk/teaching/courses/propm/papers/CTL.pdf (retrieved on

25.4.2018)

[Game Career Guide] Game Career Guide: Features: Post-mortems. Retrieved from

https://www.gamecareerguide.com/archives/post-mortems/1/index.php

[Gunda 2008] Gunda, S. G. (2008). Requirements engineering: elicitation techniques.

[Hickey & Davis 2003] Hickey, A.M., Davis, A.M. (2003): Elicitation Technique

Selection: How Do Experts Do It?, Proceedings of the Eleventh IEEE International

Requirements Engineering Conference, pp. 169-178, September 8-12, Monterey Bay,

CA.

[Hofmann & Lehner 2001] Hofmann, H. F., & Lehner, F. (2001). Requirements

engineering as a success factor in software projects. IEEE software, 18(4), 58.

[Hooks 1994] Hooks, I. (1994, August). Writing good requirements. In INCOSE

International Symposium (Vol. 4, No. 1, pp. 1247-1253).

[Hull et al. 2005] Hull, E., Jackson, K., & Dick, J. (2005). Requirements Engineering 2nd

Edition, Springer Publishing Company, Incorporated

http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf
http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf
http://www.inf.ed.ac.uk/teaching/courses/propm/papers/CTL.pdf

50

[IGDA 2004] International Game Developers Association. Quality of Life in the Game

Industry: Challenges and Best Practices. IGDA 2004.

https://www.igda.org/resource/collection/9215B88F-2AA3-4471-B44D-

B5D58FF25DC7/2004_IGDA_QualityOfLife_WhitePaper.pdf (retrieved on 23.5.2018)

[IGDA 2018] International Game Developers Association. Developer Satisfaction Survey

2016. IGDA 2018.

http://www.igda.org/resource/resmgr/files__2016_dss/IGDA_DSS_2016_Summary_Re

port.pdf (retrieved on 29.4.2018)

[JIRA 2017] JIRA Project Management Software, https://atlassian.com/software/jira

(retrieved on 21.12.2017)

[Kanode & Haddad 2009] Kanode, C. M., & Haddad, H. M. (2009, April). Software

engineering challenges in game development. In Information Technology: New

Generations, 2009. ITNG'09. Sixth International Conference on (pp. 260-265). IEEE.

[Kasurinen 2016] Kasurinen, J. (2016, June). Games as Software: Similarities and

Differences between the Implementation Projects. In Proceedings of the 17th

International Conference on Computer Systems and Technologies 2016 (pp. 33-40).

ACM.

[Kasurinen et al. 2014] Kasurinen, J., Maglyas, A., & Smolander, K. (2014, April). Is

requirements engineering useless in game development?. In International Working

Conference on Requirements Engineering: Foundation for Software Quality (pp. 1-16).

Springer, Cham.

[Kasurinen & Laine 2014] Kasurinen, Jussi, and Risto Laine. "Games from the Viewpoint

of Software Engineering." Proc. of the Federated Computer Science Event (2014): 23-

26.

[Keith 2010] Keith, C. (2010). Agile Game Development with Scrum (Adobe Reader).

Pearson Education.

[Koutonen & Leppänen 2013] Koutonen, J., & Leppänen, M. (2013, June). How are agile

methods and practices deployed in video game development? A survey into Finnish game

studios. In International Conference on Agile Software Development (pp. 135-149).

Springer, Berlin, Heidelberg.

[LucidChart 2017] LucidChart Online Diagram and Visualization Solution.

http://lucidchart.com (retrieved on 21.12.2017)

[Magee & Kramer 1999] Magee, J., & Kramer, J. (1999). State models and java

programs. Wiley.

https://www.igda.org/resource/collection/9215B88F-2AA3-4471-B44D-B5D58FF25DC7/2004_IGDA_QualityOfLife_WhitePaper.pdf
https://www.igda.org/resource/collection/9215B88F-2AA3-4471-B44D-B5D58FF25DC7/2004_IGDA_QualityOfLife_WhitePaper.pdf
http://www.igda.org/resource/resmgr/files__2016_dss/IGDA_DSS_2016_Summary_Report.pdf
http://www.igda.org/resource/resmgr/files__2016_dss/IGDA_DSS_2016_Summary_Report.pdf
https://atlassian.com/software/jira
http://lucidchart.com/

51

[Musil et al. 2010] Musil, J., Schweda, A., Winkler, D., & Biffl, S. (2010, September).

Improving video game development: Facilitating heterogeneous team collaboration

through flexible software processes. In European Conference on Software Process

Improvement (pp. 83-94). Springer Berlin Heidelberg.

[Newzoo 2017] Newzoo: Report on the Global Games Market.

https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-

in-2017-with-mobile-taking-42/ (retrieved on 20.12.2017)

[Nuseibeh & Easterbrook 2000] Nuseibeh, B., & Easterbrook, S. (2000, May).

Requirements engineering: a roadmap. In Proceedings of the Conference on the Future

of Software Engineering (pp. 35-46). ACM.

[OSRMT 2017] Open Source Requirements Management Tool,

https://sourceforge.net/projects/osrmt/ (retrieved on 21.12.2017)

[Paetsch et al. 2003] Paetsch, F., Eberlein, A., & Maurer, F. (2003, June). Requirements

engineering and agile software development. In Enabling Technologies: Infrastructure for

Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE

International Workshops on (pp. 308-313). IEEE.

[Paschali et al. 2014] Paschali, M. E., Ampatzoglou, A., Chatzigeorgiou, A., & Stamelos,

I. (2014, November). Non-functional requirements that influence gaming experience: A

survey on gamers satisfaction factors. In Proceedings of the 18th International Academic

MindTrek Conference: Media Business, Management, Content & Services (pp. 208-215).

ACM.

[Petrillo & Pimenta 2010] Petrillo, F., & Pimenta, M. (2010, September). Is agility out

there?: agile practices in game development. In Proceedings of the 28th ACM

International Conference on Design of Communication (pp. 9-15). ACM.

[Petrillo et al. 2008] Petrillo, F., Pimenta, M., Trindade, F., & Dietrich, C. (2008, March).

Houston, we have a problem...: a survey of actual problems in computer games

development. In Proceedings of the 2008 ACM symposium on Applied computing (pp.

707-711). ACM.

[Pohl 2010] Pohl, K. (2010). Requirements engineering: fundamentals, principles, and

techniques. Springer Publishing Company, Incorporated.

[Sannier 2011] Sannier, N (2011): Modeling Requirements Requirements Verification

and Validation. EDF R&F. https://nicolassannier.files.wordpress.com/2011/04/3-

modeling-requirements-requirements-validation-and-verification-sannier.pdf. Retrieved

on 20.11.2017

https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://sourceforge.net/projects/osrmt/
https://nicolassannier.files.wordpress.com/2011/04/3-modeling-requirements-requirements-validation-and-verification-sannier.pdf
https://nicolassannier.files.wordpress.com/2011/04/3-modeling-requirements-requirements-validation-and-verification-sannier.pdf

52

[Sharp et al. 1999] Sharp, H., Finkelstein, A., & Galal, G. (1999). Stakeholder

identification in the requirements engineering process. In Database and Expert Systems

Applications, 1999. Proceedings. Tenth International Workshop on (pp. 387-391). Ieee.

[Shirinian 2011] Shirinian, A (2011). Dissecting the Post-mortem: Lessons Learned From

Two Years of Game Development Self-Reportage. Retrieved from

https://www.gamasutra.com/view/feature/134679/dissecting_the_post-

mortem_lessons_.php

[IEC 2010] The International Engineering Consortium (2010). Specification and

Description Language (SDL), http://www.sdl-forum.org/SDL/Overview_of_SDL.pdf (retrieved

on 28.11.2017).

[Stacey & Nandhakumar 2008] Stacey, P., & Nandhakumar, J. (2008). Opening up to

agile games development. Communications of the ACM, 51(12), 143-146.

[UKIE 2017] UKIE: The games industry in numbers. (https://ukie.org.uk/research)

(retrieved on 20.12.2017)

[Zielczynski 2007] Zielczynski, P. (2007). Requirements management using ibm®

rational® requisitepro®. IBM press.

[Zhang 2007] Zhang, Z. (2007). Effective requirements development-A comparison of

requirements elicitation techniques. Software Quality Management XV: Software Quality

in the Knowledge Society, E. Berki, J. Nummenmaa, I. Sunley, M. Ross and G. Staples

(Ed.) British Computer Society, 225-240.

[Zowghi & Coulin 2005] Zowghi, D., & Coulin, C. (2005). Requirements elicitation: A

survey of techniques, approaches, and tools. In Engineering and managing software

requirements (pp. 19-46). Springer Berlin Heidelberg.

https://ukie.org.uk/research

53

Appendix I: Co-occurrence of words within post-mortems

Each keyword is listed along with the top words they appeared in close proximity to. Any

other keywords appearing as co-occurring words are italicized.

pm_term: crunch

time: 33 project: 29 much: 27 mode: 27 team: 24 game: 19

period: 19 us: 18 month: 17 want: 16

pm_term: schedule

project: 116 time: 116 much: 102 game: 101 work: 83 team: 82

tm_term: development: 79 us: 69 make: 69 would: 59

pm_term: management

project: 58 game: 51 team: 49 much: 29 tm_term: development: 27

time: 27 good: 25 work: 24 make: 23 problem: 21

pm_term: overtime

work: 20 team: 8 project: 8 game: 7 go: 7 get: 6

amount: 6 hour: 4 new: 4 us: 4

pm_term: estimation

time: 1 year: 1 fact: 1 meet: 1 target: 1 poor: 1

magazine: 1 profi: 1

pm_term: feature-creep

end: 5 much: 4 us: 4 project: 4 problem: 4 make: 4

game: 3 tm_term: development: 3 avoid: 3 experience: 3

pm_term: creep

time: 4 pm_term: scope: 4 still: 3 long: 3 pm_term: feature: 3

much: 2 work: 2 team: 2

pm_term: feature

game: 409 much: 204 time: 174 new: 172 add: 162 would: 147 make:

144 good: 103 use: 98 implement: 95

pm_term: scope

game: 77 project: 41 much: 37 time: 24 make: 23 would: 19

design: 19 good: 18 also: 16 team: 15

54

pm_term: communication

team: 71 good: 39 game: 32 much: 29 problem: 28 work: 24

project: 20 tm_term: development: 20 make: 17 design: 17

pm_term: discipline

project: 12 team: 11 game: 11 much: 9 tm_term: development: 7

work: 6 good: 6 high: 5 tm_term: process: 4 help: 4

tm_term: agile

tm_term: development: 6 tm_term: scrum: 6 use: 5 make: 4

tm_term: process: 3 methodology: 3 version: 2 work: 2

team: 2 game: 2

tm_term: process

game: 210 tm_term: development: 173 much: 117 design: 114 time:

109 make: 94 good: 92 team: 77 would: 74 work: 72

tm_term: method

use: 52 game: 33 much: 23 good: 22 work: 21 make: 21 us: 15

animation: 15 project: 13 render: 13

tm_term: scrum

tm_term: development: 16 project: 14 game: 9 use: 9 team: 8

plan: 7 much: 6 us: 6 time: 6 good: 6

tm_term: engineering

team: 23 game: 18 design: 18 much: 16 work: 15 project: 15

software: 15 tool: 15 art: 14 us: 12

tm_term: development

game: 814 team: 379 time: 379 much: 309 work: 236 project: 233

make: 228 month: 218 good: 179 tm_term: process: 173

tm_term: transition

game: 18 much: 10 make: 10 us: 7 good: 7 project: 6

time: 6 would: 6 something: 5 original: 5

tm_term: extreme-programming

55

also: 1 program: 1 hall: 1 discuss: 1 com: 1 pair: 1 http: 1

cgi: 1 larry: 1 wiki: 1

tm_term: backlog

team: 2 us: 2 also: 2 add: 2 fix: 1 even: 1

report: 1 always: 1 organize: 1 case: 1

tm_term: engineer

game: 36 artist: 34 team: 24 designer: 23 audio: 22 work: 20

time: 20 much: 19 tm_term: development: 19 engine: 19

tm_term: formal

team: 5 make: 5 game: 4 sure: 4 design: 4 much: 3

new: 3 tm_term: process: 3 tm_term: development: 3 without: 3

re_term: requirement

game: 51 team: 26 gameplay: 21 work: 19 design: 17

much: 16 time: 16 system: 15 base: 14 model: 14

re_term: emotional

player: 34 state: 32 use: 30 game: 28 form: 28 would: 25

music: 20 relationship: 19 prototype: 18 art: 18

re_term: affective

experience: 2 story: 2 player: 2 creation: 2 game: 1 focus: 1

good: 1 tell: 1 think: 1 create: 1

re_term: game-design-document

game: 12 play: 10 build: 10 designer: 10 world: 10 even: 9

though: 9 everyone: 9 separate: 9 would: 9

re_term: document

design: 101 game: 68 project: 45 time: 29 way: 27 write: 23

detail: 23 much: 22 team: 21 record: 19

re_term: pre-production

month: 41 game: 32 time: 29 much: 26 concept: 22 project: 21

long: 21 prototype: 19 part: 18 course: 18

re_term: production

56

game: 187 much: 109 team: 109 time: 104 work: 82 project: 73

good: 72 design: 71 go: 61 make: 59

re_term: specification

design: 12 game: 11 work: 7 team: 7 make: 6 would: 6 good:

6 project: 5 also: 5 mean: 5

