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ABSTRACT

Large consortiums are using next generation sequencing (NGS) to study the roles of 
microbial and virus exposures and population dynamics on human autoimmune diseases. 
These international collaborations are producing large collections of high throughput data 
in the form of metagenomic sequences. This thesis focuses on bioinformatics tools to support 
data visualization, high throughput virus extraction pipeline and subsequent application of 
these tools in an investigation concerning microbiome risk towards development of Type 
1 diabetes (T1D). 

Impacting mostly children and juveniles, T1D has no known cause and the disorder 
is characterized by insulin deficiency due to host immune system destruction of insulin 
producing pancreatic cells. T1D has a known genetic risk marker though a majority, 
exceeding 80% of new cases do not have a T1D diabetic first degree relative. Multiple viruses 
and more recently, gut bacterial development have been associated with increase T1D risk. 
I will discuss historical viral associations and especially Enterovirus as it has been found in 
pancreatic tissue. Metagenomic sequencing data assayed from regular collection of stool 
samples from longitudinal studies enrolling high risked children are optimal designs to 
investigate microbial and viral factors, especially using matched subject designs to control 
for locality and age. Different microbial exposure patterns and autoimmune milestones, 
such as autoimmunity can be model statistically. 

The primary aim of the tools development is to allow researchers without deep 
computation backgrounds to perform virus population profiling directly from high 
throughput sequence samples while allowing custom parameter updates and provide usable 
and insightful visualizations. Performance was greatly enhanced using parallel design and 
implementation of centralized database. Another omics tool was developed to allow for 
plotting of dense network across multiple organisms, such as human, mouse, bacteria 
and yeast, while supporting circular and other layouts. These tools are web based, open 
sourced and installation free. The analysis results are derived from Finland based Diabetes 
Prediction and Prevention study, using 96 samples from 18 matched children and three 
time points. Bacterial profiling and diversity are analyzed using well cited open sourced 
methods and statistical packages in R. We also attempted mining bacterial and virus 
relationships via construction of time based correlation networks together with web based 
filtering.

This thesis contributes innovative web based tools for metagenomic virus extraction 
profiling and visualizing genomic networks. Novel microbial T1D autoimmunity 
associations were reported in the analysis results and bacteriome phage correlation 
networks were constructed and analyzed in the context of autoimmunity. The developed 
tools are open sourced and actively used by many research institutes. 
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FINNISH ABSTRACT

Nykyaikaisten sekvensointiteknologioiden kehityksen myötä on mahdollista tuottaa laajo-
ja metagenomiikka-aineistoja. Näiden aineistojen avulla on mahdollista selvittää erilaisten 
mikrobiaalisten ja viruspohjaisten altistusten sekä populaatiodynamiikan vaikutusta ih-
misen autoimmuunisairauksiin. Tässä työssä kehitetään laskennallisia menetelmiä, joiden 
avulla näitä suuria mittausaineistoja voidaan käsitellä, analysoida ja visualisoida. Lisäksi 
kehitettyjä työkaluja sovelletaan ykköstyypin diabeteksen tutkimukseen. Tavoitteena on 
kartoittaa mikrobiaalisia riskitekijöitä, jotka voivat johtaa sairauden puhkeamiseen.

Ykköstyypin diabetes todetaan tyypillisesti jo nuorena ja sairastuneella henkilöllä im-
muunijärjestelmä tuhoaa insuliinia tuottavia haimasoluja, mikä aiheuttaa haitallisen ma-
talan insuliinitason. Sairauden puhkeamiseen johtavia syitä ei tunneta tarkkaan, mutta 
useat virukset kuten enterovirus ja viimeisimmän tutkimustiedon mukaan myös poikkea-
va suoliston bakteerikannan kehittyminen on yhdistetty kohonneeseen sairastumisriskiin. 
Näitä viruspohjaisia ja mikrobiaalisia tekijöitä voidaan tutkia lasten ja nuorten ulostenäyt-
teiden metagenomiikkaa tarkastelemalla ja erityisesti saatujen aineistojen tilastollisella ja 
laskennallisella analyysilla.

Työn tavoitteena on ollut kehittää laskennallisia menetelmiä, joiden soveltaminen ei 
vaadi syvällistä laskennallisten tieteiden hallintaa. Toisaalta laskennalliset työkalut on 
suunniteltu yleishyödyllisiksi niin, että niitä voidaan mukauttaa erilaisiin sovelluksiin so-
piviksi esimerkiksi parametreja säätämällä. Menetelmien toteutuksessa on hyödynnetty 
rinnakkaistettua laskentaa ja keskitettyjä tietokantaratkaisuja, jotka mahdollistavat tehok-
kaan analyysin. Kehitetyt työkalut on suunniteltu käytettäviksi web-pohjaisesti eikä käyt-
täjän siten tarvitse erikseen asentaa ohjelmistoja. Työn soveltavassa osiossa lähtökohtana 
on ollut laajan diabeteksen ennustamis- ja ehkäisytutkimuksen yhteydessä kerätty aineisto, 
joka koostuu 96 näytteestä, jotka on kerätty 18 lapselta kolmena eri ajankohtana.

Työssä on kehitetty innovatiivisia web-pohjaisia työkaluja metagenomiikka-aineistojen 
analysointiin ja visualisointiin. Työn soveltavassa osiossa on analysoitu laajoja ykköstyypin 
diabetes -aineistoja ja raportoitu uusia sairauden etenemiseen vaikuttavia vuorovaikutus-
suhteita. Kehitetyt menetelmät perustuvat avoimeen lähdekoodiin ja menetelmät ovat täl-
lä hetkellä aktiivisessa käytössä useissa tutkimusryhmissä.
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1	 INTRODUCTION

Microbiome, as collectively defined and ordered from smallest genome to largest, consists of 
viruses, bacteria, and fungi at a given site. Metagenomics therefore defines the field to study 
and recover microbiome genetic material, the microbiota using next generation sequencing 
(NGS) directly on samples taken from any host tissues or environment sites [Eisen 2017]. 
Demonstrated by the Human Microbiome Project (HMP) [Human Microbiome Project 
Consortium, 2012], many millions of microbiome reads can be recovered from NGS 
computer systems from 300 healthy individuals and sampled from nasal cavity, mouth, 
skin, gastrointestinal tract and vagina. These fives sites are known to contained high 
amounts of bacterial and viral population, though microbes have been found in other 
human samples, including from inner ear channel and blood. In essence and similar to 
Human Genome Project, HMP seeks to define a golden and healthy microbiome reference 
profile. This reference is in many ways far complex than the human reference genome 
as bacterial cells far outnumber human cells in population count. Contributing to the 
complexity, gut bacterial diversity fluctuates based on subject age, health, diet, geography 
as well as viral phage abundance. While HMP also investigates virus population within the 
same sites, the challenge to establish a standard viral reference is highly problematic due to 
difficulties with identification due to their small genome size, fast mutation rate and lack 
of a known universal marker. Viruses have always been an integral part of vaccine research 
as the common but deadly influenza is responsible for average of 500,000 deaths a year. 
The infamous 1918 Spanish flu pandemic outbreak killing estimates of 50 million people 
[Patterson & Pyle 1991], about 2.5% of the global population. Peter Medawar, winner of a 
Nobel in Medicine in 1960 for his work on acquired immune tolerance, described a virus 
philosophically as ‘a piece of nucleic acid surrounded by bad news’. As such, some bad news 
bacterial strains include the deadly tuberculosis and anthrax strains as well as Salmonella 
strains responsible for food poisoning.

There are increasing evidence for gut bacterial imbalances playing pivotal roles in chronic 
immune disorders such as Type 1 diabetes (T1D), Celiac Disease and IBD [Iweala & Nagler 
2006, Cohn et al. 2014, Lernmark 2016, Vatanen et al. 2016]. With a rising disease incident 
rates exceeding population growth and onset discordance greater than 50% in monozygotic 
twins, T1D is one of the most common childhood immune disorders. T1D, an irrecoverable 
and lifetime infliction, is an autoimmune disease where the host immune system targets 
and selectively destroys the pancreatic beta cells resulting in insufficient amounts of insulin 
necessary for maintaining safe blood glucose levels. Insufficient amounts of insulin results 
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in ketoacidosis, reliance of liver ketones as an energy resource and concurrent symptoms 
include nausea, frequent urination, thirst, mood swings and overall weakness and if 
untreated eventual organ damages leading to possible death. T1D is accurately predicted 
and preceded by the confirmation of pancreatic islet cell autoantibodies (ICA) [Bottazzo 
et al. 1974, Atkinson 2012]. The asymptomatic period between ICA seroconversion and 
T1D varies between months to years, ICA is a clear signal of an ongoing immune attack 
on the insulin producing beta cells. While the exact cause or trigger for the initiation of 
autoimmune intolerance is unknown, viruses have long been suspected and particularly 
coxsackievirus B (CVB) serotypes in the enterovirus (EV) genus. Even though some 
strong associations have been published [Hyöty et al. 1995, Filippi et al. 2008], causality 
has not been proven [Coppieters et al. 2012, Atkinson 2012]. Notably, EV sequences have 
been found in donated fresh pancreatic tissue from patients recently diagnosed with T1D 
[Krogvold et al. 2015]. The highest genetic susceptibility is associated with the Human 
Leukocyte Antigen (HLA) class II marker and allele DR3/DR4 genotype [Redondo et al. 
2001], contributing up to 60% and odds ratio of approximately 6.8 [Concannon et al. 2009] 
according to Gene wide association studies (GWAS), more than 3 times the risk associated 
with the next highest ranked loci of INS and PTPN22 [Concannon et al. 2009] markers. 

The potential research benefits of metagenomics application within T1D and other 
diseases with suspected environmental causes can not be disputed as metagenomics 
technology allows for unbiased and systematic detection of previously unknown and un-
cultured bacteria and human viruses. Labs and cohorts are investigating potential risks 
and as well as beneficial associations [Vaarala 2012], particularly involving early childhood 
exposures during innate immune system development [Lehuen et al. 2010]. The timing 
and beneficial role of childhood non-pathogenic exposures are the principles of hygiene 
hypothesis [Strahan 1989] first proposed by Strahan towards the large incidence increases 
with hay fever allergy.  

Although mass virus matter detections have been enabled with metagenomics and 
associated preparation and enzymatic advances, the identification and profiling of the virus 
population are still challenging due to lack of universal genome marker and also relative fast 
evolution pace, estimated to be 6 magnitudes faster than human [Duffy et al. 2008].  Using 
reverse transcription, ribonucleic acid (RNA) in addition to de-ribonucleic acid (DNA) 
viruses can be capably detected.  These important advances are enabling international 
cohorts to systematically study the role of environment in autoimmune diseases with no 
known causes. Study designs that allows for longitudinal sample collection is particularly 
applicable in T1D due to motivation to investigate viral infection history and gut bacterial 
dynamics prior to autoimmunity. It has been suggested that up to 15% of Type 2 Diabetes 
are masquerading by T1D and exhibits autoimmunity [Palmer et al. 2005]. As a result of 
insulin resistance, T2D impacts adults and is primarily driven by obesity from combinations 
of modern diets and lack of physical activity [Tattersall 2009]. 
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Metagenomics together with high throughput NGS sequencing motivates and also 
exposes the need for programs and tools that aim at data management, quality control, 
population extraction, diversity profiles and genome functions. Furthermore, intuitive 
and easy to use tools are needed to support visualization aiming at finding patterns and 
clusters within dense networks. Within systems biology, machine learning and data 
mining tools are routinely producing complex multidimensional genomic networks that 
are incomprehensible unless displayed in appropriate layout and context [Gehlenborg et al. 
2010]. Together with genomic network plotting, this thesis will focus on virus extraction web 
based pipeline using NGS metagenomic files, their applications for microbiome research, 
and an analysis involving bacteria and virus interactions towards T1D autoimmunity and 
subsequent disease onset. 

This thesis is based on published articles and provides novel web based tools for 
genomic network visualization and metagenomic virus profiling on multiple samples 
and subsequent application of virome profiling in T1D. The tools are also implemented 
with open sourced architecture and the chapter 2 will introduce the existing tools and 
technological background of visualization tools and also pipelines to profile bacteria and 
virus populations and diversities. These bacterial microbial computational pipelines have 
the primary aims of supporting taxonomy identification and estimating protein production.  

At the same time, a brief historical summary of T1D genetic disposition and associated 
environmental factors together with perspective of known viruses and historical 
implications will also be discussed. Chapter 3 covers materials and methods where the 
methods will include programmatic tools for open sourced web programming languages 
and model organism reference database components needed for POMO web app, presented 
in Publication I. Materials listed include matched case and control samples from early T1D 
autoimmunity study in Diabetes Prediction and Prevention (DIPP) [Ilonen et al. 1996, 
Haller & Schatz 2016] project used in Publication II and also several HMP samples used for 
Publication III. I will also describe bacterial 16S amplicon and metagenomic whole genome 
shotgun (WGS) analysis programs and terminologies and also statistical methodologies 
applied. Chapter 4 begins with describing the background of plotting omics graphs and 
shows example results from human and mouse. The results will include graphs from a 
metagenomic project drawn using POMO. Publication II investigates role of microbiome 
imbalance in early age T1D. The study focuses on bacteriome diversity and population 
dynamic via correlation networks over time integrated with phage findings. Publication 
III presents Vipie, a web based pipeline capable of sensitively processing multiple viromes 
with custom assembly and mapping parameters. Results are securely accessible and can be 
viewed as interactive charts, maps and searchable tabular results. Publication II is the first 
study to integrate bacterial and viral NGS findings towards T1D. The investigation is novel 
as an attempt to systematically identify the bacterial host of the gut virus CrAssPhage using 
interactive and filterable NGS correlation networks. The results chapter includes a scenario 
of applying POMO visualization for optimized bacterial community tuning. Chapter 5 
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concludes with discussion on practical usability of the bioinformatics tools and important 
applications in different projects and cohorts. 

Along with all tools involving big data analysis, there are some practical challenges and 
design restricted dependencies along with statistical modelling and variable interpretation. 
Particularly with metagenomic data analysis involving population composition changes 
over time, sequence analyses are confronted with multiple challenges due to wide sample 
variances in depth and quality that potentially shroud signal strengths. The large percentage 
of unknown viral mapped reads, so called dark matter sequences stemming from large viral 
diversity exasperated by lack of common universal reference and relatively limited number 
of known complete viral genomes. We theoretically discuss current limitations of viral 
research within T1D and potential viability of construction of a comprehensive virome 
roadmap. 
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2	 REVIEW OF THE LITERATURE

This chapter introduces important microbiome projects applying microbiome towards 
human health. T1D prevalence and primary genetic risks are briefly presented along 
with historical microbial associations, particularly viral. Microbiome NGS processing, 
technologies and applications are discussed. In addition, I will go over leading network 
visualization software in support of systems biology interaction networks.

2.1	 Human Microbiome Project
Metagenomics has advanced the field of microbiology by enabling the detection and 
estimating the diversity profile of all organisms, including viruses from any environmental 
sample via integration of next generation sequencing and modern molecular preparation 
methods. Traditional microbiology relied upon cultivated samples and extreme biases 
against organisms that cannot be cultured. Particularly neglected were microbes inclusive 
of archaea, bacteria and viruses. Bacteria and viruses have had long historical human health 
associations, and they have been implicated in autoimmune and infectious disorders. 
While less obvious, there are also frequent mutual beneficial symbiosis relationships.  
The creation of the Human Microbiome Project (HMP) [Human Microbiome Project 
Consortium, 2012] is an integrated attempt at cataloguing and detailing microbial 
profiles across different human sites. Its success and landmark findings of large microbial 
sequences, bacteria and virus particularly in the human gut and vagina, were revolutionary 
and profound. Within the human body, the bacterial cells are estimated to outnumbered 
human cells by ten fold and using open reading frames (ORF) analysis, potentially many 
more gene products [Savage 1977, Abubucker et al. 2012]. At the same time, it was revealed 
that there are different bacterial colonies and patterns across nasal, ear and skin sites. 
These important findings together with the HMP resources enable investigators to address 
hypothesis concerning microbiome development and population with human health, in 
turn providing microbial composite references for healthy subjects over different body sites 
and developmental ages. 
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2.1.1	 T1D Population Studies and Cohorts

T1D is well known to be an autoimmune disorder with a complex environmental role as 
identical twins have only 27% onset accordance and majority of new subjects do not have 
Type 1 diabetic first degree relatives. Motivated by strong historical suspicions and epidemic 
associations implicating gut bacteria and viruses as potential triggers (further discuss in 2.3) 
for T1D [Filippi & von Herrath 2008, Atkinson 2014], large international T1D cohorts 
have followed the steps of HMP to apply metagenomics technologies to investigate gut 
bacteria dynamics and virus exposures found in stool, plasma and other human samples. At 
the forefront of these cohorts is TEDDY (The Environment Determinants of Diabetes in 
the Young) [TEDDY Study Group 2008], it has enrolled almost ten thousand genetically 
at risked children living in US, Germany, Finland and Sweden to adjust for geography and 
race as they are known to be statistically significant. 

In northern Europe spanning Scandinavia and Finland (57.6 per 100,000), risk of 
T1D are folds higher than other locations, as shown in Figure 1, nearly 100 times higher 
than some countries such as China (0.6 per 100,000) and Venezuela (0.1 per 100,000) 
[Atkinson 2008]. The issue of diet likely plays a role, as China and Venezuela have rice 
and corn based staple diets and among the lowest in incidence. TEDDY has impressively 
collected more than 30,000 microbiome samples from stool, nasal and plasma from case 
and control children, covering T1D autoimmunity and onset. Interestingly, celiac disease 
(CD) concordance with T1D is around 6%, much higher than general population of 1% risk 
and statistically significant [Cohn et al. 2013]. Together with gene expression, proteomics 
and metabolomics integrated with the comprehensive metadata such as health and diet 
history, this collection will form the central materials and design for many important T1D 
and autoimmune related investigations and findings for years to come. Within Discussions 
chapter, we covered the experience of applying Vipie pipeline introduced in Publication III, 
to profile virus populations in thousands of TEDDY stool microbiome samples. 

Adding to the mystery is that Russian Karelia bordering Finland and with many of 
its population having similar genetic and cultural heritage, has 6 times less risk of T1D 
although exposed to more microbes [Kondrashova et al. 2008]. DIABIMMUNE was 
created expressly to study gut microbiome concerns toward T1D in Finland, Estonia 
and Russia [Vatanen et al. 2016]. Interestingly and related to the hygiene hypothesis, 
Vatanen and colleagues concluded that the complexity of the gut bacteriome due to the 
birth condition differences between the countries. Other large cohorts include US based 
SEARCH for Diabetes in Youth Consortium within the United States (Dabelea et al. 
2011), aiming to investigate difference between T1D and T2D by identifying all cases in 
American children under 20. Finland based Diabetes Prediction and Prevention (DIPP) 
study recently celebrated its 25th anniversary and the study followed at risked children, 
based on HLA screening, from birth until T1D onset or 15 years old. 
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Figure 1. Global T1D incidence – Plotted from Diabetes UK (2013) statistics.
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2.2	 T1D natural history
T1D with an unknown etiology, is a chronic disease requiring daily external insulin. The 
disease, rising at about 3% per year in most developed countries, has no cure and mostly 
impacts young people. T1D is classified as an autoimmune disorder as the pancreatic 
islet beta cells, responsible for producing insulin, are killed selectively and subsequently 
depleted over time by the host immune system. T1D is known to have environmental 
factors as disease concordance rates for identical twins are about 30% and recent trends 
points to increase new incidence without first degree relatives with the disease [Atkinson 
2012]. The classification of T1D as an autoimmunity disorder is further solidified with the 
discovery of islet cell autoantibodies (ICA) [Bottazzo et al. 1974], subsequently antibodies 
to insulin (IAA), glutamic acid decarboxylase (GADA), tyrosine phosphatase-related islet 
antigen (IA2A) and zinc transporter (Znt8A) [Pihoker et al. 2005]. These autoantibodies 
confirmed that beta cells were destroyed from breakdown of self tolerance. ICA prediction 
interestingly is tightly intertwined with increasing number of autoantibodies, with two or 
more autoantibodies, close to 85% have been reported as likelihood for T1D onset and more 
than 90% of T1D have minimum 1 autoantibody [Pihoker et al. 2005] though the time 
period between diabetic onset and ICA seroconversion varies greatly, between months to 
many years.  Shown in Figure 2 below, though the age of autoimmunity is uncertain, it has 
been shown that IAA tends to peak around two years old and GADA incidence peaking 
much later [Taplin & Barker 2008]; as autoimmunity is highly predictive of T1D and 
irreversible, a revised and key research question falls on environmental factors such as viral 
and bacterial infections prior to the trigger of autoimmunity. The time period between 
autoimmunity and disease onset has high variability and T1D symptoms are marked by 
hunger, thirst, frequent urination, sudden bed wetting and fatigue with mood changes. 
Organ damage and death results from untreated hyperglycemia, the estimated lifespans 
of T1D patients are 10 years less than relative population averages. According to American 
Association of Clinical Endocrinologists (http://outpatient.aace.com/type1-diabetes/the-
burden-of-type-1-diabetes), T1D burden on worldwide society is 14.4 billion annual US 
dollars and anticipated to triple by year 2050.  

Alongside seasonal frequencies, suspected environmental triggers are EVs, gluten 
introduction, north to south gradient, lack of vitamin D and a hygiene theory [Strachan 
1989] suggesting that young children are not sufficiently exposed to non-pathogenic 
microbes during the development of immune system within the first years of life. Although 
it is known that genetics play important roles, due to first degree relative discordance rates, 
it is also known that there are environmental factors. The dramatic increase in T1D also 
far exceeds general population growth. HLA-DR3/DR4 genotype combination marker in 
chromosome 6 has the highest risk, accounting for 90% of the disease [Atkinson 2012] and 
certain alleles post odds ratio of 6. As such, the Finnish population has the highest average 
T1D, approaching 60 per 100,000. It is interesting and as reported [Kondrashova et al. 
2008] that neighboring Russian Karelia, with similar genetic HLA genotypes, have folds 
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less incidence. Swedish population also has relative high risk for T1D and has the highest 
rate of 3% regarding celiac disease [Ascher et al. 1991], double the global population average. 
Current investigated environmental risks are diet and viral factors. DIABIMMUNE is a 
recent study cohort involving Finland, Estonia and Russia [Yassour et al. 2016, Vatanen et 
al. 2016] children, investigating diet and microbial diversity differences. TEDDY, a NIH/
JDRF funded prospective from birth cohort [Lee et al. 2015] involving 8500 children from 
Sweden, Finland, Germany and United States, are performing NGS extraction from regular 
stool, nasal, plasma along with diet, health history, medication and other information. 
Together with metabolites and gene expression from plasma, this large and valuable 
repository will allow informatics and biostatiscians to apply system biology methodologies 
in addition to nested case control models. DIPP, based in Finland, began in 1994 and the 
details of its NGS pilot design used for Publication II is further described in chapter 3.  

2.3	 Virus T1D associations
Viruses and bacteria play important roles in human health. Influenza and polio are two 
well known diseases caused by virus infections. Viral diseases tend to have seasonality 
patterns and the infections can be can be acute or persistently dormant. For example, 
herpes infections can stay dormant in the human body for years before an acute outbreak. 
Norwegian scientist Gundersen proposed an infectious virus theory in 1927 [Gundersen 
1927] after a mumps epidemic to explain an unexpected rise in T1D in a Norwegian 

Figure 2. T1D autoimmunity precedes disease. Islet cell autoantibodies are predictive of disease while 
selected HLA genotypes represent the highest genetic risk.
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village. In the almost hundred years since that report, Coxsackie B virus (CVB) is the most 
implicated virus as causative agent. Pappenheimer in 1951 showed that CVB can cause 
pancreatic damage in mouse. Using mice, Coleman, Gamble and Taylor found excessive 
CVB4 antibodies within 3 months of disease onset [Coleman et al. 1973]. From that 
subliminal work, they went on to report coxsackievirus can induce diabetes in mice, and 
that importantly, there is a latency period between infection and glycaemia [Atkinson 
2012]. With improving biomedical technologies and pancreatic organ collection such 
as the JDRF funded Network Pancreas Organ Donors (NPOD) [Pugliese et al. 2014], 
enterovirus sequences have been found in pancreatic tissues and often statistically cited as 
risk factor associated with beta cell autoimmunity and T1D [Hyöty et al. 1995, Filippi & 
von Herrath 2008, Laitinen et al. 2014] but also selective serotypes as protective [Ghazarian 
et al. 2013] exposure due to early innate immunity development. The DIPP study was the 
first to systematically and comprehensively screen for EV antibodies and to report CVB1 
exposures significantly associated in children upon diabetes onset [Laitinen et al. 2014].

The timing of the development of immune system is also at the heart of the hygiene 
hypothesis [Strachan 1989] where the lack of microbial exposures in early childhood is 
being investigated for autoimmune disorders such as asthma, celiac disease and T1D [Stene 
& Nafstad 2001]. Circoviruses have been cited recently as protective, demonstrated by 
an increase in the non-autoimmune control population [Zhao et al. 2017] compared to 
children who developed pancreatic islet autoimmunity, though the finding was statistically 
significant, it was only 11 case control pairs. Very recently, strong signs of interferon, 
protein for signaling adaptive immunity activation, were found in enterovirus infected 
longitudinal blood samples from high risked T1D compared to paired children [Lietzen 
et al. 2018]. Notably investigators in DiViD, a Norwegian study, were the first to find 
enteroviral capsid protein, VP1, in fresh pancreas of living patients within weeks after 
diagnosed with T1D [Krogvold et al. 2015]. Though the findings were from six adults [24–
35 years] recently diagnosed, the enterovirus VP1 protein pancreatic presence is supportive 
of the hypothesis that T1D can be triggered by a low grade and chronically persistent 
enterovirus infection whereas prior it had been assumed to be caused by an acute viral 
infection. Within a nationwide survey in Taiwan, enterovirus infections were found to be 
significantly associated with T1D, 5.73 per 10,000 compared to 3.89 per 10,000 enterovirus 
free children [Lin et al. 2015].
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Table 1. Viruses associated with T1D from PubMed. Coxsackievirus B, in the enterovirus genus, has 
by far the highest co-occurring citation with T1D.

Species/Serotype Taxonomy/Genus PubMed T1D 
Citations

Other associated human 
ailments (Center of Disease 
Control)

Coxsackievirus B ssRNA, Enterovirus 116 Encephalitis, Myocarditis, Grippe
Mumps rubulavirus ssDNA, Rubulavirus 40 Mumps
Human Cytomegalovirus 
(HCMV)

dsRNA, Cytomegalovirus 24 Immunocompromised Hepatitis 

Human Adenovirus dsDNA, Mastadenovirus 21 Bronchitis, Myocarditis
Echovirus ssRNA, Enterovirus 20 Cold, Meningitis
Rhinovirus ssRNA, Enterovirus 5 Cold
Rotavirus dsRNA, Reoviridae 5 Cold, Gastroenteritis
Norovirus ssRNA, Norovirus 4 Gastroenteritis
Rubella virus ssRNA, Rubivirus 4 Rubella
Coxsackievirus  A ssRNA, Enterovirus 

genus
2 Hand, foot and mouth disease; 

herpangina 
Circovirus ssDNA, Circovirus 1 None
crAssphage ssDNA(unconfirmed) 1 None

2.4	 Bacterial T1D Associations
As multiple pancreatic autoantibodies usually precede disease onset, it is clear that T1D 
is an immune T-cell driven disease, and it has been proven in animal models that a non-
functional immune system prevents T1D [Buschard 2011]. T helper cells are activated by 
inflammation and the theory of a leaky gut and autoimmunity have been proposed [Bosi 
et al. 2006] and forms the main basis of bacteria-related T1D trigger. The HMP project 
revealed that there are magnitudes more bacterial cells in human gut than human cells. 
Importantly, it was shown that certain gut bacteria species are producers of short chain 
fatty acid (SCFA) butyrate metabolites. These butyrate metabolites, as an energy source, 
are vital to the health of intestinal epithelial cells [Donohoe et al. 2011] and a non-leaky gut.  
SCFA, known to be associated with high fiber diets, has also been shown to have beneficial 
roles in colon cancer [Bergman 1990, Lupton et al. 2004] via direct promotion of colorectal 
carcinoma cell apoptosis [Lazarova et al. 2004]. 

Cardwell and colleagues recently reported that children from caesarean (C-section) 
birth method have a 20% higher chance of T1D [Cardwell et al. 2008]. This finding lends 
supports to the aberrant gut bacteriome hypothesis as babies delivered from caesarean are 
initially exposed to bacteria composites from the hospital doctors and hands. It follows 
that in a natural birth, babies are exposed to the maternal birth channel where it is richly 
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populated with Lactobacillus and Bifidobacterium [Muller et al. 2015]; know to be 
important phyla for early gut microbiome development. 

A clear symptom that is predictive of immune activity is inflammation and investigators 
have suggested bacterial dysbiosis, or gut microbial imbalance as a triggering mechanism 
for excessive inflammation. Dysbiosis represents an increasing instability and lowered 
bacterial diversity and thereby drives the likelihood of a leaky gut allowing gram negative 
bacteria to escape via the gut linen and into nearby organs including the pancreas. Gram 
negative bacteria membranes consist of lipopolysaccharide (LPS) and capably releases 
pro-inflammatory cytokines [Babbas 2006] and can potentially increase havoc on the 
host immune system and help bring upon autoimmunity. In parallel with lowered alpha 
(intra-sample) diversity and microbial imbalance, the hygiene hypothesis [Strahan 1989] 
points to insufficient amounts of exposure to non-pathogenic microbes during early innate 
immunity development, particularly within modern and industrialized households. It has 
been shown that gut microbial is particularly robust during initial development and tends 
to become more stable and resembling adult systems after 2–3 years of life. Both short 
term [Jakobsson et al. 2010] and long term antibiotics usage have been shown to promote 
bacterial resistance, lower diversity and shift microbiota stability negatively [Jakobsson et 
al. 2010].

A recent work using DIPP samples found that the Bacteroides phylum population, 
measured as relative abundance, was significantly higher in case children prior to 
autoimmunity relative to control children.  Moreover, the investigators were able to 
pinpoint the species to be Bacteroides dorei [Davis-Richardson et al. 2015]. The authors 
had 947 samples from 29 children with 47 controls though the children were drawn from 
the same Turku hospital, located in the southwest of Finland. As other reports have not 
yet confirmed this result [Vatanen et al. 2016], it underscores that the development and 
dynamics of gut microbial population is an active research area with important ramifications 
in the field of autoimmune disorders impacting children. Within Publication II, our design 
is similar though smaller with 18 case control matched groups and includes children from 
other Finnish cities Tampere and Oulu, we also found that imbalance within Bacteroides 
phylum is significant but that the species Bacteroides vulgatus were higher in controls 
compared to cases prior to autoimmunity, additional details are provided in results and 
discussions chapters.

2.5	 Metagenomics analysis
Metagenomics design involve direct sequencing from environmental samples. The amounts 
of sequenced reads produced varies greatly and depend on the amount of genetic richness 
and sequencer capacity. Reflected in HMP and our experiments, samples typically average 
millions of reads resulting in gigabytes per sample file.  The two central aims for bacteria 
and viral metagenomic experiments are identifying and profiling the population and also 
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answering the functional, or protein products of this population. Bacterial profiling most 
commonly uses targeted amplicon 16S rRNA gene to identify bacteria taxonomy. While 
cost effective, one limitation is that novel species cannot be identified. Leading tools and 
common processing steps to process 16S reads are listed below. Sequences from whole 
metagenome shotgun experiments are needed to address bacteria functionality. While 
not applicable to this thesis, MEGAN [Huson et al. 2011] and HUMAnN [Abubucker 
et al. 2012] programs were used and cited for functional analysis within the HMP.  Virus 
profiling demands shotgun experiments as it lacks a universal marker gene. First, a quality 
control (QC) step focuses on quality control (QC) of read quality, coverage and length 
requirements. Second, using the QC outputs, the reads are passed into assembly methods 
to generate an intra-sample representative set of reads or contigs. This important step is 
commonly called de novo assembly and some virus profiling pipelines can choose to 
bypass this step and proceed directly to database mapping. The features and aims of recent 
published virus profiling pipelines are listed in Table 2, including Publication III. 

2.5.1	 Bacteriome processing

For bacteriome processing, with hundreds of citations, the two most popular and 
extraction programs are Mothur [Schloss et al. 2009] and QIIME [Caporaso et al. 2010]. 
Both programs are comprehensive and offer QC, assembly, qualitative and quantification 
functions. Recently, the creator of Mothur wrote an informative online article comparing 
the two tools (http://blog.mothur.org/2016/01/12/mothur-and-qiime/) and notes that 
both relied on similar reference databases, produced consistently good and comparable 
results. Mothur is a self contained program while QIIME in essence is a wrapper calling 
other published algorithms, hence easier to pass in custom parameters.   

Our work in Publication II follows standard 16S sequence processing and in part based 
on standard of procedure recommended by Mothur and QIIME. Operational taxonomic 
units (OTU) are found from clustering of highly similar reads and taxonomy levels are 
assigned using SILVA [Quast et al. 2013] database. The processing pipeline details, including 
parameter assigned are further described in the next chapter. While QIIME and Mothur 
have functions for plotting and diversity analysis, we convert the QIIME format OTU 
table to text based using Biological Observation Matrix (BIOM) [McDonald et al. 2012].  
The converted table and taxonomy distance matrix files subsequently act as inputs for R 
packages phyloseq [McMurdie & Holmes 2013], DEseq2 [Love et al. 2014] for diversity 
profiling, plotting and comprehensive statistical modelling and comparisons.
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2.5.2	 Virome processing

Compared to bacteria identification via 16S sequencing, virus identification with massive 
parallel sequencing samples is more complicated as viruses do not have a universal genome 
marker. As such for Publication II, after quality control filtering, we performed de-novo 
assembly using Velvet [Zerbino et al. 2008] to retrieve intra-sample contigs. The non-
overlapping contigs are fed into local BLAST (Altschul et al. 1990) against all known viral 
genome database for identification. For population estimation, we randomly select 100,000 
reads and then apply aligner BWA [Li and Durbin 2009] against virus list from BLAST. For 
Publication II, all identified human viruses are then confirmed using PCR and statistical 
testing on the extracted virus data matrix was done in R using conditional logistics testing.

2.5.3	 Pipeline development

From the experience of publication II and having evaluating current virome pipelines (listed 
in Table 2 and adapted from Publication II), we reasoned that a web based tool capable of 
profiling multiple virome samples would benefit ongoing and future virus NGS studies. 

Table 2. Comparing available NGS virus extraction pipelines – Vipie, presented in Publication II, is the 
first web based tool to allow multiple samples while integrating different de novo assembly methods. 

Pipeline Vipie
[Lin et al. 2017]

ViromeScan
[Rampelli et al. 
2016]

VirusTAP
[Yamashita et 
al. 2016]

Virome
[Wommack et 
al. 2012]

MetaShot
[Fosso et al. 
2017]

Primary goal Parallel analysis 
of multiple viral 
metagenomes 
from web 
and suited 
for molecular 
epidemiology 
studies.

To profile 
viromes using 
databases 
of existing 
eukaryotic 
viruses without 
assembly.

Identification 
of viruses in a 
sample, after 
a thorough 
elimination of 
known non-viral 
sequences.

Classification of 
all putative ORF 
found in a viral 
metagenome, 
characterization 
of viral 
communities.

Highly 
accurate and 
comprehensive 
workflow for 
host-associate 
microbiome 
classification 
on multiple 
samples.

Web based Yes. No. Yes. Yes. No.
Outputs Interactive table, 

plots, clustered 
heatmaps and 
raw downloads.

Static 
population pie 
charts. Sample 
based clustered 
heatmaps.

Contig based 
hits and 
seamless 
web BLAST 
interface.

Rich collection 
of sample 
source virome 
ORF and 
sequence 
categories.

A Krona graph 
and Interactive 
Taxonomy HTML 
table and csv 
file.

Source data Paired-end 
reads; fastq 
format.

Sinle-end or 
paired-end 
reads; fastq 
format.

Paired-end 
reads. Accepts 
also single-end 
reads; fastq 
format.

sff, or fastq; 
intended for the 
454-generated 
metagenomes.

Paired-end 
reads in fastq 
format.
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Pipeline Vipie
[Lin et al. 2017]

ViromeScan
[Rampelli et al. 
2016]

VirusTAP
[Yamashita et 
al. 2016]

Virome
[Wommack et 
al. 2012]

MetaShot
[Fosso et al. 
2017]

Trimming and 
filtering

YES, as the first 
step.

YES, after 
selection of viral 
reads, at the 
level of a bam 
file.

YES, as the first 
step.

YES: quality 
based; duplicate 
filtering; 
contamination

YES, as the first 
step.

De-novo 
assembly

YES, a choice of 
assemblers.

No. YES, a choice 
of assemblers; 
done after 
subtraction 
steps.

No. No.

Subtraction 
of human ref. 
and bacterial 
ribosomal 
sequences

Optional, only 
for the output 
of dark matter 
sequences.

YES, using 
Human 
Best Match 
Tagger. No for 
ribosomal.

YES, also other 
host databases 
available 
(mouse etc).

Not specified 
for human. 
Ribosome is 
removed using 
BLAST against 
rDNA db.

Yes, reports 
identification 
of human 
host reads 
and bacterial 
mappings. 

Means 
of virus 
identification

(a) BLAST 
against a pan-
viral database. 
(b) Remapping 
of original reads 
to the identified 
candidates.

Mapping to the 
members of the 
virus database 
using bowtie2 
[Langmead & 
Salzberg 2012]

BLAST search 
against the 
NCBI nt 
database.

Protein 
BLASTP upon 
two databases. 
Several tiers of 
classification of 
the ORFs.

Custom similarity 
workflow with 
hamming 
distance. 

Virus 
database for 
identification 

A custom 
database 
containing 
20759 human, 
animal, plant and 
bacterial viruses. 

Eukaryotic 
viruses only. 
Four custom 
databases 
available for 
download.

Specificity is 
maintained by 
the subtraction 
steps prior to 
assembly and 
BLAST search.

UniRef 100 
peptide 
database, five 
annotated 
protein 
databases, 
MetaGenomes 
On-line.

TANGO [Alonso-
Alemany et al. 
2014] and NCBI 
Taxonomy.

Action when 
a read maps 
to different 
viruses

Score is split 
among the 
hit reference 
sequences.

Not specified. Not specified. Not specified. Parsed 
for human 
endogenous 
retrovirus 
otherwise 
classify as 
ambiguous and 
discarded. 

De novo assembly is pivotal as the step efficiently reduced the number of reads while 
optimizing for quality and maximizing relevant continuous read lengths. Listed in Table 2, 
VirusTap [Yamashita et al. 2016] is the only pipeline allowing de novo assembly though only 
one sample is allowed. Another limitation is that the de novo assembly is done after filtering 
and removal of human and bacterial reads, thereby eliminating all possible viral reads 
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similar, or projects investigating viral and host molecular mimicry. Actually, molecular 
mimicry has been touted as a possible trigger for T1D [Atkinson 2001] and it has been 
noted that Coxsackie virus B and GAD auto-antigen that is expressed in islet beta cells 
have a similar sequence of amino acids [Atkinson 1997]. In addition, casein protein found 
in cow milk have been shown to have cross reactivity with human insulin [Adler et al. 
2011] thereby potential trigger for the pancreatic insulin autoantibody.  For publication III 
Vipie pipeline, we have integrated five published assemblers, Velvet [Zerbino et al. 2008], 
MetaVelvet, IDBA, MEGAHIT (formally known as DE) [Li et al. 2015], and ABySS. These 
well cited assemblers, capable of de novo, were integrated based on our own experiences, 
collaborator practices and review recommendations [Narzisi & Mishra 2011]. 

Shown and simplified in Figure 3, genomic material from different organisms are 
amplified within a sample and de novo assembly attempts to construct long reads, known 
as contigs without using a reference genome. As metagenomic analysis tends to lack or a 
composite of many reference genomes, de novo assembly is often a key step. The choice of 
kmer size is the most important as larger kmer implies longer overlaps, so higher specificity 
but larger kmers also result in lower sensitivity, since lower kmer increase the chances 
of overlaps and can lead to more contigs. In Figure 3, an example shows kmer length 
of 7 where sequences are split into that length, and sequences with a K-1 similarity are 
grouped, provided by Velvet initial function velvetg designed to build group of nodes and 
also meeting the coverage cutoff. The node also includes its reverse complement as a twin 
identifier. Velveth, the second step optimally connects the nodes, and the path becomes the 

Figure 3. Simplified short read assembly flow using de Bruijn graphs. Using example kmer length of 7, 
unique sequences with 6 continuous overlapping bases are stored as unique nodes and contigs are 
extracted from graphs constructed from the nodes. Kmer size selection decides the number of nodes 
created and implies a tradeoff between specificity and sensitivity.
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contig. The practical choice of K essentially is a tradeoff between specificity and sensitivity, 
since longer K has less noisy overlaps but also lower sensitivity due to less number of nodes.  

Viruses, due to its small genome size and large divergence, are under represented across 
bioinformatics databases. For example, currently within the EBI (https://www.ebi.ac.uk/
uniprot/TrEMBLstats) resource, only 3% of sequences submitted are classified as viral 
and only 7,512 complete genomes are available within NCBI (https://www.ncbi.nlm.
nih.gov/genomes/GenomesGroup.cgi). Strikingly, it has been estimated that there are at 
minimum over 300,000 mammalian viruses [Anthony et al. 2013].   For Publication II, 
we found that 74% were likely viral reads mapping to unknown viruses. The viral findings 
were only improved after including for RNA viruses, made possible after applying reverse 
transcription in sample preparation. Partially listed in Table 1, viruses play important roles 
in many facets of human health, and the need for a virome roadmap [Delwart 2013], to 
systematically identify novel human and animal calls for improved standards and tools. 

2.6	 Network visualization
In this section different types of systems biology interaction networks together with 
prominent visualization tools are introduced.

2.6.1	 Systems biology

Systems biology is based on integrating computer science and mathematics to model 
genomic interaction networks of biological systems. Systems biology advocates that to 
understand biological functions fully, the network relationships and structure of the 
relevant genomic component states must be mapped and modelled. While it is important 
to know the complete list of the genes and their protein products, the characterizing will 
remain a description and less insightful in investigating how phenotypes, the complex 
functions and traits of genomic system interact. This paradigm was first introduced by von 
Bertalanffy where described dynamic interactions as central problem in modern science 
[von Betalanffy 1950].   Still today, the main motivation of biomedical and cancer research 
is to detect signs of malfunction within the system, equivalent to finding genomic patterns 
or aberrant network interactions. 

2.6.2	 Biological networks and interaction types

One prominent type of systems biology network is protein-protein interaction (PPI) 
networks. As proteins seldom act alone, co-activations are approximated by correlation 
scores and then clustering. Most proteins are classified as stabled or transient. Stabled 
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interactions tend to be permanent with high structural affinity where transient proteins are 
temporal, consist of multiple states and associated with signaling. Gene regulatory networks 
(GRN), also called protein-DNA interaction, represent proteins such as transcription 
factors and other chromatin-associated proteins control gene expression. Gene regulatory 
elements can act as promoters, elevating gene expression, or reduce expression, repressors. 
Metabolic and enzyme networks are important tools to investigate metabolism states and 
relevant interactions. As there are well defined dependent chemical reactions prior to each 
enzyme activations, metabolic networks are time series and include helper molecules, also 
called co-factors. Certain biochemical and metabolic pathways are well conserved while 
some genetic pathways are unique to humans. Kyoto Encyclopedia of Genes and Genomes 
[Kanehis & Goto 2000] and WikiPathways [Slenter et al. 2018] are good and active resource 
for PPI, GRN and metabolic pathways stratify by organisms and domains.   Chromosomal 
structural events, such as copy number, large deletions and insertions and gene fusions 
have obvious important ramifications in development and particularly in cancer they are 
somatic, meaning that the structural aberrations are specific to cell types or even subcellular 
clones. Copy number, involving whole chromosomes, are usually detected directly from 
sequencing platforms.  Large aberrations can be detected with existing bioinformatics tools 
[Chen et al. 2010, Bressler et al. 2012] though gene fusion events are less straightforward. 

2.6.3	 Cytoscape

Cytoscape [Shannon et al. 2003] was the first comprehensive open sourced software to 
support molecular networks while offering a framework and settings for defining layouts 
and graph element styling. The styling attributes, using color and size, essentially are 
annotation descriptors and defined as mappers. The software also had support for multiple 
layouts, such as hierarchical, tree and circular. A layout controls the placement order and 
spacing of the graphical elements and is especially important for larger and denser networks.    

2.6.4	 Circos

Circos, introduced in 2004 by Martin Krzywinski, has advanced the circular layout 
form to be the aesthetic view of choice for most genetic and protein interaction views, 
particularly involving chromosomal structures. Because all genes and proteins can be 
resolve to a position, then an outer circular ring, the perimeter, segments can represent 
different chromosomes and other rings can represent attributes and annotations of those 
chromosomes. Genetic relationships are depicted as inner curved edges between two outer 
ring positions. Other advantages of circular layouts include more optimal spatial usage 
and particularly for cancer networks, intuitive patterns on trans chromosomal structural 
patterns and somatic aberrations. A grand highlight of circos was when circos graph was 
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featured in a Nature article concerning challenges of cancer [Ledford 2010] and since then, 
circos graphs have appeared in multiple prominent journals.  

2.6.5	 Limitations

Cytoscape and circos required installations and contain multiple dependencies. For 
Publication I, we seek to integrate and implement a web based software that is installation 
free and allows plotting genetic position networks for multiple model organisms, including 
human, mouse, fly, yeast and plant based organisms. Web based filtering is supported, 
and multiple annotation rings can be added using simple text files. In the Discussions, we 
present a scenario involving a metagenomic project using POMO to integrate different 
E. coli strain community tuning and usage of energy resources. POMO is open sourced 
software and can be used on modern browsers without registration. 

POMO is a self-contained and lightweight web program following LAMPS (Linux 
Apache PHP/Python SQLite) architectural design, depicted in Figure 4. 

Figure 4. Components for open source web programming – Linux based tools, commonly known 
as LAMPS architecture, are the main components and libraries for POMO and Vipie, presented in 
Publication I and III.  



28

The production and increased importance of biological networks also motivates the 
need to design frameworks to properly and consistently visualize the interactions and 
structures, particularly for cross chromosomal events. Meaningful visualization within 
large collaborations is essential for big data analysis and aids with effective communication 
and collaboration. 
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3	 AIMS OF THE STUDY

The central aim of this study focuses on analysis of metagenomics data, particularly virome 
profiling and analysis of gut bacterial and viral interactions within T1D. In addition, 
the study presents the development of a web tool to plot genomics networks for multiple 
organisms, including bacterial and virus as custom defined references. In detail the aims 
are: 

1.	 To perform data analysis on the role of gut bacteria and bacteriophages in T1D 
autoimmunity.

2.	 To develop and automate a web based pipeline, derived from aim 1, for profiling 
virus populations in metagnomics samples.

3.	 To develop an easy to use tool for plotting of genomic networks for multiple model 
organisms

4.	 To evaluate and apply these resources within metagenomic studies and T1D cohorts. 
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4	 BIOINFORMATICS ARCHITECTURE AND 
METAGENOMICS MATERIALS AND DESIGN

In this chapter I will introduce virome samples, example networks, open sourced tools and 
reference databases used in Publication I and III. I will go over some design features and 
benefits particularly within open sourced paradigm and web programming. In addition, 
the motivation and design of Finland based Diabetes Prediction and Prevention (DIPP) 
study’s pilot cohort focusing on gut microbiome profile association with early age T1D 
autoimmunity addressed in Publication II will be provided. 

4.1	 Open sourced and web programming
Open sourced programming and practices have the primary advantage of code visibility 
and hence ideal environment for promoting collaborations.  As the paradigm allows for 
free non-profit usage and modification, it is ideal for meeting biomedical academic research 
goal of reproducibility. All code and statistical scripts within this thesis, including POMO 
web plotting and Vipie pipeline are open sourced. User guides and example samples and 
networks, discussed further in samples section, are available in sourceforge repositories. 
Moreover, all key dependent technologies (when relevant, referenced in chapter 2), are 
listed in Table 3, and the core primary languages JavaScript, Python and R are also open 
sourced. The architectures and web flows for POMO are captured in Figure 5A and Vipie, 
Figure 5B. 
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Table 3. POMO and Vipie, built on open sourced technologies and dependencies, are web based 
applications available for non-profit research. 

Application POMO1 Vipie2

Web HTML5,  Javascript HTML5, Javascript
Language Python2.7 Python2.7
Clustering None R
Database SQLITE 3 Postgres 9 
Webserver Apache 2 Apache 2
JavaScript libraries jQuery, Cytoscape, D3, QuickVis jQuery, Highcharts, DataTables
Server side None FastQC, Velvet, BLAST, BWA
Denovo assembly None Velvet, MetaVelvet, ABySS, SOAPDenovo, IAA
Supported Browsers All, IE 10+ All, IE 10+

1  https://sourceforge.net/projects/finnpomo
2  https://sourceforge.net/projects/vipie

4.1.1	 Interface design and workflow

Web browser based programs, compared to local desktop programs, have the advantages 
of installation free, easy version updates and consistent browser interfaces. Some negative 
features are dependency on network speed and security breach concerns. As the programs 
are designed for university and academic research centers connected to high speed 
internet, network connection speed is less of a concern. HTTPS protocol, designed to 
encrypt data exchange, is enforced for security. Vipie also requires username and password 
registration for security, status communication and process management reasons. Input 
files, such as protein interactions and annotations, are uploaded using HTML5 dialogs. 
Network plotting on the browser is very fast; thousands of edges can be plotted in seconds 
and filtering is supported without storing uploaded files. There is an upper limit of 20 
gigabytes archived file size per job to lessen chance of server overload. Archived files are 
compressed and therefore this upper limit meets most metagenomic Illumina BaseSpace 
project downloads. On large jobs that cannot be split or reduce, we recommend trying 
one of the offline tools listed in Table 2, including Vipie local instance. Studies involving 
large number of samples are more suitable for high performance and parallel computing 
(HPC) architectures. Further described in discussions chapter, HPC Vipie instance has 
been used to process thousands of TEDDY stool virome samples integrating Linux native 
HPC paradigm. 
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Figure 5. POMO and Vipie architectures – (A) POMO graphs are plotted from omic interactions and 
annotations files, uploaded from modern browsers. (B) Multiple metagenomics virome samples can 
be archived and uploaded in Vipie. Virus profile results are presented as clustered heat maps and 
interactive table.

A

B
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4.2	 Reference Databases
Within all disciplines of biomedical research and particularly systems biology, the 
importance of model organisms as reference databases and comparative resources cannot 
be overstated. It was only in 1997 that Baker’s Yeast became the first complete eukaryote 
genome release [Goffeau et al. 1996] and it showed essential metabolism related gene 
homologs and also surprisingly human oncogenes [Botstein et al. 1997] in the yeast 
genome. Obviously besides human, for comparative genomics and biomedicine, annotation 
reference genomes of higher organisms such as worm, fly and mouse are required. POMO, 
listed in Table 4, has integrated those organisms and in addition to human reference, also 
plant based model organisms and bacteria E. coli. Rat and assorted E. coli strains have been 
added after publication due to user demand. POMO also has a feature to allow users define 
custom genomes and plot any nodes and edges based on positional index features.  

Table 4. Model organism annotations – POMO supports multiple organisms and can translate their 
gene labels into chromosome coordinates via integration of their genome reference annotation 
sources.

Organism Build Source URL
Human GRCh37.p11 ENSEMBL www.ensembl.org/Homo_sapiern/Info/Index
Fly BDGP5 Fly base Flybase.org
Mouse GRCm38.p1 MGI www.informatics.jax.org
Rat RGSC3.4 Rat Genome Sequencing 

Consortium
http://rgd.mcw.edu/sequences/rgp_info.shtml

Worm WBcel235 Worm Base Wormbase.org
Yeast EF4 SGD www.yeastgenome.org
Zebra fish Zv9 ZFIN www.zfin.org
Arabidopsis TAIR10 TAIR www.arabidopsis.org
Rice MSU6 MSU Rice.plantbiology.msu.edu
Tomato SL2.40 SolGenomics Solgenomics.net
E. coli MG1655 Ecocyc Ecocyc.org

4.2.1	 Viral databases

Vipie has integrated a local BLAST [Altschul et al. 1990] instance towards NCBI refseq 
database, reduced using CD-HIT [Li & Godzik 2006] consisting of all viral references. 
In addition, full viral genome sequences from Genbank are also stored and indexed. A 
PostgreSQL instance manages pairwise similarities between all relevant accessions. During 
population remapping, the pairwise scores are applied in scenarios where fragment reads 
are mapped to multiple genomes, thereby the reads are proportionally assigned to the highly 
similar strain accessions. Currently, 3 421 viral accessions have been processed and stored. 
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In cases of novel viral accessions, Vipie contains an automatic function to retrieve from 
NCBI web service the full genome sequence. Following the download, similarity scores 
between other genomes and indexes are computed. 

Vipie workflow interface includes sample based web reporting and optional incremental 
flagging of potential human genome and non-viral microbial ribosomal mapped reads prior 
to viral population remapping. The database server has integrated the complete human 
reference [The Genome Sequencing Consortium 2001] update 19 and NCBI bacterial 
ribosomal 16S and fungal via 23S releases (ftp.ncbi.nlm.nih.gov/genomes/TARGET). 
Furthermore, using the high quality 5SRNAdb reference [Szymanski et al. 2016], the 
workflow also checks for ribosomal RNA and associated gene resources containing more 
than 7,000 organisms covering three separate taxonomic domains: Archaea, Bacteria and 
Eukaryota.

4.3	 Diabetes Prediction and Prevention and gut 
microbiome association to autoimmunity

The Finnish based study Type 1 Diabetes Prediction and Prevention (DIPP) is committed 
to assess and innovate methods to predict, delay and ultimately prevent the disease with 
goal of advancing understanding of the mechanisms leading to T1D autoimmunity and 
pathogenesis.  DIPP recently celebrated its 20th anniversary of discovery and innovation 
[Haller & Schatz 2016], the program was launched in 1994 and is one of the first from-birth 
prospective, large scale T1D focus projects. Until now, 200,000 infants have been screened 
for high risk genetic alleles and close to 17,000 candidates have been invited and enrolled in 
the study. Once enrolled, the children are encouraged to participate in 3–12 month interval 
appointments until they are age 15. Coincidentally and as reported in multiple countries 
[Gale 2002, Gardner et al. 1997, Karvonen et al. 2000], diabetes rate and onset have shifted 
towards younger children. As most new T1D cases fall on children without first degree 
relatives, DIPP’s application of HLA risk screening seems appropriate and comprehensive.  

During scheduled visits, blood samples are drawn to check for autoimmunity with the 
comprehensive islet autoantibody markers ICA, IAA, GADA and IA-2A (ZNT8 is also 
tested if child is positive for any other markers). Inflicted children and their parents are 
offered counselling, guidance and opportunity to take part in intervention trials aiming 
at preventing or delaying the development of T1D. Medical history such as infections, 
vaccinations, allergies and other background household data, including pets and diet were 
also collected along with checking for glucose tolerance. Stool samples were collected 
monthly until the child was 3 years old. DIPP investigators have a history of launching 
sub-studies to focus on potential important environmental factors. 
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4.3.1	 Subjects

Publication II is based on a Metagenomic pilot project to assess gut microbes in stool 
samples from selected DIPP children with very-early islet autoimmunity confirmation and 
subsequent clinical T1D onset. The median age for the onset of autoimmunity was 17.4 
months, and all case children confirmed for T1D at median age of 3.2 years (interquartile 
range 1.4–4.4 years). Healthy children matched for location, HLA, time of birth and age 
of sampling were selected as controls. In European countries, researchers have reported a 
steep and troubling increase in diabetes in the very young where 0–4 years old kids showing 
the highest relative increase, 5.4% and almost double the increase in ages 10–14, 2.9% 
[Patterson et al. 2009]. We reason that the immune systems of very young children might 
be more susceptible to virus infections and bacterial gut imbalances. In addition, subject 
infection and healthy histories were not considered.

4.3.2	 Samples

For all DIPP study subjects described in Publication II, three stool samples were analyzed. 
These samples were collected in 3 month intervals, approximately at 3, 6 and 9 months 
time points prior to the onset of islet autoimmunity. Stool sample ages, all prior to 
autoimmunity, ranged from 2.9 months to 17.3 months. Samples were collected at home 
and mailed overnight at -70 Celsius. A few case-control pairs only contributed one or two 
samples and all together, a total of 92 samples covering 18 case-control subject pairs were 
sequenced with Illumina MiSeq. 

Listed in detail with exact protocol steps, primers, size selections and included in 
supplement material [Kramna et al. 2015], Illumina sample preparation and amplifications 
were performed on stool supernatant, enriched for virus particles using filtering and 
ultracentrifugation to optimized viral signals. Sample preparations included reverse 
transcription to allow identification of DNA and RNA single and double stranded viruses. 
Amplification steps were adapted from prior work [Blinkova et al. 2010].  

4.3.3	 Data availability

The 16S amplicon bacteriome reads at 250 base pairs are available as compressed NCBI 
sequence read archives with identifier PRJNA311147. The virome sequence files are available 
as read archive PRJNA275568 in NCBI. All human virus findings were validated further 
with PCR. 
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4.3.4	 Hypothesis and motivations

The primary hypothesis aims to explore associations between gut bacteriome profiles 
with T1D autoimmunity over time. We seek to investigate difference in within sample by 
assessing visually and quantitatively model alpha diversity and community inter-sample 
beta diversity, dissimilarity as measure in UniFrac [Lozupone et al. 2007] and Bray-Curtis 
[Bray & Curtis 1957]. Alpha diversity measures applied include Shannon [Shannon 1948], 
Chao1 [2003] and Simpson [1949] diversities. 

While previous gut microbiome autoimmunity cohort studies [Vatanen et al. 2016, 
Davis-Richardson et al. 2014] have published bacterial imbalances and selected bacterial 
strains as increased risks with significance, none of the studies has had perfect agreements 
with another likely due to project designs and premises. The closest common findings are 
that changes at phylum Bacteroides is associated with T1D autoimmunity though it is 
also possible that fluctuation in Bacteroides, as it is one of the dominant phyla in human 
gut, is a side effect of inflammation from autoimmunity development. Our investigation 
applies multiple statistical models toward differential abundance and diversity measures 
between time points and case and control samples. The bacterial and viral phage correlation 
networks represent a novel attempt at finding potential host of crAssphage and association 
towards T1D autoimmunity. 

4.3.5	 Rarefaction and subsampling 

It is common and understandable that there are large differences in the number of sequence 
reads across samples. Subsampling, also called rarefaction, is a much discussed statistical 
procedure [McMurdie & Holmes 2014]. The support for subsampling is based on that 
samples with larger read sizes will have greater chance of finding rare microbes compared to 
samples with lower yields. To have comparable proportions, investigators used subsampling 
and it typically demands finding the read size from the smallest sample removal and then 
setting all other samples to this read size by randomly selecting reads from relevant samples. 
This procedure while addressing read size biases, likely also removes relevant information 
and introduces biases into diversity metrics and population profiles. 

Reduction of valuable sample yields is far from optimal as potential important and real 
but lowly represented microbial organisms are likely to be removed during subsampling 
processing. We did not perform subsampling and instead applied proportional differential 
abundance using DESeq2 [Love et al. 2014] and taking advantage of phyloseq-to-deseq tool 
within the phyloseq package [McMurdie & Holmes 2013]. These packages are available 
in R and Bioconductor [Huber et al. 2015]. The authors of phyloseq package also have 
included access functions to data model attributes and plotting functions for abundance 
and multiple diversity measures with aggregation functions covering all taxonomic levels. 
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4.3.5.1	 OTU construction and model application
Following best practice and standard 16S protocol processing, sample paired reads were 
merged and screened using Mothur [Schloss et al. 2009] software. The contig results 
then were further processed using Qiime [Caporaso et al. 2010]. Qiime scripts were 
applied as parameter customizations was easier to set. Operational taxonomic units 
(OTU), essentially groups of clustered sequences at 97% similarity were computed and 
the representative sequence was selected using the most abundant option. OTU typical 
standard similar thresholds are between 90% to 100% where 100% represent grouping on 
perfect matches. Chimeric reads defined to be non-prokaryotic were removed via usearch 
[Edgar 2010]. Bacterial taxonomy was assigned using SILVA, version 108 [Quast et al. 2013] 
database. To account for possible sequencing error, we removed OTUs with less than 5 
reads or found in only one sample, out of 92 total prior to abundance profiling and case 
control testing. Dependent on distribution pattern, multiple models in R were applied and 
false discovery testing was corrected using Benjamini-Hochburg [Benjamini-Hochburg 
1995]. For diversity significance between case and controls, Student’s t.test was used. In 
testing OTU counts between case and control with expected non-normal distribution, 
Wilcoxon signed-rank test [Wilcoxon 1945]. Differential expressed abundance testing was 
applied using negative binomial generalized linear model provided in DEseq2 [Love et al. 
2014]. Moreover, correlation analysis with Spearman rank [Lehman 2005] was performed 
between OTUs and bacteriophages across all time points.  In addition, investigation 
of possible time lagged effect, approximately 3 months, of viral phages on bacterial was 
conducted. Networks were constructed on pairs with threshold higher than 0.3 absolute 
correlation and p-value less than 0.001.

4.4	 Simulation data and validation samples

4.4.1	 POMO networks

POMO input genomic networks are algorithm and technology independent. Nodes 
must map to chromosome positions or for regulatory components, the position defined 
within the node label. Distal somatic aberrations, including gene fusions and other inter-
chromosomal events are all supported. Genomic circular view layouts are ideal for depicting 
structural aberrations and rearrangements. Within the results, we included scenario of 
visualizing and filtering somatic structural rearrangements founded in deep sequencing 
data using BreakDancer [Chen et al. 2009] from The Cancer Genome Atlas (TCGA) 
glioblastoma (GBM) study [Zheng et al. 2013]. Chromothripsis events, defined to be 
large localized rearrangements, associated with poor survival are defined in an annotation 
file that can be uploaded. We also visualized gene expression correlation network results 
calculated between human embryonic (hESC) and induced pluripotent stem cell (hiPSC) 
[Närvä et al. 2010].  The high quality yeast protein-protein interaction [Schwikowski et al. 
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2000] network was one of the first genome wide comprehensive protein studies and also 
part of the initial Cytoscape publication, can be found in the POMO archive. Example 
network and annotation files to define custom model organisms and comparative networks 
are accessible at https://sourceforge.net/projects/finnpomo/files/source-archive.zip.

4.4.2	 Vipie microbiome samples

To assess Vipie performance, workflow and interface, we used 11 samples from previous 
published HMP, and Japanese virus extraction projects [Yamashita et al. 2016] and also 
three unpublished samples from an African viral diversity project [Rodríguez-Diaz et al. 
2014, Mangani et al. 2014]. The sample type, source and sequence details are provided in 
Table 5. The published samples are included to serve as comparisons between Vipie results 
and known published works. Potential artefact reads were removed against viral blacklist 
accessions. The blacklist accessions are NCBI submissions containing vector, chimeric 
and synthetic constructs in their genus descriptions and further discussed in 4.4.4. Reads 
mapped to bacterial and human references are reported in Figure 11 and further discussed 
in discussions chapter. The statistical comparisons are further discussed in the results 
chapter. A compressed file containing all described 11 samples are available here: https://
binf.uta.fi/vipie/data/vipie_archive_ssampled.zip. 

Table 5. Vipie pipeline results and performance were tested with the following virome samples [Table 
3 Publication III]. 

Accession Source Sample Type Number of Reads
SRS072276 HMP Blood 438,879
SRS072318 HMP Blood 753,994
SRS014466 HMP Vagina 367,077
SRS015072 HMP Vagina 495,256
SRS072313 HMP Nasal 320,672
SRS072261 HMP Nasal 367,384
SRS072366 HMP Nasal 114,414
S11 Africa Stool 1,634,821
S12 Africa Stool 1,191,427
S14 Africa Stool 1,143,784
DRA004165 Japan Diarrheal stool 1,108,688
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4.4.3	 Simulation data

In order to compute exact precision and sensitivity, simulation metagenomic NGS reads 
were generated from ART sequence simulator [Huang et al. 2012] and systematically 
assessed. The composite had a total of approximately 20 million reads, of which 94% 
(19,582,500) were human, 4.8% bacterial (986,114) and 0.7% (146,886) viral. Vipie results 
compared favorably with among the best known pipelines, including MetaShot [Fosso et 
al. 2017] where this composite archive originated. Both precision and sensitivity scored 
above 96% and details are listed in Table 7 in Results chapter. 

4.4.4	 Blacklisted chimeric vectors

Vipie currently has built in filtering for a list of chimeric viral accessions that have been 
reported as problematic and potential Illumina sources [Mukherjee et al. 2015]. The 
filtering can be optionally turned. Potential chimeric reads are an ongoing concern for 
all sequencing analysis as they are specific to projects, sequencers and sample of origin. 
For instances fresh water [Fernandez-Cassi et al. 2017] and human stool have different 
baselines and the geographical location of sequencing might also need to be considered. 
Unexpected and consistent artefact [Wooley a& nd Ye 2009] viral reads found in relevant 
control sequence samples are potential signs for sequencer contamination or leak through 
from previous runs. 
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Table 6. Vector and synthetic accessions are optionally blacklisted to improve accuracy.

Accession Description
AF324493.2 HIV-1 vector pNL4-3, complete sequence.
AY656167.1 Chimeric dengue virus vector p4-D3L-ME, complete sequence.
AY656169.1 Dengue virus type 3 vector p3, complete sequence.
AY705791.1 Borna disease virus rescue plasmid pBRT7-HrBDVc, complete sequence.
AY744148.1 Dengue virus type 2 vector p2, complete sequence.
FJ436096.1 Synthetic construct Gallid herpesvirus 2 clone pC12/130-10, complete sequence.
FJ436097.1 Synthetic construct Gallid herpesvirus 2 clone pC12/130-15, complete sequence.
FJ593289.1 Human herpesvirus 1 transgenic strain 17, complete genome.
GU179001.1 Human herpesvirus 5 transgenic strain Merlin, complete genome.
GU474419.1 Synthetic construct modified HIV-1 subtype C backbone, complete sequence.
GU980198.1 Human herpesvirus 5 transgenic strain CINCY+Towne, complete genome.
HQ687214.1 Virus-induced gene silencing vector pCAPE2-PsPDS, complete sequence.
KF022001.1 Autographa californica nucleopolyhedrovirus transgenic, complete sequence.
KF493877.1 Human herpesvirus 5 transgenic isolate Towne-BAC-der, complete genome.
KJ540270.1 Vibrio phage CTX plasmid pCTX-3 Kan, complete sequence.
KP343683.1 Cyprinid herpesvirus 3 isolate FL BAC revertant ORF136 Luc, complete genome.
KR093640.1 Moraxella phage Mcat16, complete genome.
AY376438.1 Dengue virus vector p4(Delta30)
KX576684.1 Zika virus vector pZIKV-ICD, complete sequence.

4.5	 Statistical learning
Statistical learning, relevant in all data sciences, is the backbone of systems biology and 
here essential and relevant vocabulary with high level concepts are introduced [James et al. 
2013]. Statistical learning methods can be supervised or unsupervised. Classification and 
linear regression are supervised algorithms as they involved an output label, or outcome in 
relationship to the input whereas unsupervised methods do not require output labels and 
focuses on input variable patterns or distribution, such as clustering. Regression learning 
implies understanding and investigation of the relationships between variables within a 
data set. Input variables are predictors, also called independent and the outcome (output), 
can also be called response or dependent. Modelling essentially attempts to answer, 
or infer how the outcome of Y is affected as input variables {X1, …, Xp} changes. In the 
case that Y is numeric, the model is regression and when Y is categorical, or qualitative, is 
often considered a classification problem. Binary outcome models are handled by logistic 
regression. Certainly one of the key goals of any regression design is finding the effect 
of outcome, or response dependent based on individual inputs, or predictor variables. A 
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p-value less than 0.05 is usually considered significant. However, it is important to note 
that these main relationships, as they are called, can be a result of interaction between 
different input predictor variables and these non-independent effects need to be reported. 
Below I will introduce methods that have been applied to this thesis, including random 
forest and linear regression models.

4.5.1	 Random forest

Publication I had its roots in a project to manage and plot random forest, a learning method 
for non-linear data and classifying genome data is ensemble based random forest (RF) [Ho 
1995, Breiman 2001]. Ensemble implies improving on final classification and regression 
performance is based on assembly of many weaker models. Random forest builds large 
number of decision trees using a subset of the data and on each decision node, a random 
subset of the variables are selected and split based on the variable contribution to either 
entropy or impurity reduction, or GINI index [Tuv et al. 2009]. In essence all trees are 
walked to their ends while splitting on variables that maximizes homogeneity, or the shortest 
path to the leaf. To be exact, purity score is 0 when the relevant values are homogeneous. 
Random forest has been shown to be accurate and good performant, particularly if cross 
variable correlations are minimized [Touw et al. 2013]. RF also overcomes the over-fitting 
limitation of single decision trees by random selection of variables on each node and also 
using bagging, where out of bag samples are used for prediction assessment and validation. 
Aggregating all variable GINI index scores over all trees and splits, variable importance 
can also be reported. Interpretation of RF model results can be challenging [Chen & 
Ishrawan 2012] due to multiple randomizing steps and recommended sample bagging. 
While RF is assumed to be a black box, individual trees are accessible and comprehensive 
analysis of decision paths for the best ranked variable paths can offer insights particularly 
in conjunction with interactive plotting. 

4.5.2	 Regression and classification

In Publication II, generalized linear regression model was applied on bacterial abundances 
between case and controls. The model, implemented in DESeq2 (Love et al. 2014) used 
negative binomial distribution and is equipped and recommended to account for excessive 
variation, typical of bacteria abundances between samples. Publication II, the association 
with virus exposures towards autoimmunity is tested with conditional logistics regression 
model included in Bioconductor [Huber et al. 2015]. Bacterial-phage networks were scored 
using both Pearson bivariate correlation [Pearson 1895] and Spearman correlation suitable 
for ordinal counts or ranks [Lehman 2005]. 
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4.5.3	 Clustering

The primary goal of unsupervised learning is finding hidden patterns within data without 
the aid of labels or known classes, such as case and control identifiers. Clustering and 
association rule learning are classes of unsupervised learning and widely applied in machine 
learning and data mining. Clustering methods in essence finds groups based on similarities. 
As similarities are defined in the context of the data, clustering also have many different 
implementations and strategies. Hierarchical clustering is employed as part of Publication 
III, Vipie web pipeline results, heatmap plotting function where sample and their accessions 
are plotted as heatmaps and placed in nested groups based on virome profile similarities.  

4.5.4	 Sensitivity and precision

As part of Publication III Vipie performance benchmarking and validation, we processed 
simulated mock data consisting of sequences from human, bacterial and viral. Sensitivity 
and precision was computed between Vipie calls with correct read origins. 

Sensitivity or recall or True positive rate (TPR, 2.1) computing proportion of True 
positives (TP) accounting for False negatives (FN):

(2.1)	 TPR = TP ÷ P = TP ÷ (TP + FN)

Precision or Positive predictive value (PPV, 2.2) is computed proportion of True positives 
accounting for False positives (FP):

(2.2)	 PPV = TP ÷ (TP + FP)

F-measure (F, 2.3), a harmonic mean of precision and recall is defined:

(2.3)	 F = 2 × ((PPV × TPR) ÷ (PPV + TPR))

4.5.5	 Shannon diversity

For Publication III, viral alpha or intra-sample diversity is measured as Shannon [Shannon 
1948] entropy (H, formula 2.4) where the proportion of bacterial individuals belonging 
to the serial accession within the dataset of interest. Shannon entropy quantifies the 
uncertainty in predicting the individual species identified taken at random relative to 
relevant species population within dataset.

                              R
(2.4)	 H = − ∑ (pi ln (pi))
                             i=1
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Shannon index originates from amount of entropy, uncertain information, within a given 
string of characters. Within Vipie, this score quantifies the amount of uncertainty in viral 
taxonomy accession taken at random. Other measures, such as indexes such as Fisher, 
Simpson and Chao [Chao 2003, Fisher et al. 1943, Simpson 1949] can be calculated using 
the virome profile matrix available as part of downloads.
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5	 RESULTS

In this chapter, I describe the published tools and results presented in this thesis. First, 
I describe the plotting usability of POMO and an application involving comparison of 
microbial community energy usage (Publication I). Second, the main findings of Publication 
II study focusing on bacteriome association and correlation networks with bacteriophages 
towards early age T1D autoimmunity are discussed. Third, Vipie multi-sample virome 
pipeline interface, features and accompany results are highlighted (Publication III).

5.1	 Plotting omics networks for multiple organisms (Publication I)
POMO serves as a secured web based tool for genome-wide network visual exploration 
and promotes collaboration since the filtered results can be viewed in multiple layouts 
and shared as images or text inputs for future session inputs. The original motivation of 
Publication I was driven by need to visualized The Cancer Genome Atlas (TCGA) genetic 
and structural relationships, derived from omics data and produced by machine learning 
random forest [Breiman 2001] and comprehensive paired-paired feature correlations. In 
an effort to extend the TCGA configuration to mouse stem cells and also yeast networks 
produced by Hidden Markov Model [Baum & Petrie 1966], we realized that a generalized 
tool, fully web based that can handle plotting networks independent of learning methods 
and supporting different model organisms would be beneficial for investigators producing 
large scaled genomic interactions and structural aberration. 

To add more usability and value to the labs, the graphs can be exported as scaled vector 
graphs (SVG), a high quality image format while offering built in graph examples, in 
simple text formats such as tab separated or simple interaction format (SIF) extensions for 
different model organisms. 

5.1.1	 Nodes, edges and styling

The essence and simplicity of a graph is that mathematically it is defined and consists only 
of nodes and edges. POMO supports this definition by allowing users to upload a text 
file where each line is an edge representing two interacting nodes, with an optional score 
or strength or color describing this interaction. Within the same line, the nodes can be 
described with types, such as gene expression or methylation sources.  Using this definition, 
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and plotting reference chromosome regions as outer perimeter arcs, the nodes resolve or 
define to a position and inner arcs are drawn connecting the genetic positions. Additional 
chromosomal annotations, including copy number events, can be plotted as outer rings 
via uploaded text files.  Edges can be further described with colors, strength of interaction 
using quantitative measures, such as rank or correlation values and those can be filtered 
from the browser. We further integrated Cytoscape web to allow for additional layouts 
such as tree and force directed. 

5.1.2	 Model organisms

Listed in Table 4 of the Materials chapter, Publication I has integrated the full genome 
references of human, mouse, rat, worm, yeast, zebra fish, Arabidopsis, rice, tomato and E. 
coli. At the time of the project and we believe as of today, it is the most comprehensive 
collection of its kind while also supporting custom organisms. POMO users can temporally 
define custom versions of model organisms and then plot the interactions using coordinate 
based node labels.  

5.1.3	 Brain cancer genomic rearrangements

Chromosomal wide context layouts are intuitive lenses into global genomic aberrations 
such as gene fusion and structural instabilities. Some of the key findings from TCGA 
glioblastoma (GBM) study were poor survival with certain chromothripsis and genomic 
instability events [Zheng et al. 2013] and selected results are plotted in Figure 6 below. 
The number of supporting reads per chromothripsis event is represented by edge colors, 
grey (< 50), red (50 to 100) and blue (> 100). The outer ring provides the cytoband and 
chromosomes while the optional inner rings represent relevant gene copy number gains and 
losses, the innermost ring provides estimated fusion event. Part B of the figure represents 
the same graph using Cytoscape view and reveals 4 sub graphs. In addition to installation 
free, POMO node label flexibility, allowing gene names and/or positional node labels and 
edge color within text files provides increased usability. 
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Figure 6. Plotting genomic structural variations. The figure depicts TCGA GBM rearrangements and 
chromothripsis events associated with poor survival from whole genome sequencing. A) Edges colors 
are used to describe supporting reads, with blue larger than 100, red 50 to 100 and grey less than 
50. B) Cytoscape based network view showing the same data where the layout reveals 4 disjointed 
graphs. (Lin et al, 2013, Figure 3, BMC Genomics). 
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5.1.4	 POMO Edge filtering and bundling 

Genomic networks mined from omics data are often large and dense. We have implemented 
several filtering options including edge score comparisons and node label and type matching 
and the graph is refreshed with filtered results. Figure 2 in Publication 1 shows the original 
45,791 graph of human embryonic stem cell (hESC) and human induced pluripotent stem 
cells (hiPSC) copy number correlations [Närvä et al. 2010, Hussein et al. 2011] and then 
a refreshed graph after selecting top 2000 based on absolute correlation, with pink edges 
depicting negative relationships. 

Genome context views have a clear spatial limitation where nodes very close to each 
other will be blurred or not visible. To alleviate this limitation, POMO has a tabular view 
showing all edges and also edge bundling option, users can define central nodes, in effect 
hubs, where the proximal nodes within defined nucleotide distances are grouped. An 
example workflow is further described in POMO user guide, available on the website. 

5.1.5	 POMO example metagenomic application 

POMO was applied in a study to investigate microbial community, from wastewater, usage 
of resources between generalist, physiologically versatile versus narrow niche specialist 
bacterial organisms [Muller et al. 2014] via integration of 16S NGS and metabolome 
data from LC-MS. Reproduced here as Figure 7 [Figure 3, Muller et al. 2014], mRNA 
expressions, protein and SNP rings of 10 reconstructed genomes, scaled using base lengths, 
were plotted using POMO and additional graphs were included in its supplement. 

Figure 7. Applying POMO in metagenomics – Graphs reconstructed using microbial genome mRNA, 
protein expressions and SNPs detected data (Permission granted from Nature Communications).
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5.2	 Investigating microbiome associations in early 
islet autoimmunity (Publication II)

5.2.1	 Viruses found in stool virome

Bacteriophages were found in 54% of the stool virome samples, crAssphage being the most 
abundant. Human viruses, including viruses with either DNA or RNA genomes, were 
found in 10.4% of the samples, and further validated using real RT-PCR [Kramna et al. 
2015]. There were not any statistical significant associations with virome composition and 
autoimmunity. 

Gut bacteriome
Using tightly matched case and control groups, bacterial alpha diversity in stool samples 
was assessed and found to be not statistically associated with autoimmunity. Beta diversity 
plots also did not reveal clusters or obvious patterns. Agreeing with literature, the most 
abundant phyla were Firmicutes, then Bacteroides, Proteobactera and Actinobacteria.

At the OTU level, defined to be 97% sequence similarity over 250 bases, in effect allowing 
for maximum 7 base difference, four taxonomy units were found to be less abundant in 
cases compared to controls after adjusting for sample time of 3, 6 and 9 months prior to 
autoimmunity using DESeq2 generalized linear model with negative binomial distribution.  
The p-values were corrected for multiple testing via Benjamini-Hochburg [Benjamini 
and Hochburg 1995] correction and subsequent p-values less than 0.05 were considered 
significant. The mean abundances were relatively higher in control samples compared to 
cases, three of the OTUs mapped to phyla Bacteroides and one to Bifidobacterium, and at 
the species level B. caccae, B. dorei and B. vulgatus. While validating reported Bacteroides 
dorei dysbiosis autoimmunity [Davis-Richardson et al. 2015], we found that our strongest 
signal included a combination of B. dorei and B. vulgatus as the two species are just one 
nucleotide apart on the 16S V4 stretch of 253 bases. We repeated the analysis with 100% 
similarity, in essence no binning and using absolute sequence, and we confirmed the B. 
vulgatus inverse association towards islet autoimmunity, adjusted for sample age, but B. 
dorei was no longer significantly different between case and controls, across any of the sample 
ages. The B. dorei and B. vulgatus findings were further validated via PCR quantifications. 
OTUs mapped to Bifidobacterium catenulatum and Bifidobacterium bifidum were found 
to be significant though their mean abundances were 4 times less than B. vulgatus [Table 
2 in Publication II]. 
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5.2.2	 Integrating virome with bacteriome

We constructed web based correlation (rho) networks visualizing the abundance data 
of viral bacteriophages versus bacteria abundance. All quantities were normalized to 
10,000 reads. The network was pruned so that edges were retained only if their absolute 
Spearman correlation was more than 0.3 and P values less than 0.001. After making the 
sample-wise correlation network we also made networks shifted by 3 months to investigate 
how bacterial abundance correlates with upcoming phage abundance and vice versa. The 
interactive networks are available at: https:// http://compbio.uta.fi/phagenet/v2/index.
html. A searchable tabular table is also provided for clarity and usability.

Figure 8 depicts case (top) and control (bottom) sample correlation networks of phage 
and bacteria. Spearman correlation was used to account for non-Gaussian distribution 
and spurious associations were pruned using thresholds significant p-value less than 0.001 
and absolute correlation value greater than 0.3. The side of the circular nodes are scaled 
according to population magnitude where red and pink edges represent positive correlation, 
while blue for negative values. There are closed to 50% more edges in the case graph, 67 
compared to the control network with 44. There are also double the number of viral phage 
nodes in the case network, represented as orange and dashed edges for added visibility. 
Shown in top figure, we found that CrAssphage was correlated with Bacteroides dorei (rho 
= 0.56, p-value < 0.0001) but not with any other Bacteroides group members. Temporal 
based networks according to 9, 6, and 3 months before autoimmunity were constructed 
and we observed an increase in phage bacterial correlations getting closer to autoimmunity 
confirmation. Between case and control networks, we did not find any strong common 
edges though intersecting the 3 time point specific networks revealed strong, > 0.6 
correlation. Interestingly, 9-month bacteria:6-month-phage networks showed the highest 
number of phage interactions, with seven while on the next iteration, 6-month-bacteria:3-
month-phage the number was reduced by more than half to just three.  
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Figure 8. Correlated networks of bacteria and phages – Case graph (A, top ) has 50% more 
edges and viral phage, in orange, nodes compared to control graph (B). Negative correlations 
are represented as blue, while red are strong positive correlations. These graphs are built using 
cytoscapejs and best accessed on web page http://compbio.uta.fi/phagenet/v2 where correlation 
networks from 3, 6 and 9 months prior to autoimmunity are also available. 

A

B
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5.3	 Vipie web based virus profiling pipeline for 
multiple samples (Publication III)

5.3.1	 Mock data precision and recall results

Using approximately 20 million of simulated human and microbial reads and listed in 
Table 7, Vipie achieved good precision (96.85%), recall (95.36%) and F-measure (96.08%) 
results relative to MetaShot [Fosso et al. 2017]. The simulation data was listed in Materials 
chapter and built using ART sequence simulator [Huang et al. 2012]. While Vipie reports 
bacterial content based on 16S ribosomal matches, simulated data included bacterial reads 
from full genome and these contributed to Vipie’s higher unclassified read percentage of 
6.73%. Simulation inputs and scripts applied can be found on Vipie source code page. Not 
shown here but relative to MetaShot Table 1 [Fosso et al. 2017], Vipie viral precision and 
recall metrics were better than Kraken [Wood & Salzberg 2014] and MetaPhlAn2 [Truong 
et al. 2015].

Table 7. (A) Comparison of read assignments between MetaShot and Vipie on simulated dataseta 
consisting of 19,582,500 human (94.5%), 986,114 bacterial (4.8%) and 146,886 viral (0.7%) reads. 
Vipie percentages are based on random subsampling of one million reads and bacterial statistics are 
not reported and contributes to unclassified higher percentage. (B) Precision, Recall and F-measure 
are computed.

A
Assigned %b Correctly Assigned %c

MetaShot Vipie MetaShot Vipie
Human (host) 99.18 99.27 99.99 99.27
Viruses
Family 97.74 99.98 98.53 93.39
Genus 97.39 98.99 99.75 93.33
Species 97.81 93.66 96.70 92.97

B
Human (host) Virus

MetaShot Vipie MetaShot Vipie
Precision (%) 100.00 100.00 98.30 96.85
Recall (%) 99.97 99.96 98.19 95.36
F-measure (%) 100.00 99.98 98.07 96.08
Unclassified (%) 1.04 0.73 3.94 6.73

a. https://recascloud.ba.infn.it/index.php/s/nw4s9hqnF8QkBsK
b. The percentage refers to the total number of reads assignable to the specific taxonomic rank.
c. The percentage refers to the relevant assigned reads.
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5.3.2	 Interface design, parameters and status communications 

The architecture and main components of Vipie were drawn and described in previous 
chapter. Shown below in Figure 9, Vipie web interface design is aimed at ease-of-use and 
flexibility. The parameters are grouped into QC, de novo assembly, BLAST and Remap 
panels. Valid parameter values are enforced and described in User guide. Project name and 
virome fastq archive file upload are the only required inputs to start a job. Job statuses are 
sent to the registered email and on completion, a secured URL is sent. 

Result page is accessible from a secured URL containing interactive table, quality control 
and read reports, population pie charts and applicable diversity and clustered maps. 
Raw and intermediate output downloads are also supported. To allow for flexibility and 
promoting collaboration, the results page can be shared using the same encrypted URL 
since it does not require user authentication.  Accompanying results from listed samples 
are captured in figures below and overall layout is divided into Population profiles, QC & 
Dark matter, Summary & Diversity and Viral hits table panels. 

Figure 9. Vipie web interface – along with NGS archived file, users can set pipeline parameters from 
the web where validation checks are automatic.
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Figure 11. Vipie interactive visualization maps – (A)Virus populations are displayed as pie slices 
where sub-taxonomy information is shown via clicking. The pie chart sizes are relative to the total 
number of viruses relative to all samples in submission.  (B) Sample alpha diversity scores are plotted 
with Shannon entropy and unique number of accessions.

B

A
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(C) Clustered heat map is produced from R using viral population similarity and hierarchical structure, 
resulting in clustered grouping of HMP samples and distinct African and diarrhea sample virus 
profiles.

C
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5.3.3	 Web results and interactive features 

Covered in materials chapter, Vipie performance and validation used 7 total virome samples 
from HMP (Healthy adult sample sites are stool, vagina and nasal.), 1 from VirusTAP 
and 3 from African rural stool samples. As expected, we found the highest amount and 
diversity of viruses in the African samples. Using the integrated viral table matrix as input, 
hierarchical clustering using paired wise similarity, correctly grouped the HMP samples 
by source site, and the VirusTAP diarrheal sample in its own group. The tool also correctly 
revealed high abundance of Rotavirus, the agent responsible for acute diarrhea. Figure 10 
provides a figure of the interactive viral findings table where the samples are columns and 
the rows are viral accessions. Viral accessions can be collapsed according to taxonomy level 
where the sample viral hits are summed to include its sublevels.  The cell background color 
is styled with red color and the intensity deepens according to viral hits. To account for 
read size variances, all sample hits are scaled to per 100,000 reads. Figure 11 shows the other 
main result plots with panel A clickable population pie charts, B showing Shannon alpha 
diversity described in Chapter 2 and in C, a hierarchical clustered sample heat map.  

5.4	 Performance and results management
With the integration of python parallel processing, end to end performance took 82 
minutes for 11 samples. While the processing time is relative to server specification and 
load, for comparison, VirusTap the only other web based pipeline also performing de 
novo assembly required 17 minutes for 1 sample with prior removal of human reads. 
Currently, Vipie is the only web virome pipeline allowing multiple samples. Published 
Vipie results and visualizations can be accessed here: https://binf.uta.fi/vipie/results.
html?key=eLZPuObVoU

The tabular accession result file, qc report and intermediate outcomes, including contigs 
and supporting reads, can be downloaded from similar secured encrypted links within 30 
days of job completion. To promote and allow investigators the option to share their results 
with collaborators, the secured results can be accessed without user credentials. Since 
publication, more than 30 institutions in 20 countries have used Vipie. We discussed further 
role of Vipie in T1D autoimmunity research, potential limitations and improvements in 
the next chapter. 
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6	 DISCUSSION

Exceeding global population growth, T1D incidence rates are worrisomely increasing 
and support for environmental factors is strengthening as multiple viral and bacterial 
associations have been published [Hyöty et al. 1995, Laitinen et al. 2014, Lernmark 
et al. 2016]. These disease trends are driving investigators to form large international 
cohorts, such as DIABIMMUNE (Finland, Estonia and Russia) and The Environmental 
Determinants of Diabetes in the Young (TEDDY) based in Finland, Germany, Sweden 
and USA to actively designed from-birth prospective cohorts with matched case and 
control children focusing on serial collection of stool, nasal and blood samples for 
microbiome and gene expression studies. These large omics repositories are motivating the 
need for continued development of novel bioinformatics tools and systematic application 
of existing methodologies. Historically T1D has been implicated with enterovirus [Knip et 
al. 2005, Hyöty et al. 1995] and urgently pressing virome research efforts is that enterovirus 
genetic sequences have been found in fresh pancreatic tissue donated by living and recently 
diagnosed T1D patients [Krogvold et al. 2015]. Interestingly and warranting further 
systematic investigations, enterovirus exposures have induced strong interferon pathway, 
key signature of host antiviral activity, responses and related networks in T1D susceptible 
children [Lietzen et al. 2017]. 

Publication II, supporting innovation and foresight of DIPP study, based in Finland, 
is one of the first analysis geared at investigating roles of gut virome and bacteriome 
towards development of T1D autoimmunity. Using stool samples taken approximately 
every three months from young Finnish children prior to autoimmunity seroconversion 
and tightly matched control, we found four operational taxonomic units to be significantly 
less abundant in case samples compared to controls – the most significant came from 
the Bacteroides and Bifidobacterium phyla. Human viruses were detected from NGS and 
confirmed using PCR in 10.4% of the stool samples from the same design. We constructed 
correlation networks between gut bacterial abundance to each other and viral phage 
populations (found in more than 50% of the samples) processed from virome using the 
same stool samples. From the correlation network, we found a novel bacterial interaction 
between crAssphage, and Bacteroides dorei. CrAssphage host is currently unknown as the 
virus was found computationally via cross assembly and its sequences are reported to be 
the most common in the human gut [Dutilh et al. 2014]. As phages exist to attack specific 
bacterial strains, they obviously have large impact on bacterial population and adversely 
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impact gut bacterial dysbiosis. We believe this is the first study to apply 16S sequence in 
conjunction with shotgun virome to identify crAssphage host. 

Additionally, regarding gut bacteriome imbalance and our findings in Publication 
II, a prior report [Davis-Richardson et al. 2015] had reported higher abundance of 
Bacteroides phylum, notably species Bacteroides dorei in case samples [Davis-Richardson et 
al. 2014] compared to controls, also from DIPP, albeit only one DIPP clinic was included 
(University Hospital in Turku, a southwest Finnish city). The samples within Publication 
II were taken from Tampere and Oulu, about 200 and 500 kilometers from Turku. 
Reported in Publication II, the OTU threshold was refined to 100% and reinforce the 
autoimmunity statistical significant association with Bacteroides vulgatus and Bacteroides 
caccae abundance reduction but no longer significant for Bacteroides dorei. While it is 
possible that the disagreement originates in sequencer error or limited sensitivity, it can 
also be that gut imbalance of Bacteroides, as reported in both publications, is associated 
with autoimmunity and that the manifestation occurs in different species due to locale 
and phages fluctuations. Both studies also mostly only included gut samples taken prior to 
2 years old, where the gut is still developing and highly impacted by antibiotics and diet. 
In support of a DIABIMMUNE study on hygiene hypothesis, Vatanen and colleagues 
[Vatanen et al. 2016] found less Bacteroides species in Russian children compared to 
Finnish and Estonian children. Instead, there were higher proportions of Actinobacteria, 
a gram positive phylum, and Bifidobacterium in the Russian population. It reasons that 
higher percentages of Finnish children, with higher risk of autoimmune diseases, had 
early colonization of Bacteroides. The quality of LPS of Bacteroides differs from that 
of E. coli which in turn was more prevalent in Russian population, leading to different 
innate immune stimulation. One issue is that children in Estonia, as reported had the 
same Bacteroides distribution but Finnish children have about 2 times disease incidence. 
Also complicating matters is that researchers from DIABIMMUNE project, [Yassour et 
al. 2016] reported that 20% of Finnish children born vaginally had very low Bacteroides 
during first 18 months of life. We found that there was only one nucleotide base difference 
within 253 bases of the 16S V4 amplicon region between B. dorei and B. vulgatus. Clearly 
exceeding 99% and there are likely other regions with high similarity between strains, 
this underscores potential limitations of 16S analysis based on similarity clustering and 
warrants additional checks prior to key conclusions based solely on standard 16S pipelines.

For Publication III and central to this thesis, we published Vipie, a high performance, 
easy to use web based virome pipeline capable of processing multiple virome samples. Vipie 
web is commonly used for general virome population profiling and processed job results 
are securely presented as interactive population maps, quality reports, and searchable 
tables. Using mock simulation data consisting of human, bacterial and viral, we reported 
comparatively good results in terms of precision and recall. The publication demonstrated 
Vipie’s built in clustering function and correctly grouped the HMP healthy adult samples 
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and separated African rural children samples from one Japanese gastroenteritis based on 
relevant virome profiles. 

The roots of Vipie originated from Publication II and its core components were 
developed and tested for the analysis of DIPP samples. As listed in Table 2 in chapter 2, 
there are several viral pipelines available but as there were not any easy to use pipelines 
allowing de novo assembly, Vipie was constructed and eventually web automated and 
published. MetaShot [Fosso et al. 2017], a Linux based pipeline, published around the same 
time period and impressively reported better precision (98.30, Vipie 96.85) and recall (98.19, 
Vipie 95.36) using mock simulation data originated from MetaShot. MetaShot performs a 
two step processing and the first step removes similar sequences to selected host, therefore 
viral reads possessing high similarity to human samples will be removed. These removals 
contribute to the difference in accuracy as Vipie reports but does not remove viral reads 
based on similarity to human. We feel that it is important to capture all possible viral reads, 
as a stretch of Coxsackievirus is highly similar to the predictive islet autoantibody GAD65 
[Atkinson 1995]. Interestingly, human adenovirus protein homology to gluten leading to 
cross reaction have also been reported to contribute to celiac disease pathogenesis [Kagnoff 
et al. 1984]. 

Shown in Figure 12, remarkably investigators from more than 30 institutes in 20 countries 
working in biomedical and agriculture industries, hospitals, disease control centers as well 
as blood donation centers have registered and processed jobs in Vipie. This warm reception 
speaks to the benefits of web based tools and also Vipie intuitive design – emphasizing 
ease of use, accuracy and insightful visualizations. At the same time there are many labs 
analyzing virome across different domains and as the viral references are generalized 
and relatively limited (7,477 full virus genomes on NCBI as as of Jan 2018). As viruses 

Figure 12. Vipie users – investigators from more than 20 countries across biomedical, disease control 
centers and interestingly agriculture and blood donation centers have registered and used Vipie. 
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are diverse, lacking a universal biomarker and known to have faster mutation rates, most 
virome reads will not map and as a result, Vipie reports these unknown reads as dark 
matter. In Publication II and shown in Figure 13, more than 70% of the DIPP and HMP 
NGS reads were classified as dark matter. This is clearly a serious concern involving the 
entire viral research community. One possible way forward is to treat long unmapped 
contigs as quasi-virus reference genomes, generated from de novo assembly, and perform 
remapping with raw reads. Quasi-contigs with high matches and coverage would become 
valuable novel virus reference candidates. Heintz-Buschart and colleagues impressively 
clustered dark bacterial contigs in the context of gut microbial within a familial T1D study 
[Heintz-Buschart et al. 2016]. 

Another limitation involves Vipie pipeline in Publication III as it identifies viruses based on 
their whole genome and do not further classify the matches. While virus genomes generally 
are simple and exist to infect other organisms, there are important structural regions such 

Figure 13. Viral dark matter – most virome samples contain many unmapped viral reads. Shown 
in black, dark matter reads dominate the proportion of reads in across all samples used in Vipie 
publication, including 7 Human Microbiome Project samples (name beginning with SRS) from vagina, 
nasal and blood. 
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as capsid area, the protein shell. Particularly relevant is within Enterovirus, the capsid 
consists of four proteins, VP1, VP2, VP3 and VP4 and they are the most distinctive and 
metagenomic reads mapped to a capsid area warrant higher confidences. Vipie publication 
was aimed at a general virus profiling design for wider consumption but within targeted 
disease analysis, we anticipate and recommend complementing Vipie findings with custom 
steps. The steps would include assessing assigned Vipie reads with selected genome regions, 
essentially epitopes or genomic windows of interest. To minimize the effect of base 
mutations, the regions can be comprehensively translated to proteins. These hits would also 
be more qualify to answer the important question of persistent or novel infections over 
time within the same host. 

A highlight of Vipie has been the successful adoption of Vipie for TEDDY virome 
analysis using its high performance computation cluster. We have systematically processed 
and identify virus exposure profiles from more than 10,000 stool samples from case 
children confirmed for T1D autoimmunity and matched controls. These samples were 
collected monthly starting from 3 months old until 4 years old. In addition, thousands of 
nasal and blood samples, drawn every 3 months, have also been processed. We are currently 
applying conditional logistic models on the virome profiles. Concurrently, we are also 
integrating and assessing CVB serotypes with Vipie mapped reads to overcome specificity 
limitations as described earlier. Vipie, lightly refactored for Linux, is ideal for processing 
large scaled samples as it uses multi processor designed, centralized database and individual 
sample processing is independent of other samples. Interestingly, Circoviridae was recently 
found to be significantly less [Guo et al. 2017] in T1D autoimmunity control children 
though the study, using 10 monthly samples, only involved 11 children confirmed for T1D 
autoimmunity.  

A comprehensive virome roadmap [Delwart 2013] project has been proposed and as 
stated previously, there are clearly multiple motivations and important benefits. For 
example, reovirus was recently implicated as a potential dietary interplay trigger for 
inflammation in celiac disease [Brouziat et al. 2017]. Notably children suffering from celiac 
disease have significantly higher risks, hazard ratio greater than 2, for T1D [Ludvigsson et 
al. 2006]. One central step would be to integrate metadata, including family background, 
health and dietary history from the large T1D related cohorts and annotate them to 
relevant microbiome and control NGS files produced. It would be revealing to find 
regional and seasonal viral exposure patterns prior to inflammation episodes. Signs of a 
potential leaky and aberrant gut could be phages sequences found in non-stool samples 
and large sudden changes in phage viruses between relevant time points. In addition to 
storing and annotating known viral sample profiles, a parallel effort could be building of 
the unknown dark viral matter central resource, capturing also the assembly methods and 
key parameters as they would be beneficial for contig validation and reproducibility. Long 
dark viral contigs with 100% similarity or sub-stretches are good novel virus candidates. 
In addition, reports have cited that certain genome mutations and deletions, such as 5’ 
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end of Coxsackievirus [Tracy et al. 2015] can increase survival fitness in pancreas. Also 
interesting is that Coxsackievirus virulence, the potential lethalness towards the host cells, 
has been shown to be variable based on single amino acid changes [Halim & Ramsingh 
2000]. Taken all together, a comprehensive viral roadmap will offer an optimal resource for 
detection of acute versus persistent infections, strain genotyping and mutation virulence 
assessment. The metadata collected will also be valuable for future statistical modelling 
efforts and temporal study on mutation rates and selection. As the sensitivity of single cell 
sequencing improves [Haque et al. 2017], their applications together with improvements of 
selectively staining infected donated pancreatic islet beta cells will shed more light on key 
current viral associations and mutually drive the need for in bioinformatics. 

In addition to virome analysis, this thesis also contributes to novel and intuitive 
bioinformatics visualization. Publication I introduces POMO, an easy to use web based 
application designed to plot genomic networks for multiple model organisms. POMO was 
started in support of displaying and interactively filtering large scaled TCGA pairwise 
and random forest [Breiman 2001] genomic networks in Circos like layout. With redesign 
and code refactoring, we generalized the tool to support networks independent of mining 
and statistical methods. We also extended the reference databases beyond human to 
benefit investigators working on other organisms including fly, mouse, rat, worm, yeast, 
Arabidopsis and E. coli. POMO plotting can also be applied to metagenomics, involving 
multiple constructed genomes and their energy usages represented by protein activity 
and polymorphism rates [Muller et al., 2015]. Visualizations from genomic networks and 
annotations are automatically plotted, filtered and downloaded across multiple layouts on 
web browsers. POMO is also capable of visualizing comparative genomic results, shown in 
Publication I Figure 4, demonstrating human and mouse phenology from obesity-abnormal 
food intake study [McGary et al. 2010]. Very recently, CGDV [Jha et al. 2017], a web tool 
for circular visualization of omics data was published, like POMO, the application has 
support for multiple model organisms and it also cited that Circos installation and usage 
can be challenging for biologists. 



63

7	 ACKNOWLEDGEMENTS

The study was conducted in Computational Biology and Virology groups and Faculty of 
Medicine and Life Sciences in University of Tampere. I am very grateful to my supervisors 
Reija Autio, Professor Heikki Hyöty and Professor Matti Nykter. They have been truly 
great and uniquely admirable. Intelligent, resourceful and genuinely caring. I am lucky, 
personally and academically, to have connected with them. Greetings to all current and 
former labmates, my apologies for not naming everyone. The thesis has been generously 
funded by ADELE, BMT graduate school, DIPP and TEDDY studies.

Special thanks to Professor Ondrej Cinek, along with Lenka Kramna, for introducing 
and patient guidance with virome and microbiome analysis. 

Thank you to reviewers Docent Tarja Sironen and Docent Christophe Roos for being 
cordial and thesis help via insightful corrections and comments. Thanks to Jukka 
Intosalmi for Finnish abstract translation. Thank you to Jaakko Nevalainen and Niina 
Lietzen for their advisory committee roles. 

I like to personally thank Ilya Shmulevich and his lab for opening the realm of 
computational biology and always being so supportive. Infocore and TCGA/RE mates 
Ryan, Dick, Hector, Kalle, Lesley, Brady, Vesteinn, Sheila, Theo, Timo. 

Grateful to Aimée Dudley and her lab for teaching me some yeast fluffy genetics and cool 
memories. Cathy, Adrian, Gareth, Amy, Cecilia. And Teresa rest in peace. 

Thank you Ilya for allowing me to come to Finland, Olli Yli-Harja for indulging the 
whim. Virpi K, Matti Annala, Virve L and Ulla S for helping with transition.

Thank you Patrick May for hiring me at LCSB, giving me plenty of freedom and Alexander 
Skupin for sharing our Esch flat. Professors Karsten Hiller and Reinhard Schneider for 
being flexible and supportive.

TEDDY EAP – Elaheh Moradi, Kirsi Granberg, Suvi Luoto, Sami Oikarinen, Tomi 
Häkkinen. Thanks to Heini Huhtala and Juha Kesseli for helpful statistics discussions. 
Kudos Katri Lindors, I hope MP199 will see the light. 

Along the meandering trail, I have been blessed meeting good friends dispersed here 
and there – Susie Purves, Maria Liivrand and Nico Bouvy, Intosalmi family, Patrick 
May, Skupin family, Mafalda Galhardo, Mike Ross, Petteri Vakkila, Kai Baer, Tuomas 



64

Luukkonen, Tiblu Tökkäri. Kiitos Telakan henkilökunnale. Some favorite places – 
Finnish libraries and Kauppi woods. Sweetie Bill Moomau (nico and galinghas). My 
parents, siblings and their families. Love to Ninni Luhtasaari and her family.

Tampere, May 2018

Jake Lin



65

8	 REFERENCES

Abbas A (2006) Basic Immunology. Elsevier ISBN 978-1-4160-2974-8.
Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker 

J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, 
Mitreva M, Huttenhower C. (2012) Metabolic reconstruction for metagenomic data and its 
application to the human microbiome. PLoS Comput Biol. 2012 Jun;8(6):e1002358.

Adler K, Mueller DB, Achenbach P, Krause S, Heninger AK, Ziegler AG, Bonifacio E (2011) 
Insulin autoantibodies with high affinity to the bovine milk protein α casein. Clin Exp 
Immunol 164: 42–49.

Alonso-Alemany D, et al. (2014) Further Steps in TANGO: improved taxonomic assignment in 
metagenomics. Bioinformatics 30(1):17–23.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. 
Journal of Molecular Biology, 215(3):403–410.

Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov 
A, Ojeda-Flores R, Arrigo NC, Islam A, Ali Khan S, Hosseini P, Bogich TL, Olival KJ, 
Sanchez-Leon MD, Karesh WB, Goldstein T, Luby SP, Morse SS, Mazet JA, Daszak P, 
Lipkin W (2013) A strategy to estimate unknown viral diversity in mammals. MBio. Sep 
3;4(5):e00598-13. doi: 10.1128/mBio.00598-13.

Ascher H, Krantz I, Kristiansson B (1991) Increasing incidence of coeliac disease in Sweden. Arch 
Dis Child; 66: 608–11.

Atkinson MA (1997) Molecular Mimicry and the Pathogenesis of Insulin- dependent Diabetes 
Mellitus: Still Just an Attractive Hypothesis. Annals of Medicine, 29:5, 393-399, DOI: 
10.3109/07853899708999368.

Atkinson MA (2012) The Pathogenesis and Natural History of Type 1 Diabetes. Cold Spring Harb 
Perspect Med Nov; 2(11): a007641. doi:  10.1101/cshperspect.a007641.

Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet. Jan 4; 383(9911):69-82
Attar N (2016) Viral evolution: More of the world’s a phage. Nature reviews Microbiology 

doi:10.1038/nrmicro.2016.58.
Baum LE, Petrie T (1966) Statistical Inference for Probabilistic Functions of Finite State Markov 

Chains. The Annals of Mathematical Statistics. 37 (6): 1554–1563.
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society, Series B. 57 (1): 289–
300. MR 132539.

Berger B, Peng J, Singh M (2013) Computational solutions for omics data. Nat Rev Genet 2013, 
14:333–346.

Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in 
various species. Physiol Rev. Apr; 70(2):567–90.

Blinkova O, Victoria J, Li Y, et al. (2010) Novel circular DNA viruses in stool samples of wild-living 
chimpanzees. J Gen Virol 91:74–86.

Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a Model Organism. Science Aug 29; 277(5330): 
1259–1260.



66

Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, Meisel M, 
Kim SM, Discepolo V, Pruijssers AJ, Ernest JD, Iskarpatyoti JA, Costes LM, Lawrence I, 
Palanski BA, Varma M, Zurenski MA, Khomandiak S, McAllister N, Aravamudhan P, 
Boehme KW, Hu F, Samsom JN, Reinecker HC, Kupfer SS, Guandalini S, Semrad CE, 
Abadie V, Khosla C, Barreiro LB, Xavier RJ, Ng A, Dermody TS, Jabri B (2017) Reovirus 
infection triggers inflammatory responses to dietary antigens and development of celiac 
disease. SCIENCE 07 APR: 44-50 doi: 10.1126/science.aah5298.

Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. 
Ecological Monographs 27:325–349.

Breiman L (2001) Random Forests. Machine Learning, 45(1):5–32.
Brennan CW, Verhaak RG, et al., TCGA Research Network (2013) The somatic genomic landscape 

of glioblastoma. Cell Oct 10;155(2):462-77. doi: 10.1016/j.cell.2013.09.034. Erratum in: Cell 
Apr 24;157(3):753.

Bressler R, Lin J, Eakin A, Robinson T, Kreisberg R, Rovira H, Knijnenburg T, Boyle J, Shmulevich 
I (2012) Fastbreak: a tool for analysis and visualization of structural variations in genomic 
data. EURASIP J Bioinform Syst Biol. Oct 9; (1):15. doi: 10.1186/1687-4153-2012-15.

Brugman S, Klatter FA, Visser JT, Wildeboer-Veloo AC, Harmsen HJ, Rozing J, Bos NA (2006) 
Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-
prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. Sep; 
49(9):2105–8.

Buschard K (2011) What causes type 1 diabetes? Lessons from animal models. APMIS Suppl. 
Jul;(132):1-19. doi: 10.1111/j.1600-0463.2011.02765.x.

Caine EA, Moncla LH, Ronderos MD, Friedrich TC, Osorio JE (2016) A Single Mutation in the 
VP1 of Enterovirus 71 Is Responsible for Increased Virulence and Neurotropism in Adult 
Interferon-Deficient Mice J. Virol. October vol. 90 no. 19 8592–8604.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena 
AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, 
Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh 
PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows 
analysis of high-throughput community sequencing dataNature Methods, 7(5):335–336.

Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, Parslow RC, Pozzilli P, Brigis 
G, Stoyanov D, Urbonaite B, Sipetić S, Schober E, Ionescu-Tirgoviste C, Devoti G, de 
Beaufort CE, Buschard K, Patterson CC (2008) Caesarean section is associated with an 
increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational 
studies. Diabetologia May; 51(5):726–35.

Chao A, Shen TJ (2003) Nonparametric estimation of Shannon’s index of diversity when there 
are unseen species in sample. Environmental and Ecological Statistics. 10 (4): 429–443. 
doi:10.1023/A:102609620472.

Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, 
Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) 
BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. 
Nat Methods Sep; 6(9):677–81.

Chen X, Ishwaran H (2012) Random Forests for Genomic Data Analysis. Genomics 99(6):323–
329. doi:10.1016/j.ygeno.2012.04.003.

Chikhi R, Medvedev P (2013) Informed and Automated k-Mer Size Selection for Genome 
Assembly. Bioinformatics Vol 30, Issue 1, 31–37.



67

Cohn A, Sofia AM, Kupfer SS (2014) Type 1 diabetes and celiac disease: clinical overlap and new 
insights into disease pathogenesis. Current diabetes reports 14:517.

Coleman TJ, Gamble DR, Taylor KW (1973) Diabetes in mice after Coxsackie B4 virus infection. 
Br Med J 3:25–27.

Concannon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 360: 1646–
1654.

Coppieters KT, Boettler T, von Herrath M (2012) Virus infections in type 1 diabetes. Cold Spring 
Harb Perspect Med. Jan;2(1):a007682. doi: 10.1101/cshperspect.a007682.

Crick FHC (1958) On Protein Synthesis. In F.K. Sanders. Symposia of the Society for Experimental 
Biology, Number XII: The Biological Replication of Macromolecules. Cambridge University 
Press. pp. 138–163.

Dabelea D, Pihoker C, Talton JW, D’Agostino RB, Fujimoto W, Klingensmith GJ, Lawrence 
JM, Linder B, Marcovina SM, Mayer-Davis EJ, et al. (2011) Etiological approach to 
characterization of diabetes type: The SEARCH for Diabetes in Youth Study. Diabetes 
Care 34: 1628–1633.

Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, Drew 
JC, Schatz D, Atkinson MA, Kolaczkowski B, Ilonen J, Knip M, Toppari J, Nurminen 
N, Hyöty H, Veijola R, Simell T, Mykkänen J, Simell O, Triplett EW (2014) Bacteroides 
dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for 
type 1 diabetes. Front Microbiol. Dec 10;5:678. doi: 10.3389/fmicb.2014.00678. eCollection 
2014.

Delwart E (2013) A Roadmap to the Human Virome. PLoS Pathog 9(2): e1003146. doi:10.1371/
journal.ppat.1003146.

Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The 
microbiome and butyrate regulate energy metabolism and autophagy in the mammalian 
colon. Cell Metab. May 4;13(5):517–26. doi: 10.1016/j.cmet.2011.02.018.

Duffy S, Shackelton LA, Holmes EC (2008). Rates of evolutionary change in viruses:patterns and 
determinants. Nat. Rev. Genet. 9, 267–276.

Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan 
V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA (2014) A highly abundant 
bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat 
Commun. Jul 24;5:4498. doi: 10.1038/ncomms5498.

Edgar, RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 
26(19):2460–2461.

Eisen, JA (2007) Environmental Shotgun Sequencing: Its Potential and Challenges for Studying 
the Hidden World of Microbes. PLoS Biology. 5 (3): e82. doi:10.1371/journal.pbio.0050082.

Fernandez-Cassi X, Timoneda N, Gonzales-Gustavson E, Abril JF, Bofill-Mas S, Girones R 
(2017) A metagenomic assessment of viral contamination on fresh parsley plants irrigated 
with fecally tainted river water. Int J Food Microbiol. Sep 18;257:80–90. doi: 10.1016/j.
ijfoodmicro.2017.06.001.

Filippi CM, von Herrath MG (2008) Viral trigger for type 1 diabetes: pros and cons. Diabetes 
Nov;57(11):2863–71. doi: 10.2337/db07-1023.

Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the 
number of individuals in a random sample of an animal population. J. Anim. Ecol., 12, 
42–58.



68

Fosso B, Santamaria M, D’Antonio M, Lovero D, Corrado G, Vizza E, Passaro N, Garbuglia 
AR, Capobianchi MR, Crescenzi M, Valiente G, Pesole G (2017) MetaShot: an accurate 
workflow for taxon classification of host-associated microbiome from shotgun metagenomic 
data. Bioinformatics, Volume 33, Issue 11, 1 June, pp. 1730–1732.

Gale EA (2002) The Rise of Childhood Type 1 Diabetes in the 20th Century Diabetes. Dec; 51(12): 
3353–3361.

Gardner SG, Bingley PJ, Sawtell PA, Weeks S, Gale EAM (1997) Rising incidence of insulin 
dependent diabetes in children aged under 5 years in the Oxford region. BMJ 315:713–717.

Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, 
Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for 
systems biology. Nat Methods. Mar;7(3 Suppl):S56–68. doi: 10.1038/nmeth.1436.

Ghazarian L, Diana J, Beaudoin L, Larsson PG, Puri RK, van Rooijen N, Flodström-Tullberg M, 
Lehuen A (2013) Protection against type 1 diabetes upon Coxsackievirus B4 infection and 
iNKT-cell stimulation: role of suppressive macrophages. Diabetes Nov;62(11):3785–96. doi: 
10.2337/db12-0958.

Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting 
accessible, reproducible, and transparent computational research in the life sciences. 
Genome Biol; 11:R86 3.

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq 
C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG 
(1996) Life with 6000 genes. Science. Oct 25; 274(5287):546, 563–7.

Gronenborn B, Messing J (1978) Methylation of single-stranded DNA in vitro introduces new 
restriction endonuclease cleavage sites. Nature, 272, 375–377.

Gundersen E (1927) Is Diabetes of Infectious Origin? The Journal of Infectious Diseases, 41:197–
202.

Halim S, Ramsingh AI (2000) A Point Mutation in VP1 of Coxsackievirus B4 Alters Antigenicity, 
Virology 269, 86–94 doi:10.1006/viro.2000.0188.

Haller MJ, Schatz DA (2016) The DIPP project: 20 years of discovery in type 1 diabetes. Pediatr 
Diabetes 17:5–7. doi:10.1111/pedi.12398.

Haque A, Engel J, Teichmann SA, Lönnberg T (2017) A practical guide to single-cell RNA-
sequencing for biomedical research and clinical applications. Genome Med. Aug 18;9(1):75. 
doi: 10.1186/s13073-017-0467-4.

Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, Wampach L, Schneider 
JG, Hogan A, de Beaufort C, Wilmes P (2016) Integrated multi-omics of the human gut 
microbiome in a case study of familial type 1 diabetes. Nat Microbiol. Oct 10;2:16180. doi: 
10.1038/nmicrobiol.2016.180.

Huang W, Li L, Myers JR, Marth GT (2012) ART: a next-generation sequencing read simulator. 
Bioinformatics Feb 15;28(4):593–4. doi: 10.1093/bioinformatics/btr708.

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, 
Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love 
MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, 
Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic 
analysis with Bioconductor. Nature Methods 12, 115.

Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of 
environmental sequences using MEGAN4. Genome Res. Sep;21(9):1552–60. doi: 10.1101/
gr.120618.111.



69

Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy 
human microbiome. Nature. Jun 13;486(7402):207–14. doi: 10.1038/nature11234.

Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen 
R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, 
Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection 
during reprogramming to pluripotency. Nature, 471:58–62.

Hyöty H, Hiltunen M, Knip M, Laakkonen M, Vahasalo P, Karjalainen J, Koskela P, Roivainen 
M, Leinikki P, Hovi T (1995) A prospective study of the role of coxsackie B and other 
enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland 
(DiMe) Study Group. Diabetes 44: 652–657.

Ilonen J, Reijonen H, Knip M, Simell O (1996) Population-based screening for IDDM susceptibility 
as a source of HLA-genotyped control subjects. Diabetologia 1996;39:123.

Iweala OI, Nagler CR (2006) Immune privilege in the gut: the establishment and maintenance of 
non-responsiveness to dietary antigens and commensal flora. Immunol Rev. Oct;213:82–
100.

James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning with 
Applications in R. Springer ISBN 978-1-4614-7138-7.

Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L (2010) 
Short-term antibiotic treatment has differing long- term impacts on the human throat and 
gut microbiome. PLOS ONE, 5(3): 1–12, 03.

Jha V, Singh G, Kumar S, Sonawane A, Jere A, Anamika K (2017) CGDV: a webtool for circular 
visualization of genomics and transcriptomics data. BMC Genomics201718:823. https://
doi.org/10.1186/s12864-017-4169-5.

Jun HS, Yoon JW (2003) A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev. Jan–
Feb;19(1):8–31.

Kagnoff MF, Austin RK, Hubert JJ, Bernardin JE, Kasarda DD (1984) Possible role for a human 
adenovirus in the pathogenesis of celiac disease. J Exp Med. Nov 1;160(5):1544–57. 

Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 
Res. 28, 27–30.

Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) 
Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project 
Group. Diabetes Care Oct;23(10):1516–26.

Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, Akerblom HK (2005) Environmental 
triggers and determinants of type 1 diabetes. Diabetes Dec; 54 Suppl 2():S125–36.

Kondrashova A, Mustalahti K, Kaukinen K, Viskari H, Volodicheva V, Haapala AM, Ilonen J, 
Knip M, Maki M, Hyöty H, and Epivir Study (2008) Lower economic status and inferior 
hygienic environment may protect against celiac disease. Annals of Medicine, 40(3):223–
231.

Kramna L, Kolarova K, Oikarinen S, Pursiheimo J, Ilonen J, Simell O, Veijola R, Knip M, Hyöty H, 
Cinek O (2015) Gut virome sequencing in children with early islet autoimmunity. Diabetes 
Care. 2015;38:930–933.

Krogvold L, Edwin B, Buanes T, Ludvigsson J, Korsgren O, Hyöty H, Frisk G, Hanssen KF, Dahl-
Jørgensen K (2014) Pancreatic biopsy by minimal tail resection in live adult patients at the 
onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. Apr; 57(4):841–3.



70

Krogvold L, Edwin B, Buanes T, Frisk G, Skog O, Anagandula M, Korsgren O, Undlien D, Eike 
MC, Richardson SJ, Leete P, Morgan NG, Oikarinen S, Oikarinen M, Laiho JE, Hyöty H, 
Ludvigsson J, Hanssen KF, Dahl-Jørgensen K (2015) Detection of a low-grade enteroviral 
infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. 
Diabetes May;64(5):1682–7. doi: 10.2337/db14-1370.

Krzywinski, M, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) 
Circos: an Information Aesthetic for Comparative Genomics. Genome Res 19:1639–1645. 
doi:10.1101/gr.092759.109.

Laitinen OH, Honkanen H, Pakkanen O, Oikarinen S, Hankaniemi MM, Huhtala H, Ruokoranta 
T, Lecouturier V, André P, Harju R, Virtanen SM, Lehtonen J, Almond JW, Simell T, 
Simell O, Ilonen J, Veijola R, Knip M, Hyöty H (2014) Coxsackievirus B1 is associated with 
induction of β-cell autoimmunity that portends type 1 diabetes. Diabetes Feb;63(2):446–
55. doi: 10.2337/db13-0619.

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat.Methods 9, 357–
359.

Lazarova DL, Bordonaro M, Carbone R, Sartorelli AC (2004) Linear relationship between Wnt 
activity levels and apoptosis in colorectal carcinoma cells exposed to butyrate. Int J Cancer 
Jul 1; 110(4):523–31.

Lee HS, Burkhardt BR, McLeod W, Smith S, Eberhard C, Lynch K, Hadley D, Rewers M, Simell 
O, She JX, Hagopian B, Lernmark A, Akolkar B, Ziegler AG, Krischer JP, TEDDY study 
group (2014) Biomarker discovery study design for type 1 diabetes in The Environmental 
Determinants of Diabetes in the Young (TEDDY) study. Diabetes Metab Res Rev. 
Jul;30(5):424–34. doi: 10.1002/dmrr.2510.

Lehman, A (2005) Basic Univariate And Multivariate Statistics: A Step-by-step Guide. Cary, NC: 
SAS Press. p. 123. ISBN 1-59047-576-3.

Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev 
Immunol Jul;10(7):501-13. doi: 10.1038/nri2787.

Lernmark Å (2016) Environmental factors in the etiology of type 1 diabetes, celiac disease, and 
narcolepsy. Pediatr Diabetes Jul;17 Suppl 22:65–72. doi: 10.1111/pedi.12390.

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. 
Bioinformatics, 25:1754–60.

Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or 
nucleotide sequences. Bioinformatics 22:1658–9.

Lietzen N, An LTT, Jaakkola MK, Kallionpää H, Oikarinen S, Mykkänen J, Knip M, Veijola R, 
Ilonen J, Toppari J, Hyöty H, Lahesmaa R, Elo LL (2018) Enterovirus-associated changes 
in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes. 
Diabetologia Feb;61(2):381–388. doi: 10.1007/s00125-017-4460-7.

Lin HC, Wang CH, Tsai FJ, Hwang KP, Chen W, Lin CC, Li TC (2015) Enterovirus infection 
is associated with an increased risk of childhood type 1 diabetes in Taiwan: a nationwide 
population-based cohort study. Diabetologia Jan;58(1):79–86. doi: 10.1007/s00125-014-
3400-z.

Lodish H, Berk A, Zipursky SL (2000) Viruses: Structure, Function, and Uses, Molecular Cell 
Biology. 4th edition. New York: W. H. Freeman.

Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD (2010) Cytoscape Web: an 
interactive web-based network browser. Bioinformatics Oxf Engl 26:2347–2348.

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for 
RNA‑seq data with DESeq2. Genome Biology, 15, p. 550. doi: 10.1186/s13059-014-0550-8.



71

Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity 
measures lead to different insights into factors that structure microbial communities. 
Applied and Environmental Microbiology 73(5):1576–85. doi:10.1128/AEM.01996-06.

Ludvigsson JF, Ludvigsson J, Ekbom A, Montgomery SM (2006) Celiac disease and risk of 
subsequent type 1 diabetes: a general population cohort study of children and adolescents. 
Diabetes Care Nov;29(11):2483–8.

Lupton, JR (2004) Microbial Degradation Products Influence Colon Cancer Risk: the Butyrate 
Controversy. J Nutr. Feb;134(2):479–82.

Mangani C, et al. (2015) Effect of complementary feeding with lipid-based nutrient supplements 
and corn-soy blend on the incidence of stunting and linear growth among 6- to 18-month-
old infants and children in rural Malawi. Matern Child Nutr. Dec;11 Suppl 4:132–43. doi: 
10.1111/mcn.12068.

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, 
De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey, MR, O’Brien, 
JS, Pawlowski AC, Piddock LJ, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor 
PL, Thaker M, Wang W, Yan M, Yu T, Wright, GD (2013) The comprehensive antibiotic 
resistance database. Antimicrobial Agents and Chemotherapy, 57 (7):3348–3357.

McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, Wilke A, Huse 
S, Hufnagle J, Meyer F, Knight R, Caporaso JG (2012) The Biological Observation Matrix 
(BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1:7. 
doi:10.1186/2047-217X-1-7.

McMurdie P J, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and 
graphics of microbiome census data. PLoS One 8: e61217.

McMurdie P J, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. 
PLoS Comput Biol 10: e1003531.

Medawar PD, Medawar JS (1983) Aristotle to Zoos A Philosophical Dictionary of Biology. 
Cambridge, MA: Harvard University Press.

Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432 
(7019): 904–6. doi:10.1038/nature03063.

Mukherjee S, Huntemann M, Ivanova N, Kyrpides NC, Pati A (2015) Large-scale contamination 
of microbial isolate genomes by Illumina PhiX control. Stand Genomic Sci. Mar 30;10:18. 
doi: 10.1186/1944-3277-10-18.

Mueller E, Pinel N, Laczny C, Hoopmann M, Narayanasamy S, Lebrun L, Roume H, Lin J, May P, 
Hicks N, Heintz-Buschart A, Wampach L, Liu C, Price L,  Gillece J, Guignard C, Schupp J,  
Vassis N, Baliga N, Moritz R, Keim P, Wilmes P (2015) Community-integrated omics links 
dominance of a microbial generalist to fine-tuned resource usage. Nature Communications 
DOI: 10.1038/ncomms6603.

Narzisi G, Mishra B (2011) Comparing De Novo Genome Assembly: The Long and Short of It. 
Aerts S, ed. PLoS ONE 6(4):e19175. doi:10.1371/journal.pone.0019175.

Närvä E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor 
J, Rasool O, Dvorak P, Hovatta O, Otonkoski T, Tuuri T, Cui W, Brustle O, Baker D, 
Maltby E, Moore HD, Benvenisty N, Andrews PW, Yli-Harja O, Lahesmaa R (2010) High-
resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy 
number changes and loss of heterozygosity. Nat Biotechnol 28:371–377.

Palmer JP, Hampe CS, Chiu H, Goel A, Brooks-Worrell BM (2005) Is latent autoimmune diabetes 
in adults distinct from type 1 diabetes or just type 1 diabetes at an older age? Diabetes 54: 
62–67.



72

Palsson B, Zengler K (2010) The challenges of integrating multi-omic data sets. Nat Chem Biol 
6:787–789.

Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, EURODIAB Study Group 
(2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and 
predicted new cases 2005-20: a multicentre prospective registration study. Lancet Jun 
13;373(9680):2027–33. doi: 10.1016/S0140-6736(09)60568-7.

Patterson KD, Pyle GF (1991) The geography and mortality of the 1918 influenza pandemic. Bull 
Hist Med. Spring;65(1):4–21. http://www.jstor.org/stable/44447656.

Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proceedings of the 
Royal Society of London, 58:240–242.

Pociot F, Lernmark Å (2016) Genetic risk factors for type 1 diabetes. Lancet Jun 4;387(10035):2331–
2339. doi: 10.1016/S0140-6736(16)30582-7.

Pugliese A, Yang M, Kusmarteva I, Heiple T, Vendrame F, Wasserfall C, Rowe P, Moraski JM, Ball 
S, Jebson L, Schatz DA, Gianani R, Burke GW, Nierras C, Staeva T, Kaddis JS, Campbell-
Thompson M, Atkinson MA (2014) The Juvenile Diabetes Research Foundation Network 
for Pancreatic Organ Donors with Diabetes (nPOD) Program: goals, operational model 
and emerging findings. Pediatr Diabetes Feb; 15(1):1–9.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The 
SILVA ribosomal RNA gene database project: improved data processing and web-based 
tools. Nucl. Acids Res. 41 (D1): D590–D596.

Rampelli S, Soverini M, et al. (2016) ViromeScan: a new tool for metagenomic viral community 
profiling. BMC Genomics 17:165.

Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 
56: 69–89.
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Abstract

Background: Systems biology experiments studying different topics and organisms produce thousands of data
values across different types of genomic data. Further, data mining analyses are yielding ranked and heterogeneous
results and association networks distributed over the entire genome. The visualization of these results is often
difficult and standalone web tools allowing for custom inputs and dynamic filtering are limited.

Results: We have developed POMO (http://pomo.cs.tut.fi), an interactive web-based application to visually explore
omics data analysis results and associations in circular, network and grid views. The circular graph represents the
chromosome lengths as perimeter segments, as a reference outer ring, such as cytoband for human. The inner arcs
between nodes represent the uploaded network. Further, multiple annotation rings, for example depiction of gene
copy number changes, can be uploaded as text files and represented as bar, histogram or heatmap rings. POMO
has built-in references for human, mouse, nematode, fly, yeast, zebrafish, rice, tomato, Arabidopsis, and Escherichia
coli. In addition, POMO provides custom options that allow integrated plotting of unsupported strains or closely
related species associations, such as human and mouse orthologs or two yeast wild types, studied together within
a single analysis. The web application also supports interactive label and weight filtering. Every iterative filtered
result in POMO can be exported as image file and text file for sharing or direct future input.

Conclusions: The POMO web application is a unique tool for omics data analysis, which can be used to visualize
and filter the genome-wide networks in the context of chromosomal locations as well as multiple network layouts.
With the several illustration and filtering options the tool supports the analysis and visualization of any heterogeneous
omics data analysis association results for many organisms. POMO is freely available and does not require any
installation or registration.

Keywords: Omics, Association, Visualization, Ortholog, Phenolog, Genome-wide, Network, Model organism

Background
Modern high-throughput technologies measuring differ-
ent omics types are constantly producing masses of new
data [1-3]. Simultaneously, the various analysis algorithms
and association analyses methods applied to these mea-
surements are providing many different types of results
[2-6]. Thus, the integration of the data and subsequent
visualization of these results are becoming increasingly
important and challenging [7].

The different types of analysis algorithms are resulting
in various types of associations within the data. Often
these methods include correlation-based or integrative
data mining algorithms [6], and the results can include
genomic feature to genomic feature associations across
multiple data types, such as gene expression and chromo-
some rearrangements. The features can, for example, be
genes or genomic positions such as regulatory regions, or
they can be also clinical or sample annotations resulting
for example from differential expression analysis [3,8].
While the different values or types of data are related with
each other, it also becomes necessary and challenging to
be able to visualize different types of data and the results
of their analysis [7,9,10]. Generally, the results of various
analyses are given as text lists and visual illustrations are
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confounded by different formats, software platforms, and
dependencies. However, because most of the genomic data
can be organized by its genomic location, it is straightfor-
ward and advantageous to utilize the genomic position as
a parameter in visualization. Since the majority of resulted
omics associations can be linked to the physical chromo-
some positions, genome-wide illustrations can provide
new insights to the investigator [9].
Traditional genome browsers such as Integrative Gen-

omic Viewer [11], UCSC Genomic Browser [12] and
GBrowse [13] are very useful for viewing biological data
with multi-scaled linear tracks but they are not ideal to
view gene networks. Cytoscape [14] fills this need and is
adept at displaying network interactions and has released
CytoscapeWeb [15] and Cytoscape.js beta libraries de-
signed for web programming integration. Given that struc-
tural rearrangement events are likely more informative in
the context of ordered chromosome circular layout con-
text, there are a limited number of software tools available
for circular illustration of the genomic association data, of
which Circos [16] is most often used. Circos provides
command line options to plot various types of data to-
gether into assorted attractive but static circular plots. Cir-
cos software requires local installation along with several
mandatory Perl core and third party modules. The recent
introduction of RCircos [17] successfully draws Circos im-
ages with R but implies that its usage is limited to experi-
enced R programmers. DNAPlotter [18] plots interactive
user-defined circular and linear genomic tracks. This
standalone tool, improved from other published genomic
viz tools such as CGView [19], GenomeDiagram [20],
GenomePlot [21], GenoMap [22] and Microbial Genome
Viewer [23] by combining Jemboss [24] and Artemis [25],
flexibly accepts custom text files and relational databases,
and the plotted tracks can be filtered and exported. DNA-
Plotter requires installation and does not support associa-
tions. Galaxy [26], web-based and very comprehensive for
biomedical analysis and sharing, recently introduced Circ-
ster [27] a web-based Circos like visualization as part of its
comprehensive pipeline. While Galaxy is available both
publically and as a local install, Galaxy visualization func-
tions are only available downstream of its workflows and
thus limited to its ecosystem. As such, visualizing omics
data with such a program requires a certain level of com-
putational experience and multiple programs to illustrate,
share and filter the data analysis results. In contrast, the
UCSC Interaction Browser [28] and WikiPathways [29]
both allow for web visualization and organization of net-
work interactions, but they do not have genomic chromo-
somal context association views and they lack support for
several important model organism references. In addition,
as omics data includes often thousands of feature values,
and there are at total thousands to millions resulted
associations, it is vital to support filtering options for

exploration and detection of sub-networks from dense
and cluttered networks.
To address these issues, we have developed POMO,

Plotting Omics analysis results for Multiple Organisms.
POMO is a free web-based software suite that permits
the illustration of associations inferred from omics data
as filterable circular genome-wide, Cytoscape Web and
grid views. Aiming to parallel the diversity of systems
biology research, POMO software has built in reference
support for human [30] and the following model organ-
isms: mouse [31], zebrafish [32], worm [33], fly [34], rice
[35], tomato [36], Arabidopsis [37], S. cerevisiae [38] and
E. coli [39] (See Table 1 for resources). In addition, the
program accepts parameters for integration and plotting
of genomic homologies and orthologous features of
multiple strains of the same organism or closely related
species. Multiple text file formats are supported, and as-
sociations can be directly uploaded or referenced as
URL addresses using modern web browsers. POMO
supports the plotting of an unlimited number of rings to
highlight genomic annotations and regions of interest,
and all results remain private and can be exported and
shared as SVG image or TSV text files. The web based
(http://pomo.cs.tut.fi) program is a freely available user-
friendly tool for genome-wide biological research that
does not require any installation or registration. With the
wide selection of data visualization options, POMO is a
unique tool for all the researchers working with omics data
analysis, which can be used, for example, to visualize and
filter the genomic networks in the context of chromo-
somal locations as well as multiple network layouts.

Implementation
It is widely accepted that visual networks are valuable
for detecting and exploring patterns in large datasets.
Genomic network visualizations with multiple perspec-
tives, particularly within chromosomal context can offer
insights of key proximal nodes and possible sub-networks.
Data mining algorithms produce genome-wide association
sets where individual associations are described with
either a numerical ranking or weight. The option to filter
and iteratively visualize these large data sets is of key im-
portance in exploring and understanding the genomic as-
sociations. Our web application addresses and extends
these requirements by combining different data types and
including the reference genomes of multiple organisms by
utilizing modern web programming technologies and
components. POMO allows immediate visualization of
genome-wide associations and annotations directly from
text files while offering grid, Cytoscape and genomic cir-
cular context views. Within the genomic circular context,
chromosomes are drawn as segments of the circumfer-
ence; its length is normalized dependent on the nucleotide
base length of the displayed organism. Omics nodes,
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which can be labelled as gene names or ids or explicit
genomic positions, will be oriented/mapped to these seg-
ments, and the associations are represented as an edge
between two genomic locations or genes. For additional
visual differentiation, the notations are color encoded for
different omics data types, such as gene expression, copy
number variations, or proteomics data. Multiple annota-
tion rings, with support for bar, histogram and heatmap
graphs, can also be appended. Outer glyphs are used for
representation of genomic features to unmapped nodes,
which have no genomic location, such as phenotypic traits
or disease state features.
Many labs studying data originating from omics stud-

ies of different organisms are lacking the personnel and
expertise to write customized software for visualizing
genome-wide associations. The inclusion of multiple or-
ganisms into POMO addresses this need by enhancing
the utility and usability of visualization software. POMO
supports the newest genome builds of the following or-
ganisms: human, mouse, nematode, fly, yeast, zebrafish,
Arabidopsis, rice, tomato and E. coli (Table 1).
Additionally, POMO provides an interface for a cus-

tom/new organism selection. This option allows users to
define a new organism, which can be for example an exist-
ing organism that POMO does not yet support, parts of
an existing organism (chromosomes or contigs), or com-
bination of several species. As outlined in Figure 1, unsup-
ported or custom references can be defined and their
associations plotted and exported. In addition, POMO
enables pairwise between-organism comparison allowing
visualization of in-between associations of genes or gen-
omic locations between different organisms, such as
human-mouse or yeast-yeast. The resultant views can be
exported as an SVG and converted to publication reso-
lution quality images using free tools like Inkscape. This
function will assist labs with communicating and sharing
their association findings. The exported filtered text asso-
ciations can be used as immediate POMO inputs as well.

Further, POMO supports direct URL referencing of asso-
ciations, such as cloud-based files stored on GoogleDrive
or DropBox, and thus researchers can communicate their
insights visually with fellow collaborators. POMO does
not store any upload data thus preserving and addressing
security and privacy.
POMO is designed for illustrating omics associations

directly from text files in circular genomic, network and
tabular contexts with dynamic built in organism refer-
ence and annotation support. Following graph syntax
from math, an edge is defined as two nodes having a link
or association. In POMO, this edge can be ranked with a
numeric weight, such as a p-value or correlation, or the
user can directly mark this association with a color. In-
put associations can be derived from any data mining
method as long as node labels are either gene names,
identifiers such as ENSEMBL and ENTREZ or chromo-
some based positions. This flexibility allows for network
nodes to be in non-coding DNA range which leads to
complete inclusivity. Non-gene coding events such as pro-
moter sites, copy number variation and other aberrations
can easily be integrated and visualized. The program sup-
ports mixing gene and non-gene position based node
labels. POMO node labels can be either ENSEMBL/
ENTREZ id or gene label or position based. Position based
nodes are labelled in the form chr:start:end. The nodes
may be enhanced with a source type, such as genotype
(GENO), gene expression (GEXP) or proteomics (PROT)
data. These optional node annotations are encoded to a
set of colors that lead to richer and differentiable graphical
details. In addition, POMO supports multiple genome
wide annotation rings, where the rings are defined in a
text file and then uploaded. The syntax allows for pairing
of values or colors to a gene or a segment in the chromo-
some. Syntax details and examples are provided in the
Additional file 1. As exhibited in Additional file 1: Figure
S10, annotation rings can be represented as bars, histo-
grams and heat maps. Unmapped (PHENO) phenotype

Table 1 Supported organism references
Organism Species/build Source URL

Human H. Sapiens (GRCh37.p11) ENSEMBL http://www.ensembl.org/Homo_sapiens/Info

Fly D. melanogaster (BDGP5) Fly base http://flybase.org/

Mouse M. musculus (GRCm38.p1) MGI http://www.informatics.jax.org/

Worm C. elegans (WBcel235) Worm base http://wormbase.org/

Yeast S. cerevisiae (EF4) SGD http://www.yeastgenome.org/

Zebra fish D. rerio (Zv9) ZFIN http://www.zfin.org/

Arabidopsis A. thaliana (TAIR10) TAIR http://www.arabidopsis.org/

Rice O. sativa (MSU6) MSU http://rice.plantbiology.msu.edu/

Tomato S. lycopersicum (SL2.40) SolGenomics http://solgenomics.net/

E. Coli K-12 (MG1655) Ecocyc http://ecocyc.org/
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associations are visually portrait as outer glyph ticks,
where the position represents the genomic position linked
to the unmapped feature.
POMO inputs are text files containing genomic results

such as interactions or associations. Each edge defines
two nodes and the nodes are labelled with a gene name
or ENSEMBLE or ENTREZ identifiers. The user can
mix the node labels freely and Additional file 1: Table S1
provides more details and examples. Edges can optionally
be rank with weights and also directly marked up with an
HTML supported color. The supported delimiters along
with the file type extensions are spaces (.txt), tabs (.tsv)
and commas (.csv). Simple Interaction Format (.sif), which
allows for multiple associations to be placed on one line,
is also supported. We have also extended the sif format to
allow an optional weight or color column.
Utilizing HTML5 FileReader API and modern web

browsers, the tool allows uploading of association and
annotation text files and then upon chromosome pos-
ition translation immediately plots the resultant graph.
Publically accessible cloud hosted omics association files
can be read by POMO as an URL parameter. For testing
and efficient plotting of small networks, one can declare
association edges directly inside the URL parameter.
Details and syntaxes are provided in the user guide,

Additional file 1. The software includes comprehensive
dialogs and messages to report if certain association
node labels cannot be mapped to the selected reference.
Association weight filtering can be accomplished if nu-
meric values are provided. Moreover, POMO also allows
for label set filtering, meaning, e.g., that a list of gene la-
bels, such as members of a particular pathway, can be
used to find subsets of the graph. The circular, grid and
network views are automatically refreshed on each fil-
tered submit and their iterated graph images can be
exported as SVG image file, suitable for publishing or
posters with its high definition presentation.
The interface dialog windows are programmed with

custom listeners and AJAX events for seamless dynamic
document updates. Since JavaScript allows for functions
as parameters, these dynamic functions are then being
utilized on callback functions upon user selection of or-
ganism and file format selection and upload. Object
instantiations are also linked to different user interface
selections, such as organism determines the genome
browser a node click resolution. This Web 2.0 applica-
tion includes extensive usage of ExtJS layout and panels,
and jQuery AJAX with JSON Objects for data exchange.
POMO circular visualization is built on top of VisQuick
that utilizes Protovis [40] while the network view

Figure 1 POMO flow chart. When using POMO, first the user selects the organism he wants to study. It is also possible to create a custom
organism. Second, user uploads the associations and possible annotations as data inputs into POMO. Currently, POMO is supporting 10 different
genomes. POMO visualizes the input associations instantly providing multiple options for the views. The weights and labels, including gene sets,
such as pathways, can be applied for filtering. All views are exportable as figures and also as text formats which can be directly used as
future inputs.
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integrates CytoscapeWeb with custom discrete mappers
and data population functions. Built on modern web soft-
ware principles that include integration of python libraries
and SQLite databases, the application can be deployed to
all major web servers independent of platform and operat-
ing system.

Results and discussion
Big data is a large and routine part of modern day genom-
ics research; along with troves of public databases, labs are
generating different types of genome-wide data from new
experiments and various instruments. Various sets of asso-
ciations, often heterogeneous, are being extracted and by

Figure 2 Illustration of copy number alterations and gene expression value associations in hESC and hiPSC samples. The figures depict
associations detected in human embryonic (hESC) and induced pluripotent stem cell (hiPSC) data and associations with colored based on the
correlation value. The file has 45,791 edges and the upload and plotting took 5 seconds. A) POMO illustration of the best 2000 correlations shows
2000 edges and with heatmap rings hiPSC/hESC expressing high/low gene expression with CNV gain and loss. Green edges indicate positive
correlations while pink indicates negative. B) The result is further filtered using set membership check on the gene list taken from KEGG WNT
pathway and the edge weight abs (correlation) > = 0.92, yielding 160 edges. C) The result in sub-Figure B is illustrated with the Cytoscape Web
radial layout.
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Figure 3 (See legend on next page.)
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using POMO the investigators can gain insights from the
different visual perspectives and layouts. Of particular
interest is the genomic circular layout, where nodes are
spatially mapped to chromosome arcs on the circumfer-
ence and the associations are represented as edges be-
tween the genome-anchored nodes. Proximal and high
degree nodes are revealed instantly, as well as sparse dis-
joint associations. With usage of filtering by association
weight with multiple operators, gene label, or list of gene
labels that can be for example pathways, investigators can
intuitively find insights from previous uninformative dense
networks. It is well known that genome wide visualiza-
tions, particularly in circular context, can have limited
spatial capacities and dense graphs are not informative.
To address this, POMO allows for filtering and edge
bundling functions. The edge bundling allows for a node
range window and groups the edges if the start and end
nodes are within this window. Optionally, a score thresh-
old can be set to exclude valued edges from the bundling
(See Additional file 1 for more usage details).
POMO can serve as a tool for genome-wide network

visual exploration and communicative collaboration since
the filtered results can be shared as exported files, images
or directly as an URL. Clicking on nodes will open specific
Genome Browsers on the selected region window of the
specific organism. In the following scenario, POMO is
used for integrating and visualizing copy number gains
and losses in relation to correlation associations in appli-
cation of human embryonic stem cells (hESC) and human
induced pluripotent stem cells (hiPSC) samples [41,42]
(Figure 2). The rings in POMO plot are illustrating the
copy number variations together with genes whose ex-
pression values have been identified to be associating with
the copy number variation. In Figure 2, after the outer-
most cytoband, the first ring is indicating the areas whose
copy number has been altered in hESC samples, while the
next ring illustrates the genes whose high expression is as-
sociated with gain in copy number (red) and whose low
expression is associated with loss in copy number (green)
of the same samples [41]. Similarly the fourth ring illus-
trates the copy number alterations in hiPSC samples [42]
and lastly the associated genes with them in the same
samples (unpublished observations, Laurila et al. submit-
ted). The edges demonstrate correlations between the de-
tected genes computed through all the expression data.
Based on the genome-wide figure it is easy to see how
there are several genes with copy number alteration in
both hiPSC and hESC samples in the chromosome 1, that

are highly correlating with other altered genes and are also
a part of WNT pathway.
Genome-wide contexts can be particularly helpful in

viewing chromosomal arrangements. Figure 3 depicts
TCGA glioblastoma multiforme (GBM) [43] rearrange-
ment and chromothripsis events associated with poor sur-
vival [44]. Using data in the accompanied supplement,
chromothripsis results are represented as red edges while
blue edges demonstrate rearrangements with supporting
reads of greater than 100, where grey represents support-
ing reads of lower than 50. Chromosome region 12q14-15
is considered as a breakpoint-enriched region where onco-
genes CDK4 and MDM2 are noted to amplify frequently
[44]. The inner red ring of the figure demonstrates these
elevated amplifications where the next two inner rings
represent gains (green) and then genes with evidence in-
volved in fusions.
Another case study is the visualization of high quality

yeast protein-protein interactions labelled with ENSEMBL
gene ids [45,46]. Released as part of Cytoscape, the file
contains 6888 edges and can be directly uploaded into
POMO without any data manipulation. A full workflow,
including file upload and resolution of chromosome posi-
tions using POMO’s reference translator service took 1.9
seconds and then 1 second to plot the default but config-
urable limit of the first 2000 edges [See Additional file 1:
Figure S13]. This is consistent with our randomized test-
ing of 1000 edge sets where the genomic translation ser-
vice performs around 500 milliseconds and then almost
instantaneous plotting. See Table 2 for more details on
browser/OS comparisons. Though web based software
has a dependence on network connectivity, we have suc-
cessfully tested the service from different locations. For
clarity, plot limits can be set easily with a pull down list
and filtering, whether it is label set or scoring based, is
always applied on the full association set. The actual
plotting relies on browser/client memory. Furthermore,
the export of filtered associations can serve as inputs on
future POMO sessions. The different views are all up-
dated dynamically and synced with the latest uploaded
and filtered results. Users can toggle between the tree,
circle, radial and force-directed layouts in the Cystocape
Web view.
POMO also allows the user to visualize genomic asso-

ciations between two related organisms, or two distinct
strains within the same POMO supported organism.
Figure 4A exhibits phenolog [47] orthologs of obesity-
abnormal food intake between human and mouse. Edge

(See figure on previous page.)
Figure 3 Plotting genomic structural variations. The figures depict TCGA GBM [43,44] rearrangements and chromothripsis findings from
whole genome sequencing. A) Edge colors are used to describe number of supporting reads, with gray < 50 and blue greater than 100.
Histogram rings are depicting copy number gain and loss ratios while the inner most ring accounts for possible gene fusion events. B) The result
is showing the network view of the same data where the single edge associations are filtered.
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colors are used to differentiate predicted orthologs and
shared orthologs based on observed phenotypes. Using
the same interface and selecting custom organism, the
user selects the organisms to contrast, and then the in-
put file association node labels are resolved based on the
selected reference. Following this workflow, an unsup-
ported organism can be defined by indicating its chro-
mosomes and base lengths. Figure 4B demonstrates the
custom function to illustrate the chloroplast genome of
the green alga Chlamydomonas reinhardtii (NC_005353)
[48], highlighting the associations of genes in the cyt b6f

complex, which mediates electron transfer between pho-
tosystems (PS) II and I, cyclic electron flow around PSI,
and state transitions [49]. More information concerning
custom organism options is described in detail in the
Additional file 1.

Conclusions
POMO, freely available for non-commercial research,
was designed for life science researchers to easily plot,
filter and share genome-wide omics data and associations
using an intuitive web interface. In supporting different
labs studying different organisms, a comprehensive set of
model organism genome references are fully integrated to
allow for flexible association notations. The unique prop-
erty, only available in POMO, is allowing the user to illus-
trate various organisms or closely related organisms
together within single view. POMO also includes a de-
tailed user guide, and several example associations and an-
notations are provided. In future, we will add support for
other further organisms and appreciative of user feedbacks
to improve the views and interface. For maximal visual
impact, different visualization views and network layouts
are supported and can be seamlessly toggled with simple
clicks. Upon filtering, each view is dynamically filtered
and text exports can serve as future inputs while the SVG
image export can be converted to publishing quality

Figure 4 Mouse-human phenolog homology and custom alga network views. A) Genome-wide visualization of mouse-human obesity
ortholog associations. Blue perimeter stands for mouse while purple is for human, blue edges stand predicted mouse orthologs based on shared
human phenotype while red edges indicate ortholog groups shared by human and mouse phenotypes. B) Figure shows the chloroplast genome
of Chlamydomonas reinhardtii (NC_005353) highlighting the chloroplastic part of the cyt b6f complex where its nodes and edges consist of the
genes petA, petD, petB, petG, and petL.

Table 2 Performance benchmarking on yeast
protein-protein associations

Process Firefox Chrome

Windows 7
4 GB RAM 2.6 GHz

Upload/server translation 1.5 seconds 1.5 seconds

Browser plotting 1 second 1 second

Mac OS 10.8
8 GB RAM 1.8 GHz

Upload/server translation 1.5 seconds 1 second

Browser plotting 1 second 0.5 second

The network consists of 3025 nodes and 6888 edges. The times given here
include uploading/translation (genomic identifiers to chromosome positions)
and plotting. Generally, Chrome is faster at plotting while uploads will depend
on network speed and geographical location. These tests were done in
Finland and Germany on wireless connections. We recommend using relative
recent releases of Firefox and Chrome because of HTML5 file uploading and
JavaScript libraries dependencies.
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presentations. POMO is an open sourced project and the
code, builds and documentations are available at http://
pomo.googlecode.com. In sum, as genome-wide visualiza-
tions, particularly interactive and web based, can help re-
searchers to confirm theories and formulate new research
questions, POMO can significantly facilitate researchers in
finding new biological discoveries among their omics data.

Availability and requirements
Project name: POMO: Plotting Omics analysis results
for Multiple Organisms
Project home page: http://pomo.cs.tut.fi
Operating system(s): Platform independent
Programming language: Python 2.6+, JavaScript, HTML5,
SQLite 3.7+
License: POMO is available free of charge to academic
and non-profit institutions.
Any restrictions to use by non-academics: Please con-
tact authors for commercial use.

Additional file

Additional file 1: POMO User Guide.
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Vipie: web pipeline for parallel
characterization of viral populations
from multiple NGS samples
Jake Lin1 , Lenka Kramna2, Reija Autio3, Heikki Hyöty1,4*, Matti Nykter1* and Ondrej Cinek2*

Abstract

Background: Next generation sequencing (NGS) technology allows laboratories to investigate virome composition
in clinical and environmental samples in a culture-independent way. There is a need for bioinformatic tools capable
of parallel processing of virome sequencing data by exactly identical methods: this is especially important in studies
of multifactorial diseases, or in parallel comparison of laboratory protocols.

Results: We have developed a web-based application allowing direct upload of sequences from multiple virome
samples using custom parameters. The samples are then processed in parallel using an identical protocol, and can
be easily reanalyzed. The pipeline performs de-novo assembly, taxonomic classification of viruses as well as sample
analyses based on user-defined grouping categories. Tables of virus abundance are produced from cross-validation
by remapping the sequencing reads to a union of all observed reference viruses. In addition, read sets and reports
are created after processing unmapped reads against known human and bacterial ribosome references. Secured
interactive results are dynamically plotted with population and diversity charts, clustered heatmaps and a sortable
and searchable abundance table.

Conclusions: The Vipie web application is a unique tool for multi-sample metagenomic analysis of viral data,
producing searchable hits tables, interactive population maps, alpha diversity measures and clustered heatmaps
that are grouped in applicable custom sample categories. Known references such as human genome and bacterial
ribosomal genes are optionally removed from unmapped (‘dark matter’) reads. Secured results are accessible and
shareable on modern browsers. Vipie is a freely available web-based tool whose code is open source.

Keywords: Metagenomics, Viromes, Virus, Assembly, NGS analysis, Visualization, Parallel processing, Viral dark matter

Background
The use of virome metagenomics has been growing
rapidly due to the increasing demands to study the
whole virome in clinical samples and to evaluate the
evolution of viral quasispecies during acute and chronic
infections. The application of virome sequencing tech-
niques become useful not only in infectious disease
research, but also in association studies of primarily
non-infectious conditions, i.e. in diseases where the

agent is presumed to modify the risk of the disease,
which effect is detectable upon investigation of a large
number of subjects only. These applications require an
approximation of virus quantity, similar to what has long
been utilized in bacteriome profiling.
As viruses lack a common sequence signature, metage-

nomics sequencing of random viral libraries remains the
only feasible way of an unbiased assessment of the whole
virome. Presently, the need for accurate quantification
and interpretation of viral population metrics across a
set of samples creates a substantial challenge for this
kind of metagenomics studies. Prime obstacles for
virome investigators are the large genetic heterogeneity
and also that the majority of bioinformatic tools are
command line based and overtly technical, being com-
putationally demanding, with complicated dependencies,
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and producing text based outputs that are not easily
interpretable [1–5]. Recently released web based applica-
tions Taxonomer [6], VirusTAP [7], Virome [8] and
Metavir [9, 10] have addressed some of the issues (espe-
cially those of user interaction), but mostly operate only
on single sample experiments with different workflows.
Requiring local dependencies and installation, ViromeScan
[11] and MetaShot [12] works on multiple samples. Some
of these tools were designed for long (>300) reads or
assembled contigs [8–10], which is limiting as modern
metagenomics projects including Human Microbiome
Project (HMP) [1, 2] produce mostly high-throughput
short paired reads. Table 1 provides an overview of the
primary features and strategies of these different tools,
including our work.
We aimed to open the possibility of creating a table of

viral quantities of multiple samples assessed in parallel
by exactly identical processes. Here we introduce Vipie,
a web based viral diversity population tool accepting as
input a set of files from virome metagenomics NGS
analyses of multiple samples. Here we present the work-
flow and results using NGS samples from Human
Microbiome Project and other metagenomics studies.
Functional on all modern browsers, the high perform-
ance pipeline is freely available for academic usage.

Implementation
Our pipeline processes de-multiplexed paired FASTQ
files, the most typical product of metagenomics sequen-
cing. Several steps are then performed in parallel for all
samples: quality control (QC), de-novo assembly of
putative genomic contigs, taxonomic classification of the
assembled contigs and orphan singleton reads by per-
forming Blast queries against a local custom virus data-
base derived from Genbank, and finally remapping of
the sequencing reads onto reference sequences identified
by this taxonomic classification. Default analysis parame-
ters can be easily modified (e.g. the QC stringency, or
the de novo assembly algorithm).
Depicted in Fig. 1, Vipie pipeline uses multi processor

architecture with integration of PostgreSQL for perform-
ance and data management while providing secured
interactive results and allowing web form parameters for
QC, assembly and scoring. The individual parameters
and its default values are listed in the user guide. Trim-
ming and quality control are parameter based applying
Galaxy project utilities [13, 14]. We have integrated lead-
ing de-novo assembly tools - Velvet [15], MetaVelvet
[16], IDBA [17] and MEGAHIT (SOAPDENOVO) [18]
and ABySS [19]; these methods and tools are further
described and reviewed [5, 20–22]. Taxonomic identifi-
cation is performed using BLAST [23] against a local
NCBI database restricted to whole virus genomes. The
final step of the parallel analysis remaps the raw reads

using BWA [24] onto a list of best matches from the
BLAST queries, and lists the count of original reads
matching to each of these references. In cases where
reads match equally well to multiple viruses, the score is
divided among such best matches to express importantly
the ambiguity in assignation of the motifs shared among
viral taxa, and the uncertainty of the presently available
classification.
De-novo contigs and reads that do not match to any

currently known virus, optionally filtered for human
genome and known ribosomal DNA, can be retrieved
for further analysis as this ‘dark matter’ of the virome
presumably containing novel viruses. Our pipeline allows
a direct export of these unmapped reads owing to
three-step filtering strategy. Reads unmatched to known
viruses are first deprived of sequences that match to ribo-
somal DNA of bacterial, archeal and fungal origin. This is
performed by remapping the reads by the BWA program
to databases of 16S, 23S and 5S rDNA (a copy of
ftp.ncbi.nlm.nih.gov/genomes/TARGET, and a reduced
database of 5S rDNA http://www.combio.pl/rrna/) [25].
The next step remaps the reduced set of reads to the
human genome. This step yields the potential dark matter
of the human genome, mixed with a small proportion of
bacterial genomic DNA. Our pipeline does not filter out
these bacterial genomic reads, as they may contain novel
lysogenic (dormant) phages.
VIPIE’s reference virus database was built from three

sources and clustering the sequences to the 97% level of
identity further reduced the complexity. First, all viruses
were downloaded from the refseq database at the NCBI
(https://ftp.ncbi.nih.gov/refseq/release/viral/), and reduced
to 97% identity by using the CD-HIT program (https://
github.com/weizhongli/cdhit/[26]). Then, all virus se-
quences labeled as “complete”, with the “txid10239”
(superkingdom Viruses) in the “Orgn” field were retrieved
from Genbank. The query retrieved approximately 80,000
sequences from the database, which were subsequently
reduced to the 97% similarity by using the CD-HIT
program. Finally, similarly to previous two databases,
phages were merged and clustered from the European
Bioinformatics Institute (EBI) repository (ftp.ebi.ac.uk/
pub/databases/fastafiles/embl_genomes/genomes/Phage/).
The web form, interface dialogs and results are

programmed to HTML5 standards and using JavaScript
and modern, open source JavaScript libraries (https://
jquery.org, https://datatables.net) for browser compati-
bility. Biopython [27] is used for sequencing parsing and
formatting. Parallel processing is achieved via python
(https://www.python.org) subprocess module implemen-
tation and uses PostgreSQL (https://www.postgresql.org)
schema for job tracking and results merging. Standard
SMTP library is used for notification, hence the email regis-
tration requirement. Clustered heatmaps are implemented
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with R ggplot2 [28] while other summary and alpha diver-
sity statistics are computed using custom python scripts.
Population maps and read distribution count summary
charts are created using highcharts.js (https://www.high-
charts.com) and custom event handlers for interactivity.
Vipie is an ongoing open sourced project and available at
https://sourceforge.net/projects/vipie.

Results
Input samples and interactive results
The pipeline utility is here demonstrated on set of 11
samples where the input and results are available to all
users. The sample set consists of (a) blood, nasal, stool
and vagina data from Human Metagenome Project
(HMP), (b) diarrhea sample from gastroenteritis out-
break (DRA004165 DNA Data Bank Japan [29, 30]) used
in VirusTAP and (c) stool data from in-house ongoing
African metagenomics project [31, 32]. Table 2 lists rele-
vant accession identifiers, sources and number of reads
along with result links. As the compressed archived
exceeds 1.2 gigabytes, a smaller subsampled archive
consisting of 20% is available for download on the home-
page and the original compressed FASTQ archived is
available on https://sourceforge.net/projects/vipie/files/
data [33]. End-to-end processing of the 11 samples took
82 min, processing 29,778,980 reads that includes
assembly, scoring, and clustering and removal of human
reference and known ribosomal references. The per-
formance time was measured after the archive was
uploaded as file upload depends fully on local network

speed. The interactive results, with population profile
maps and filterable viral hit tables are accessible at:
https://binf.uta.fi/vipie/results.html?key=eLZPuObVoU.
Result links are accessible without registration and
designed to be shared among collaborators whereas job
history and active jobs are visible only to registered inves-
tigators. The results are divided into panels of Population
profile & group assignment, QC & Dark matter report,
Summary & alpha diversity, and Viral hits table. Raw
results, including unmapped dark matter reads that to not
match to any known virus can be also downloaded.
Figure 2 shows group-based population pie charts and

alpha diversity as measured by Shannon entropy [34].
The population pie chart sizes are relative to total num-
ber of hits and their slices are fully interactive as clicking
on the slices traverses the taxonomy levels. The tool
found 167 unique accessions across the samples and an
easy to use searchable and sortable sample hits table is
provided and best experienced from the browser, where
the table can be collapsed based on taxonomy and
sample viral hits can be downloaded as a text file ready
for Excel import.
Our user guide provides screenshots and directions on

filtering the sample hits table and using the filtering
function, we found Human Herpes hits on a HMP blood
sample SRS072276, where herpes in hematological
samples have been reported in a prior microbiome
and hematopoiesis report [35]. Our results showed
that virus population profiles are unique across body
sites, reported also in ViromeScan and visually shown

Fig. 1 Vipie web flow chart. For efficiency, sample based paired FASTQ files are uploaded as a zipped archive with optional mapping file. Illumina
BaseSpace archive downloads can be used without changes. All pipeline parameters can be entered using the web form. The default values and
use case are listed in the user guide available at home page along with example multi-sample archive input
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in the clustered maps. Interestingly, in the stool sam-
ple SRS012902, crAssphage [36] was by far the highest
virus detected. Figure 3 shows the clustered heatmap gen-
erated in R, and it correctly clustered healthy HMP sam-
ple types together [11] while Japanese gastroenteritis and
African samples showed profoundly different signatures.

Comparisons
We first compared our performance to that of ViromeS-
can. While ViromeScan states that it supports multiple
samples, it requires local installation with 50+ gigabytes
of database requirements. The 20 HMP samples used for
its validation, only the stool samples passed QC [37] and
likely due to timing, the other sample types were not
available on HMP download page. Our summary and
cluster findings of stool samples and retroauricular, with
the highest diversity, samples agree with ViromeScan
and other HMP findings of ~5.5 genera per sample [38].
We were unable to reproduce the herpes associations
reported with vagina samples as those samples are no
longer available. Input parameters, interactive maps, QC
report (Fig. 4a) and viral hits of the 11 samples are
accessible at https://binf.uta.fi/vipie/results.html?key=eLZ
PuObVoU and Table 2 contains accession ids along with
sample read sizes.
Then performance of Vipie was compared to VirusTAP.

Its web based de novo assembly dedicated pipeline
required 17 min to process the DRA004165 sample from
a study of gastroenteritis [29] in Japan. VirusTAP capably

detected 11 Human rotaviruses where this result is cited
and also available as its example results. Vipie using the
same input detected similar findings of 14 Human rotavi-
ruses strains (shown in Additional file 1: User guide Figure
10B) and also interestingly Streptococcus phage strains.
Using the same sample, our pipeline required 32 min due
to post assembly remapping with custom scoring and then
unmapped origin filtering. Because of Vipie’s parallel com-
puting design, the archive of 11 samples and more than 10
times the amount of reads, took just 82 min. The more
comprehensive findings also highlight the scoring split
strategy on read hits on multiple viruses and investigation
of unmapped viral read origins shown in Fig. 4b.
Furthermore, benchmarking was assessed and com-

pared with the recently published MetaShot, using its
simulated artificial dataset with a very high share of
human sequences mixed with low amounts of many
different viral sequences. Table 3 below shows the similar
precision and recall results of the two tools. Vipie has a
slightly higher percentage of unclassified viral reads likely
due to subsampling of the initial dataset, and due to the
fact that we optimized the virus BLAST database by re-
moving sequences that were less distant than 3% from its
closest relative; similar reduction of taxonomic complexity
is known from e.g. bacteriome profiling. The script and
Vipie results used for computing this statistics are avail-
able with README in Vipie project page on SourceForge.
We are grateful to MetaShot authors for permission to
use their simulated data, constructed using ART [39].

Table 2 NGS samples used in Vipie validation from Human Microbiome Project, Africa study, and diarrhea sample sourced in Japan
gastroenteritis outbreak. ViromeScan listed 20 HMP samples but only Stool types of 4 samples passed QC
AccessionId Source Sample Type Number of Readsa Sample used in Vipie-ViromeScan-VirusTAP validation Vipie Resultsb

SRS072276 HMP Blood 438,879 Yes-No-No 1,2

SRS072318 HMP Blood 753,994 Yes-No-No 1,2

SRS019033 HMP Retroauricular 1,285,003 Yes-No-No 1

SRS016944 HMP Retroauricular 1,619,439 Yes-No-No 1

SRS012902 HMP Stool 2,039,473 Yes-Yes-No 1

SRS014923 HMP Stool 2,009,179 Yes-Yes-No 1

SRS014466 HMP Vagina 367,077 Yes-No-No 1,2

SRS015072 HMP Vagina 495,256 Yes-No-No 1,2

SRS072313 HMP Nasal 320,672 Yes-No-No 2

SRS072261 HMP Nasal 367,384 Yes-No-No 2

SRS072366 HMP Nasal 114,414 Yes-No-No 2

S11 Africa Stool 1,634,821 Yes-No-No 2

S12 Africa Stool 1,191,427 Yes-No-No 2

S14 Africa Stool 1,143,784 Yes-No-No 2

DRA004165 Japan Diarrheal 1,108,688 Yes-No-Yes 2

In addition to those stool samples, Vipie test archive includes 4 other HMP sample types. Result links with performance time are also provided
aInput archive of Result 2 samples (subsampled 20% 225 MB) available at: https://binf.uta.fi/vipie/data/vipie_archive_ssampled.zip
bResults 1: https://binf.uta.fi/vipie/results.html?key=2HSPXukkDS (66 min)
Results 2: https://binf.uta.fi/vipie/results.html?key=eLZPuObVoU (82 min)
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Discussion
Vipie interface is implemented with HTML5 standards
and utilizes open source JavaScript libraries. Unlike older
and Adobe Flash based applications, Vipie does not
require additional installations and supports all modern
HTML5 compliant browsers while offering a consistent
user experience. The input parameter form is designed
to be clean and to group into processed components

where each element has custom validation rules. The
component details and rules are listed in the user guide.
Secured and interactive analysis results are accessed with
encrypted links and to promote collaboration, can be
shared without registration. Sample based alpha diversity
is provided, using Shannon entropy index [34] (Fig. 2) as
a representative of diversity methods [35]. Vipie intui-
tively offers web based, form or file upload sample group

Shannon entropy index

U
ni

qu
e 

ac
ce

ss
or

ie
s 

(lo
g)

Alpha diversity

Nasal
Vagina
Africa
Blood
VirusTAP

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

A

B

Fig. 2 Interactive population profile maps and diversity. Vipie results are securely accessed and browser based. a Population chart slices are
clickable and their sizes represent relative percentage of relevant taxonomy level. Diarrheal sample is dominated by dsRNA (orange) Rotavirus
while African stool samples contain ssRNA (green) and dsDNA viruses. b Alpha diversity is calculated using Shannon entropy. Vipie charts are
interactive and can be saved as multiple image formats
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(See figure on previous page.)
Fig. 3 Clustered heatmap of HMP, African and Japanese diarrheal samples. Public NGS data from different consortiums provide opportunities for
advanced comparative virome analysis. Healthy HMP sample types clustered correctly (nasal, vaginal, blood samples) while a Japanese sample
(gastroenteritis dataset from the VirusTAP report) and African samples (known to be positive for multiple viruses) showed different signatures.
HMP samples can be identified using the legend on upper right, with olive green for nasal, yellow for vagina and blue for blood. Samples from
rural Africa and VirusTAP (Japan) are marked in colors brick and red

A

B

Fig. 4 QC and distribution of reads including dark viral matter. a The chart shows the number of NGS reads retained per sample through
QC, interlacing and de novo assembly. b Sample reads, along the x-axis and their aligned origins are shown as stacked bars. Shown in black,
unmapped viral ‘dark matter’ is of high interest across virology studies. Blue bars represent bacterial ribosome, green for human while red is for
known viral matches
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reassignment where population and clustered maps are
reanalyzed and dynamically redrawn. The pipeline pro-
duces a cross tabulation similar to the operational taxo-
nomic unit (OTU) tables from bacteriome profiling,
additional statistics is doable with advance R packages
such as phyloseq [40] and deseq2 [41].
Often, published pipelines emphasize that their per-

formance is by orders of magnitude faster than existing
strategies [7, 8] and that the tasks can be completed in
the order of minutes to single hours in a situation where
existing viruses account only for a minor fraction of the
total read count. We believe that the present Vipie
pipeline offers fast data processing for most relevant
applications, including real-time assessment of viral
repertoire in clinical samples. For comparison, VirusTAP
processing, up to assembly with 1 sample (~2 million
reads, 172 MBs) took 17 min (Input upload time is not
included as it is dependent completely on local network
speed.). Vipie process the same sample in 32 min includ-
ing assembly, cross validation scoring/remapping, known
reference filtering and viral dark matter processing.
Parallel implementation is ideal for multi-sample pro-
cessing and input set of 11 samples (Table 2), consisting
of ~30 million reads, 1.22 GBs compressed and proc-
essed in 82 min. There is no concurrent limit on the

number of samples eligible for processing other than a
small database overhead. Job completion time has a dir-
ect relationship to the sample with the highest read
depth and it is well known that interlacing and assembly
are high memory tasks. The de novo assembly step im-
plements random subsampling on user defined read per-
centage, default of 75% with a maximum of 1,000,000
NGS reads per sample. Very large archives can suffer
from network timeouts on file upload. In overcoming
this scenario, we have successfully deployed Vipie on
cluster computing environment and analyze thousands
of samples consisting of terabytes of data using SLURM,
the default utility for Linux high performance comput-
ing. We believe that our strategy offers a good balance
between bearable algorithm speed on most machines,
and availability of multiple sample processing.
Importantly, the pipeline offers a set of files with bac-

terial, human, and unknown sequences (the “dark mat-
ter” of the virome). Dark matter reads are the remaining
unmapped reads after filtering for human and bacterial
ribosomes. It has been long known that the unknown
dark matter is extremely valuable in virome analysis [9]
and in focus with the recent discovery of new bacte-
riophage virus crAssphage while its bacterial host still
unknown [36]. Many components of this “dark matter”
of the virome have been observed across studies, and are
likely to represent existing viruses, yet their taxonomy is
presently unknown. The lack of taxonomic classification
however should not preclude their use as provisional
entities, exposures that are testable and quantifiable in
epidemiological studies. Figure 4b shows an interactive
sample based chart consisting of stacked bars represent-
ing the percentage of reads mapped to human, bacterial
ribosomes, known viruses and dark matter. It is apparent
that these unmapped reads dominated these NGS sam-
ples and deeper advanced analyses are necessary. As
such, viral dark matter raw reads are part of downloads.
An often-overlooked aspect is the uncertainty in virus

identification. The Genbank database contains many
similar isolates of almost every relevant virus serotype.
This means that most reads or contigs would map to
multiple different sequenced virus isolates. In single
sample studies this does not pose any problem - the
taxonomy is concluded as the highest scoring hit, or the
first of a set of similarly high scoring organisms. This
however cannot be done when a pipeline processes
multiple samples at the same time: due to the known
intrinsic variability of the viruses, even a single subject
may produce two different samples where different virus
quasi-species may prevail that will preferentially map to
two different virus reference sequences. There are two
possible solutions to the problem: the ViromeScan pipe-
line employed one where the databases are smaller with
a limited scope. Unfortunately, the strategy towards their

Table 3 (A) Read assignment benchmark assessment of
MetaShot and Vipie on simulated dataseta consisting of 19 582
500 human (94.5%), 986 114 bacterial (4.8%) and 146 886 viral
(0.7%) reads. Vipie percentages are based on random
subsampling of 1 000 000 reads and bacterial statistics are not
reported as Vipie reports information on bacterial ribosome only
(the bacterial genomic DNA is not filtered out, as it might lead
to loss of dormant phage sequences). (B) Precision, Recall and
F-measure are calculated on the same data. Input reads and
assessment script are available on SourceForgeb

A Assigned %c Correctly Assigned %d

MetaShot Vipie MetaShot Vipie

Human (host) 99.18 99.27 99.99 99.27

Viruses

Family 97.74 99.98 98.53 93.39

Genus 97.39 98.99 99.75 93.33

Species 97.81 93.66 96.70 92.97

B Human (host) Virus

MetaShot Vipie MetaShot Vipie

Precision (%) 100.00 100.00 98.30 96.85

Recall (%) 99.97 99.96 98.19 95.36

F-measure (%) 100.00 99.98 98.07 96.08

Unclassified (%) 1.04 0.73 3.94 6.73
ahttps://recascloud.ba.infn.it/index.php/s/nw4s9hqnF8QkBsK
bhttps://sourceforge.net/projects/vipie/files/validation/k
cThe percentage refers to the total number of reads assignable to the specific
taxonomic rank
dThe percentage refers to the relevant assigned reads
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construction was not described in the paper, but clearly
only the most important serotypes represent each virus
species - e.g. only 92 sequences cover the whole reper-
toire of human DNA viruses. In Vipie we chose a differ-
ent strategy: we decided to build a representative virus
database of all available sequences (clustered to a 97%
similarity level for the sake of algorithm speed), and all
multiple equally likely mapping hits are resolved by split-
ting the mapping score among the different hits. At
higher taxonomic levels of family or genus this is not
visible, but when descending to the level below species
(to individual reference sequences), the uncertainty is
expressed by the existence of a whole block of candidate
viral reference sequences to which the sample distributes
many of its reads. This should express that the found
virus is similar to many references, but neither is fully
identical. This strategy has proven feasible in our bench-
marking experiment when we reached parameters rea-
sonably close to the specialized single-sample taxonomy
tool MetaShot [12], while offering the possibility of
parallel assessment of multiple viromes in one run. We
assigned 3.73% less reads to their correct species (Meta-
Shot 96.70%, VIPIE 92.97%) - this may be (a) the effect
of clustering our representative virus database; some
reads falling into species or serotype specific viral re-
gions may thus remain unidentified; (b) the consequence
of subsampling - VIPIE uses subsampling to 1 million
reads maximum, whereas the simulated MetaShot data
set is more than 20 times larger, with most of the viruses
in trace amounts.

Conclusions
Virome NGS datasets are unique in several aspects.
Firstly, unlike in amplicon libraries in bacteriome profil-
ing, there are no clearly outlined methods of taxonomic
classification and of quantification of the viral agents.
Secondly, unlike work on e.g. RNA sequencing in humans
and animals, there is no well-defined reference set of viral
sequences. Therefore the virome characterization must
rely on an insufficient knowledge of existing viruses, and
on still uncertain techniques of taxonomic sorting - first
because the taxonomy of viruses is still rapidly evolving.
When studying an association of existing or novel viral

agents with a condition (as is a disease, an ecological
variable, or a human intervention), it is imperative to
keep the analytical conditions identical across the data
set, and to attempt a truly unbiased relative quanti-
fication of the viral agents present therein. This can be
safely achieved only if all samples of the dataset are
processed by an identical protocol - and if they are
quantified against a common set of reference sequences.
The reference set should be a union of all possible
references of the whole study set. Our pipeline performs
such quantification: it identifies all agents present in the

dataset and in the final step it attempts remapping of
the original reads from every sample to this whole
reference set. This enables employing the ensuing virus
quantity tables in downstream analyses similarly to the
well-established analyses of bacterial profiles from 16S
rDNA mass sequencing.

Availability and requirements
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License: Vipie is available free of charge to academic
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