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Abstract The aim of this article is to inquire about potential relationship between change of 

crime  rates  and  change  of  GDP  growth  rate,  based  on  historical  statistics  of  Japan.  This

national-level study used a dataset covering 88 years (1926-2013) and 13 attributes. The data 

were processed with the Self-Organizing Map (SOM), separation power checked by our 

ScatterCounter method, assisted by other clustering methods and statistical methods for 

obtaining comparable results. The article is an exploratory application of the SOM in research 

of  criminal  phenomena  through  processing  of  multivariate  data.  The  research  confirmed

previous findings that SOM was able to cluster efficiently the present data and characterize 

these different clusters. Other machine learning methods were applied to ensure clusters 

computed with SOM. The correlations obtained between GDP and other attributes were mostly 

weak, with a few of them interesting. 
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1 Introduction 

 Data mining methods are broadly used in recent decades in research of many disciplines. 

Criminal phenomena can be observed and studied from different perspectives, of which data 

mining methods are playing an increasingly significant role. These methods enable research 

with demographic, psychological, economic, socio-legal, and historical indicators. The self-

organizing map (Kohonen 1979), which employs an unsupervised learning approach to cluster 

and visualize data in accordance with patterns identified in a dataset, is a proficient apparatus 

This is the post print version of the article, which has been published in AI & SOCIETY. 
2018, 33(2), 261–274.  http://dx.doi.org/10.1007/s00146-017-0722-7



 

 2

designed for such data investigation. The interaction between artificial intelligence and research 

of criminal phenomena facilitates an innovative study. 

On one hand, for years, the capacity of the SOM of identifying acts that are suspected of 

guilty or abnormal has been studied in a broad range. Here there are just some of the examples 

that were frequently mentioned: the detection of automobile bodily injury insurance fraud 

(Brockett, Xia, and Derrig, 1998), homicide (Kangas et al., 1999; Memon, and Mehboob, 2006), 

mobile communications fraud (Hollmén, Tresp, and Simula, 1999; Hollmén, 2000; Grosser, 

Britos, and García-Martínez, 2005), murder and rape (Kangas, 2001), burglary (Adderley and 

Musgrave, 2003; Adderley 2004), network intrusion (Axelsson, 2005; Lampinen, Koivisto, and 

Honkanen, 2005; Leufven, 2006), cybercrime (Fei et al., 2005; Fei et al., 2006), and credit card 

fraud (Zaslavsky, and Strizhak, 2006). These are primary fields where the application of the 

SOM has been emphasized in the research of criminal phenomena. These can be regarded as 

microscopic research. 

On the other hand, research in criminal phenomena in general at international level and 

national level has also been developed. Li and Juhola (2013) and Li (2014) applied the SOM in 

the study of criminal phenomena based on international databases, assisted with some other data 

mining techniques. The research dealt with the relationship between crime and demographic 

factors (Li and Juhola, 2014a; Li et al. 2015a), economic factors (Li and Juhola, 2015), historical 

developments of criminal phenomena in the USA (Li and Juhola, 2014b), and that between a 

particular offence, homicide and its social context (Li et al., 2015b). These studies concluded 

that  the  SOM,  in  addition  to  its  application  in  microscopic  research,  could  be  a  helpful  

instrument for research in crime at international and national levels based on relevant statistical 

data. However, the conclusions also revealed that more numbers of more extensive experiments 

in the same field would be expected and necessary. 

While Li and Juhola (2014b) was an innovative study of using the SOM in the research of 

criminal phenomena based in the USA on a multivariate historical data at the national level, 

interests also emerged in expanding the research to more jurisdictions, wherever historical data 

are available and feasible for process with such methodologies, in order to acquire comparative 

results. The present study applies the SOM to the field of macroscopically exploring into multi-

dimensional data of development of criminal phenomena in Japan, over a span of time of 88 

years, with emphasis on the interaction between GDP (Gross Domestic Product) growth rate 

and change of crime rates, aiming at seeking an innovative field in which artificial intelligence 

can play a role in simplifying the process of analysis. In a word, this article endeavors to make 
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inquisition into relationship between change of GDP growth rate and change of crime rates in 

Japan. 

In sum, the article continues to explore the advantage of the SOM in research in criminal 

phenomena with assistance of other clustering and statistical methods, by processing available 

and feasible data sets. This national-level study uses a dataset covering 88 years and 13 

attributes. The data will be processed with the Self-Organizing Map (SOM), refined by 

ScatterCounter (Juhola and Siermala, 2012), assisted with some other machine learning 

methods, and statistical techniques for verification. 

Following this section, the next section of the article will briefly introduce the methods used 

in processing crime-related data. In the third section, a brief introduction to crime in modern 

Japan will be presented. In the fourth section, information will be given about how the 

experiments are designed. The fifth section will present results and discussions. The final section 

concludes the article with findings from the data mining of crime and its demographic factors. 

Due to the fact that the SOM has not frequently been used in the study of criminal phenomena 

in  the  similar  way,  and  that  such  a  study  is  more  methodology-oriented  in  criminology than  

application-oriented in computer science, it is expected that the research will be a valuable 

experiment in exploiting of statistical data. 

 

2 Methodology 

The SOM, developed by Kohonen (1979) to cluster and visualize data was used in this study. 

The SOM is an unsupervised learning mechanism that clusters objects with multi-dimensional 

attributes into a lower-dimensional space, in which the distance between every pair of objects 

captures the multi-attribute similarity between them. Upon processing the data, maps will be 

generated using software packages. By observing and comparing the clustering map and feature 

planes, there is the potential to explore into the correlation between crime and demographic 

indicators. These results, including clustering maps, feature planes as well as correlation tables 

constitute the fundamental ground for further analysis. 

This study applies the SOM to historical development of crime in Japan during 88 years 

(1926–2013). Including an analysis based on available data, the results of the study will revolve 

around whether the SOM can be a feasible tool for mapping criminal phenomena through 

processing of large amounts of multidimensional historical data, and to what extent interaction 

between GDP growth rate and change of crime rates can be expected. 
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For the application of the SOM the method called ScatterCounter (Juhola and Siermala, 

2012) was used for attribute selection by computing separation powers for attributes. In other 

words, it was determined which attributes are strong in classification and which are poor. The 

latter  ones  could  be  removed  from  the  dataset  and  the  reduced  dataset  will  be  used  in  final  

processing and analysis. If all attributes are good as to their separation powers, they can be all 

reserved for analysis. To apply ScatterCounter missing data in the original dataset have to be 

filled with estimated values. We filled them by the means of the available values of the attributes 

in the same clusters. 

Apart from the SOM, discriminant analysis, k-nearest neighbor classifier, Naïve Bayes 

classification, decision trees, random forests and support vector machines (SVMs) will also be 

used to validate the clusters by computing how accurately these methods classify the same 

countries into the same clusters compared to those of the SOM. 

 

3 Brief history of crime in Japan 

Generally, Japan has had low crime rates compared with other industrialized countries.  

According to the data set used in this paper, for example, homicide rate in Japan during the last 

90 years never surpassed 5 per 100,000 people. Today, when the USA maintains a homicide 

rate of 5.8 per 100,000 people, Japan has less than 0.8 per 100,000 people. Other crime rates are 

also lower. Of course, the homicide rate in the USA can also be regarded as low, if it is compared 

with some figures from other countries, for example, the records of the highest homicide rate in 

the world were 101 per 100,000 people in Iraq in 2006, 89 in Iraq in 2007, and 88.61 in 

Swaziland in 2000. After looking at these figures, generally speaking, violence and homicide in 

developed countries are the lowest in the world, for example in Germany, Denmark, Norway, 

Japan, and Singapore, with homicide rate below 1 per 100,000 inhabitants. 

Rapid development of Japan in modern history started long before 1926, known from the 

mid-1800s. From the record of our dataset, from 1926 to the mid-1930s, violent crime rates 

almost all stable, but property crime rates almost doubled, forming the first peak of crime in the 

88-year period. During this period, Japanese GDP growth rates were not stable, as low as -7.27 

in 1930, but as high as 9.82 in 1933. 

From 1935, major crime rates obviously lowered up to the year 1945, when Japan 

surrendered due to defeat in the WWII. In fact, most crime rates in 1945 fell into a valley. During 
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this period, Japanese GDP growth rates were not stable either, as low as -4.30 in 1942, but as 

high as 15.75 in 1939. The year 1945 recorded -50% GDP decrease. 

From  1946,  however,  a  sharp  increase  of  crime  rates  was  seen,  to  reach  a  peak  in  1948,  

followed with a quarter of century of decrease until the valley of 1973. During this period, 

Japanese economy enjoyed a high speed increase, with GDP growth rates ranging from 4.69% 

to 14.88%, but an average as high as 9.34%. It was these three decades of rapid development 

that facilitated Japan to become an industrialized modern economy. 

From 1974, the crime rates increased year by year again, forming another peak in early 2000s 

(theft 2002, fraud 2005, embezzlement 2004, blackmail 2001, burglary 2003, homicide 2003, 

abduction 2004, rape 2003, indecent assault 2003, injury 2003, robbery 2003, arson 2004). For 

the first time in the past quarter of century, Japanese GDP growth rate fell to -1.22% in 1974. 

Thereafter, the rates were between -1.22% to 6.19%, and averaged 2.88%. Generally, Japanese 

economy was still growing. But after 2001, its growth stopped. 

Thereafter, a new round of sharp fall began. Now the crime rates in Japan are roughly equal 

to the level of end of 1920s, end of 1930s and early 1940s, and that of 1945. GDP growth rates 

were between -2.3% to 2.4%, an average of -0.5%. 

Here we have already had a clear illustration of the change of crime rats and GDP growth 

rate. In this article, the topic concerning the rise and fall of Japanese crime will be examined 

from a new stand using a new method, the SOM and some other clustering and statistical 

methods, so as to check whether there is a potential internal mechanism affecting the interaction 

between them. Traditionally, there did not lack such hypotheses and conclusions that 

demonstrate a close relationship between crime and economy, based on both qualitative and 

quantitative analysis. The aim of this research is to provide further understanding of the 

relationship between economic growth and crime by applying several clustering and statistical 

methods, taking Japanese historical data as an example. 

 
4 Design of experiments 

4.1 Period covered 

Modernization and Westernization of Japan started in the mid-1800s, which marked a new era 

of Japanese society. However, the data used in this study covers a period of 88 years. These 

years were selected based on the availability of data on their selected indicators. In fact, during 

the years of 1933-2013, data of all the attributes are available, while during the years of 1926-

1932, only the data of rape and indecent assault are missing. 
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3.2 Attributes 

A synopsis of all attributes that were used in this study is given in Table 1. One of them is GDP 

growth rate. The other 12 attributes are such crime rates that are usually recorded by Western 

countries as most important indicators to measure criminal phenomena in those countries. The 

selection of the contents of these indicators was principally based on availability of data. See 

also Fig. 1 and Fig. 2. 

 

Table 1 GDP growth rate and criminal phenomena indicated by 12 different attributes 
Non-crime attributes Name Codification 
1 GDP growth rate GDP 
Crime-related indicators Name Codification 
2 Theft THE 

3 Fraud FRA 

4 Embezzlement EMB 

5 Blackmail BLA 

6 Burglary BUR 

7 Homicide HOM 

8 Abduction ABD 

9 Rape RAP 

10 Indecent assault IND 

11 Injury INJ 

12 Robbery ROB 

13 Arson ARS 

 

        There have not been standard abbreviations in use for shortening attributes. Information 

about most items was derived from the database of Japanese Ministry of Justice. Unavailable 

items were imputed by attribute means. The sources of data are listed below in Table 2. 

 

Table 2 Sources of data 

Institutions Websites 

Ministry  of  Internal  Affairs  and  

Communications 

http://www.soumu.go.jp/menu_seisaku/toukei/ 

National Police Agency https://www.npa.go.jp/toukei/index.htm 

Ministry of Justice http://www.moj.go.jp/hakusyotokei_index.html 

https://www.npa.go.jp/toukei/index.htm
http://www.moj.go.jp/hakusyotokei_index.html
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(a) GDP rate and crime rates 

 

 
(a) GDP rate and crimes rates (extraordinary case Theft left out) 
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(b) Theft rate 

 
(c) GDP rate and crime rates (theft, fraud, embezzlement, injury rates left out) 
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(d) GDP rate and rates of theft, fraud, embezzlement, and injury 

Fig. 1 GDP rate and crime rates 

 

 

 
(a) GDP rate and change of crime rates 
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(b) GDP rate and change of crime rates (extraordinary theft rate left out) 

 

 
(c) Change of theft rate 
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(d) GDP rate and change of crime rates (rates of theft, fraud, embezzlement and injury left out) 

 

Fig. 2 GDP rate and change of crime rates 
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The purpose of current study was to look at relationship between GDP growth rate and crime 

rates, change of crime rates over a period of 88 or 87 years. It is based on historical statistics 

of Japan, composed of 88 or 87 rows and 13 columns. 

Although the SOM can process a dataset with missing data, as will be noted in certain stages 

of this study, missing values were imputed by mean of each attribute since most other methods 

require complete data. The total of missing values was 1.22% or 1.06% as to all data values 

when the size of the data matrix applied to all calculations was 88×13=1144 or 87×13= 1131 

elements. Besides missing values, descriptions presented in Table 3 are mean, standard 

deviation, minimum and maximum of each attribute. 

 

Table 3 Descriptions of the data used 

(1) Data for the first step (GDP growth rate and original crime rates) 
 

Attribute Mean Std. 

Deviation 

Minimum Maximum Number of 

Missing Values 

(and %) 

GDP 3.97 7.51 -50.00 15.75 0 (0.00%) 

Theft 1089 252 600 1865 0 (0.00%) 

Fraud 118.6 118.6 27.1 576.4 0 (0.00%) 

Embezzlement 77.0 91.4 7.6 413.7 0 (0.00%) 

Blackmail 16.60 12.04 2.85 48.05 0 (0.00%) 

Burglary 12.37 5.17 3.38 31.60 0 (0.00%) 

Homicide 2.066 1.008 0.740 4.140 0 (0.00%) 

Abduction 0.481 0.611 0.030 2.460 0 (0.00%) 

Rape 2.835 1.856 0.810 7.060 7 (7.95%) 

Indecent_assault 3.019 1.783 0.290 7.850 7 (7.95%) 

Injury 34.47 19.13 6.23 80.62 0 (0.00%) 

Robbery 3.65 2.49 1.29 13.57 0 (0.00%) 

Arson 1.776 0.753 0.770 3.990 0 (0.00%) 
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(2) Data for the second step (GDP growth rate and change of original crime rates) 
 

Attribute Mean Std. 

Deviation 

Minimum Maximum Number of 

Missing Values 

(and %) 

GDP 3.97 7.51 -50.00 15.75 0 (0.00%) 

Theft 2.0 108.6 -257.6 747.0 0 (0.00%) 

Fraud -2.2 40.4 -193.4 194.7 0 (0.00%) 

Embezzlement -1.28 19.24 -60.55 92.52 0 (0.00%) 

Blackmail -0.05 5.32 -26.02 24.69 0 (0.00%) 

Burglary 0.087 2.137 -9.730 5.610 0 (0.00%) 

Homicide -0.039 0.209 -0.500 1.090 0 (0.00%) 

Abduction -0.0266 0.1061 -0.4500 0.2600 0 (0.00%) 

Rape -0.013 0.385 -1.020 1.400 6 (6.90%) 

Indecent_assault 0.043 0.433 -1.450 1.620 6 (6.90%) 

Injury -0.18 3.62 -6.38 13.11 0 (0.00%) 

Robbery 0.00 1.23 -2.83 10.00 0 (0.00%) 

Arson -0.0336 0.1988 -0.7100 0.5500 0 (0.00%) 

 

 
4.4 Evaluation of separation power of attributes in the dataset 

After the dataset was established for processing, Viscovery SOMine was used for clustering. 

Upon initial clusters were identified, the structure of dataset was modified to be processed with 

ScatterCounter (Juhola and Siermala, 2012). The missing data values were replaced with 

medians computed from pertinent clusters so that the completed dataset could be processed by 

ScatterCounter. A main characteristic is that these years are labelled by cluster identifiers given 

by the preliminary SOM runs with the original 12 variables (attributes, as used in Viscovery 

SOMine). 

        The objective of ScatterCounter is to evaluate how much subsets labelled as classes 

(clusters  given  by  SOM) differ  from each  other  in  a  dataset.  Its  principle  is  to  start  from a  

random instance of a dataset and to traverse all instances by searching for the nearest neighbour 

of the current instance, then to update the one found to be the current instance, and iterate the 

whole dataset this way. During searching process, every change from a class to some else class 

is counted. The more class changes, the more overlapped the classes of a dataset are. 

        To compute separation power, the number of changes between classes is divided by their 

maximum number and the result is subtracted from a value which was computed with random 

changes between classes but keeping the same sizes of classes as in an original dataset applied. 



 

 14

Since the process includes randomised steps, it is repeated from five to ten times to use an 

average for separation power. 

        Separation powers can be calculated for the whole data or separately for every class and 

for every attribute (Juhola and Siermala, 2012). Absolute values of separation powers are from 

[0, 1). They are usually positive, but small negative values are also possible when an attribute 

does not separate virtually at all in some class. However, note that such an attribute may be 

useful for some other class. Thus, we typically need to find such attributes that are rather useless 

for all classes. Classes in our research are the clusters given by the SOM at the beginning before 

the current phase, attribute selection. With these results and observations, in this dataset, almost 

all have certain level (say, above 0.1) of positive separation powers and are kept in the dataset 

used in the following experiments and analysis. Unlike in some other experiments with 

different datasets where some attributes are due to be removed, this dataset reserves intact after 

evaluation of separation power. 

 

(1)  In  the  first  step,  i.e.,  data  comprising  of  GDP growth  rate  and  original  crime rates,  four  

clusters were generated, as shown in Fig. 3. The ScatterCounter gave the results in Table 4. 
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Fig. 3 Four clusters given by SOM for GDP growth and original crime rates (not imputed, but 
the same for the impute data) 
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Table 4 Separation power of attributes 
 

Attribute Cluster 1 Cluster 2 Cluster 3 Cluster 4 
GDP 0.157 0.499 -0.035 0.107 
Theft 0.057 0.059 0.214 0.035 
Fraud 0.199 0.279 0.571 0.321 

Embezzlement 0.042 -0.06 0.642 0.071 
Blackmail 0.342 0.459 -0.071 0.285 
Burglary 0.171 0.319 0.428 0.535 
Homicide 0.385 0.439 0.5 0.464 
Abduction 0.085 0.259 0.75 0.25 

Rape 0.199 0.439 0.392 0.178 
Indecent_assault 0.099 0.12 0.357 0.785 

Injury 0.257 0.52 0.5 0.357 
Robbery 0.457 0.259 0.142 0.107 
Arson 0.099 0.099 0.535 0.107 

 

According to the separation power of each attributes and overall of them in the four clusters, 

no attribute should be removed. So the further processing of the data will be the same as in this 

step. 

(2) In the second step, i.e., data comprising of GDP growth rate and annual change of original 

crime rates, 5 clusters were generated, as shown in Fig. 4. 



 

 17

 
 
Fig. 4 Five cluster given by SOM for data comprising of GDP growth rate and annual change 
of original crime rates 
 

Among them, two clusters, cluster 4 and cluster 5 included only one year each, forming very 

small clusters. Therefore, such results with too small clusters for machine learning methods 

were left out in the further investigation. 

 

4.5 Construction of the map 

In this study, the software package used is Viscovery SOMine 6. Compared with some other 

software packages of the SOM, Viscovery SOMine has almost the same requirements on the 

format of the dataset. At the same time, requiring less programming, it enables an easier and 

more operable data processing and visualization. 

Missing values were marked with “NaN”. The SOMine software automatically generated 

maps from the dataset of 88 years and 13 attributes. The clustering map (Fig. 3) as well as some 

other detailed statistics, such as correlations as discussed below, can be used in further analysis. 
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5 Results 

Upon processing of data, four clusters have been generated, each representing groups of years 

sharing similar characteristics. As a default practice in self-organizing maps, values are 

expressed in colors: warm colors denote high values, while cold colors denote low values. 

 

 

5.1. Clusters 

In order to give a full picture of these clusters, the following lists all the years in each cluster: 

C1: 1940, 1941, 1942, 1943, 1944, 1945, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 

1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 

1994, 1995, 1996, 1997, 1998, 1999 

C2: 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 

1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970  

C3: 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939 

C4: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 

 

Although the Viscovery SOMine software package provides the possibility for adjusting the 

number of clusters, usually automatically generated clusters represented the results that might 

occur the most naturally. In other experiments the same number of clusters could be set 

deliberately, years in these clusters were still re-grouped slightly one-way or the other. In this 

experiment, a more significant change of a cluster number was still tolerated, because this was 

expected to leave a new space where the similar issue could be speculated. 

 

5.2 Validation of clusters 

Total 88 years times 13 attributes with original around 1% missing values imputed with 

clusterwise medians, with new clusters (classes) given by the SOM clustering method. 

After imputation, the results produced with the SOMs were compared to those given by 

several methods such as discriminant analysis, k-nearest neighbor classifier, Naïve Bayes 

classification, decision trees, support vector machines (SVMs) and random forests. For these 

the cluster labels found by the SOM were used as class labels in training and finally in tests to 

check whether the SOMs and classification results of the others agreed or disagreed. The tests 

were run on the basis of the leave-one-out principle. The classifications were programmed with 

Matlab. 
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Table 5 Accuracy rates [%] when the imputed attribute values were scaled to interval [0,1] or 

standardized (for decision trees, parameter minparent means the minimum size of a node 

possibly to be divided into child nodes): discriminant analysis, k-nearest neighbor search, 

Naïve Bayes rule and decision trees 

 Four clusters (original attribute 

values) 

Three clusters (annual growth 

rates) 

 Scaled  Standardized Scaled  Standardized 

Discriminant 

analysis 

    

Linear 98.9 98.9 92.9 92.9 

Logistic 98.9 98.9 89.4 89.4 

k-nearest 

neighbour 

searching  

    

k=1 97.7 100.0 87.1 87.1 

k=3 97.7 97.7 84.7 80 

k=5 96.6 95.5 80 80 

k=7 96.6 98.9 80 78.8 

Naïve Bayes with 

kernel density 

estimation 

96.6 96.6 87.1 87.1 

Naïve Bayes with 

Gaussian 

distribution 

94.3 94.3 90.6 90.6 

Decision trees     

minparent=8 89.8 89.8 88.2 89.4 

minparent=6 89.8 89.8 88.2 89.4 

minparent=3 95.5 95.5 88.2 88.2 

 

Least-Squares Support Vector Machines (LSSVM) (Suykens and Vandewalle, 1999a, 

1999b; Suykens et al., 2002) applied are a powerful machine learning method used for 

classification and regression problems. Origin of LSSVM lies in SVM research (Abe, 2010; 

Cortes and Vapnik, 1995; Vapnik 2000). However, there are several differences between SVM 
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and LSSVM. Firstly, inequality constraints in optimization have been changed to equalities. 

Secondly, LSSVM applies 2-norm cost function compared to 1-norm cost function introduced 

in the original SVM formulation. Thirdly, in LSSVM convex quadratic programming 

optimization is replaced with solving linear equation system.  Several multi-class extensions 

have been proposed for SVM such as one-vs-one (Hsu and Lin, 2002), one-vs-all (Rifkin, 

2004), DAGSVM (Platt et al., 2000) or tree-based solutions like in (Takahashi and Abe, 2002; 

Lei and Govindaraju, 2005) presented. Although the extensions in the references use traditional 

SVM approach, in all of them LSSVM can be used as well. We selected for our study a tree-

based solution in which the basic idea is to separate one class in each layer of tree.  This kind 

of idea was presented also in (Takahashi and Abe, 2002), but the difference to it is that we 

apply Scatter algorithm (Siermala and Juhola, 2006; Siermala et al., 2007; Juhola and Siermala, 

2012) when finding the best separable class. The general idea of the method can be presented 

as follows 

1. Assume that we have K classes in a dataset.  

2. Search class having the highest separation power from the existing dataset using Scatter 

algorithm. Let that class be Ci and i in {1,2,…,K}.  

3. Construct a binary LSSVM classifier which separates class Ci from the remaining 

classes.  

4. Exclude class Ci data from the dataset.  

5. Repeat steps 2-4 until there are only two classes left in the dataset.     

Following the given guidelines we construct a tree-based multi-class LSSVM architecture 

where one class is eliminated at each tree layer. Classifying new example begins at the root 

node and based on the classification result of LSSVM classifier we either get a predicted class 

label for the test example or move to the next layer in the tree. The best case scenario is that 

classification can end immediately in the root node and in the worst case scenario we need K-

1 comparisons before the predicted class label can be solved. In all cases the predicted class 

label is found from the leaf nodes of the tree construction. Figures 5-7 show the tree 

constructions used in this paper.  Figures 5 and 6 show tree construction for the cases when 

dataset contained four clusters and dataset was standardized or normalized to [0,1] interval. 

Figure 7 instead shows tree construction when we examined difference dataset in which there 

are three clusters. The same tree construction given in Fig. 7 holds for both standardized and 

normalized ([0,1] interval) datasets. Since the tree constructions were built according to Scatter 
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algorithm results Tables 6 and 7 present the separation power values which defined the tree 

constructions. 

An  essential  question  when  LSSVM  is  used  for  classification  is  the  choice  of  kernel  

function. We selected for this study eight kernels to be used. These were the linear, polynomial 

kernels (degrees from 2 to 6), Radial Basis Function (RBF) and sigmoid. Furthermore, selected 

parameter values have significant impact on the LSSVM performance. Hence, we performed a 

thorough parameter value search. Let P={2-14, 2-14 , 2-13 ,…, 213, 214, 215} and R={-2-14, -2-14 ,- 

2-13 ,…,- 213,- 214, -215}. For the linear and polynomial kernels there is only one parameter to 

be estimated (namely boxconstraint, i.e. C) and for this parameter we tested all values C P. For 

RBF there are two parameters to be estimated (boxconstraint and the width of RBF function 

). We chose that C and  both have the same parameter values space and, hence, we performed 

grid search where we tested all (C, ) combinations which are included to the Cartesian product 

P×P (altogether 900 parameter value combinations). For the last kernel, sigmoid, the number 

of parameter estimated is three (C>0, >0 and <0). We again performed grid search but now 

we tested all triplets (C ) which are included to the Cartesian triplet P×P×R (altogether 

27000 parameter value combinations). Parameter value search was made using leave-one-out 

procedure and the selection criterion for parameter values was accuracy (trace of a confusion 

matrix  divided  by  the  sum of  all  elements  in  a  confusion  matrix).  The  same procedure  was  

made for all datasets. 

Random Forest (RF) is an ensemble learning method developed by Breiman (2001). RF has 

shown great performance in many applications and is widely used machine learning method. 

RF can be used both in classification and regression tasks. The basic idea behind RF is to extend 

the concept of decision tree learning.  In RF several decision trees are collected together forming 

a forest. For each decision tree randomly selected feature subset is selected and, hence, RF uses 

the random subspace method in classification. Predicting a class label for the test example is 

made by giving the test example to all decision trees in a forest. Each one of the decision trees 

gives a predicted class label for the test example and the most frequent class is selected as a final 

predicted class label for the test example. An important parameter in RF is the number of trees. 

We varied the number of trees from 1 to 25 in the case of all datasets (datasets including three 

and four clusters). Classification was performed using leave-one-out procedure and accuracy 

was the performance measure likewise LSSVM classification.         
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Table 6 Separation power values (the highest in Bold) for the classes which are used in building 

multi-class LSSVM tree constructions (dataset contains four clusters) 

Dataset Dataset 

Four clusters and dataset standardized Four clusters and dataset normalized into 

[0,1] interval 

Separation power 

values 

Separation power 

values 

Separation power 

values 

Separation power 

values 

First layer Second layer First layer Second layer 

Class 1 0.515 Class 1 0.453 Class 1 0.501 Class 1 0.45 

Class 2 0.634 Class 2 0.594 Class 2 0.66 Class 2 0.592 

Class 3 0.743 Class 3 0.7 Class 3 0.743 Class 4 0.721 

Class 4 0.747   Class 4 0.739   
     
 
 

Table 7 Separation power values (the highest in Bold) for the classes which are used in building 

multi-class LSSVM tree constructions (dataset contains three clusters) 

Dataset Dataset 

Three clusters and dataset standardized Three clusters and dataset normalized into 

[0,1] interval 

Separation power values Separation power values 

First layer First layer 

Class 1 0.434 Class 1 0.444 

Class 2 0.508 Class 2 0.55 

Class 3 0.455 Class 3 0.495 
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Fig. 5 Tree construction for multi-class LSSVM built using Scatter algorithm.  The dataset 

contains four clusters and is standardized. 
    
 

 
Fig. 6 Tree  construction  for  multi-class  LSSVM  built  using  Scatter  algorithm.  The  dataset  

contains four clusters and is normalized to [0,1] interval.  
 

4 vs. {1,2,3} 

  4 
3 vs. {1,2} 

 3 1 vs. 2 

1  2 

3 vs. {1,2,4} 

  3 
4 vs. {1,2} 

 4 1 vs. 2 

1  2 



 

 24

 
Fig. 7 Tree construction for multi-class LSSVM which is built using Scatter algorithm. Dataset 

contains three clusters and the same construction holds for both standardized and normalized 

([0,1] interval) dataset 

 

 

Table 8 Accuracy rates [%] when the imputed attribute values were scaled to interval [0,1] 

or standardized: support vector machines and random forests 

 Four clusters (original attribute 
values) with parameter values in 
parentheses 

Three clusters (annual growth rates) 
with parameter values in 
parentheses 

 Scaled  Standardized Scaled  Standardized 
SVM: kernel     

Linear 98.9 (2-1) 98.9 (2-10) 95.3 (2-6) 96.5 (2-10) 

Polynomial 
degree 2 

98.9 (2-3) 98.9 (2-8) 95.3 (2-11) 91.8 (2-8) 

Polynomial 
degree 3 

98.9 (2-4) 96.6 (2-11) 95.3 (2-2) 88.2 (2-9) 

Polynomial 
degree 4 

98.9 (2-6) 95.5 (2-14) 94.1 (2-6) 85.9 (2-14) 

Polynomial 
degree 5 

97.7 (2-7) 94.3 (2-14) 94.1 (2-7) 83.5 (2-14) 

RBF 98.9 (2-1,1) 98.9 (2-14,2) 96.5 (2-1) 97.6 (2-14,23) 

Sigmoid 100.0 (2,2-2,-2-1) 100.0 (2-6,-24) 100.0 (2-14,2-4, 

-2-14) 

100.0 (2-10,2-14, 

-24) 

Random forests: 
number of trees 

    

1 89.8 89.8 82.4 82.4 

5 94.3 94.3 85.9 85.9 

   

 4 2 

 3 

2 vs. {1,3} 

1 vs. 3 

1 
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8 95.5 95.5 85.9 85.9 

11 96.6 96.6 84.7 84.7 

15 98.9 98.9 84.7 84.7 

17 98.9 98.9 87.1 85.9 

21 97.7 97.7 88.2 88.2 

25 97.7 97.7 83.5 83.5 

 

In Table 5 linear and logistic discriminant analysis produced the highest accuracies. For the 

situation of the original crime rates k-nearest neighbors were also very efficient. In Table 8 most 

results were even better than those in Table 5 and the best of all were the results generated by 

the SVMs with the sigmoid kernel. The accuracy of 100% is naturally exceptional and possible 

because of the small number of 88 years only in the present data, i.e., very slightly also because 

of random influence. Comparing the results between the original data (the first and second 

columns in Tables 5 and 8) and differences (the third and fourth columns), the former are almost 

always higher than the latter. This denotes that the latter formed a slightly more complicated 

classification task. In general, since there are very high accuracies greater than 90% and even 

close to 100%, these indicate that the two SOMs obtained present good mappings with high 

confidence for the present data. 

 

 

5.3 Correlations 

A detailed list of correlations was generated, based on which Table 7 was created. These 

correlations were computed from the original, not yet imputed dataset. Although even strong 

correlation between two attributes does not necessarily indicate causation, this will bring about 

materials for further analysis and reference. There are many opportunities that these results can 

be used to compare with previous studies on crime using other methods. We obtained 8 out of 

24 comparisons (p < 0.05) to be statistically significant. 
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Table 9 Correlations between the GDP growth rate and the crime-related where the asterisk 

indicates the statistically significant (p < 0.05) correlations. The p-values were adjusted for 

multiple testing with the Holm’s method 

 

Attribute Original values 

Non-imputed Imputed 

Theft 0.07 0.07 

Fraud 0.13 0.13 

Embezzlement -0.04 -0.04 

Blackmail 0.45 * 0.45 * 

Burglary -0.23 -0.23 

Homicide 0.35 * 0.35 * 

Abduction 0.05 0.05 

Rape 0.44 * 0.44 * 

Indecent assault -0.12 -0.11 

Injury 0.48 * 0.48 * 

Robbery 0.28 0.28 

Arson 0.13 0.13 

 
 

 

From Table 9 one third of the correlation values were interesting, while others were very 

weak. Certainly, while currently such kind of research has been carried out in a small scale, 

extensive exploration is still necessary to conclude how socio-economic elements interconnect 

with criminal phenomena, either affecting their occurrence, or their increase or decrease. 

 

6 Conclusions 
 
This paper dealt with data from statistics at the national level for historical development of 

criminal phenomena in Japan, with reference to GDP growth rate.  Conventionally, analysis in 

the study of crime did not handle large-scale multidimensional data due to technical or 

methodological limits. With the help of the self-organizing map, multidimensional comparison 

was realized. The research objects, in this paper, years, were grouped into different clusters with 

more convergent features. 
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By using discriminant analysis, k-nearest neighbor classifier, Naïve Bayes classification, 

decision trees, random forests and support vector machines (SVMs) to verify the SOM results, 

findings of the study gave additional proof that the self-organizing map was an interesting tool 

for assisting research on individual types of crime. The clustering results were easily visualized 

and convenient to interpret, facilitating practical comparison between different historical periods 

with GDP growth rate and criminal features. The article found that there were only weak 

correlations between GDP growth rate and crime rates. Nevertheless some of the correlations 

were still interesting. This was concluded according to data mining, in the process of which 

GDP growth rate and crime rates were placed in same years. 

The relationship between crime and economic development has been considered 

complicated. Typically, stability of society can contribute to smaller quantity of crimes. Stability 

does not indicate wealth or poverty, but meaning swift or sluggish transformation. From the data 

set itself, we have already found that GDP growth could be accompanied by change of crime 

rate in an interesting way. For example, when velocity of Japanese economic development was 

prompt, crime rates increased as well; when velocity of economic development decelerated, 

crime rates decreased as well. In this sense, GDP growth rate could be a signal of societal 

stability.  

It must be noted that one single economic indicator is definitely not in a position to represent 

the whole portrait of economy, predominantly, for example, changing weights of industries, 

such as primary, secondary and tertiary sectors. Economic situation can also be expressed in 

other indicators, as involved in many other studies including ours. It must also be noted that 

findings in this study cannot yet substantiate the whole image of relationship between crime and 

GDP growth rate, because such different social phenomena need not to be synchronous. GDP 

development is not unavoidably reflected concurrently in criminal phenomena. For instance, 

economic crisis, in which GDP growth rate would be plummeting, is likely to be translated into 

change of different crime rates after some months, or some years. 

In  addition,  economic  development  can  also  be  accompanied  by  change  of  crime rates  in  

different  patterns,  for  example,  rates  of  some  types  of  crimes  ascending,  while  some  others  

descending. Therefore, it is interesting in the future to probe the relationship between alteration 

of GDP growth rate and crime rates with a temporal lag, and segregate crime rates into different 

groups. 

One of the limits of applying the SOM was found to be requirements for the well-framed 

data sets, in dealing with which high quality statistics were necessary and the acquiring and 

preparation for them might take same efforts as the activities of processing and analyzing 
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themselves. Another limit was that continuous official historical statistics, over centuries or 

millennia did not exist, and such kind of a situation was taken as granted in traditional research, 

which sought remedies in qualitative methods. Therefore, there has been usually a conflict of 

ideas between qualitative and quantitative methods when statistical data were involved. In this 

case, it can be expressed more as a conflict between pragmatic and technical approaches. This 

limit also revealed the fact that more future research in such a field, where it is more applicative 

in computer sciences, has more methodological sense in social sciences. 
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