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 Abstract 

Background: Aging is a continuous process, whereby the physiological integrity of 
an organism gradually diminishes. Eventually, disabilities in functioning evolve, and 
the risk of developing pathologies and death increases. The rate of aging differs 
between species, organisms and tissues, and inheritable components and 
environmental factors contribute to the aging process.  

DNA methylation has a critical role in genomic stability, cell differentiation and 
development. The genomes of mammals are abundant in 5-methylcytosines i.e. 
methylated cytosines (5mCs), which are primarily located in the sequence CpG. In 
general, the interindividual differences between genome-wide DNA methylation 
profiles increase with age. During aging, random as well as systematic, clocklike-
behaving DNA methylation changes occur, and genetic and environmental factors 
contribute to these changes. Here, clocklike-behaviour refers to change where DNA 
methylation levels increase or decrease linearly with age, and these changes constitute 
the epigenetic clock. DNA methylation is a marker that disentangles details in human 
well-being at a more detailed level compared to conventional biomarkers. 
Importantly, DNA methylation has dynamic nature and is prone to the effect of 
environmental input. 

The clocklike-behaving CpG sites can be used in a sophisticated manner to 
estimate calendar age of “a blind sample” of DNA with a high level of accuracy. The 
difference between chronological age and this epigenetic age estimate (Δ-cAge-
DNAmAge) is considered a highly promising biomarker of the aging rate, and many 
accounts of its significance in human fitness, morbidity, mortality and longevity have 
been reported. 

 
Aims: The specific hypotheses for this thesis comprise the following. The 

longitudinal within-subject behavior of Δ-cAge-DNAmAge as well as the blood cell 
subtype landscapes was indefinite. In addition, discrepancies in the lists of reported 
aging-associated methylation sites have emerged, thus requiring further evaluations. 
Another question concerned methylomic mortality predictors: were there DNA 
methylation sites that could be used as survival predictors in the elderly (+90 years 
of age) and could those predictors even overcome conventional biomarkers of aging 
in the survival analysis? Moreover, is epigenetic aging associated with biomarkers 
that are related to immune system aging such as the cytomegalovirus or blood cell 
distribution?  

 
Methods: Two study populations, the Young Finns and the Vitality 90+, 

together representing a wide age range (from 15 years to 94 years of chronological 
age) were used in the thesis. The samples were utilized in cross-sectional (Study I, II) 
and longitudinal (Study III, IV) manners, and the sample sizes ranged between 111 
and 183 participants in Studies I-IV. The epigenomes of the participants were 
characterized using microarray technology-based technology, and the subjects’ 



 

 

DNAmAges were determined using Horvath’s calculator of epigenetic age. Blood 
cell compositions were determined using either DNA methylation profile-based 
estimation algorithm or fluorescence-activated cell sorting analysis. The hypotheses 
were tested using regression and correlation analyses. 

In the thesis, aging-associated DNA methylation level changes (I), and mortality 
predictors (IV) at single CpG site resolution were characterized. The longitudinal 
behavior of difference between calendar age and epigenetic age (Δ-cAge-
DNAmAge) (III), and its role as mortality predictor (IV) were explored. 
Furthermore, the Δ-cAge-DNAmAge association with cytomegalovirus infection 
was analyzed (II). In all sections in the thesis, the role of blood cell sample 
heterogeneity was considered (I-IV). Specifically, the relevance of controlling sample 
heterogeneity in epigenome-wide association studies (EWASs) was evaluated 
through analysis where results from multiple studies were compared (I), the 
association between Δ-cAge-DNAmAge and blood cell subtype counts was explored 
(III), and the overall longitudinal behavior of the blood cell subtypes was investigated 
(III).  

 
Results and conclusions: The results from Study I highlighted that clocklike-

behaving CpG site methylation may be reliably detected from a cross-sectional 
sample with an age range of only nine years. The data showed that aging-associated 
hypermethylation and hypomethylation at single CpG site resolution were related to 
different cellular functions and are enriched in different ways in single genes. The 
study underlined that, in order to obtain replicative results from EWASs with 
heterogenic tissue samples such as whole blood, cell count adjustment appears to be 
essential.  

In the survival analysis (IV), the mortality-predicting methylomic signature 
performed better than the conventional aging biomarkers and was independent from 
the aging-associated epigenetic drift. The methylomic prediction signature supported 
the genomic-level role of NF-κB at the very end of the human lifespan.  

In Study II, the increased epigenetic age of the blood cells was associated with 
latent cytomegalovirus infection in the populations of young adults and 
nonagenarians; however, this finding may be a reflection of changes in the blood cell 
composition. In studies II and III, the cell subtype counts correlated clearly with 
epigenetic aging (Δ-cAge-DNAmAge). The most significant correlate linked with 
DNA methylomic data were CD28- T cells, which are markers of immune system 
exhaustion and aging.  

The longitudinal data of blood cell composition (III) provided evidence that, in 
parallel with aging-associated shifts in the immune cell composition, intra-individual 
changes in blood cell subtype proportions are relatively small during young 
adulthood and middle age, as well as in the advanced age for several years or even 
decades. These results suggest that the major shifts in the blood cell composition 
might occur somewhere after middle age and before advanced ages. Thus, the blood 
cell composition-related issues discussed here warrant careful consideration when 



 

 

interpreting blood cell based results concerning individuals with varying 
chronological ages.  

Longitudinal methylomic data (III) provided evidence that the difference 
between chronological and epigenetic age is surprisingly stable over several years or 
even decades, and, when accompanied with previous reports, it may be hypothetized 
that the main trajectory of the blood DNA methylome aging rate (Δ-cAge-
DNAmAge) is largely set before adulthood. This hypothesis is thought provoking, 
because older epigenetic age is also associated with increased mortality rate in 
adulthood. Therefore, in this light, epigenetic changes in the beginning of life gain 
an even more crucial meaning for the entire human lifespan. 

 



 

 

 
  



 

 

 Tiivistelmä 

Tausta: Ikääntyminen on jatkuva prosessi, jonka aikana organismin fysiologinen 
eheys heikkenee. Tämän seurauksena yksilön toimintakyky alentuu ja sairauksien 
sekä kuoleman riski kasvaa. Ikääntymisprosessiin vaikuttavat periytyvät komponentit 
ja ympäristö. Eri eliölajeilla, yksilöillä ja kudoksilla ikääntymisen etenemisnopeus on 
erilainen.  

DNA:n metylaatiolla on merkittävä rooli genomisen stabiiliuden ylläpitäjänä, 
solujen erilaistumisessa ja yksilön kehityksessä. Nisäkkäiden genomissa esiintyy 
paljon 5-metyylisytosiineja eli metyloituja sytosiineja (5mC), jotka ovat useimmiten 
sekvenssissä CpG. Ikääntymisen aikana CpG-kohtien metylaatiossa tapahtuu sekä 
sattumanvaraisesti että systemaattisen kellomaisesti käyttäytyviä 
metylaatiotasomuutoksia, joihin molempiin vaikuttavat ympäristö- ja geneettiset 
tekijät. Kellomaisessa muutoksessa metylaatiotaso nousee tai laskee hyvin 
lineaarisesti ajan funktiona läpi elämän. Nämä kellomaisesti käyttäytyvät 
metylaatiokohdat muodostavat ns. epigeneettisen kellon. Yleisesti ottaen DNA-
metylaatiossa nähtävät yksilöiden väliset erot kasvavat ikääntyessä, ja metylaatio on 
markkeri joka kuvastaa hyvinvointia eri tasolta kuin perinteiset ikääntymisen 
biomarkkerit. DNA-metylaation merkittävyys vanhenemiseen liittyvässä 
tutkimuksessa korostuu sen vuoksi, että metylaatiotasot muuttuvat 
ympäristötekijöiden johdosta, ja näillä DNA-metylaatiomuutoksilla on myös kyky 
palautua.   

Kellomaisesti käyttäytyviä DNA:n metylaatiokohtia voidaan käyttää kronologisen 
iän estimointiin DNA-sokkonäytteestä huomattavalla tarkkuudella. Tätä 
epigeneettisen iän estimaattia eli epigeneettistä ikää on luonnehdittu biologisen iän 
mittariksi, joka voisi mahdollisesti kuvastaa ihmisten erilaista biologista 
ikääntymisnopeutta. Useat aiemmat tutkimukset ovat puoltaneet tätä oletusta 
yhdistäessään epigeneettisen iän fyysiseen toimintakykyyn, sairastavuuteen, 
kuolleisuuteen sekä pitkäikäisyyteen. 

 
Tutkimustavoitteet: Tässä työssä hypoteesit koostuivat seuraavista kohdista. 

On huomattu, että raportoiduissa ikääntymiseen liitetyissä DNA:n 
metylaatiokohdissa on huomattavia eroja ja tätä epäyhdenmukaisuutta oli tarpeen 
tarkastella (I). Tämän lisäksi DNA-metylaatioprofiilin potentiaali kuolleisuuden 
ennustajana yli 90-vuotiailla on ollut epäselvää, ja lisäksi sen tehokkuus perinteisiin 
ennustajiin verrattuna oli tarpeen arvioida (IV). Väitöskirjatutkimuksessa keskityttiin 
myös siihen, miten epigeneettinen ikä sekä verisolualatyyppijakaumat käyttäyvät 
pitkittäisseurannassa (III). Tutkimuksessa tarkasteltiin lisäksi epigeneettisen 
ikäestimaatin yhteyttä immuunijärjestelmän ikääntymiseen liittyviin biomarkkereihin, 
joita olivat sytomegalovirusinfektio (II) ja verisolualatyyppien osuuksien muutokset 
(III).  

 



 

 

Metodit: DNA:n metylaatiotasot mitattiin genominlaajuisella 
mikrosiruanalytiikalla ja tutkimushypoteesejä testattiin käyttäen muun muassa 
erityyppisiin regressiomalleihin ja korrelaatioon perustuvia analyysimenetelmiä. 
Epigeneettinen ikä estimoitiin Horvathin laskenta-algoritmillä. Aineistoina käytettiin 
kahta populaatiopohjaista tutkimusaineistoa, jotka yhdessä kattavat ikävuodet 15-94.  
Tutkimustietoa analysoitiin yhden (I, II) ja kahden aikapisteen (III, IV) perusteella. 
Seuranta-ajat olivat neljä tai 25 vuotta ja näytekoot vaihtelivat tutkimuskysymyksestä 
riippuen N=111 ja N=183 välillä. Väitöskirjatyön kaikissa osatöissä huomioitiin 
tutkimuksessa käytettyjen verisolunäytteiden heterogeenisyys.  

Tarkemmin kuvattuna, väitöskirjatyössä kartoitettiin koko epigenomin laajuisesti 
ikääntymiseen (I) ja suurentuneeseen kuolleisuusriskiin (IV) liittyviä yksittäisissä 
DNA:n metylaatiokohdissa tapahtuvia metylaatiotasojen muutoksia. Tämän lisäksi 
tarkasteltiin laskennallisesti määritetyn DNA-metylomi-iän (kalenteri-iän ja 
epigeettisen iän erotus; Δ-cAge-DNAmAge) sekä verisoluosuusjakaumien 
käyttäytymistä pitkittäisseurannassa (III). Väitöskirjatyössä selvitettiin myös 
epigeneettisen ikäestimaatin vaihtelun yhteyttä sytomegalovirusinfektioon (II) ja 
verisolualatyyppien osuusjakaumiin (III) sekä potentiaalia kuolleisuuden ennustajana 
(IV). Soluosuusjakaumien vaihtelun merkitystä koko epigenomin laajuisessa 
ikäassosiaatioanalyysissä analysoitiin tarkemmin peilaamalla osatyössä I 
paikannettuja ikäassosiaatioita ja analyysimetodeja aiemmin julkaistuihin vastaaviin 
tutkimuksiin.  

 
Tulokset ja johtopäätökset: Osatyössä I selvisi, että kellomaisesti käyttäytyviä 

DNA:n metylaatiokohtia voi havaita keski-ikäisistä koostuvassa 
poikkileikkaustutkimusaineistossa, jonka ikäjakauma on vain yhdeksän vuotta. 
Riippuen siitä oliko DNA:n metylaatiotason muutos kasvavaa vai vähenevää iän 
funktiona, muutokset olivat erilaisia piirteiltään, kun tarkasteltiin metylaatiokohtiin 
liitettyjä solun perustoimintoja tai niiden sijoittumista yksittäisiin geeneihin. 
Huomattiin myös, että assosiaatioanalyysien toistettavuuden kannalta oli 
merkittävää, että mahdollinen verisolunäytteen heterogeenisyys on huomioitu.  

Osatyössä IV havaittiin, että kuolleisuutta ennustava DNA-metylaatioprofiili on 
tehokkaampi ennustaja kuin perinteiset kuolleisuuteen ja vanhenemiseen yhdistetyt 
biomarkkerit. Epigeneettinen ikä ei ollut yhteydessä kuolleisuuteen ja kuolleisuutta 
ennustava DNA:n metylaatioprofiili erosi yleisesti tunnetuista ikääntymiseen 
liitetyistä DNA:n metylaatiomuutoksista. Tässä työssä selvitetty kuolleisuutta 
ennustava DNA-metylomin profiili tukee genomisella tasolla NF-κB-geenin roolia 
ihmisen elinkaaren loppupäässä.   

Osatyössä II huomattiin, että elämänsä aikana sytomegalovirusinfektion saaneilla 
tutkittavilla oli korkeampi epigeneettinen ikä verrattuna ei-infektoituneisiin 
tutkittaviin. Tämä tulos saattaa selittyä muutoksilla verisolupopulaatiossa, koska 
suuri osa eri verisoluosuuksista oli myös yhteydessä epigeneettisen iän vaihteluun 
(III). Merkittävimpiä DNA-metylaation variaatioon kytkeytyneitä 
soluosuuskorrelaatteja näyttivät olevan CD28- -tyyppiset T-solut (II, III), joita 



 

 

pidetään yleisesti immuunijärjestelmän kuormitustilan ja vanhenemisen markkereina. 
Havainnot osatyössä III osoittivat myös, että poikkileikkaustarkastelussa 90-
vuotiailla verisoluosuusjakauma on selvästi erilainen kuin nuorilla aikuisilla. 
Seurantatuloksista nähtiin kuitenkin, että aikuisiässä ennen keski-ikää ja elinkaaren 
loppupäässä solualatyyppijakaumat ovat suhteellisen muuttumattomia. Tämä voisi 
viitata siihen, että suurin muutos solujakaumissa tapahtuu jossain keski-iän jälkeen 
ennen 90 vuoden ikää. Nämä tulokset korostavat entisestään verisolupopulaatioiden 
heterogeenisyyden huomioimisen merkitystä tämän tyyppisissä tutkimuksissa. 

Seurantatutkimusaineisto antoi viitteitä, että kalenteri- ja epigeneettisen iän 
välinen erotus (Δ-cAge-DNAmAge) muuttuu aikuisiässä suhteellisen vähän 
useamman vuoden tai vuosikymmenen aikana (III). Kun tähän havaintoon 
yhdistetään aiemmat epigeneettisen iän seurantatutkimustulokset, missä on keskitytty 
erityisesti lapsuusikään, vaikuttaa sille, että tämä erotus asettuu ja vakiintuu 
pääasialliselle tasolleen jo ennen aikuisikää. Nämä havainnot ovat ajatuksia 
herättäviä, koska kiihtynyt epigeneettinen ikääntyminen on liitetty kasvaneeseen 
kuolleisuusriskiin aikuisilla. Nämä havainnot yhdessä korostavat entisestään 
lapsuudessa tapahtuvien epigeneettisten muutosten merkitystä myöhemmälle 
terveydelle elinkaaren aikana. 
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1 INTRODUCTION 

Aging is a continuous process, which influences all humans. During this process, the 
physiological integrity of an organism gradually diminishes. Eventually, this leads to 
disabilities in functioning, increases the risk of developing pathologies, and death. 
The factors contributing to the aging process at a cellular level have been studied 
extensively and are reviewed by, for example, López-Otin et al. (2013) and Carmona 
et al. (2016) and Pan et al. (2017). These factors include genomic instability, telomere 
shortening, epigenetic changes, and unbalanced protein homoeostasis, decayed 
nutrient sensing regulation, mitochondrial dysfunction, cellular senescence, stem cell 
exhaustion and changes in intercellular communication. These determinates of aging 
are presented in details in the thesis section 2.2 under heading Biology of aging. The 
aging process and the aging rate are influenced by genetic and environmental factors, 
and the aging rate varies between species, organisms and tissues. The non-random 
aspect in the aging process is demonstrated in the high evolutionary conservation 
levels of the aging-associated biochemical pathways. When considering different 
species, the average lifespan expectancy is species-specific. Within species-specific 
limits, the varying length of a lifespan is inheritable for the offspring, and in parallel, 
is modified by random factors. Within one specie and organism, there are even intra-
individual tissue-specific differences in the aging rates. (Lopez-Otin et al. 2013; 
Carmona and Michan 2016; Kaeberlein et al. 2016; Pan et al. 2017) 

In this thesis, the focus is set to DNA methylation changes that occur during 
aging (presented in section 2.4). The genomes of mammals and many other 
organisms are abundant in 5-methylcytosines, i.e. methylated cytosines (5mCs), 
which are primarily located in the sequence CpG. Typically, through the enzymatic 
methylation of cytosine in DNA sequence, the gene activities may be switched on 
and off, and the gene activity may be inherited from a cell to a daughter cell. (Holliday 
and Pugh 1975; Riggs 2002; Holliday 2006) From a wider perspective, DNA 
methylation is a mechanism, which is often associated with long-term gene 
expression silencing in X chromosome inactivation, imprinting and tissue-specific 
gene expression. Overall, it has a critical role in genomic stability, cell differentiation 
and development. (P. A. Jones and Liang 2009; B. C. Christensen et al. 2012; Smith 
and Meissner 2013; W. Xu et al. 2016; Rasmussen and Helin 2016; Elhamamsy 2016) 

In general, the interindividual differences between genome-wide DNA 
methylation profiles increase with age (Zampieri et al. 2015), and genetic and 
environmental factors contribute to this change (van Dongen et al. 2016). The aging-
related methylomic changes at the CpG sites are termed as the epigenetic drift 
(Teschendorff et al. 2013). Specifically, cell-type-specific genome-wide DNA 
methylation profiles are changed, and these changes are associated with various 
health conditions. Changes in the DNA methylome have been associated with 
diseases with aging-resembling features and diseases that are frequent in the aged 
population. Moreover, many of the aging-associated DNA methylation changes 
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share characteristics in common with DNA methylomic changes associated with 
pathologies (i.e. cancer). (Zampieri et al. 2015)  

Interestingly, in addition to more random DNA methylation changes, clocklike-
behaving DNA methylation changes occur during aging. In clocklike-behaving 
methylation sites, DNA methylation level decreases or increases with almost 
constant rate as a function of age. These changes have been considered as the base 
for the epigenetic clock. The DNA methylation levels in these clock-CpG sites 
correlate highly with the chronological age of an individual, and interestingly, the 
correlation is even better than between telomere length and chronological age. 
(Zampieri et al. 2015; M. J. Jones et al. 2015) Due to growing interest and feasible 
technology, DNA methylation has been studied intensively in numerous large-scale 
epidemiological human cohorts (Schübeler 2015). Based on the extensive research, 
it has been discovered that clocklike-behaving CpG sites can be used in a 
sophisticated manner to estimate the age of “a blind sample” from a DNA. 
(Zampieri et al. 2015; Jylhava et al. 2017). This epigenetic age estimation might at least 
be employed in practice in forensic investigations in order to assess age of an 
unknown individual with DNA sample (Freire-Aradas et al. 2017).  

A popular epigenetic age estimate is Horvath’s DNAmAge, which is fitted for 
multiple human tissues (Horvath 2013). The DNAmAge estimate has emerged as a 
highly promising biomarker of the aging rate, and many supporting reports of its 
significance in human fitness, morbidity, mortality and longevity have been 
announced following the DNAmAge calculator being published in 2013 (Zampieri 
et al. 2015; Jylhava et al. 2017).   

Nevertheless, the literature provides only hints of the complete picture regarding 
epigenetics. To what extent does the epigenetic drift have its own functionally 
relevant role, or is it merely a reflection of varying chromatin states? For example, at 
present, there is no causal experimental evidence supporting lifespan extension 
through changes in DNA methylation profile alone (Lopez-Otin et al. 2013). There 
is also the question of how the epigenetic clock is functioning. In spite of the open 
questions, DNA methylation and epigenetic age estimates have proven to be strong 
biomarkers in numerous pathologies and conditions (Schübeler 2015; M. J. Jones et 
al. 2015; Zampieri et al. 2015; Leenen et al. 2016; Elhamamsy 2017). 

The hypotheses in this thesis comprise the following detailed issues. The 
longitudinal behavior of the epigenetic age (i.e. Horvath’s DNAmAge) in adults has 
been indefinite. In addition, discrepancies in the lists of reported aging-associated 
methylation sites in human samples have emerged, thus requiring further evaluation. 
The second question concerns methylomic mortality predictors: are there 
methylation sites that could be used as survival predictors in the elderly (+90 years 
of age) and could these predictors even overcome conventional biomarkers of aging 
in the survival analysis? Moreover, are factors that are related to immune system 
aging,  cytomegalovirus (CMV) and blood cell distribution associated with epigenetic 
aging? Therefore, in studies I-IV, aging-associated DNA methylation level changes 
(I), and mortality predictors (IV) at single CpG site resolution are characterized. The 
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longitudinal behavior of the DNA methylome age (III), and its role as a mortality 
predictor (IV) is explored. Furthermore, the epigenetic age change associated with 
CMV infection is analyzed (II). In all sections in the thesis, the role of blood cell 
sample heterogeneity is considered (I-IV). Specifically, the relevance of controlling 
sample heterogeneity in EWASs is evaluated (I), the association between the DNA 
methylome age and blood cell subtype counts is explored (III), and the overall 
longitudinal behavior of the blood cell subtypes is investigated (III). 
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2 REVIEW OF THE LITERATURE 

2.1 Human lifespan 

Normal aging and disease in combination contribute to functional ability, survival 
and longevity. The numbers in longevity, disease incidence and fatality rates have 
been been improved considerably during the past decades, and the change is 
continuing in developed countries with reasonable welfare (E. M. Crimmins 2015).  

At population level, aging-associated transitions in health condition often follow 
a sequential of events: 1) changes in biological risk factors occur; 2) pathologies are 
diagnosed; 3) frailty and disabilities arise, and 4) these are followed by death. Overall, 
morbidity, i.e. disease burden concentrates close to the time of death. Nonetheless, 
studies have shown that, in addition to the obvious concordance of morbidity and 
mortality, these two issues follow their own trends. That is, for instance, people are 
living longer than previously with chronic diseases such as cancer. (E. Crimmins et 
al. 2008; E. M. Crimmins and Beltran-Sanchez 2011; E. M. Crimmins 2015) A large-
scale evaluation of the average population health changes in 187 countries during 
1990-2010 has demonstrated that for every 1-year increase in lifespan expectancy, 
the length of healthy life is extended for ca. 10 months (Salomon et al. 2012). Women 
reach 90 years of age more often than men do. At the same time, when compared to 
nonagenarian men (i.e. men 90-99 years of age), women of the same age more often 
have multiple diseases and disparities in functioning (Jylhava 2014). 

The worldwide number of individuals who have reached an extremely old age, 
i.e. 110 years of age, is between few tens and less than thousand (Cournil et al. 2010; 
Adams Jun 13, 2017). The number varies depending on source and validation level 
provided by longevity researchers. In history, the longest-lived person with 
confirmed birth and death dates was Jeanne Calment, who lived for 122 years. These 
facts underline the existence of high mortality rates at very old ages, and the aging 
researchers debate the possible limits for the biological maximum of human lifespan. 
(Dong et al. 2016; Shkolnikov et al. 2016) 

The life expectancy of an individual at the time of birth or later is the expected 
average time in years between that time and time of death, and thus, it is different 
from the maximum of human lifespan. The expectancy estimates are dependent on 
birth cohort, chronological age, ethnicity and gender. (Rector et al. 2016) Human life 
expectancy has changed dramatically during the last century in many countries 
worldwide, and at present, the average age in these regions with reasonable welfare 
systems is increasing due to decreasing birth rates and extending life expectancies. 
Earlier, the life expectancy used to be approximately 50 years, yet recently, it has 
shifted to close to 80 years. Transition in the age distribution has had different stages: 
at the beginning, mortality was higher at the young population due to infectious 
diseases, and the disappearance of such deaths increased life expectancy. Following 
this, cardiovascular diseases and cancer in older individuals were the main causes of 
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mortality; for example, in the United States in the 2000s, these diseases accounted 
for more than half of all deaths. Nowadays, given that fatality rates of heart diseases 
are decreasing, the lifespan expectancy continues to grow, especially at the old ages. 
(K. Christensen et al. 2009; E. M. Crimmins and Beltran-Sanchez 2011; E. M. 
Crimmins 2015)  

In Japan, the life expectancy is the highest in the world. After the 1960s, the 
number of Japanese reaching very old age, i.e. reaching 100 years of age, has doubled 
in every successive decade. Population projection 2015–2065 estimations by Statistics 
Finland examplifies also the general trend of population structure changes in 
developed countries with reasonable welfare systems. The projection estimations 
suggests that of total Finnish population (N=5 861 491) for example in 2040, the 
number of individuals who reach 90 years of age or more is 140 632 (2.4%). The 
number is clearly higher than it was in 1980, when the corresponding number of 
individuals who had reached 90 years of age was 6107. This is only 0.12% of total 
population at that time. (Official Statistics of Finland, OSF 2015) At the oldest ages, 
the mortality rate increases exponentially through the gained years, and the survival 
percentages at population level are relatively low. Meaning that only ~1% of 
individuals alive in 2010 in, for instance, the United States, are likely to be a 
centenarian (E. M. Crimmins 2015). In summary, nowadays, the number of 
nonagenarians and older individuals is still small but the number is clearly growing. 

The growing rate of life expectancy at population level is difficult to predict, and 
thus, different scenarios exist. For instance, at the beginning of 2000, the U.S. Social 
Security Administration has estimated that, by 2050, in every survived decade before 
65 years of age, people will gain at least one year of lifespan extension and half a year 
extension per each subsequent decade (E. M. Crimmins 2015). More optimistic 
predictions do exist: researchers have estimated even a two-times larger increase in 
the gained years/survived decade, if the lifespan expectancy remains to grow as fast 
as it has been growing (K. Christensen et al. 2009). Thus, using these lifespan 
expectancy values it may even be estimated that as much as 50% of the birth cohort 
of the year 2000 in the United States might survive to the age of 100 years. (E. M. 
Crimmins 2015) 

2.2 Biology of aging 

In organismal aging, the physiological integrity is gradually lost. This leads to 
disabilities in functioning, increases the risk of developing many pathologies such as 
cancer, diabetes, cardiovascular disorders and neurodegenerative diseases, and the 
risk of death is greater. The rate of aging demonstrates both random and non-
random features. Aging-associated biochemical processes and genetic pathways 
show high evolutionary conservation levels. The average life expectancy is species-
specific. However, within one specie, there are variations in the aging rates between 
individual organisms, and intra-individual tissue-specific differences in the aging 
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rates exist. The rate of aging is modified by random factors but is also inheritable. 
Through comprehensive research evidence, it is now obvious that the aging process 
is not driven by a single factor. In contrast, the aging process is a complex trait, 
which is influenced by genetic and environmental factors. (Lopez-Otin et al. 2013; 
Carmona and Michan 2016; Kaeberlein et al. 2016)  

2.2.1 Biomarkers of aging 

The biological (risk) factors, i.e. biomarkers or “biomeasures”, may indicate elevated 
mortality risk and transitions in health status (pathologies, loss of functioning, 
disability, frailty) and they can even be used to describe one’s biological age (Arbeev 
et al. 2016). The National Institute of Health (NIH) has defined a biomarker as: “a 
characteristic that is objectively measured, and evaluated as an indicator of normal 
biological processes, pathogenic processes, or pharmacological responses to a 
therapeutic intervention”. In general, some of the aging biomarkers are specific to 
certain diagnoses or prognoses of pathologies, and some are descriptive of the aging 
process itself. (E. Crimmins et al. 2008) The American Federation of Aging Research 
has suggested that a good biomarker of aging: (1) predicts the rate of aging in such 
a way that it predicts lifespan better than chronological age; (2) is a non-pathological 
phenomena associated with aging process; (3) is easily and repeatedly assessable in 
such a way that it does not harm the study subject, and (4) is also suitable for analysis 
in laboratory animals. The biological age predictors that describe one’s health status 
better than chronological age have been extensively explored, but this search has 
been demanding. It has been also questioned whether such biomarkers or biomarker 
combinations can be found due to strong correlation between normal aging and 
chronic diseases. (Burkle et al. 2015; Jylhava et al. 2017) 

The conventional biomarkers of healthy aging may be divided into categories of 
physiological, immune system, endocrine system, physical capability, and cognitive 
functions (Table 1) (E. Crimmins et al. 2008; Lara et al. 2015). Other established 
aging biomarkers exist, including DNA methylation (Zampieri et al. 2015), and 
telomere attrition (Bojesen 2013; Deelen et al. 2014b). Moreover, promising 
candidate aging biomarkers or biomarker combinations such as gene expression 
patterns (J. Yang et al. 2015), plasma cell free DNA (Jylhava et al. 2011), micro-
RNAs (Thum 2014), long non-coding RNAs (Thum 2014) and histone 
modifications (Han and Brunet 2012) have emerged. Even “the brain age” through 
neuroimaging can be utilized to predict chronological age, and this measure has also 
shown mortality-predicting capability (Cole et al. 2017). 
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Table 1.  The conventional human aging biomarkers and their domains (modified from Crimmins et al. 
2008; Lara et al. 2015). All these factors change during aging, and they are manifesting gradual 
weakening in regulation of cellular pathways and physiological integrity of an organism. Direction 
of change by increasing chronological age is marked with ↑ or ↓ if the biomarker is systematically 
observed as increased or decreased in the elderly. The biomarkers may be obtained through 
different sources including blood, urine, saliva, spirometry, physical, or cognitive examinations.   

Functions Domain Biomarkers 

Physiological Cardiovascular 
system 

↑Systolic blood, Diastolic blood and ↑Pulse pressure, 
Resting pulse rate, ↑Total homocysteine, ↑Total 
cholesterol, High-density Lipoprotein cholesterol, 
Triglycerides 
 

 Organs ↓Creatinine, ↓Cystatin C, Electrocardiogram, ↓Forced 
expiratory volume 

 Glucose metabolism ↑Fasting glucose, ↑Glycated hemoglobin (HbA1C) 

 Body composition Body Mass Index, Waist-to-hip ratio, ↓Muscle mass, 
↓Bone density 

Immune 
system 

Inflammatory factors ↑C-reactive protein (CRP), ↑Interleukin-6 (IL-6), 
↑Fibrinogen, ↓Albumin, ↑Tumor necrosis factor α, 
↑Serum amyloid A, T cell counts, Blood cell subtype 
counts and phenotypes 
 

Endocrine Hypothalamic-
pituitary axis, growth 
hormones, sex 
hormones and other 

Cortisol, ↓Dehydroepiandrosterone sulfate (DHEA-
S), Insulin-like growth factor-1 (IGF-1), 
Norepinehrine, Epinephrine (adrenaline), Ghrelin, 
Melatonin, Somatostatin, Thyroid hormones, Leptin, 
Adiponectin, Testosterone, Estrogen 
 

Physical 
capability 

Strength, Balance, 
Dexterity, 
Locomotion 

↓Grip strength, ↓Standing balance, Pegboard test, 
↓Chair raising 

Cognitive Memory, Processing 
speed, Executive 
function 

Digit symbol coding, Verbal and visual 
memory/learning 

Arbeev et al. (2016) have underlined in their review that the best practice for 
evaluating the human aging rate in population studies is to use large sample sizes and 
multiple biomarkers measured in different time points (Arbeev et al. 2016). A 
Europe-wide population-based study MARK-AGE comprising 3200 participants 
with age range of 35-74 years is an example of such a project (Burkle et al. 2015). 
Instead of exploring single aging biomarkers, the project was founded in order to 
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establish weighted biomarker combination of human aging (i.e. a biological age 
score) from hundreds of aging-associated biomeasures. The study exemplifies the 
standard procedure of such a complicated analysis with a highly heterogenic human 
sample. For instance, the procedure includes considerations of anthropometric, 
clinical and demographic information of the study subjects. Specifically, functional 
(e.g. daily activities), cognitional, mood (e.g. Zung depression scale) and health 
(diseases, medications) statuses, lifestyle indicators (e.g. alcohol and tobacco 
consumption, exercise activity) and sociodemographic (marital status, occupation, 
education, household income) factors were also surveyed and adjusted for. (Burkle 
et al. 2015). Another large-scale biomarker-profiling example is a population-based 
study in Northern Europe, which showed that circulating alpha-1-acid glycoprotein, 
albumin, very low-density lipoprotein (VLDL) particle size, and citrate have clear 
short-term all-cause mortality predictor capability. The analysis was performed using 
high-throughput nuclear magnetic resonance spectroscopy characterization of 106 
lipids, proteins and metabolites from non-fasting plasma samples of 17 345 
individuals. (Fischer et al. 2014) 

2.2.2 Longevity genetics 

Survival analyses where long-living families are compared to the general population 
living in the same area have revealed that siblings of long-living subjects have higher 
survival rates at all ages. Aging-associated pathologies are more infrequent in these 
families. Centenarians are also geographically enriched in general population in 
several specific regions worldwide, such as Okinawa, Nicoya, Ikaria, Sardinia, Loma 
Linda, Costa Rica, Greece, Italy and Mexico. All these observations suggest that 
longevity and healthy aging is influenced by a hereditary component, and this 
component may comprise genetics, culture, lifestyle and environment in general. 
Dissecting experimentally the magnitude of effect brought by environment and 
genetics and studying environment-gene-interactions in humans is highly challenging 
or even virtually impossible. For instance, the complexity of gene-environment-
interaction is demonstrated in lifestyle (e.g. dietary habits), which may be transmitted 
to children in addition to the actual genes of the parents. (Dato et al. 2017) However, 
through lifespan manipulation experiments in animal models where the environment 
and genetical background is controlled, interaction between environment (dietary 
restriction) and genetics (IIS network) is a shown phenomena. (Lopez-Otin et al. 
2013; Carmona and Michan 2016; Kaeberlein et al. 2016) In summary, genetics and 
longevity are linked together, but gathering experimental evidence of that link in 
human population is more challenging.  

Studies have proposed that heritability of age at the time of death is between 15 
and 30 percentages in adulthood (Brooks-Wilson 2013; Jylhava 2014; Dato et al. 
2017). Furthermore, in humans, genetics appear to have a greater impact on the 
survival rate at ages above 60 years (Herskind et al. 1996; Skytthe et al. 2003; 
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Hjelmborg et al. 2006), and be in the highest level at the oldest ages (Brooks-Wilson 
2013). There are implications that genetics promoting longevity in age groups close 
to 90 years is different from that which is enhancing extreme longevity (>100 years) 
(Jylhava and Hurme 2010; Jylhava 2014). 

Kaeberlein et al. (2016) have summarized that, using a large variety of animal 
models, hundreds of genes have been associated with longevity or aging-resembling 
phenotypes. Based on these results, the genes may be clustered to certain pathways: 
proteostasis, insulin and insulin-like growth factor 1 (IIS) pathway, mitochondrial metabolism, 
sirtuins, chemosensory function or dietary restriction. In contrast, in human gene variant 
mapping studies, a substantially low number of variants have been even modestly 
associated with longevity. That is to say, the statistical significance is not strong 
enough and/or the longevity-association is not replicative. Moreover, rare gene 
variants are assumed to be contributing to human longevity and aging, and may 
sometimes be falsely undetected by genome-wide methods. (Kaeberlein et al. 2016) 
Commonly, risk gene variants are associated with lower survival, but there are also 
other aspects in this phenomenon. For instance, recent genome-wide genetic 
analyses have suggested that long-living individuals might also have risk gene variants 
for pathologies. Consequently, there might be additional factors (gene variants, 
epigenetics, lifestyle, environment) protecting these individuals from the impact of 
risk alleles. (Brooks-Wilson 2013; Jylhava 2014) 

Through accordance with multiple linkage analyses using human families and 
genome-wide association studies, a set of promising polymorphic regions, which are 
located in genes RBMS3, CTDSSPL, MB21D2, CAMK4, RCBTB1, RLN1, RLN2, 
MAPKAP1, PRKCB, GAS7, APO E, and ANGPT4 (according to genome assembly 
GRCh37.p13) have been reported (summarized in Table 1.3 in a textbook by 
Kaeberlein et al. 2016). Linkage analyses using long-living families have pointed out 
longevity-associated locus on chromosome 3. In addition, reviews by Brooks-Wilson 
2013 and Jylhava 2014 summarize that polymorphisms located in FOXO3A and 
AKT1 in the IIS pathway are reported to be longevity-associated repeatedly. The 
most acknowledged single-nucleotide polymorphism associated with successful 
aging is located in gene APO E (rs4420638 on chromosome 19). The gene codes 
apolipoprotein E, which participates in cholesterol metabolism.  (Jylhava 2014; 
Kaeberlein et al. 2016) The APO E-association has been confirmed in a recent 
genome-wide association meta-analysis using tens of thousands of people of 
European descent. In addition to APO E, only one novel locus (rs2149954) in 
chromosome 5 was identified as longevity-associated in the study. (Deelen et al. 
2014a)  
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2.2.3 The hallmarks of aging 

In the fields of cell biology and aging research, Lopez-Otin et al. (2013) have 
proposed the concept of hallmarks of aging, which are the common biological 
determinates contributing to organismal aging (Figure 1). The hallmarks may be 
categorized hierarchically, but they also overlap each other. Primary damage-causing 
factors are genomic instability, telomere shortening, epigenetic changes and unbalanced protein 
homoeostasis. Factors that respond to the primary damage include loss of regulation in 
nutrient sensing, mitochondrial dysfunction and cellular senescence. The outcome hallmarks that 
are the consequences of the latter hallmarks and comprise stem cell exhaustion and 
altered intercellular communication.  

 

Figure 1.  The hallmarks of aging are suggested and described by Lopez-Otin et al. (2013). In 
this proposal, epigenetics is one of the hallmarks that is causing cellular damage in aging. 
Categories and the hierarchy of them is constructed here in highly artificial manner to provide 
framework for the aging research. For instance, these determinates overlap each other.  

The primary cause(s) of aging is difficult to differentiate from the consequences 
of aging. In order to categorize the biological key features contributing to aging, 
Lopez-Otin et al. (2013) made strict rules for the hallmarks shown in Figure 1. A 
precise definition for these aging hallmarks should encompass the following: “(1) it 
should manifest during normal aging; (2) its experimental aggravation should 
accelerate aging; and (3) its experimental amelioration should retard the normal aging 
process and hence increase healthy lifespan.” (Lopez-Otin et al. 2013) It is worth 
noting that DNA methylation, which is the main topic of this thesis, does not fill 
these criteria of being a hallmark of aging alone, and is presented separately in 
Section 2.4. 
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2.2.3.1 Causes of damage in aging 

In the hallmarks of aging (Lopez-Otin et al. 2013), the damage-causing factors are 
genomic instability, telomere shortening, epigenetic changes and unbalanced protein homoeostasis 
(Figure 1). Numerous factors threaten genomic stability. Exogenous threatening 
factors include physical, chemical and biological mediators, while endogenous 
factors include DNA replication errors, reactive oxygen species, and DNA 
hydrolysis. Point mutations, translocations, deletions, telomere attrition, and virus or 
transposon insertions are examples of manifestations of genomic instability. To 
prevent these events from occurring, targeted repair machineries (e.g. base excision 
repair, homologous recombination, nucleotide excision repair, non-homologous 
end-joining, mismatch repair, DNA methylation maintenance, telomerase) have 
been developed. Studies have shown that malfunctioning repair systems and 
accelerated aging are linked. For instance, deficient DNA repair mechanisms are 
associated with progeroid syndromes such as Werner, Bloom Cockayne and Seckel 
syndromes with premature aging. (Lopez-Otin et al. 2013) A transgenic mice 
experiment has underlined the causality of this link between repair systems and 
accelerated aging. The BubR1 gene participates to check points of mitosis, and thus 
the gene contributes to precise chromosome segregation. When BubR1 was over-
expressed, the lifespan of the mice was prolonged and their cancer incidence was 
decreased. (Baker et al. 2013) Studies with other progeroid syndromes, for instance, 
Hutchinson-Gilford and Néstor-Guillermo syndromes have demonstrated that 
these pathologies are affected by mutations in genes encoding protein components 
for nuclear lamina. As reviewed by Lopez-Otin et al. (2013), during normal aging, 
expression of an aberrant prelamin A isoform, called progerin, is increased, and, in 
addition, a study has shown that progerin is over-expressed in cells with telomere 
malfunction (K. Cao et al. 2011). Moreover, manipulation of prelamin A and 
progerin levels, or somatotrofic axis through e.g. NF-kB may extend the lifespan of 
the progeroid mice (Marino et al. 2010; Osorio et al. 2012).   

Telomere attrition is a special case of DNA damage. In many cell types, the 
lifespan of a cell culture is limited because of the limited number of proliferations. 
This limitation, called Haylick’s limit or replicative senescence, is caused by telomere 
shortening, which occurs gradually alongside each cell division. Telomeres shorten 
because the DNA replication machinery is unable to appropriately copy the linear 
telomere sequence at the end of the chromosomes (the end replication problem). An 
enzyme, telomerase, is responsible for maintaining or even increasing telomere 
length, and the enhanced activity of telomerase may be used to create an immortal 
cell line. In addition, in healthy situations, the shelterin complex is sealing the 
telomeres, and thus the DNA repair machinery does not recognize telomeres as 
problematic breaks in DNA. Deficient telomerase or shelterin complex may increase 
the risk of developing pathologies (e.g. dyskeratosis congenital or aplastic anemia) 
where the regenerative capacity of different tissues is lost. Moreover, the causal 
relationship between normal aging, telomere shortening and cellular senescence has 
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been shown using genetically engineered mice; their lifespan is extended when 
telomeres are lengthened or shortened when telomeres are shortened. (Lopez-Otin 
et al. 2013; Bojesen 2013; Cerella et al. 2016) In humans, shorter leukocyte telomere 
length has been associated with a higher risk of death in younger adults as well as in 
nonagenarians in the Leiden Longevity Study (1580 subjects 30-80 years of age; 870 
subjects >90 years of age). Interestingly, telomere length was linked to mortality 
independent of the immune system-related markers (e.g. IGF-1, CRP, IL-6, CMV or 
blood cell counts). (Deelen et al. 2014b) 

The proteostasis in the cell is impaired in aged organisms and is one of the aging 
hallmarks (Figure 1). The normal situation of proteostasis comprises the well-
controlled homeostasis of protein quantities, conformation, binding interactions, 
and protein localization in the cell. Polypeptides that are unfolded due to cellular 
stress are either refolded by chaperone-mediated system, or degraded by ubiquitin-
proteasome or lysosomal pathways. (Lopez-Otin et al. 2013) With these 
mechanisms, the expression of unfolded, misfolded or aggregated proteins are 
prevented. In aging-associated pathologies such as Alzheimer’s and Parkinson’s 
diseases, the expression of mistakenly folded proteins is observed. (Basaiawmoit and 
Rattan 2010; Lopez-Otin et al. 2013) For instance, chaperone-mediated protein 
folding weakens with age, and in flies and worms, the overexpressed chaperones 
have been linked to extended lifespan (Walker and Lithgow 2003; Morrow et al. 
2004). However, the chaperone-connection to longevity appears to be more complex 
in higher animals, as shown in the long-living dwarf mouse model (Swindell et al. 
2009).  

2.2.3.1.1 Epigenetics 

Epigenetics (Figure 2) may be categorized as one of the primary hallmarks of aging 
that are causing cellular damage in aging (Figure 1). In its entirety, Lopez-Otin et al. 
(2013) have described the hallmarks of aging, and these hallmarks are the biological 
determinates that are contributing to human aging. 

Epigenetics is a field in science, which, through the Greek prefix epi, is literally 
“on top of” traditional genetics. Epigenetic regulators provide an inheritable 
connection link between genome and surrounding environment. Overall, epigenetic 
regulation is manifested in gene expression. Distinct functions of different cell types 
are enabled with the precise activation of cell type specific gene expression patterns 
even though the genomic DNA sequence can be identical from one cell type to 
another. Gene expression may be initiated when the transcription factors bind to 
regulatory DNA sequences. In order to control the output of genome appropriately, 
interaction between transcription machinery and different epigenetic regulators is 
needed. Epigenetic regulation comprises mechanisms such as DNA methylation, 
which is the primary focus of this thesis and presented in Section 2.4, chemical 
modifications of the histones, operation of noncoding RNAs and nucleosomal 
remodeling. Epigenetics alters DNA packaging and modifications on DNA without 
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changing the DNA sequence itself, and importantly, all these epigenetic 
modifications are either inheritable to the daughter cells or possibly even to the 
offspring. (P. A. Jones and Liang 2012; Spruijt and Vermeulen 2014; M. J. Jones et 
al. 2015; Schübeler 2015; W. Xu et al. 2016) 

Changes in chromatin structure are manifestations of epigenetic regulation 
(Figure 2). The chromatin strand is largely packed tightly with nucleosomes, which 
are complexes of DNA and histone proteins (dimers of H2A, H2B, H3 and H4 
units). Positively charged amino acids on tails of these histone domains are modified 
with specific chemical modifications such as acetylation, methylation, 
phosphorylation, and ubiquitination. In addition, histone GlcNAc-ylation, 
butyrylation, malonylation, and crotonylation have been recently presented as novel 
chemical modifications. The histone code of chemical modifications defines which 
DNA regions are “open” for transcription machinery initiation. Analogously, locally 
“closed” chromatin structure represses transcription. For example, acetylation can 
neutralize positively charged amino acids (most commonly lysine and arginine), and 
thus weaken the tightness between DNA and histones which enables genes to be 
transcribed. In addition to acetylation, methylation of histone residues has been 
intensively studied. This modification may enable up- or downregulation of gene 
expression by trimethylation of lysine 4 on H4 or trimethylation of lysine 27 on H3, 
respectively. (P. A. Jones and Liang 2012; Schübeler 2015; W. Xu et al. 2016) 

Longevity research has shown that epigenetics is a hallmark of aging (Lopez-Otin 
et al. 2013). In aged cells, histone H4K16 acetylation, H4K20 trimethylation or 
H3K4 trimethylation are increased, and H3K9 methylation or H3K27 trimethylation 
are decreased (Fraga and Esteller 2007; Han and Brunet 2012). In C. elegans and 
Drosophila, components in histone methylation complexes (H3K4 and H3K27, 
respectively) are regulating lifespan (Siebold et al. 2010; Greer et al. 2010). In 
addition, a study with C. elegans demonstrated that histone demethylase Utx-1 
inhibition, which is targeted for H3K27, decreased IIS activity in parallel with 
increasing survival (Jin et al. 2011). In contrast, DNA methylation has not, as such, 
been linked with experimental evidence to the extended lifespan of an organism and 
thus does not fulfill the criteria of being an independent hallmark of aging (Lopez-
Otin et al. 2013). 

Noncoding RNAs are also epigenetic regulators, and interplay with other 
epigenetic modifiers (Figure 2). The noncoding RNA species are transcribed from 
DNA but are not used as a template for protein synthesis; all these species are 
networking in many processes in time and in cellular space. In many organisms, it 
has been directly shown that DNA methylation and histone modifications are 
manipulated by noncoding RNAs. Noncoding RNAs involved in epigenetics are 
categorized into two classes: the long (>200 nt) and the short ones (<200 nt; micro 
RNAs, small interfering RNAs and Piwi-interacting RNAs). The latter group of 
RNAs regulate at least messenger RNA transcript usage, control of transposons and 
chromatin modifications. 
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Figure 2.  Epigenetic mechanisms including DNA methylation, histone post-translational modifications, and chromatin structure, are shown in this 
schematic presentation (NIH 2017).  Possible outcomes in health condition and factors contributing to epigenetic landscapes are also presented. 
Epigenetics is changed in developmental stages, in aging process, and due to environmental factors. 
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A well-known example of long noncoding RNA function is involved in X 
chromosome inactivation. The inactivation process compensates the expression 
levels of X-chromosome-linked genes in female mammals. This occurs because 
females carry two X chromosomes while males have Y chromosome in addition to 
one X chromosome. When compared to males, without this compensation 
prosedure, females would have twofold expression levels of X-linked genes. In 
female mammals, two large RNA molecules, Xist and Tsix, work together to ensure 
that the other randomly chosen X chromosome is packed tightly during 
development, while the other X chromosome remains active. The Xist RNA-coated 
X chromosome is further transformed to an inactive and condensed chromatin state 
through different chromatin modifications, including DNA methylation of 
promoters located in X-linked genes. (Mohandas et al. 1981; Avner and Heard 2001; 
Collins et al. 2011; P. A. Jones and Liang 2012) 

Studies in mammals and other organisms have implied that intergenerational or 
even transgenerational epigenetic inheritance mechanisms exist. That is to say, a 
phenotype is transmitted to following generations (from parents to first, second, 
third or more generations of offspring) with epigenetic regulators (DNA 
methylation, histone modification and regulatory RNAs) that are not written to the 
DNA sequence. (Sharma 2013; Martos et al. 2015) In plants, the evidence for the 
existence of transgenerational epigenetic inheritance and its usage as adaptation 
mechanism to the changing environment is strong. Mobile regulatory RNAs and 
hormones have been shown to participate in the plant transgenerational inheritance 
system.  (Hauser et al. 2011; Sharma 2013) In animals, intergenerational transfer of 
effects through epigenetics is reported in many cases in which exposure to 
environmental toxic materials or maternal malnutrion during pregnancy are 
involved. In humans, in utero exposure to smoking (Chatterton et al. 2017) or arsenic 
(Kaushal et al. 2017) have been linked to changes in fetal DNA methylomes and 
future phenotypes of the progeny. A study with Agouti mouse model underlined 
that the environment during the embryogenesis determines phenotype of cubs rather 
than uterine environment (described in more details in Chapter 2.4). (Morgan et al. 
1999; Leenen et al. 2016) In another example of intergenerational inheritance, the 
effect of Dutch famine in 1944-45 during the first trimester of pregnancy is 
associated with offspring obesity in adulthood (Heijmans et al. 2008; Roseboom et 
al. 2011).  The intergenerational inheritability of the human lifespan has been also 
connected to epigenetics through manifestations in DNA methylation profiles in the 
offspring of long-living fathers in a EWAS (Marttila, Kananen, Jylhava et al. 2015). 

Some evidence from association studies support the existence of 
transgenerational epigenetic inheritance in animals (i.e. changed epigenetic profile is 
transferred from a parent over multiple generations via germ cells). For instance, in 
rats, vinclozolin, an anti-androgenic fungicide has been reported to disrupt male 
fertility in multiple following generations, in parallel with observed changes in the 
DNA methylome in the germline.  Inheritance is possible when the epigenetic 
reprogrammings (including methylation erasures) during developmental stages 
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operate in such way that the the acquired epigenomic landscapes of previous 
generations is somehow “remembered”. (Sharma 2013; Sharma 2015) A recent 
review (Sharma 2017), suggests that mechanisms mediating environmental exposure 
through germline to the progeny involve epigenetic regulators such as small 
noncoding RNAs, DNA methylation, and histone modifications. However, this 
complex inheritance system is still poorly understood. 

2.2.3.2 Responses to aging-associated cellular damage  

The aging hallmarks (Figure 1), loss of regulation in nutrient sensing, mitochondrial dysfunction 
and cellular senescence are responding in a compensatory or antagonistic manner to the 
aging-associated cellular damage. Their intensity levels define whether the effect is 
beneficial or accelerates aging. This means that, at low level, these hallmarks are 
beneficial systems, but overscaled intensity may be harmful. (Lopez-Otin et al. 2013)  

Environmental factors such as nutrition, radiation, temperature and osmotic 
levels may influence the aging process (Lopez-Otin et al. 2013; Kaeberlein et al. 
2016). An approach called caloric (or dietary) restriction is the most effective known 
lifespan manipulation method, and has been shown to modulate all the aging 
hallmarks at the molecular level. The lifespan-stimulating effect of the caloric 
restriction method in mammalians had already been shown by the 1930s, using rats 
with 30% lowered daily calories. Since then, numerous species have been examined 
with caloric restriction diets. The lifespan of rodents has been extended by more 
than 50%, and the lifespan of lower animals has even been multiplied. Nonetheless, 
in humans, the lifespan extension through diet manipulation is yet to be shown. 
Instead of extension, many experiments or interventions are associated with 
improved health conditions. (Carmona and Michan 2016) 

The evolutionaryly conserved nutrient-sensing system is deregulated in aged 
organisms. This IIS network includes mTOR, AMPK and sirtuin (histone 
deasetylase) signaling pathways. The AMPK system detects high AMP concentration 
and sirtuins detect nicotinamide adenine dinucleotide (NAD+) concentrations, 
which are both implications of energy-deficiency in a cell; AMPK and sirtuins 
promote catabolism in low-energy situation. mTOR detects changes in amino acid 
quantities and responses to  growth factor or environmental stress. In a high nutrient 
state, the role of IIS and mTOR pathways is to enhance anabolism. Increased 
anabolic activity accelerates the aging process. Lopez-Otin et al. (2013) concluded in 
their review that aging-associated cellular DNA damage is minimized by lowering 
organismal growth and metabolism. This is supported by the fact that growth 
hormone and insulin-like growth factor 1 are downregulated in aged organisms. 
Dietary restriction acts on IIS in similar way: it decreases the expression levels of 
anabolism-enhancing molecules in the ISS network. Multiple studies have shown 
that the IIS network contributes to longevity benefits gained from caloric restriction 
diet. (Lopez-Otin et al. 2013; Kaeberlein et al. 2016; Pan and Finkel 2017) 
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Genetic variability of the members in the glucose-sensing IIS pathway and their 
downstream targets are associated with longevity, both in humans and in animal 
models. Specifically, based on animal models, manipulated activities of the growth 
hormone, insulin-like growth factor 1 receptor, insulin receptor, mechanistic target 
of rapamycin complex (mTOR complex), protein kinase B (known as Akt) and 
members in FOXO family are all associated with extended lifespan. The research 
breakthroughs in the 1980s and 1990s showed that the lifespan of C. elegans may be 
doubled by blocking the function of age-1 and daf-2 genes only. The genes code 
human-resembling gene products, phosphatidylinositol-3-OH kinase and the 
insulin-like receptor in the IIS pathway, respectively. (Lopez-Otin et al. 2013; Jylhava 
2014; Pan and Finkel 2017) Later, it was shown that the blockage of mTOR pathway 
using rapamycin-treatment increases the lifespan of laboratory mice (Harrison et al. 
2009). Rapamycin is an immunosuppressive drug. In yeast, flies and worms, 
including rapamycin-addition to caloric restriction treatment extends lifespan more 
effectively than caloric restriction treatment without rapamycin. Yang et al. (2012) 
showed that aging-associated weight gain is related to hypothalamic mTOR 
expression, which is increased in aged mice. Injecting rapamycin directly to the 
hypothalamus reversed these changes (S. B. Yang et al. 2012).  

Sirtuin enzymes (i.e. histone deasetylases) modify histones and other proteins 
post-translationally. The enzymes catalyze several reactions including NAD-
dependent deacetylation as well as the demalonylation, desuccinylation and 
depropionylation of the target proteins. Sirtuins are able to mediate the 
environmental signal (e.g. energy-deficiency) to the epigenome through the removal 
of an acetyl group from a lysine residue on histones. (Lopez-Otin et al. 2013; 
Carmona and Michan 2016) In mammals, sirtuins are linked to the aging process. 
The mammalian sirtuins (SIRT1-7) localize in cytoplasm, nucleus and/or 
mitochondria. Increasing the expression of Sir2 gene (near homolog of mammalian 
SIRT1) in S. cerevisiae or its orthologs in C. elegans and D. melanogaster increases their 
lifespan. Studies in yeast have also shown that, in order to gain advantages from a 
caloric restriction treatment, Sir2 gene expression is essential. Nowadays, NAD+-
dependent sirtuin family is set to the focus on anti-aging research, and sirtuin-
activating compounds have been explored. Resveratrol, which is found in e.g. red 
grapes, is extensively studied and is an example of a sirtuin-mediated potential anti-
aging compound. (Kaeberlein et al. 2016; Pan and Finkel 2017) 

In higher organisms, such as mice or humans, longevity-associated experimental 
observations from sirtuins and other partners in nutrient-sensing are inconsistent. 
Many findings of lifespan-extending effects observed in worms or yeast appear to be 
more or less species-specific and replication attempts in higher animals have been 
unsuccessful. For instance, in spite of the high evolutionary conservation-
percentage, there are major differences in the IIS pathway; in worms, large groups 
of insulin- and insulin-like polypeptides simultaneously regulate body size, cellular 
growths and metabolism, while in mammalians, insulin growth factor 1 (IGF-1) and 
insulin signaling separately control growth and nutrient sensing. Therefore, the 
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replication of the experimental findings from one species to another is not a 
straightforward process. Interestingly, instead of a longer lifespan, some of the 
replication attempts have resulted healthier lifespan.  (Lopez-Otin et al. 2013; Pan 
and Finkel 2017) 

The initial role of cellular senescence is suggested to be a cellular checkpoint in 
tissue homeostasis and cancer-prevention. Based on this idea, in healthy young 
tissue, cellular senescence is a compensatory mechanism, which inhibits the 
proliferation of cells with profound damage in genomic stability or with oncogenic 
activity. For instance, telomere dysfunction leads to replicative senescence. In 
addition, cells may be induced to telomere-independent senescence via stressors 
such as oxidative stress. In aged organisms, the compensation mechanism that clears 
and replaces the senescent cells appears to dysfunction, and thus senescent cells 
accumulate during aging. The senescence program initiates when a certain damage 
threshold is reached.  The program proceeds in parallel through the p53 and p16-Rb 
tumor suppressor pathways, and they can both independently lead to cell cycle arrest. 
(Lopez-Otin et al. 2013; Aravinthan 2015; Cerella et al. 2016) 

Mitochondria are also central players in aging. Mitochondria produce the majority 
of energy consumed in a cell (Carmona and Michan 2016). Mitochondrial DNA is 
considered to be more sensitive for violating agents than nuclear DNA because of 
insufficient repairing mechanisms and oxidative conditions in the mitochondria 
(Lopez-Otin et al. 2013). The free reactive oxygen species (ROS), which originate 
from mitochondrion, are more frequently observed in aged organisms. Already by 
the 1950s, Harman D. proposed that oxidative damage in the cell increases during 
aging. This is supported by numerous studies performed during the past decades. 
Later, it has has been discovered that oxidative stress iduces deletions and point 
mutations to mtDNA and these radically accumulate with age in wide variety of 
species. Single-cell experiments have shown that the main weight in mitochondrial 
heteroplasmy is switched to a mutated mitochondrial genome in the aging cell, i.e. 
the mutated genome is dominant over the original mitochondrial genome. (Harman 
1992; Lopez-Otin et al. 2013; Vina et al. 2013) 

Nowadays, however, the free radical theory has been partially questioned. 
Unexpectedly, studies with yeast and flies in the 2000s implied that increased levels 
of ROS may actually extend lifespan. Moreover, multiple studies in mouse models 
have shown similar results. (Lopez-Otin et al. 2013) Nonetheless, mitochondria are 
strongly affected by aging. Specifically, Dufour et al. (2000) have underlined in their 
study the causal link between longevity and mitochondrial DNA. Disruption of 
COX5 gene coding for the fifth subunit of cytochrome c oxidase in mitochondrial 
DNA was shown to contribute longevity of the fungus Podospora anserine. The lifespan 
extension of the model organism was tenfold and coupled with alternative oxidase 
pathway usage. (Dufour et al. 2000) 
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2.2.3.3 The integrative hallmarks of aging 

The integrative aging hallmarks (Figure 1, stem cell exhaustion and altered intercellular 
communication) are the consequences of various types of aging-associated damage that 
initially cause the organismal aging. In aged organisms, the regenerative potential of 
tissues is weakened, because stem cell mobilization from the niches is decelerated. 
The stem cell exhaustion is also seen in the immunosenescence, in which 
hematopoiesis decreases with age, and this causes lower production of adaptive 
immune cells.  

Analogous to hematopoetic inhibition, tissue regeneration is essentially changed 
in all aged tissues. For instance, lowered tissue regeneration in the mouse forebrain 
(Molofsky et al. 2006), the bone (Gruber et al. 2006), and the muscle fibers (Conboy 
and Rando 2012) is reported. Moreover, changes in telomere length and telomerase 
activity have been associated with altered epidermal stem cell behavior (Flores et al. 
2005). Balanced stem cell production appears to be essential for healthy aging. 
Research with Drosophila has demonstrated that stem cell exhaustion and accelerated 
aging are caused by increased proliferation activity. (Lopez-Otin et al. 2013) 
Fascinatingly, Conboy et al. reported in 2005 that through heterochronic parabiosis 
pairing in mice, tissue-specific stem cells originating from the muscle or liver may be 
rejuvenated. The stem cells of a young animal adopted the older functional 
phenotype in the microenvironment of an older animal, and similarly, molecular 
signatures in stem cells of old mice were restored to a younger state through the 
younger microenvironment. (Conboy et al. 2005) 

2.3 The human immune system 

Decline in the cell-to-cell signaling systems including endocrine, neuroendocrine, and 
neuronal signaling is one of the integrative hallmarks of aging (Figure 1) (Lopez-Otin 
et al. 2013). Signaling from cell to another in space and time in orchestrated manner 
is crucial for the immune responses, and this system is altered during aging 
(Weiskopf et al. 2009). 

The immune system protects the organism from extrinsic (bacteria, viruses) and 
intrinsic (e.g. tumoric cells) factors using innate and adaptive mechanisms. These 
cascade mechanisms use antigen-recognition system in order to differentiate 
between healthy and infected or otherwise stressed tissues to generate appropriate 
responses. This is the basic concept of immunology. (Murphy et al. 2008) In rough 
generalization, the innate mechanism operates mainly through the acts of epithelial 
cells, monocytes, macrophages, natural killer (NK) and dendritic cells, while the 
adaptive mechanism operates through B and T lymphocytes. Granulocytes 
(polymorhonuclear leukocytes) in the innate system include neutrophils, eosinophils 
and basophils. Before differentiation and specialization to certain funtions, all white 
and red blood cells originate from pluripotent hematopoetic stem cells in the bone 
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marrow, and some of these cells differentiate and mature there, as well. The 
progenitor cells migrate from the bone marrow to the pheripheral tissues and either 
reside within the tissue, circulate in the blood or circulate in the lymphatic system. 
The site of differentiation distinguishes B and T lymphocytes from each other 
(thymus and bone marrow, respectively) and their antigen-properties differentiate 
them from other leukocytes. (Murphy et al. 2008; Schroder and Tschopp 2010; 
Hawse and Morel 2014)  

In a textbook example, a pathogen may invade human body through e.g. leaking 
intestinal cell membrane. The recognition site on a pathogen is bound to the 
germline-encoded pattern recognition receptors, such as Toll-like, scavenger, or 
mannose receptors on the innate immune cells. The binding with pathogen initiates 
cytokine and chemokine secretion (e.g. IL-1, IL-6, IL-8, IL-12, TNF-α), which in 
turn activates more inflammatory pathways and cell-to-cell signaling cascades. As a 
result, more immune cells such as neutrophils and monocytes arrive to the infected 
tissue, and continue pathogen destruction through lysosomal degradation and 
secretion of reactive oxygen and nitrogen compounds. Monocytes, macrophages 
(mature form of monocytes), dendritic cells and neutrophils may eliminate the 
pathogen (or other depris in a steril inflammation where the inflammation exists 
without influence of pathogens) via phagocytosis. Activated macrophages and 
dendritic cells produce and secrete chemokines and cytokines in order to invite 
leukocytes including eosinophils and lymphocytes. Specifically, virus invaders cause 
infected cells to produce interferones, which are needed to prevent viral replication. 
Furthermore, the interferone secretion recruits NK cells to destroy the infected cells.  
(Murphy et al. 2008; Schroder and Tschopp 2010; Hawse and Morel 2014)  

Antigen-presenting cells such as dendritic cells and macrophages connect the 
innate and adaptive immune systems. In the adaptive immune system, memory B 
and T cells in the blood and lymph node assure long-term immunity. Antigen-
presenting cells may activate naïve T cells by presenting novel antigen in association 
with major histocompatibility complex (MHC). Peptide-MHC molecule is 
recognized by T cell receptor (TCR), which is located on the surface of CD4+ or 
CD8+ T cells. (Li et al. 2013) Activated CD4+ (helper) T cells begin secretion of IL-
2, IL-4 and IFN-γ. Next, the T cells differentiate to Th subpopulations that 
regognize the same cytokine than previously.  The helper-Th populations recruit 
cytotoxic CD8+ T cells, modulate antibody production of B cells, activate 
macrophages and prevent autoimmunity. (Geginat et al. 2013; Hawse and Morel 
2014; Tu and Rao 2016)  

As a whole, the number of circulating T cells appears to be constant over time in 
an individual. The main categories of the circulating T cells differ functionally and 
phenotypically from each other, and are termed as central memory T cells and 
effector memory T cells. Majority of the central memory T cells are enriched with 
helper CD4+ T cells while the latter category comprises mostly cytotoxic CD8+ T 
cells. (Geginat et al. 2013; Hawse and Morel 2014; Tu and Rao 2016)  
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2.3.1 Aging of the immune system 

The innate and adaptive immune systems are altered with age. In practice, this 
change is demonstrated by weakened responsiveness to vaccination in the elderly 
(Goodwin et al. 2006). The vaccination challenge is linked to the progressive decline 
in the immune system functioning, which is also termed as immunosenescence (Pawelec 
2017). Immune cell distribution-related data from other tissues than blood is sparse 
and thus, here, the focus is set to blood.  

In aging, adaptive immunity is weakened while higher-level innate immune 
functions are preserved or increased. In the innate immunity, the inflammatory 
background and the number of NK cells are increased, while functions of 
macrophages, the antigen presentation to T cells and delivery to the lymph node are 
decayed. The adaptive immunity is modified with age, as well. Thymic function 
declines, number of naïve T cells on the periphery is reduced and primary T cell 
responses to foreign, novel antigens are decreased. Effector memory T cells becomes 
more abundant and the T cell repertoire in general is restricted. (Weiskopf et al. 2009; 
Pawelec et al. 2010; Franceschi and Campisi 2014; Tu and Rao 2016) The most well 
known change in blood cell composition seen in the elderly is the decreased 
percentage of naïve CD8+ T cells in the blood (Pawelec 2017). Specifically, 
extensively differentiated CD28- T cells become more abundant. CD28 is a co-
stimulatory molecule, which is essential for T cell activation. Loss of CD28 is 
associated with infection vulnerability, and the lowered responsiveness to 
vaccination is linked to CD28 loss. In addition to T cells, the aging-associated 
changes include shifts in B cell proportions and the B cell functions are altered. 
(Weiskopf et al. 2009; Pawelec et al. 2010; Franceschi and Campisi 2014; Tu and Rao 
2016)  

Aging-associated changes in intercellular communication is one of the integrative 
aging hallmarks (Figure 1) (Lopez-Otin et al. 2013). Failed intercellular 
communication is implicated also in nonresolving low-grade inflammation state 
termed inflammaging. This condition is a phenotype, which occurs without microbial 
influence. At the beginning in 2000s, Franceschi et al. (2000) suggested that 
inflammaging might predispose to aging-associated diseases and adverse health 
conditions, and this has now been widely accepted. Increased serum cytokine (e.g. 
IL-6, TNF-α or CRP) levels that are usually at low level are the typical characteristics 
of inflammaging state (Krabbe et al. 2004; Singh and Newman 2011). Studies have 
linked inflammaging with increased mortality and pathologies such as Alzheimer's 
disease, atherosclerosis, heart disease, type II diabetes and cancer. (Franceschi and 
Campisi 2014; Xia et al. 2016).  

The factors that are causing inflammaging are still unknown due to lack of solid 
experimental evidence. However, extensive research is pointing to various 
mechanisms that might underlie inflammaging. Stress, oxidation-inflammation, 
cytokines, DNA damage, autophagy and stem cell aging are the main contributors in 
these theoretical models (Xia et al. 2016). Specifically, charasteristics of 
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inflammaging show over-expression of genes related to inflammation and immune 
responses (de Magalhaes et al. 2009; Swindell 2009), and NF-κB activation (Helenius 
et al. 1996; Adler et al. 2007; Salminen et al. 2008). In addition to NF-κB, which 
controls inflammatory responses as a master regulator, the proposed mechanisms of 
inflammaging include Ras, Notch, TGF-β, RIG-I, mTOR, and sirtuin signalling 
pathways (Xia et al. 2016). 

2.3.2 Cytomegalovirus infection 

Latent persistent human cytomegalovirus (CMV) infection appears to be 
contributing to the aging of the immune system. The cytomegalovirus is a DNA-
based β-herpervirus that has co-evolved alongside human evolution. CMV infects 
most humans at some stage of life, and in healthy individuals, the CMV infection is 
mainly subclinical. Primary CMV infection evokes both innate and adaptive immune 
responses, and CMV has developed survival mechanisms in which MHC functioning 
is restricted. This enables the virus to escape from antigen presentation. During 
primary infection, the main response to CMV is formed by CD4+ T cells which 
secrete Th1 cytokines (e.g. IFN-γ and TNF-α). B cells are also recruited during the 
response reaction. After days of infection, CD8+ T cells populate the blood, and are 
responsible for protecting the host from CMV re-infection and re-activation. (Tu 
and Rao 2016) 

CMV has been linked to aging-related pathogenesis in epidemiological studies. 
The quantity of CMV titer is associated with frailty and functional impairment of the 
body (Wang et al. 2010; Moro-Garcia et al. 2012), as well as all-cause and 
cardiovascular mortality (Strandberg et al. 2009; Roberts et al. 2010; Gkrania-Klotsas 
et al. 2013). In the long-term, even in healthy humans, CMV infection seem to drive 
notable changes in the T cell repertoire and functionality, and the absolute anti-CMV 
titer is shown to correlate with the T cell proportions (Wertheimer et al. 2014). In 
CMV+ humans, the proportion of CMV-specific memory CD8+ T cells in the 
peripheral blood increases during aging in such way that, in the elderly, half of the 
memory CD8+ T cells appear to be CMV-specific. CD4+ T cells are also shown to 
be affected, but to a lesser extent, as ~30% of those cells show CMV-responsiveness 
at the old ages. This major change in the T cell proportions has been considered to 
be the driving force in immunosenescence. Frequently, the CMV-specific T cells 
become terminally differentiated to CD45RA+CD57+CD28-CCR7- cells, and this 
transformation is a characteristic phenotype for aging-related senescent T cells. 
(Sylwester et al. 2005; Pourgheysari et al. 2007; Pawelec et al. 2012; Alonso Arias et 
al. 2013; Tu and Rao 2016) 
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2.4 DNA Methylation 

The role of DNA methylation in developmental biology came to the fore in the late 
1960s and 1970s. During this era, it was proposed that gene activities are switched 
on and off, and the inheritability of this gene activity is based on the enzymatic 
methylation of cytosine in the DNA sequence. (Holliday and Pugh 1975; Riggs 2002; 
Holliday 2006) Nowadays, these suggestions are supported by a wide variety of 
evidence, and many functions of this epigenetic mark have been unraveled in greater 
detail. DNA methylation is a mechanism which is capable of blocking transcription 
initiation, and is now associated with long-term gene expression silencing (such as X 
chromosome inactivation, imprinting and tissue-specific gene expression). Overall, 
DNA methylation has a critical role in cell differentiation and development. (P. A. 
Jones and Liang 2009; P. A. Jones 2012; B. C. Christensen et al. 2012; Spruijt and 
Vermeulen 2014; Rasmussen and Helin 2016; Elhamamsy 2016) 

In general, the genome-wide DNA methylation profile is stable, and DNA 
methylation profiles differ between cell types and tissues.  DNA methylation 
contributes to the overall genomic stability through centromeric, pericentromeric, 
subtelomeric and telomere length-controlling systems. There are approximately 28 
million CpG sites in the human genome, and 60-80% of those are methylated. In 
mammals and many other organisms, the DNA sequence contains high amounts of 
5-methylcytosines, i.e. methylated cytosines (5mCs), which are primarily located in 
the sequence CpG (Figure 3A). The notion CpG stands for 5'—C—phosphate—
G—3', where cytosine and guanine are separated by one phosphate. (Holliday 2006; 
P. A. Jones and Liang 2009; B. C. Christensen et al. 2012; P. A. Jones 2012; Smith 
and Meissner 2013; Spruijt and Vermeulen 2014; Zampieri et al. 2015; W. Xu et al. 
2016; Rasmussen and Helin 2016; Elhamamsy 2016) The observed occurrence of 
CpG sitesis is only ~25% of the expected frequence in mammalian genomes 
(Simmen 2008; Elhamamsy 2016). 5mC is prone to conversion to thymine 
spontaneously or enzymatically (Figure 4C), and it is suggested that a large 
proportion of the CpGs have been lost via mutations during evolution. However, 
the DNA sequence comprises CpG islands (CGIs), the CpG-rich DNA sequences 
with GC content >50% spanning ~500 – 1000 base pairs (Figure 3B). (P. A. Jones 
2012; Smith and Meissner 2013; Rasmussen and Helin 2016; Elhamamsy 2016)   

A large proportion of CGIs locate at gene promoters, and they are often 
hypomethylated (meaning that they are less methylated). In a textbook example of 
functional consequences, DNA methylation located in a gene promoter typically 
represses gene transcription (Figure 3B). An increase in methylation level is termed 
as hypermethylation. Most of the gene bodies are methylated and contain fewer CpG 
sites, but CGIs located to the gene bodies do exist. The gene bodies may contain 
repetitive sequences and transposable elements (such as Alu and LINE1), and 
methylation is considered as being the mechanism that silences these elements while 
enabling appropiate genes to be expressed (Figure 3B). (Holliday 2006; P. A. Jones 
and Liang 2009; B. C. Christensen et al. 2012; P. A. Jones 2012; Smith and Meissner 
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2013; Spruijt and Vermeulen 2014; Zampieri et al. 2015; W. Xu et al. 2016; 
Rasmussen and Helin 2016; Elhamamsy 2016) 

 
 
 

 

 

Figure 3.  Principles of DNA methylation. A) Methylated CpG site in DNA douple strand. B) 
Typical DNA methylation profile includes GC-rich regions termed CGIs (Mariuswalter 2016). 
Promoter-associated CGIs are usually unmethylated and promoter region is available for 
transcription initiation. Transposable elements are repressed by dense DNA methylation. Symbols: 
CH3 = methyl group, CGI = CpG island 
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Figure 4.  DNA methylation and demethylation pathways. A) A methyl group (CH3) is 
transferred from S-adenosylmethionine that is provided by one-carbon cycle. CH3 is bound 
covalently to cytosine in DNA stand. DNA methylation is a trans-methylation event; B) A simplified 
model summarizes the different principal functions of DNA methylation transferase enzyme 1 and 
3A/B (DNMT1 and DNMT3A/B, respectively) in DNA methylation (modified from Jones and Liang 
2009).  Typically, de novo methylation establishes new methylation marks to the DNA while 
maintenance methylation with DNMT1 takes place during cell replication. By maintenance 
methylation, hemimethylated sites in newly synthetized DNA douple strands are transformed to 
symmetrically methylated positions to match the situation in original template DNA; C) Suggested 
demethylation pathways and restorations to cytosine (modified from Kohli and Zhang 2013 and 
Elhamamsy 2016).  Details of these pathways are described in the main text. Symbols in Figure 
4B: black circle = methylated CpG site, grey circle = unmethylated CpG site, black line = original 
template DNA strand, dashed line = newly synthetized DNA strand; Symbols in Figure 4C: BER = 
base excision repair process, TET = ten-eleven translocation enzyme, TDG = thymine-DNA-
glycosylase, AID = activation-induced cytidine deaminase, APOBEC = apolipoprotein B mRNA 
editing enzyme, MBD4 = methyl-CpG binding protein domain 4, DNMT = DNA methylation 
transferase enzyme, 5mC = methylcytosine, 5hmC = 5-hydroxymethylcytosine, 5fC = 5-
formylcytocine, 5caC = 5-carboxylcytosine 

However, in spite of the extensive research, there are still many DNA 
methylation-related issues to be discovered. For instance, the role of DNA 
methylation at non-CGI regions and gene body methylation in alternative transcript 
splicing are unclear. The significance of other DNA methylation target regions such 
as C-X-G (where X is adenine, cytosine or thymine) are less studied. The dynamics 
between active demethylation and methylation pathways (shown in Figure 4) in gene 
expression regulation are unknown. The role of methylation in enhancer and 
insulator control remains to be solved. (P. A. Jones 2012) Moreover, the role of 
demethylation pathways and their intermediate products (e.g. 5-
hydroxymethylcytosine) have questions that remain to be answered (G. Xu and 
Wong 2015). 

In mammals, dynamic, highly organized methylation is crucial for normal 
ontogenesis. Genome-wide methylation profiles are reprogrammed, i.e. the 
methylation marks are erased and re-established during developmental stages 
(fertilization, implantation, blastocyst), and the global DNA methylation level 
fluctuates greatly (Schuermann et al. 2016). Another epigenetic reprogramming stage 
occurs in the development of germ cells. Nevertheless, some of the DNA 
methylation site-specific patterns are maintained completely or partially during 
epigenetic reprogramming in early embryogenesis and gametogenesis. Repetitive 
elements often maintain their methylation profiles untouched. A fraction of genes in 
the genome are imprinted, and these genes are reset in a parent-of-origin-specific 
manner at the later stage of epigenetic reprogramming, namely at the stage of 
primordial germ cell development. Therefore, imprinting enables monoallelic gene 
expression, in which only one of the alleles inherited from the paternal or maternal 
side are expressed. Imprinting is established by a complex process involving DNA 
methylation, histone modifications and non-coding RNAs. Many of the imprinted 
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genes are evolutionarily conserved and clustered together in the genome. Moreover, 
imprinting is tissue-specific. The mechanism controlling imprinted genes is unique, 
and depends on imprinting control regions, which are targeted to specific genes. In 
a textbook example, a control region is maternally methylated and paternally 
unmethylated. In this manner, the target gene expression is maternally silenced, but 
paternally expressed. (Sharma 2013; Martos et al. 2015; G. Xu and Wong 2015; 
Elhamamsy 2017)  

2.4.1 Maintenance and de novo methylation 

The methylation pattern on DNA may be changed via de novo methylation or via 
demethylation; demethylation may occur either passively or actively with the help of 
enzymes, while addition of a methyl group (CH3) is always an active process (Riggs 
2002; Xu and Wong 2015; Rasmussen and Helin 2016). 5-methylcytosines (5mCs) 
in CpG sites are generated symmetrically to both strands in the double stranded 
DNA by the DNA methylation machinery. DNA methyltransferases, DNMT1 and 
de novo DNMT3A/B are responsible for adding methyl groups to cytosine bases, 
such as presented in Figures 4A and 4B. Typically, de novo methylation establishes 
new methylation marks to the DNA while maintenance methylation takes place 
during cell replication (Figure 4B). DNMT3A/B shows equal affinity for 
hemimethylated and unmethylated DNA. In a hemimethylated CpG site, only the 
other cytosine in opposite strands is methylated. In other words, hemimethylated 
site is partially methylated position in the DNA douple strand, where only opposite 
strand is lacking methyl group in that particular methylation site (such as shown in 
Figure 4B). The DNMT3A/B enzymes are expressed the most at the embryonic 
stage and downregulated but not shut down in somatic cells. Blocking DNMT3A/B 
in embryonic or neonatal mice is lethal. (P. A. Jones and Liang 2009; Smith and 
Meissner 2013)  

Most of the genome-wide methylation profile is maintained during mitosis by the 
maintaining methylation machinery, a large complex of molecules including 
chromatin-associated enzymes. DNMT1 is a key player in the machinery, and it is 
expressed the most in the S phase of mitosis when the methylation maintenance 
event takes place. DNMT1 has higher affinity for hemimethylated site than for 
symmetrically un-methylated site in the DNA sequence. In the process of 
methylation maintenance, DNMT1 interacts directly with assisting molecules, 
proliferating cell nuclear antigen (PCNA) and Ubiquitin-like, containing plant 
homeodomain and RING finger domains-containing protein 1 (UHRF1). UHRF1 
binds to target site located in original DNA strand, recruits the DNMT1, and guides 
the enzyme to operate on newly synthetized strand; DNMT1 adds the missing 
methyl group from the methyl group donor, S-adenosylmethionine (SAM) to the 
new strand in order to generate an identical copy of methylation to the new strand 
that mimics the old strand. (Lu 2000; P. A. Jones and Liang 2009) The importance 
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of this DNMT1/PCNA/UHRF1-complex was underlined by a recent study where 
it was shown in several (non-tumorigenic) cell lines that global hypomethylation, 
which is considered as hallmark of tumorigenesis is induced by disturbance of 
DNMT1/PCNA/UHRF1 (Pacaud et al. 2014).  

Figure 4B illustrates straightforward models of introducing and maintaining 
DNA methylation patterns, but these processes are much more complex, and many 
details are unsolved. Functions of DNMT1 and DNMT3 enzymes appear to overlap 
to some extent. For example, it is suggested that DNMT3A/B enzymes also 
participate in maintenance methylation during mitosis. DNMT1 is the main 
maintenance methylator for most of the CpG sites, but DNMT3 may also repair 
mistakenly un-methylated sites, which are located inside nucleosomes (P. A. Jones 
and Liang 2009). In this suggestion, DNMT3 is bound stably to chromatin in 
nucleosomes which contain methylation sites; the enzyme behaves in similar way as 
other well-known chromatin-modifying enzymes, such as the enhancer of zeste 
homolog 2 (EZH2) (P. A. Jones and Liang 2009). EZH2 is a methyltranferase that 
is localized close to the methylation site and catalyzes histone H3 lysine 27 
methylation (R. Cao et al. 2002).  

2.4.2 Demethylation 

Demethylation pathways (Figure 4C) have the potential to alter systematically DNA 
methylation profiles as a response to environmental stimuli. During embryogenesis, 
active and ordered demethylation is essential. Currently, detailed knowledge of 
demethylation pathways is lacking and the research is actively ongoing. However, 
many models have already been suggested. The enzymes which are associated with 
the active demethylation pathways are called the ten-eleven translocation (TET) 
enzymes, and were discovered fairly recently (Tahiliani et al. 2009; Kohli and Zhang 
2013; Rasmussen and Helin 2016). Soon after, it was shown that oxidation of 5-
methylcytosine (5mC) with 2-oxoglutarate, Fe (II) and catalyzation by TETs 
produces 5-hydroxymethylcytosine (5hmC), 5-formylcytocine (5fC) and 5-
carboxylcytosine (5caC) (He et al. 2011; Ito et al. 2011; Schuermann et al. 2016). 
These cytosine modifications base pair in a normal way with guanine. After 5mCs, 
5hmCs are the most common cytosine modifications found in the human genome. 
TET enzymes have a fast rate constant to produce 5hmCs while their catalytic 
activity is much lower to produce 5fCs and 5CaCs. In addition to TETs, the thymine-
DNA-glycosylase (TDG) and base-extension-repair (BER) enzyme are important 
catalyzation factors in suggested model(s) of active demethylation pathway(s) (Figure 
4C). TDG is able to recognize the more oxidized forms of cytosine, 5fCs and 5CaCs. 
The glycosylase brakes their N-glycosidic bonds and releases the base with an abasic 
site. Following this, the BER process repairs the cytosine to its unmodified state, 
which may be methylated to 5mC.  
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At present, characterization of binding partner proteins for the oxidized cytosines 
are explored. Even though 5hmC is shown to be enriched in post-mitotic brain 
tissue, the independent roles of 5hmCs, 5fCs and 5CaCs as epigenetic regulators are 
yet to be fully determined and confirmed. (Kohli and Zhang 2013; Rasmussen and 
Helin 2016; Schuermann et al. 2016) 

Another suggested active deamination pathway is based on the deamination of 5-
methylcytosines and 5-hydroxymethylcytosines, which are transformed to thymine 
and 5-hydroxymethylurasils, respectively (Figure 4C). The process is catalyzed by 
activation-induced deaminase (AID) and apolipoprotein B mRNA editing enzyme 
(APOBEC). At the end of this pathway, the abasic site is formed when deamination-
generated base pair mismatch is identified and cleaved by TDG and methyl-CpG 
binding protein domain 4 (MBD4). Finally, as in TET-oriented demethylation 
pathway, BER (base excision repair) process repairs abasic sites and restores them 
to cytosines. (Elhamamsy 2016) 

The passive demethylation results from a spontaneous and unintended failure of 
DNA methylation maintaining machinery, which is responsible for transforming 
hemimethylation to symmetrically methylated cytosines. An additional suggested 
model for DNA demethylation is a partially active pathway where TET is first 
generating 5hmCs, which are then passively diluted away during following 
replications (Figure 4C). (Rasmussen and Helin 2016)  

2.4.3 DNA methylation and environmental factors 

Environmental factors such as diet, smoking, toxins and stressful environment shape 
the DNA methylome (Zampieri et al. 2015). The causal connection between 
environment, epigenome and phenotypic variation during development has been 
shown in a functional study in the Agouti (Avy) mouse model. The mice coat color 
ranges between yellow and brown because of hypomethylation of the A locus in 
Agouti gene, where methylation-sensitive intracisternal-A particle retrotransposon 
has been inserted. Methylation level change from 70% to 20% shifts the coat color 
from yellow to brown. In the study, it was shown that the environment during the 
embryogenesis determines the coat color rather than uterine environment. The 
oocyte was transferred to a surrogate mother with opposite epigenetic phenotype, 
yet, despite this, the coat color depended on the phenotype and the epigenome of 
the biological mother. (Morgan et al. 1999; Leenen et al. 2016) 

Regarding humans, one-carbon metabolism is an example of connections 
between diet and epigenetics. Dietary folate, vitamins B2, B6 and B12, choline and 
methionine act as methyl group donors and/or co-enzymes in the one-carbon 
metabolism (Figure 5), and therefore changes in their intake may alter epigenetic 
modifications. SAM is an intermediate in the one-carbon cycle and universal methyl 
group (CH3) donor for DNA, RNA, and many other biomolecules. Aging-associated 
deficiency of methyl group donors (folate and vitamin B12) in the one-carbon cycle 
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(Guéant 2016) is a phenomenon that highlights the relevance of the one-carbon 
metabolism regarding research focusing on aging-associated DNA methylation 
changes. The lack of methyl group donors leads to the accumulation of 
homocysteine and the decreased synthesis of methionine and S-adenosylmethionine 
(SAM). (P. A. Jones and Liang 2012; B. C. Christensen et al. 2012; Bacalini et al. 
2014; W. Xu et al. 2016)  

SAM provides the CH3 to be added to the 5-position of the cytosine ring on 
histones and DNA in the trans-methylation event (Figure 4A). The production of 
SAM is localized to the cytosol in every cell, but the liver has an important role in 
SAM synthesis and degradation. A significant proportion of daily-consumed 
methionine is converted to SAM in the liver in a reaction, which consumes ATP and 
is catalyzed by methionine adenosyltransferase (Figure 5). The synthetized SAM is 
constantly restored to S-adenosylhomocysteine (SAH) through the trans-
methylation where a biomolecule (such as DNA) receives the CH3. SAH may be a 
competitive inhibitor of trans-methylation reaction, and thus the increased quantity 
of SAH or decreased quantity of SAM (seen in SAM-SAH ratio) may disturb trans-
methylation reactions. Consequently, it is important to remove excess SAH through 
a reaction that converts SAH to homocysteine and adenosine. In addition, SAM acts 
in other crucial biochemical pathways, in trans-sulfuration and in aminopropylation, 
and thus the one-carbon cycle is highly essential for numerous biochemical reactions 
in the cell. (P. A. Jones and Liang 2012; B. C. Christensen et al. 2012; Bacalini et al. 
2014; W. Xu et al. 2016) For instance, homocysteine form the one-carbon cycle is a 
biomarker of the cardiovascular system, and functions in lipid metabolism (E. 
Crimmins et al. 2008). 

  Folate is an especially important substrate in the one-carbon cycle as shown in 
Figure 5. Humans are unable to synthetize it and it has to be supplied in a nutrient 
or in the form of synthetic folic acid. In a well-known example, adequate maternal 
folate supply decreases risk for neural tube abnormalities, and thus it is essential for 
fetal development. (W. Xu et al. 2016) Human studies imply that B vitamin 
absorption is influenced by genetics and a diet poor in folate is associated with global 
DNA hypomethylation (Axume et al. 2007; Bacalini et al. 2014). B12 vitamin 
deficiency is linked to DNA damage, DNA methylation changes, reduced quantity 
of SAM, and increased quantity of homocysteine (Bacalini et al. 2014). Ethanol is an 
example of a substance with a negative influence on the one-carbon cycle. It disturbs 
the absorption of folate in the intestine, and the release of folate from the liver to 
receiving tissues. Ethanol interferes with the one-carbon metabolism in multiple 
ways: it blocks the reaction where homocysteine is converted to methionine, the 
reaction where methionine is converted to SAM, and the methylation pathways. (B. 
C. Christensen et al. 2012; Varela-Rey et al. 2013)  
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Figure 5.  One-carbon metabolism (cycle) provides universal methyl group donor, S-adenosylmethionine (SAM) for cellular epigenetic modifications 
(methylation of DNA and histones) (modified from Xu et al. 2016). In the cycle, vitamin B (2, 6, and 12), choline, and methionine (in capital letters) may 
originate from dietary sources. Folate (in capital letters) originates only from diet. The process of SAM production involves sequence of reactions. First, 
folate is transformed to dihydrofolate, and further to tetrahydrofolate (THF), which enters the one-carbon cycle. This is followed by reaction where THF 
is converted to 5,10-methylene tetrahydrofolate with vitamin B6 as a cofactor. Next process where 5,10-methylene tetrahydrofolate is transformed to 5-
methyl tetrahydrofolate depents on vitamin B2. In de novo methionine biosynthesis, vitamin B12-dependent methionine synthase catalyses conversion 
of 5-methyltetrahydrofolate and homocysteine to tetrahydrofolate and methionine. Finally, methyl group is transferred from methionine to SAM. Transfer 
of CH3 from SAM to biomolecules (i.e. DNA, histones or others) is a trans-methylation event. S-adenosylhomocysteine (SAH) is the product released 
after methyl group transfer. SAH may be used in homocysteine production. Then, the one-carbon circle has reached full circle because homocysteine 
may be used again in the methionine synthesis. Alternatively, dietary choline, which is converted to betaine may be used as a source of methionine (and 
SAM) production.  (Xu et al. 2016)
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The SAM/SAH ratio is influenced by multiple environmental factors in addition 
to nutritional substances. Arsenic from soil, water, and food may enter the cell and 
participate methylation reaction in which the arsenite methyltransferase enzyme 
catalyzes production of methylated arsenic compounds. This reaction consumes 
SAM, and it is therefore a competitive reaction for DNA methylation and this 
process may account for DNA hypomethylation. Tobacco smoking also alters DNA 
methylation profiles, and arsenic can be found in cigarettes. (Zampieri et al. 2015) In 
addition to arsenic, other compounds such as bismuth, selenium, a polyphenol from 
green tea (epigallocatechin gallate, EGCG), caffeic acid and chlorogenic acid may 
participate in enzymatic methylation and consume the methyl group donor, SAM. 
Moreover, expression or activity of DNMTs may be altered. Competitive inhibition 
of the enzyme activity for cytosine has been observed in the presense of EGCG, 
soy-bean isoflavon genistein and curcumin. Moreover, the gene-expression levels of 
DNMTs are shown to be influenced by the same nutritional and environmental 
factors (e.g. arsenic, alcohol, curcumin). (M. Z. Fang et al. 2003; M. Z. Fang et al. 
2005; M. Fang et al. 2007; Z. Liu et al. 2009; Xie et al. 2014; Zampieri et al. 2015) 

Smoking-associated, CpG site-specific DNA methylation changes have been 
observed in human cohorts. For instance, smoking induces DNA hypomethylation 
at a specific CpG site (cg03636183) located in gene F2RL3. This change appear to 
be reversible because DNA methylation levels in cg03636183 were recovered close 
to the level of never-smokers (>20 years) after smoking had been ceased. (Breitling 
et al. 2011; Zhang et al. 2014)  Of the large number of EWASs focusing on smoking-
associated effects in the blood, in addition to F2RL3, DNA methylation changes in 
CpG sites located in genes AHRR (cg05575921), GPR15 (cg19859270) as well as 
intergenic regions 2q37.1 and 6p21.33 have been reported frequently (Gao et al. 
2015). Furthermore, a very recent case-control study with strong evidence through 
validation and replication cohorts by Baglietto et al. (2017) showed that smoking-
associated changes in DNA methylation are also associated with lung cancer risk 
(Baglietto et al. 2017). In another study, van Dongen et al. (2016) coupled trajectories 
of aging-associated methylation level changes with own smoking in a sample 
comprising monozygotic twins (van Dongen et al. 2016). Nonetheless, despite this, 
the full picture of smoking-related methylomic changes is much more complicated 
because another very recent study demonstrated that smoking has distinct effects on 
DNA methylomes and transcriptomes of purified leukocyte subtypes. For example, 
methylation levels in genes AHRR (cg05575921), ALPPL2 (cg21566642), GFI1 
(cg09935388), IER3 (cg06126421) and F2RL3 (cg03636183) all showed different 
smoking-associated profiles in granulocytes, monocytes and B cells. (Su et al. 2016) 

Some human DNA methylomic association studies have highlighted that the 
epigenetic profile adapts environmental signals during the developmental stages. 
Prenatal exposure to large changes in environmental circumstances has been linked 
to the future health of the offspring. For instance, the effect of Dutch famine in 
1944-45 during the first trimester of pregnancy has been associated with offspring 
obesity in adulthood. Moreover, when compared to their same-sex sibling, the 



 

54 

offspring showed hypermethylation in insulin-like growth factor 2 receptor gene 
from the IIS network. (Heijmans et al. 2008) In utero exposure to smoking 
(Chatterton et al. 2017) or arsenic (Kaushal et al. 2017) has been linked to changes 
in fetal DNA methylomes in human studies, and these two substances are linked to 
altered brain development and health conditions in the after-birth life, respectively. 
In another study with mothers exposed to a heavy winter storm in Quebec in 1998, 
prenatal maternal stress was associated with adiposity as well as changed methylomic 
profiles of the children born (Cao-Lei et al. 2015). The perceived maternal stress 
during pregnancy may also contribute to immune function development (Veru et al. 
2014). A recent report from the study of the winter storm in Quebec has provided 
signs that maternal stress which is mediated through changed DNA methylation, 
manifests in cytokine production in accordance with T helper cell type 2 promotion 
in the children (Cao-Lei et al. 2016).  

2.4.4 DNA methylome changes in diseases 

It has been expected that epigenetics would easily provide the missing mechanistic 
link between environment and human pathologies, but this aim has been only 
partially reached, at least regarding DNA methylation. However, shown connections 
between epigenetics and diseases do exist (Figure 2). In many cases, such as in some 
cancers, the role of DNA methylation in the development of pathologies through a 
straightforward on-off switch system has been demonstrated. Large changes in DNA 
methylation levels in oncogenes belong to this paradigm. Disease associations 
exhibiting lower methylation level changes (ranging between 1% and 10%) in DNA 
methylation are still a grey area. Such diseases or health conditions are often complex 
disorders (hypertension, type 2 diabetes, coronary heart diseases, and cardiovascular 
disorders). (P. A. Jones 2012; Leenen et al. 2016) 

2.4.4.1 Cancer  

Methylation changes in aging and progression of cancer share some characteristics; 
in both cases, promoter-specific CpG dinucleotides are often hypermethylated 
(Ahuja and Issa 2000; Zampieri et al. 2015). Cancer development follows separate 
crossing phases: the cells become precancerous, start to grow without control, and 
ultimately form a malignant tumor. Strong evidence suggests that alterations in 
methylation of CGIs located in tumor-suppressing genes (e.g. p16INK4a, PTEN, 
GSTP1, TP53, BRCA1, p14, p16, among many others) contribute to the development 
of various cancers. Genes VIM, SEPT9, SHOX2, GST1, APC, and RASSF1A are 
considered to be the principal diagnostic epigenetic cancer biomarkers. Their 
methylation levels may differ more than 60% in the on/off-switch manner between 
healthy and malignant situations. (Juo et al. 2014; Leenen et al. 2016; Elhamamsy 
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2016) CpG island methylator phenotype (CIMP) is a tool that is used in prognosis 
and tumor classifications. It is a CGI-methylation profile, which utilizes methylation 
statuses from groups of genes, and the CIMP statuses are classified as positive and 
negative or high, low and zero. The specific pool of  genes in CIMP classification 
varies. According to a review by Juo et al. 2014 genes MINT1, MINT2, MINT31, 
CKKN2A(p16), hMLH1 or CACNA1G, IGF2, NEUROG1, RUNX3, SOCS1 have 
been most often employed by colorectal cancer prognosis. (Juo et al. 2014) The 
prognostic power of cancer-specific CIMP has been demonstrated, for instance, in 
meta-analyses with colorectal cancer (Juo et al. 2014) and neuroblastoma (Asada et 
al. 2013) patients. 

 

2.4.4.2 Imprinting disorders 

Many severe pathologies such as Transient neonatal diabetes 1 or Silver–Russell, 
Beckwith–Wiedemann and Prader–Willi Syndromes have been associated with 
imprinting faults in single or multiple loci in the human genome. Causes of these 
disorders include deletions, mutations, uniparental disomy, and epimutations. 
(Elhamamsy 2017)  

Nevertheless, altered imprinting in some genes, such as H19 and IGF2, has been 
observed in healthy newborns, and thus this modification appears to also exist in 
non-pathologic phenotypes. In other words, altered imprinting may result a healthy 
phenotype with minor effects in health condition. (Elhamamsy 2017)  

2.4.4.3 Brain disorders and DNA methylation 

During the human lifespan, multiple sensitivity periods occur, when the brain 
plasticity is high, and is the most capable of developing various functions, such as 
language and behavior. Long-term memory requires complex synapse-to-nuclear 
signal transduction cascades to be initiated in such a steady manner that it leads to 
controlled and firm changes in the transcriptome. Epigenetic regulation has been 
shown to contribute to these processes in the brain. The gene BDNF contributes to 
neurodevelopment, neuroplasticity, the onset of psychiatric disorders, and suicidal 
behavior. The extensive research with BDNF using animal models for early-life 
adversities has shown that long-term memory formation is associated with locus-
specific bidirectional DNA methylation changes. (Leenen et al. 2016) In stressed 
rodents, BDNF promoter sites were hypermethylated (methylation change 10-15 
percentages) when compared to controls. This change was accompanied by 
downregulated gene expression. (Roth et al. 2009; Leenen et al. 2016) Regarding 
previous examples, analogous changes in BDNF methylation profile have been 
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shown in human post-mortem brain samples from adults who have committed 
suicide. (Keller et al. 2010; Leenen et al. 2016) 

As DNA methylation is in a central role of nervous system organogenesis, 
aberrant methylation is suggested to be a significant contributor to 
neurodegenerative disorders. However, the evidence from many such disorders is 
limited. (H. Lu et al. 2013; Heyward and Sweatt 2015; Leenen et al. 2016; Elhamamsy 
2016) In Alzheimer’s disease, global DNA hypomethylation and CpG site-specific 
methylation changes on certain genes (MAPT, APP, GSK3B, FKBP5, CRTC1) have 
been reported (Blair et al. 2013; H. Lu et al. 2013; Mendioroz et al. 2016; Elhamamsy 
2016). In neurons, changes in levels of DNMTs and 5mC quantities in the 
mitochondrial DNA have been associated with amyotrophic lateral sclerosis 
(Iacobazzi et al. 2013). Changes in DNA methylation and DNMT levels have also 
been linked to other diseases (such as Parkinson’s and Huntington’s), in which 
neurons are also progressively lost through endogenous apoptotic pathways 
(Elhamamsy 2016).  

2.4.4.4 Environment, DNA methylation and disorders 

Environmental factors including parental diet, maternal mental state and 
experienced early-life stress/adversity and early-life diet have been connected to 
DNA methylation changes accompanied by various complex disorders or 
pathologies in adulthood (obesity, hypertension, type 2 diabetes, coronary heart 
diseases, and cardiovascular disorders) (Leenen et al. 2016). The Dutch famine case 
is particularly indicative of such connections (Heijmans et al. 2008; Roseboom et al. 
2011). As reviewed by Leenen et al. (2016), in general, in EWASs with focus on 
complex disorders, the observed DNA methylation changes between cases and 
controls has typically been low. The magnitude of methylation level change (Δ-
change) has ranged from one to ten percentages. In the Dutch famine study, those 
individuals who had exposed to malnutrition in utero, showed a 5.0 and 1.6 percentage 
decrease in methylation levels in genes IGF2 and INSIGF, respectively, in later 
adulthood. A 1.1-2.4 percentage increase in DNA methylation levels was observed 
in IL10, ABCA1, GNASAS and LEP. The individuals were more obese, and more 
often had impaired glucose tolerance, hypertension and a higher risk rate for 
coronary heart disease.  (Heijmans et al. 2008; Tobi et al. 2009) Moreover, maternal 
severe depression during gestation has been associated with a higher tendency of 
these same negative health effects of the offspring at their adult age. The offspring 
of depressed mothers were also born with lower birth weights. The genes where 
aberrant methylation was observed in parallel with these defects were SLC6A4, 
MEG3, IGF2, PLAG1 and PEG10 (magnitude of methylation change 1-10 
percentages). (Y. Liu et al. 2012)  

The findings as in the Dutch famine study support the paradigm that organism 
adjusts its phenotype to the environment through epigenetic processes in utero and 
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during childhood. The biological plasticity in the early stages of lifespan has been 
considered as having the potential to guide lifelong health trajectories. Nevertheless, 
Leenen et al. (2016) concluded in the review that the studies have often only reported 
associations, not functionally shown mechanisms, and thus these findings should be 
re-evaluated with experiments showing the cascades of events connecting and 
environmental factor(s), the epigenome and the phenotype. It is still uncertain 
whether changes in the methylome are contributing to the mechanism, which 
increases the prevalence of disorders, or if these changes are simply an independent 
side effect. (Leenen et al. 2016) 

2.4.4.5 Genetic variation, DNA methylation and disorders 

The complex relationship between genetic variation and DNA methylation is 
another aspect regarding epigenetics in aging, health condition and disease 
progressions. Estimations in twin data by van Dongen et al. (2016) showed that 
genome-wide heritability of DNA methylation levels is on average 0.19, and 
common genetic variation captured by single nucleotide polymorphisms (SNPs) 
explain ~7% of the methylomic variation. The study also highlighted that there are 
regions (i.e. CpG sites) in the genome where aging-associated interindividual DNA 
methylation changes are explained more strongly by genetic differences. On the 
contrary, some methylation sites appear to be more prone to the environmental 
effects during aging. (van Dongen et al. 2016) 

Moreover, quantitive trait loci (QTL) mapping studies of trans-gene expression 
effects have shown the potential to unravel the downstream biological effects 
impacted by genetic variation (Westra et al. 2013). The effect of nearby or long-
distance genetic variation on methylation levels may be explored through either cis-
meQTLs or trans-meQTLs. It means that the genomic distance between a CpG site 
and a SNP in the exploration is set to certain limits such as distance < 250 kilo bases 
and distance > 5 mega bases, respectively. A very recent study using whole-genome 
DNA methylation (Illumina 450Beadchip) and RNA-seq data of 2101 individuals 
focused on known disease-associated genetic variants, i.e. 6111 manually selected 
SNPs associated with, among others, immune, cancer, cardiovascular, neurological 
and metabolic system-related diseases. The study demonstrated the overall 
complexity in gene expression regulation and the countless possibilities of functional 
connections in the regulatory networks. They reported a correlation between 
methylation and expression levels of 12809 CpG sites and 3842 transcripts, 
respectively, in cis. 70 percentages of these methylation sites exhibited inverse 
correlation with gene expression in accordance with textbook expectations. The 
remainder showed a positive correlation with the expression levels. (Bonder et al. 
2017) The phenomenon that DNA methylation has both an enhancing and 
repressing effect on gene expression has been acknowledged elsewhere (Maunakea 
et al. 2010; P. A. Jones 2012). Moreover, Bonder et al. (2017) observed 1907 of the 
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tested 6111 disease-associated SNPs having an effect on methylation levels in 10141 
methylation sites in trans. In addition, they included in the analysis ChIP-seq data-
based information of transcription binding to the CpG sites. While cis-meQTLs 
showed no enrichment, the trans-meQTLs exhibited functional enrichment around 
transcription binding sites, while they were infrequent in heterochromatin. The study 
highlighted that disease-associated genetic variants in trans may change transcription 
factor gene expression (e.g. NFKB1, CTCF, NKX2-3) and DNA methylation levels 
at their target sites. The downstream effects of the disease-associated variants 
showed uniform features: DNA hypomethylation is often coupled with enhanced 
transcriptional activator binding. (Bonder et al. 2017)  

2.4.5 Aging-associated changes in the DNA methylome 

During aging, DNA methylation levels change in a high number of CpG sites (K. 
Christensen et al. 2009; Boks et al. 2009; Bollati et al. 2009; B. C. Christensen et al. 
2009; Rakyan et al. 2010; Bocklandt et al. 2011; Bell et al. 2012; Garagnani et al. 2012; 
Heyn et al. 2012; Horvath et al. 2012; Hannum et al. 2013; Gentilini et al. 2013; 
Horvath 2013; Weidner et al. 2014; Florath et al. 2014; McClay et al. 2014; Marttila, 
Kananen, Hayrynen et al. 2015; Gervin et al. 2016; Slieker et al. 2016). In general, 
interindividual differences in genome-wide DNA methylation profiles increase with 
age (Zampieri et al. 2015), and genetic and environmental factors contribute to this 
change (van Dongen et al. 2016).  Specifically, unpredictable variability in genome-
wide DNA methylation patterns increases with age, but there are also individual CpG 
sites in which DNA methylation level decreases or increases with almost constant 
rate as a function of age. These two phenomena contribute to epigenetic drift and 
epigenetic clock, respectively. The epigenetic drift is demonstrated in changed cell-
type specific DNA methylation profiles that are transmitted forward to daughter 
cells. (Zampieri et al. 2015). 

With age, DNA methylation located in Alu and LINE-1 elements becomes more 
variable, and, in addition, those elements become globally hypomethylated. Failed 
methylation maintenance due to downregulated or inhibited DNMTs and passive 
demethylation due to, for example, insufficient SAM pools (Figure 4A and 5) may 
contribute to the epigenetic drift. (Zampieri et al. 2015; Jones et al. 2015; Bonder et 
al. 2017) Interestingly, very recent results from a large cross-sectional Europe-wide 
sample (named as MARK-AGE) have coupled changes in the active DNA 
demethylation pathway (Figure 4C) to aging. In the study, they showed that TET1, 
TET3 and TDG gene expression was downregulated by age in parallel with 5hmC 
and 5caC decrease and increase, respectively. (Valentini et al. 2016) These findings 
underline the loss of control in DNA methylation profile maintenance in aged 
humans.  

Regarding global methylation, individual sites and their genomic locations, the 
DNA methylation patterns change in different ways during the human lifespan. The 
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global level of DNA methylation is lower in neonatal blood when compared to the 
early years of life and the global methylation level increases most rapidly during the 
first year. These changes appear to concentrate on specific genomic locations (CGI 
shores and CGI shelves) and regulatory elements such as enhancers and non-CGI 
promoters. (M. J. Jones et al. 2015) In addition, longitudinal studies in buccal as well 
as in blood cells of monozygotic twins have shown that the initially similar DNA 
methylomes become highly divergent (i.e. inter-individual variability increases) 
during the first years (D. J. Martino et al. 2011; D. Martino et al. 2013). The in utero 
environment may be the contributor to the similarities in the epigenomes of the 
newborn twins while the post-natal life with fast development together with the 
effects by variable environmental factors drive the epigenetic divergence as time 
passes. In adults, methylomic deviation continues at single CpG site resolution but 
with a lower rate when compared to children. (M. J. Jones et al. 2015) Divergence of 
DNA methylomes during aging in adults is demonstrated by several monozygotic 
twin studies (Fraga et al. 2005; Talens et al. 2012; van Dongen et al. 2016). However, 
in spite of the continuous divergence, global methylation level is, on average, 
relatively stable during the middle stage of a lifespan (i.e. during adulthood). At older 
ages, variation in methylation patterns is at its highest, and at that time, global 
hypomethylation is an observable phenomenon. (M. J. Jones et al. 2015) Based on 
array technology experiments in aged human populations, aging-associated changes 
typically comprise site-specific hypermethylation at CGIs located at proximity of 
gene promoters and hypomethylation outside of CGIs (Zampieri et al. 2015). 

Until the most recent years, EWASs have been performed without cell subtype 
considerations even though the samples have been heterogenic, for example, whole-
blood samples. A recent study by Gervin et al. (2016) aimed to explore longitudinally 
intra-individual aging-associated DNA methylation changes that are independent 
from cell subtype variation. The study comprised 57 whole-blood samples of 2-, 10- 
and 16-year-old subjects and the methylomes were analyzed using reduced 
representation bisulfite sequencing. The final filtered dataset comprised 635 899 
CpG sites. They concluded that the aging-associated changes seen in methylomic 
landscape are largely mediated through variation in cell subtypes. In these young 
individuals, less than 10 percentages of the 346 aging-associated CpG sites located 
in 178 genes demonstrated an association with age directly, without the cell type 
effect as the mediator. (Gervin et al. 2016) In adults, similarly, the cell subtype effect 
and methylomic changes are shown to manifest in parallel with aging (Marttila et al. 
2015). 

The impact of genetic and environmental effectors on the aging-associated shifts 
in the methylomic landscape has been demonstrated in a study by van Dongen et al. 
(2016) using a population-based twin cohort (age range 17-79 years) and EWAS 
approach with microarray technology. As a detailed example from the study, the 
correlations of DNA methylation levels in 65 aging-associated CpG sites between 
smoking-discordant monozygotic twin pairs were clearly lower than the correlations 
between smoking-concordant twin pairs. In other words, environmental effectors 
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such as smoking appeared to accelerate aging-associated changes in these sites. van 
Dongen et al. (2016) reported that the heritability (h2) was, on average, 0.19 for the 
site-specific DNA methylation levels genome-wide, but the overall variation in h2 
values was considerable. Furthermore, detailed region-specific exploration in the 
study demonstrated that highly inheritable sites are enriched in CGIs and DNAse I 
hypersensitivity regions. In contrast, CpG sites where the variation in DNA 
methylation by age was most likely to be impacted by random, environmental 
contributors were lacking from those regions, and instead, they were enriched in 
CGI shores. These findings suggest that genetics has a more relevant role in 
explaining the aging-associated DNA methylation variability in promoter-associated 
CGI and DNAse I hypersensitivity regions. In contrast, environmental factors 
seemed to have a stronger impact on DNA methylation located in gene bodies, 
shores, shelves and non-CGI sites. (van Dongen et al. 2016) These results underline 
that, in addition to CGIs, up to two kilo bases distant CGI shores exhibit dynamically 
and functionally relevant DNA methylation changes. These characteristics of CGI 
shores during development and in different tissues have been shown in other studies, 
as well (Irizarry et al. 2009; Doi et al. 2009; Bockmühl et al. 2015).   

In order to accurately interpret reported results, it should be mentioned that the 
commonly used array technology (i.e. Illumina EPICBeadchip, 450Beadchip or 
27Beadchip) covers only small fraction of the ~27 million CpG sites in the human 
genome, and the technology was originally designed to focus more on promoter-
associated regions. (Zampieri et al. 2015) Analyses using full genome scanning 
methods (i.e. whole genome bisulphite-sequencing) with complete genomic 
coverage of the 27 million methylation sites have indicated that, during aging, 
hypomethylation appears to dominate over hypermethylation. For example, the 
latter events have been reported in only 13 percentages of the aging-associated 
methylation regions in a study by Heyn et al. (2012) in which methylomes in CD4+ 
T cells of a newborn and a centenarian were compared. The authors found in total, 
617 338 CpG sites as differentially methylated by age across the human genome. 
These sites were located in promoters (10%), exons (10%), introns (45%) and 
intergenic (34%) regions. Among the intergenic regions, methylation differences in 
repetitive sequences including LINE-1 and LINE-2, LTR retrotransposons and Alu 
elements were abundant. (Heyn et al. 2012)  

Another whole-epigenome-scanning study (McClay et al. 2014) covering the 27 
million autosomal CpG sites in blood samples of 700 individuals aged 25-92 years 
demonstrated some overlap but also some discrepancy with previously reported 
results before the year 2014. Analogously to Heyn et al. (2012) using technology with 
higher resolution, the authors concluded that hypomethylation was a more abundant 
aging-associated event than hypermethylation. In accordance to array technology-
based results, hypermethylated regions were enriched to CpG islands and shores. 
The study by McClay et al. (2014) showed that hypomethylated regions were 
enriched in genomic locations associated with polycomb/regulatory proteins (such 
as EZH2, CTCF, histone 2A member Z) or histone modifications (such as 
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H3K27ac, H3K4me1- H3K4me3, H3K9ac) (McClay et al. 2014). Elsewhere, 
quantities of H3K4me3 have been linked to the longevity of model animals (Han 
and Brunet 2012). Some of the top-ranking aging-associated methylation regions in 
the study by McClay et al. (2014) were annotated to previously aging-linked 
protocadherins, homeobox genes and MAPKs. In addition, the study was first to 
report aging-associated changes in regions annotated to ryanodine receptors (McClay 
et al. 2014). However, even though these two example studies provide high genomic 
coverage of CpG sites, the sample size was minimal (Heyn et al. 2012) or the cell 
type heterogeneity was considered only moderately (McClay et al. 2014). For 
instance, McClay et al. (2014) controlled all the unwanted variation, i.e. unmeasured 
confounding factors, in a robust manner, using a method where the variation is 
captured to the principal components produced by PCA and these components are 
regressed out. 

A study by Slieker et al. (2016) reported aging-associated variably methylated 
positions that are related to central aging mechanisms. They used Illumina 
450Beadchip analysis to characterize methylomic profiles of 3295 blood samples 
from participants at the ages of 18-88 years. Of these samples, RNA-seq gene 
expression profiles were also characterized from 2044 samples. In their hypothesis, 
methylation changes which correlate most closely with chronological age, are not the 
best descriptive of human biological age. Consequently, in addition to the EWAS, 
where differentially methylated positions by age are explored, the study focused on 
CpG sites where the divergence in DNA methylation levels increases gradually as a 
function of chronological age rather than correlates with it. The age-related variably 
methylated sites were considered to be a reflection of the health status in the elderly. 
The variability was determined as significant when it increased more than 5% in 10 
years, and it was calculated independent of major blood cell subtype distribution, 
and was validated in separate cohorts. (Slieker et al. 2016) As a result, the most 
variable sites appeared to represent a unique cluster of aging-associated regions. Of 
the ~400 000 CpG sites in the analysis, they reported 25% as differentially and 1.6% 
(i.e. 6366) as variably methylated sites during aging. The lists of variably methylated 
sites and the previously reported sites which correlate most closely with age (Rakyan 
et al. 2010; Heyn et al. 2012; Bell et al. 2012; Hannum et al. 2013; Horvath 2013; 
Florath et al. 2014; Z. Xu and Taylor 2014) were compared, and the lists overlapped 
with each other only slightly. The variably methylated sites by age were categorized 
based on their direction of methylation change: in relation to (1) increase or (2) 
decrease in average methylation change or (3) independent of average methylation 
level change by age. Variably (1) hypermethylated and (2) hypomethylated sites by 
age showed enrichment bias to CGIs and non-CGI-regions in a similar manner to 
that reported previously. Over 60% of the variably methylated CpG sites were 
enriched in regions associated with Polycomb Repressive Complex 2 (PRC2) binding 
sites and chromatin state markers (based on Epigenomics Roadmap) that are signals 
of repressed genome.  (Slieker et al. 2016) 
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To date, in spite of the great interest, only a small fraction of aging-associated 
methylation sites which correlate with chronological age have been shown to be 
associated with changes in gene expression (Hannum et al. 2013; Steegenga et al. 
2014; Reynolds et al. 2014; Marttila et al. 2015; Dozmorov 2015). Nevertheless, 
Dozmorov (2015) has reported that when comparing the functional roles of the 
aging-associated genes and methylation regions, they appear to share some 
associated-features such as repressing (H3K27me3) and activating (H3K4me1) 
histone marker combinations, as well as binding of PRC2 co-factors. PRC2 signature 
seem to be consistent in different cell types. Both aging-associated transcripts and 
methylation sites show enrichment in chromatin regions termed as bivalent 
promoters. (Dozmorov 2015) 

Correlations between gene expression and methylation levels have been analyzed 
often locally. That is to say, hypothetical associations are tested in the overlapping 
genomic region of a CpG site and the canonical transcript. However, Slieker et al. 
(2016) correlated DNA methylation levels in age-related variably methylated 
positions against expression levels of all expressed and coding genes determined by 
RNA-seq analysis. The results showed that the variably methylated sites associate 
with gene expression. Of the 6366 variably methylated positions, a significant 
correlation between levels of gene expression in cis (i.e. target CpG site and the gene 
within 500 base pairs) and methylation was observed in 1549 genes. The cis-genes 
showed enrichment in GO term categories of neuron differentiation and neuron 
development. Of the 6366 variable sites, 854 were associated with expression changes 
in trans-genes. These genes were located in a different chromosome or were more 
than five mega bases apart from the methylation site. A significant proportion of 
variably methylated sites correlated positively with the expression of trans-genes 
encoding components (such as EED, SUZ12, EZH2) for PRC2. The pathway 
analysis revealed that trans-genes which increased gene expression levels and were 
accompanied by changed methylation levels in variably methylated regions belong to 
fundamental aging-associated mechanisms, including DNA repair and apoptosis. In 
contrast, downregulated trans-genes mapped to intracellular metabolic pathways 
(such as pentose metabolism and regulation of CDC42 activity), and thus exhibited different 
phenomenon. (Slieker et al. 2016) 

2.4.5.1 Epigenetic clock 

Numerous DNA methylation sites appear to change their methylation levels as a 
function of gained years with the same direction of change and with highly constant 
rates. These DNA methylation sites demonstrate the paradigm of the epigenetic 
clock. Furthermore, certain CpG sites can be used in age predictor models, which 
accurately predict the chronological age of an individual. (Zampieri et al. 2015; M. J. 
Jones et al. 2015; Jylhava et al. 2017) In addition to estimation of chronological age, 
the epigenetic clock is considered to be descriptive of the biological age of an 
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individual. In this hypothesis, the difference between estimated epigenetic age and 
chronological age is the measure representing level of biological aging. Epigenetic 
age and other biological age predictors are hypothesized to provide more detailed 
information for disease risk estimations when compared to chronological age alone. 
(Zampieri et al. 2015; M. J. Jones et al. 2015; Jylhava et al. 2017) 

Multiple epigenetic clock estimators have been proposed. The most well-known 
blood methylomic predictors for humans are by Horvath (2013) using 353 CpG sites, 
Hannum et al. (2013) using 71 CpG sites and Weidner et al. (2014) using 99 CpG 
sites. The predictors mentioned here for humans are all based on DNA methylation 
measurement by Illumina BeadChip platform. A total of 99 CpG sites in the Weidner 
predictor were selected using bivariate correlation analysis. The CpG sites used in 
epigenetic clock algorithms by Horvath and Hannum have been fetched using elastic 
net algorithm (i.e. penalized regression model) in such a way that the combination 
of individual CpG sites predict the best, not the single CpG sites. These two 
predictors share only six overlapping CpG sites, intelligibly. The predictor CpG sites 
in Horvath’s and Weidner’s clocks have 22 overlapping CpG sites. (Hannum et al. 
2013; Horvath 2013; Weidner et al. 2014; Lin et al. 2016; Jylhava et al. 2017)  

Horvath (2013) generated the multi-tissue age predictor algorithm (available at 
https://dnamage.genetics.ucla.edu/) using 21000 probes existing in both the 
HumanMethylation450 and HumanMethylation27 BeadChips. The predictor was 
trained and tested with 8000 samples comprising various tissue types and 
chronological ages. The different tissues and organs included whole blood, brain, 
breast, kidney, liver, lung, saliva as well as sorted cell samples including CD4+ T cells, 
monocytes, B cells, glial cells and neurons. (Horvath 2013) In contrast, other 
epigenetic age predictors are often trained in blood samples (Hannum et al. 2013; 
Weidner et al. 2014). To date, the most widely used predictors appear to be those of 
Horvath and Hannum. Recent independent studies have shown that, even though 
estimated epigenetic age by these two age predictors correlate strongly with 
chronological age (r>0.9), they correlate less with each other (r=0.37 – 0.76). (B. H. 
Chen et al. 2016; Jylhava et al. 2017)  

Multi-tissue DNA methylome age predictors for humans (Horvath 2013) and 
mice (Stubbs et al. 2017) demonstrate similar charasteristics. Median absolute error 
for both of these predictors is 5 percentages of the average length of human and 
murine lifespan (~85 years and ~2 years, respectively). In other words, the murine 
epigenetic clock ticks faster than the human clock, and the epigenetic clock-ticking 
rate appears to be linked to the lifespan expectancy. This underlines that the 
biological aging process includes evolutionaryly conserved features. (Wagner 2017) 

The epigenetic age acceleration may be defined as the residual fetched out from 
a linear regression model where the epigenetic age is regressed on chronological age. 
Another more robust and simple option is to calculate the absolute difference 
between chronological and epigenetic age (Δ-cAge-DNAmAge, in such way that 
positive values indicate for “younger epigenetic age” and negative “older epigenetic 
age”) in years. (Chen et al. 2016) The estimated heritability of the Horvath’s 
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epigenetic age acceleration is considerable (h2 approximately 0.4) (Horvath 2013; 
Levine, Lu et al. 2015; Marioni, Shah, McRae, Chen et al. 2015), and the acceleration 
rate varies between genders and different ethnic groups (Horvath, Gurven et al. 
2016). The epigenetic clock-ticking rate has been shown to be highest during 
organismal growth (Horvath 2013; Simpkin et al. 2016). Analyses in monozygotic 
twins have implied that the heritability of the epigenetic age is more than 70% at the 
time of birth but decreases to the level of ~40% by late adulthood. From this 
perspective, genetic background and environment together define the epigenetic age 
of an individual. (Horvath 2013) 

The biological significance of Horvath’s DNAmAge (Horvath 2013) in the aging-
research and its performance in prediction of phenotypic outcomes has been 
supported by many studies focusing on different tissues (e.g. brain, blood, liver). 
These studies indicate that older epigenetic age reflects older biological age, as the 
epigenetic age acceleration is more abundant in various detrimental health conditions 
or is even associated with mortality. Studies have highlighted that DNAmAge 
predicts all-cause and cause-specific (cancer, cardiovascular) mortality (Marioni et al. 
2015; Perna et al. 2016; Christiansen et al. 2016; Cole et al. 2017). In a study with 
monozygotic Danish twins, a 35% higher mortality rate was associated with older 
epigenetic age, and the older twin had a more than two times higher mortality risk 
when compared to the epigenetically younger individual in a twin pair (Christiansen 
et al., 2016). A meta-analysis with 13 089 individuals highlighted that the mortality-
risk prediction with DNAmAge estimate is independent of other risk factors 
(sociodemographic, lifestyle, comorbidity factors) (B. H. Chen et al. 2016). 
Individual CpG sites in the epigenetic clocks are also associated with lifespan 
expectancy. Specifically, CpG sites correlating with all-cause mortality from Weidner 
and Horvath clocks overlap in following regions: cg05294455 (MYL4), cg08598221 
(SNTB1), cg09462576 (MRPL55), cg15804973 (MAP3K5), cg20654468 (LPXN), 
cg25268718 (PSME1), cg26581729 (NPDC1), and cg02867102 (no gene). Most of 
these sites are hypomethylated during aging. (Zhang, Hapala et al. 2017) 

Interestingly, the extreme longevity of humans has been connected to younger 
epigenetic ages (Δ-cAge-DNAmAge 8.6 years) in 82 Italian individuals who had 
survived to the age of 105-109 years (semi-supercentenarians) (Horvath, Pirazzini et 
al. 2015). More recent research has underlined that individuals aged 90 or more years 
display systematically younger epigenetic ages (Christiansen et al. 2016; Armstrong 
et al. 2017). Whether the young epigenetic age of the elderly is related to the overall 
survival or is the age predictor algorithm(s) providing underestimates remains to be 
shown. However, some details indicate that the first option is more likely to be true. 
For example, 63 progenies (aged, on average, 71.8 years) of the 82 Italian semi-
supercentenarians and 47 age-matched controls were compared, and the offspring 
showed 5.1 years lower epigenetic age than the control group. Thus, the young 
epigenetic age appears to be family-linked. (Horvath et al. 2015) This link may be 
explained by mixture of shared genetics and environment.  
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In addition, DNAmAge has been connected to descriptive of cognitive and 
physical fitness (Marioni, Shah, McRae, Ritchie et al. 2015), neuro-pathology (Levine 
et al. 2015) and frailty (Breitling et al. 2016) in the elderly. Epigenetic age acceleration 
is also associated with Down's syndrome (Horvath, Garagnani et al. 2015), 
Huntington's disease (Horvath, Langfelder et al. 2016), Parkinson's disease (Horvath 
and Ritz 2015), HIV infection (Horvath and Levine 2015), menopause (Levine et al. 
2016), and cellular senescence (Horvath 2013; Lowe et al. 2016). Furthermore, 
studies have suggested that behavioral and lifestyle factors accelerate or decelerate 
epigenetic aging. Specifically, higher exercise and educational level as well as intake 
of poultry and vegetables resulted in younger epigenetic ages in the study subjects 
(Quach et al. 2017). Moreover, symptoms of metabolic syndrome (i.e. higher BMI 
and blood pressure, and higher levels of cholesterol, insulin, glucose and 
triglycerides) and increased levels of CRP were observed in association with older 
epigenetic ages (Quach et al. 2017). Elsewhere, higher BMI has been linked to 
accelerated epigenetic aging in liver (Horvath et al. 2014) and in blood cells 
(Nevalainen et al. 2017). The epigenetic age by Horvath’s calculator is proposed to 
be a predictor for the age of lung cancer onset by Levine et al. (2015a). Current 
smokers who developed lung cancer in the study also showed older epigenetic ages 
(adjusted for confounding factors) when compared to former or never smokers. 
(Levine, Hosgood et al. 2015)  

Intriguingly, some findings regarding Horvath’s DNAmAge estimate are against 
initial hypotheses and some of them are more difficult to interpret. Heroin users 
(Kozlenkov et al. 2017) and military personnel suffering from post-traumatic stress 
symptoms (Boks et al. 2015) have demonstrated younger epigenetic ages when 
compared to the controls. Moreover, a very recent study with 486 middle-aged 
Danish twins reported that epigenetic age measured from blood is not linked with 
cognitive abilities (Starnawska et al. 2017). McEwen et al. (2017) have also shown 
conflicting findings. In the study, the immune system aging in relation to epigenetic 
aging in longevity region in Costa Rica (age range of 60-100+ years) was investigated. 
The study reported that long-living individuals in Nicoyan have higher levels of naïve 
CD8+CD45RA+CCR7+ cells in relation to memory CD8+CD28-CD45RA- cells 
when compared to the rest of the population in Costa Rica. The long-living Nicoyans 
showed less variation in their genome-wide methylation, i.e. smaller epigenetic drift, 
and thus exhibited younger epigenomes. However, the epigenetic age (determined 
with Horvath, Hannum and Weidner methods) was not accelerated in the general 
population in Costa Rica when compared to the Nicoyans. (McEwen et al. 2017)  

It has been assumed that the DNAmAge estimates from a wide variety of 
different tissues of the same individual are substantially similar. Observations from 
a small group of middle-aged individuals pointed to that direction (Horvath 2013), 
but further studies with larger sample sizes are lacking. The few observations have 
highlighted that the epigenetic aging rate of the cerebellum is slower (Horvath et al. 
2015b) and the epigenetic age of sperm is younger (Horvath 2013) than the age in 
other tissues of the human body. Although the available evidence is limited, 
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observations in non-proliferative and immortalized tissues have indicated that 
epigenetic age differs from mitotic age and that epigenetic age is more likely to be a 
measure describing the state of epigenetic maintenance (Horvath 2013; Horvath and 
Levine 2015).  
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3 AIMS OF THE THESIS 

The hypotheses in this thesis comprise the following issues. The longitudinal 
behavior of the epigenetic age appears to be indefinite. Discrepancies in the lists of 
reported aging-associated DNA methylation sites have emerged, thus requiring 
further evaluation. A further question concerns methylomic mortality predictors: are 
there methylation sites that could be used as survival predictors in the elderly (90+ 
years of age) and could those predictors even overcome conventional biomarkers of 
aging in the survival analysis? Moreover, are biomarkers (such as CMV or blood cell 
composition) related to immune system aging associated with epigenetic aging?  

Therefore, aging-associated DNA methylation level changes (I), and mortality 
predictors (IV) at single CpG site resolution are characterized. The longitudinal 
behavior of the DNA methylome age (III) and its role as mortality predictor (IV) is 
explored. Furthermore, the epigenetic age change associated with CMV infection is 
analyzed (II). In addition, in all sections of the thesis, the role of blood cell sample 
heterogeneity is considered (I-IV). Specifically, the relevance of controlling sample 
heterogeneity in EWASs is evaluated (I), the association between the DNA 
methylome age and blood cell subtype counts is explored (III), and the overall 
longitudinal behavior of the blood cell subtypes is investigated (III). 

The specific aims of this thesis were: 

1) To characterize aging-associated changes in DNA methylation levels in blood 
samples of clinically healthy middle-aged subjects. 

2) To characterize the longitudinal behavior of the DNA methylome age. 

3) To characterize mortality-associated DNA methylation pattern at very 
advanced age. 

4) To characterize the longitudinal behavior of the blood cell subtype landscapes. 

5) To analyze whether the DNA methylome age of the blood cells is associated 
with CMV infection in populations of young adults and nonagenarians. 
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4 SUBJECTS AND METHODS 

4.1 Subjects 

4.1.1 The Young Finns Study (I, III) 

The study population in Studies I and III were selected from The Young Finns study 
(YFS) follow-up cohorts in 1986 and 2011 (denoted here as YFS_1986 and 
YFS_2011, respectively) (Nuotio et al. 2014). The YFS comprises a series of six 
cohorts, representing the general population, born in 1962, 1965, 1968, 1971, 1974 
and 1977 from five cities with university hospitals in Finland (Helsinki, Kuopio, 
Oulu, Tampere and Turku) (Raitakari et al. 2008). Of these subjects, a subsample of 
184 individuals was randomly assigned for a methylomic pilot study: the categories 
of chronological age in 1986 were 15, 18, 21 and 24 years, and the group sizes were 
50, 44, 55 and 35 in which 58%, 68.2%, 56.4% and 60% were women, respectively. 
The cross-sectional sample from a follow-up in 2011 was used in Study I whereas 
samples in 1986 (baseline) and in 2011 (follow-up) were used in the Study III. All of 
the participants were of Western European descent and they provided informed 
consent. The study followed the guidelines of the Declaration of Helsinki and was 
approved by the Ethical Review Committee of Turku University Hospital. 

 

4.1.2 Vitality 90+ study (II, III, IV) 

The Vitality 90+ study (denoted here as V90) is a prospective population-based study 
that includes subjects aged 90 years or over, who are both home-dwelling and 
institutionalized and live in the city of Tampere, Finland. The recruitment and 
characterization of the subjects was performed as reported for previous V90 cohorts 
(Goebeler et al. 2003). As shown in Figure 6, the population (denoted as V90_2010 
sample) consisted of 136 subjects born in 1920, and 21 control subjects aged 19-29 
years. 122 nonagenarians and 21 young controls in V90_2010 were in DNA 
methylation analysis (Figure 6). 

Of the subjects in V90_2010 sample, 48 (41 nonagenarians and 7 young controls) 
participated in the 4-year follow-up examination, where biological samples were also 
collected (Figure 6). In order to increase the sample size of young control group, 33 
new control subjects aged 19-34 years were recruited together with the existing seven 
4-year follow-up participants. Both V90_ 2010 and V90_2014 samples were used in 
Study III. Specifically, 48 subjects were used for DNA methylation analysis and cell 
subtype characterization at both time points, in 2010 and 2014 (Study III).   
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In Study IV, information about the all-cause mortality for V90_2010 cohort after 
2.55-year and 4-year follow-ups was obtained from the Population Register Center. 
Causes of death were unavailable. DNA methylation and the full covariate data were 
available for 111 nonagenarians. The mortality rate at the 2.55-year follow-up was 
32.4% (36/111) and 47.7% (53/111) at the 4-year follow-up. 

 
 

 

Figure 6.  The Vitality 90+ populations in the analyses. Nonagenarians and controls in 
V90_2010 cohort were used in Study II. In Study III, both V90_2010 and V90_2014 samples were 
used. A total of 111 nonagenarians of the V90_2010 with DNA methylation data were used in Study 
IV. 

 
All study subjects were of Western European descent and had not suffered from 

any infections or received any vaccinations in the 30 days prior to blood sample 
collection. The study participants provided their written informed consent. This 
study has been conducted according to the principles expressed in the Declaration 
of Helsinki, and the study protocol was approved by the ethics committee of the city 
of Tampere (1592/403/1996; 765/13.03.01/2008, PSHP 7/2014, ETL R14002). 
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4.2 Methods 

4.2.1 DNA methylation analysis 

4.2.1.1 Blood sample collection and sample preparation (I-IV) 

Whole blood DNA of the YFS_1986 (Study III) and YFS_2011 (Studies I and III) 
cohorts was obtained from blood samples stored in EDTA and -20°C using a 
Wizard® Genomic DNA Purification Kit (Promega Corporation, Madison, WI, 
USA) according to the manufacturer’s protocol.  

The blood samples of the subjects in the V90_2010 (Studies II, III and IV) and 
V90_2014 (Study III) were collected into EDTA-containing tubes during a home 
visit. Plasma was separated and stored at -70 °C. The samples were directly subjected 
to leucocyte separation on a Ficoll Paque density gradient (Ficoll-Paque™ Premium, 
cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The PBMC 
layer was collected and the cells that were directed to FACS analysis and DNA 
extraction, were suspended in 1 ml of a freezing solution (5/8 FBS, 2/8 RPMI-1640 
medium, 1/8 DMSO; FBS: cat. no. F7524, Sigma-Aldrich, St. Louis, MO, USA; 
RPMI: cat. no. R0883, Sigma-Aldrich, St. Louis, MO, USA; DMSO: cat. no. 
1.02931.0500, VWR, Espoo, Finland) and stored in liquid nitrogen. The PBMCs 
allocated for RNA extraction were suspended in 150 µl of RNAlater solution 
(Ambion Inc., Austin, TX, USA).  

DNA was extracted from the PBMCs using the QIAamp DNA Mini Kit (Qiagen, 
CA, USA) according to the centrifugation protocol provided in the manufacturer’s 
protocol. The DNA was eluted in 60 μl of AE elution buffer and stored at -20 °C. 
The concentration and the quality of the DNA samples were assessed using the 
Qubit dsDNA HS Assay (Invitrogen, Eugene, OR, USA).  

4.2.1.2 Illumina methylation assay (I-IV) 

DNA methylation levels in whole blood (Study I and III) and PBMC (Study II, III, 
IV) samples were determined using Infinium HumanMethylation450 BeadChip 
technology (Illumina, San Diego, CA, USA) (Bibikova et al. 2006; Bibikova et al. 
2009; Bibikova et al. 2011). The laboratory measurement of samples in V90_2010, 
V90_2014 and YFS_2011 cohorts were processed at the Core Facility of the Institute 
of Molecular Medicine Finland (FIMM), University of Helsinki. The corresponding 
DNA methylation profiles of the samples in YFS_1986 cohort were measured using 
the same methodology at Helmholtz Zentrum, München, Germany. All samples 
were analyzed in a randomized order.  
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According to the manufacturer’s protocol, 1 μg of DNA of each sample was 
subjected to bisulphite conversion using the EZ-96 DNA Methylation Kit (Zymo 
Research, Irvine, CA, USA). A 4-μl aliquot of bisulphite-converted DNA was 
subjected to whole-genome amplification, and the sample was fragmented 
enzymatically and hybridized to an Infinium HumanMethylation450 BeadChip. The 
BeadChips were scanned using the iScan reader (Illumina) to obtain the U 
(unmethylated) and M (methylated) probe intensities.  

Regions targeted by Illumina methylation 450Beadchip technology are the 
following. Of the 485 577 methylation probes, 150 254 (30.9%) are targeted to CGIs. 
In addition, 112067 (23.1%) and 47144 (9.7%) of the probes are harboring CGI 
shores (no more than two kilo bases from CGIs) and CGI shelves (from two to four 
kilo bases from CGIs). Consequently, there are 309 465 (63.7%) CGI-associated 
probes in the array. (Ma et al. 2013) 

 

4.2.1.3 Preprocessing of methylation data (I-IV) 

The processing of DNA methylation data was performed using R software (R>= 
2.15.3). The quality of the methylation data was carefully explored using standard 
examinations (Studies I-IV). Several visualization styles, such as box plots and 
density plots as well as principal component analysis (PCA) with scatterplots were 
used to monitor raw signal intensities and processed methylation values. Gender 
prediction based on methylation levels at CpG sites located in X and Y 
chromosomes was performed as a quality control step.  

The data of YFS_2011 (Study I) and V90_2010 (Study IV) cohorts were 
preprocessed using R software as follows: Of the 485 000 CpG sites, all unspecific 

or polymorphic sites (N = 76775) were removed based on database information (Y. 
A. Chen et al. 2013). The methylation data were preprocessed with the wateRmelon 
methylation-array-specific package from Bioconductor (Pidsley et al. 2013); the data 
was set as a methylumiset object. Samples and CpG sites with a technically poor 
quality were filtered out by excluding CpG sites with a bead count of <3 in 5% of 
the samples and sites for which 1% of the samples showed a detection p-value >0.05. 
The method termed dasen was used to conduct background correction and quantile 
normalization individually for the two applied chemistries (Infinium I and II) as well 
as for the intensities of methylation (M) and un-methylation (U). Finally, the U and 
M intensities were transformed to β values using a standard equation: M/(M + U + 
α), where α is the constant offset, 100, M is the methylated and U is the unmethylated 
probe intensity. Thus, β is the ratio of the methylated probe intensities to the overall 
intensities, and the range of resulting β values for a heterogenic tissue sample is 
between 0 (completely unmethylated, 0%) and 1 (completely methylated, 100%).  
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4.2.1.4 DNA methylome age calculation (II-IV) 

The DNA methylome ages (DNAmAges) of subjects in cohorts of V90_2010 (Study 
II, III, IV), V90_2014 (Study III), YFS_1986 (Study III) and YFS_2011 (Study III) 
were determined using the DNA methylome age calculator 
(https://dnamage.genetics.ucla.edu/home) (Horvath 2013). For the calculator, the 
raw β values of the selected probes (N = 28587) in the 450Beadchip, including the 
353 clock-CpG sites were extracted from all datasets, and those values were used as 
the input. The methylation data were put into the calculator in “a blind sample” 
manner, i.e. without any preliminary background information concerning sample 
type, chronological age or gender. Batch effects were normalized using the BMIQ 
function implemented in the DNAmAge algorithm. The difference between 
chronological age and DNAmAge, Δ-cAge-DNAmAge was extracted for each 
subject. Quality of epigenetic age data was verified with sample type and gender 
(average methylation in X chromosome) predictions manifested in the DNA 
methylome age calculator. 

4.2.1.5 Estimation of the blood cell counts (I, III) 

The CD8+ and CD4+ T cell, monocyte, granulocyte, NK cell and B cell type 
distributions in the samples of YFS_1986 (Study III) and YFS_2011 (Study I and 
III) populations were estimated using the R software estimation algorithm termed 
estimateCellCounts which is implemented in the minfi Bioconductor package (Jaffe 
and Irizarry 2014). The algorithm utilizes a subset of 600 control probes, 
representing specific DNA methylation signatures of different blood cell types. The 
reference data used in the estimation algorithm are available in the 
FlowSorted.Blood.450K Bioconductor package (Jaffe and Irizarry 2014). The data 
include methylomic data of purified cell populations (CD4+ T cells, CD8+ T cells, 
CD56+ NK cells, CD19+ B cells, CD14+ monocytes, neutrophils, and eosinophils) 
from six healthy males aged 38±13.6 (Reinius et al. 2012). 

4.2.1.6 Predicting functional roles for regions of interest (I, IV) 

In Studies I, III and IV, the annotation information for each CpG site was fetched 
from the GRCh36/hg18 genome assembly, dated March 2006. In Study I, the 
enriched gene ontology (GO) terms of the genes of interest were explored using an 
enrichment analysis tool, GOrilla (Eden et al. 2009), and the discovered significant 
terms were further clustered using the REViGO tool (Supek et al. 2011). The GOrilla 
analysis was performed for the categories of process, function and component using 
two unranked lists: the first consisted of genes of interest, and the second of genes 
in the background (N = 20902; analysis date, 9.3.2015). In addition, prediction 
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analyses of transcription factors for the groups of target genes were conducted using 
Pscan (JASPAR database; analysis date 10.3.2015) (Zambelli et al. 2009). The 
nominal p-value was set to the Bonferroni-corrected value of 0.05 in each analysis. 

In Study IV, the pathway analysis tool IPA (QIAGEN Ingenuity Pathway 
Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) was used in 
order to identify canonical pathways and networks for the mortality-associated genes 
harboring the CpG sites. If a CpG site was annotated to more than one gene, each 
of the genes were included in the analysis. Benjamini-Hochberg corrected p-value 
threshold was set to value 0.05. 

4.2.2 Gene expression data (IV) 

4.2.2.1 Origin of RNA  

In Study IV, total RNA of V90_2010 sample were extracted from the same PBMCs, 
which were subjected to DNA methylation and FACS analysis. Leukocyte separation 
was performed using a Ficoll-Paque density gradient (Ficoll-Paque™ Premium, cat. 
no. 17-5442-03, GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The PBMC 
layer was collected, and the cells allocated for RNA extraction were suspended in 
150 μl of RNAlater solution (Ambion Inc., Austin, TX, USA). Following this, RNA 
extraction was performed using miRNeasy Mini Kit (Qiagen, Hilden, Germany). 

4.2.2.2 Illumina gene expression assay 

The gene expression data of V90_2010 sample, which was used in Study IV were 
obtained from Illumina gene expression array, HumanHT-12 v4 Expression 
BeadChip (Cat no. BD-103-0204, Illumina Inc., CA, USA). The measurement was 
performed at the Core Facility of the Department of Biotechnology at the University 
of Tartu according to manufacturer’s instructions. Preprocessing of the data was 
performed as previously described (Jylhava et al. 2014).  

Briefly, the lumi pipeline was used; the background was corrected with the 
bgAdjust.affy package; further, the data were log2-transformed and quantile-
normalized. Data with poor quality and background noise were filtered out as 
follows: probes exhibiting expression levels of < 5 or > 100 in more than five (3.3%) 
samples per transcript were excluded.  
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4.2.3 Fluorescence-activated cell sorting analysis (II, III, IV) 

The PBMC samples of the V90 population were stored in the freezing solution and 
in liquid nitrogen prior to analysis (as described in 4.2.1.1). The proportions of 
different leukocyte types in these samples were determined using fluorescence-
activated cell sorting analysis (FACS; BD FACSCanto II). With V90_2010 samples, 
the results were analyzed with BD FACSDiva, version 6.1.3 (BD Biosciences, 
Franklin Lakes, NJ, USA), and with V90_2014 samples, the results were analyzed 
with FlowJo software (Tree Star Inc., Ashland, OR, USA). The antibodies used were 
FITC-CD14 (cat. no. 11-0149), PerCP-Cy5.5-CD3 (45-0037), APC-CD28 (17-0289), 
PECD19 (12-0199) (eBioscience, SanDiego, CA, USA), PECy™7-CD4 (cat. no. 
557852) and APC-Cy™7-CD8 (557834) (BD Biosciences). In the analysis of 
V90_2010 samples, the CD19 antibody was not used. To minimize nonspecific 
staining of the cells, staining was performed in phosphate-buffered saline (PBS) 
containing 1% fetal bovine serum (FBS) after an incubation step with Fc Receptor 
Binding Inhibitor (cat. no 16-9161, eBioscience). All samples were analyzed in a 
randomized order.  

4.2.4 Cytomegalovirus titer (II) 

In Study II, the anti-CMV titer was measured from the plasma samples of V90 
population using an enzyme-linked immunosorbent assay (Enzygnost Anti-
CMV/IgG, Siemens Healthcare, Marburg, Germany). According to manufacturer's 
protocol, sample was defined as CMV seropositive with serum anti-CMV 
immunoglobulin (Ig)G titer > 230. The measurement was performed in Fimlab 
Laboratories, Tampere, Finland. 

4.2.5 Other covariate data (IV) 

In Study IV, a set of anthropometric measures, functional performance and plasma 
biomarkers were utilized in the analysis (shown in Table 2). These data were available 
for 111 participants in V90_2010. The collection of these variables, and the 
references therein, have been previously described elsewhere (Jylhava et al. 2014). 
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Table 2.  The population (N=111) characteristics in Study IV. Distributions of the variables are shown 
according to the data at the 2.55-years mortality follow-up (table is modified from (Jylhava et al. 
2016). The type of descriptive depents on the type or distribution of a variable. Symbols: * = 
mean±sem is not valid, and thus median (Med) and IQR (interquartile range) values are used; a = 
percentage of live-gated cells; b = percentage of total T lymphocytes i.e. CD3+cells; c = percentage 
of CD4+ cells; d = percentage of CD8+ cells; SEM = standard error of mean  

 Non-survivors Survivors 

Variable Mean/Med* SEM/IQR/% Mean/Med* SEM/IQR/% 

Women (n/%) 27 75 54 72 

Age (months) 1079.5 0.61 1080.2 0.37 

Systolic blood pressure (mmHg) 145 4.6 149 3.4 

Diastolic blood pressure (mmHg)* 71.5 13.5 74 19 

Weight (kg) 61.9 2.2 70.6 1.6 

BMI (kg/m2) 24.3 0.75 27.5 0.54 

Waist circumference (cm) 89.6 2.1 95.5 1.4 

Hip circumference (cm)* 98 10 102 12 

MMSE* 23.5 8 26 4 

Barthel index* 95 20 95 5 

Handgrip (kg)* 18 11 20 7 

Able to perform chair-rise test (n=yes/%) 19 57.6 59 78.7 

Able to perform chair-stand test (n=yes/%) 22 71 62 82.7 

Frailty index (n/%)     

  Non-frail 3 8.3 26 34.7 

  Pre-frail 22 61.1 37 49.3 

  Frail 11 30.6 12 16 

CRP level (ng/ml)* 1.8 3.3 1.9 3.5 

IL-1β level (pg/ml)* 14.2 27.6 19 34 

IL-6 level (pg/ml)* 4.5 3.3 3.8 3.8 

IL-7 level (pg/ml)* 7.8 5.3 6.4 5.2 

IL-10 level (pg/ml)* 1.8 1.5 1.5 2.6 

cf-DNA level (μg/ml)* 0.93 0.19 0.87 0.16 

Unmethylated cf-DNA level (μg/ml)* 0.75 0.2 0.67 0.15 

Plasma mitochondrial DNA (copy number)* 4.3E+08 2.4E+08 3.8E+08 2.1E+08 

Alu repeat cf-DNA (GE)* 74.4 50.4 66.8 38.3 

Dehydroepiandrosterone sulfate (μg/ml)* 0.25 0.48 0.25 0.31 

Cortisol (ng/ml)* 133 54.3 117 68 

Indoleamine 23-dioxygenase activity* 44.3 25.5 51.8 25.3 

Anti-CMV antibody titer* 19 8 19 9000 

Anti-Epstein-barr virus antibody titer* 405 315 410 410 

Epigenetic age in years 76.1 1.04 76.1 0.64 

CD3+ cells (%)*a 62 15.8 57.9 12 

CD4+ cells (%)b 62.9 2.5 63.8 1.6 

CD8+ cells (%)b 30.6 2.3 28.9 1.5 

CD4+/CD8+ cells (ratio)* 2.4 2.3 2.3 2.4 

CD4+CD28- cells (%)* 9.2 16.2 9.2 13 
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4.2.6 Availability of raw data (I-IV) 

The genome-wide methylation data of YFS_2011 (Study I) and V90_2010 (Study 
IV) are available in the GEO database (http://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE69270 and GSE68194, respectively. Analogously, the 
transcriptomic data of V90_2010 (Study IV) are under accession number GSE65218. 
The data used in Study III are available as electronic Supplementary Material in the 
article (Kananen et al. 2016). 

4.2.7 Testing hypotheses (I-IV) 

In Study I, to explore aging-associated CpG sites using EWAS approach, the 
association between chronological age and DNA methylation level in each CpG site 
was analyzed using a generalized linear regression termed beta regression. Gender 
and estimated cell type proportions were adjusted for (Ferrari 2004; Francisco 
Cribari-Neto 2010). In Study IV, in order to explore methylomic predictors for 
mortality, three analysis stages took place: (1) Gender and the proportions of blood 
cell types were adjusted for, after which the standardized weighted residuals were 
extracted and used in the following stages. (2) Cox univariate assessment was used 
to pre-select the most promising methylomic predictors. (3) The predictive capacity 
of large group biomarkers were analyzed using penalized Ridge regression (Hoerl 
AE 2000). The final mortality-predicting signature shown in Table 10 was assessed 
using a Cox regression model. The models were evaluated with the goodness of fit 
statistics, Akaike Information criterion (AIC), and Harrel’s C for the discriminative 
power. To correct for multiple testing of genome-wide data (Studies I and IV), a 
Benjamini-Hochberg method was used. In Studies II and III, as appropriate, the 
analyses of the DNA methylome ages included non-parametric between-group 
comparisons (Mann-Whitney U tests), Spearman’s rank sum tests and parametric 
multivariate linear regression analyses. In Studies I-IV, statistical analyses and related 
visualizations were performed using the R software (R>= 2.15.3), Stata software 
(v13.0 for Windows, StataCorp LP, TX, USA) and IBM SPSS Statistics v.22 (IBM 
Corporation, Armonk, NY, USA); and the nominal P-value threshold was set to 0.05. 
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5 RESULTS 

5.1 The Studies 
 

In the thesis, aging-associated DNA methylation level changes (I), and mortality 
predictors (IV) at single CpG site resolution were characterized. The longitudinal 
behavior of the DNA methylome age (III), and its role as a mortality predictor (IV) 
was explored. Furthermore, the epigenetic age change associated with CMV 
infection was analyzed (II). In all sections in the thesis, the role of blood cell sample 
heterogeneity was considered (I-IV). Specifically, the relevance of controlling sample 
heterogeneity in EWASs was evaluated (I), the association between the DNA 
methylome age and blood cell subtype counts was explored (III), and the overall 
longitudinal behavior of the blood cell subtypes was investigated (III). 

5.2 Aging-associated DNA methylation changes in middle-aged 
individuals (I) 

In Study I, in the cross-sectional EWAS, 1202 aging-associated CpG sites were 
identified from whole blood samples of YFS_2011 population where the age range 
was between 40-49 years. The hypermethylated and hypomethylated CpG sites were 
annotated on 437 and on 440 genes, respectively. The top 20 lists of the most 
significant hypermethylated and hypomethylated CpG sites associated with aging are 
shown in Table 3 and 4. Moreover, the CpG sites, which are located in genes with a 
greater number of aging-associated CpG sites, were more often hypermethylated 
than hypomethylated with increasing chronological age (Figure 7).  

As a remark on quality control, well-known CpG sites which are hypermethylated 
with advanced age were among sites identified in Study I: cg16867657, cg24724428 
and cg21572722 located in gene ELOVL2, cg06639320, cg22454769 and 
cg24079702 located in gene FHL2, cg16219603, cg16419235 located in gene PENK, 
and cg08097417, cg09499629 and cg07955995 located in gene KLF14 (Heyn et al. 
2012; Garagnani et al. 2012; Hannum et al. 2013; Florath et al. 2014; Steegenga et al. 
2014). Moreover, acknowledged smoking-associated hypomethylation of 
cg03636183 located in gene F2RL3 (Breitling et al. 2011; Zhang et al. 2014) was seen 
in the quality control exploration of Study I. 
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Table 3.  The top 20 hypermethylated aging-associated CpG sites in middle-aged individuals. The top-
ranking hypermethylated CpG sites were selected with the following criteria: 1) positive direction 
of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) 
more than one hit identified per gene (q-value<0.05 which corresponds to false discovery rate <5%) 
and 3) the top-ranking q-values. The q-value denotes the Benjamini-Hochberg-corrected p-value. 
(Study I) 

ProbeID Gene Chr Coordinate36 Betareg estimate of age q-value  

cg16867657 ELOVL2 6 11152863 0.022 0.00E+00 

cg24724428 ELOVL2 6 11152874 0.021 4.80E-07 

cg21572722 ELOVL2 6 11152880 0.013 3.46E-06 

cg06639320 FHL2 2 105382171 0.018 3.46E-06 

cg00059225 GLRA1 5 151284550 0.013 5.13E-06 

cg08097417 KLF14 7 130069673 0.020 1.87E-05 

cg22454769 FHL2 2 105382199 0.021 5.03E-05 

cg07553761 TRIM59 3 161650671 0.016 6.12E-05 

cg01588592 ETV3L 1 155335949 0.011 1.14E-04 

cg11176990 LOC375196 2 39041037 0.014 1.54E-03 

cg09499629 KLF14 7 130069676 0.018 1.54E-03 

cg22158769 LOC375196 2 39041043 0.020 2.43E-03 

cg18898125 NEFM 8 24826286 0.012 2.49E-03 

cg21911021 ZIK1 19 62786823 0.020 3.07E-03 

cg27217742 RGS12 4 3335078 0.013 3.07E-03 

cg17737681 DLX1 2 172660382 0.015 3.29E-03 

cg24079702 FHL2 2 105382203 0.015 5.99E-03 

cg16219603 PENK 8 57523140 0.013 7.00E-03 

cg23930856 TFAP2B 6 50919683 0.013 7.22E-03 

cg11152943 TRAPPC9 8 141318170 0.013 7.57E-03 
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Table 4.  The top 20 hypomethylated aging-associated CpG site in middle-aged individuals. The top-
ranking hypomethylated sites were selected with following criteria: 1) negative direction of the 
association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more 
than one hit identified per gene (q-value<0.05 which corresponds to false discovery rate<5%) and 
3) the top-ranking q-values. The q-value denotes the Benjamini-Hochberg-corrected p-value. 
(Study I) 

ProbeID Gene Chr Coordinate36 Betareg estimate of age q-value  

cg00791074 MTHFD1L 6 151227862 -0.018 7.51E-04 

cg18618815 COL1A1 17 45630323 -0.018 5.99E-03 

cg14169886 PRDM16 1 3101709 -0.014 5.99E-03 

cg01820374 LAG3 12 6752344 -0.014 9.24E-03 

cg19421125 LAG3 12 6753117 -0.022 1.02E-02 

cg14829066 NTRK3 15 86360145 -0.013 1.49E-02 

cg03290281 C6orf195 6 2577606 -0.021 1.49E-02 

cg05561193 DCLK2 4 151218492 -0.017 1.96E-02 

cg20249566 NWD1 19 16691739 -0.024 1.97E-02 

cg23928726 PEX10 1 2334858 -0.014 1.97E-02 

cg20007894 SCAND3 6 28648421 -0.019 2.08E-02 

cg16355231 PEX10 1 2334839 -0.019 2.14E-02 

cg15058210 HDAC4 2 239861814 -0.018 2.16E-02 

cg06030846 TMEM108 3 134581182 -0.011 2.16E-02 

cg25994988 UBASH3B 11 122157592 -0.011 2.16E-02 

cg18345924 NCAM2 21 21294102 -0.016 2.18E-02 

cg00638021 COL1A1 17 45622061 -0.013 2.26E-02 

cg19344626 NWD1 19 16691749 -0.024 2.36E-02 

cg01288258 ITFG2 12 2792128 -0.011 2.41E-02 

cg05221385 TAF10 11 6590080 -0.010 2.43E-02 
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Figure 7.  Numbers of aging-associated CpG sites (a-CpG hits) per gene in regard to 
hypermethylation and hypomethylation are visualized as bars. Aging-associated hypermethylation 
was more frequent within genes with more association hits. First, the genes were categorized into 
groups based on the number of hypermethylated or hypomethylated a-CpG hits per gene. Next, 
the frequencies of hypermethylated and hypomethylated a-CpGs within the groups were 
calculated. The number of a-CpGs hits for each group is shown inside each bar. (Study I) 

 
The functional roles of the genes with aging-associated CpG sites were explored 

using the gene ontology (GO) term enrichment analysis (Eden et al. 2009). The 
results demonstrated that regions with aging-associated hypermethylation were 
enriched to 73 GO process terms and to eight GO function terms whereas 
hypomethylated sites showed no enrichment. The most significant GO processes 
(anatomical structure development, GO:0048856, P=1.02X10-11; morphogenesis 
GO:0009653, P = 5.02X10-10) clustered under the term ‘developmental process’. The 
GO function terms were primarily centered on DNA binding. In addition, a Pscan 
analysis tool (Zambelli et al. 2009) was used to predict common regulators for genes 
with the aging-associated methylation sites. Genes with hypermethylation-associated 
CpG sites were predicted to be regulated by 11 common transcription factors in 
categories of Zinc-coordinating, Winged Helix-Turn-Helix and Zipper-Type. 
Conversely, for genes with hypomethylation-associated CpG sites, no common 
transcription factors were found. 
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5.2.1 Comparison analysis of different studies 

The list of aging-associated CpG sites identified among the middle-aged population 
in Study I was compared to other lists of previously reported aging-associated CpG 
sites. Specifically, the repeatability of these aging-associations was explored in two 
ways: (option 1) using studies with practically identical bioinformatics analysis 
pipeline with blood cell subtype count considerations, and (option 2) using studies 
with varying analysis pipelines without cell subtype count considerations. 

In practice, first comparison (option 1) was performed with a list of CpG sites 
where the DNA methylation differences by age were examined between young 
adults and nonagenarians (Marttila et al. 2015). The age difference between the age 
groups in the differential analysis by Marttila et al. (2015a) was 60 years. As shown 
in Figure 8, the comparison analysis revealed that of the 1202 aging-associated CpG 
sites identified in the Study I, Marttila et al. (2015) also identified 987 as differentially 
methylated with similar directions of changes.  

A second comparison analysis (option 2) was performed with other previously 
reported aging-associated CpG site lists by Hannum et al. (number of aging-
associated CpG sites was 89) (Hannum et al. 2013), Garagnani et al. (number of hits, 
9) (Garagnani et al. 2012) and Florath et al. (number of hits, 162) (Florath et al. 2014) 
(summarized by Steegenga et al. (Steegenga et al. 2014)). In these analyses, the array 
technology and sample origin was the same as in Study I, but the heterogeneity of 
the blood samples was not considered. The corresponding age ranges of these 
samples were between 19 and 101, 9 and 83, and 50 and 75 years, respectively. When 
two or more of these studies in addition to Study I and the one of Marttila et al. 
(2015) were considered, the comparison analysis demonstrated that there were only 
21 aging-associated CpG sites in common (Figure 9). 
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Figure 8.  The majority of aging-associated methylation changes in the CpG sites in the 
comparison analysis (option 1) behaved concordantly. The data is visualized as a scatterplot where 
each dot corresponds to a single CpG site; directions of associations correspond to estimates of 
age, which are fetched from the regression models, and negative values point to hypomethylation 
and positive values to hypermethylation. In the first comparison analysis (option 1), Study I with 
YFS_2011 and earlier aging-association study with V90_2010 (Marttila et al. 2015) were 
compared, and of the 1202 sites found in Study I, 987 CpG sites were analogously associated with 
aging in both of these studies. The regression analyses in the studies were adjusted for blood cell 
subtype variation, and the studies consisted of samples with distinct age ranges: there were 40- to 
49-year-old subjects in the YFS_2011 whereas in the V90_2010, there were 19-30- and 90-year-
old subjects (Marttila et al. 2015). (Study I) 
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Figure 9.  The top 21 most frequently reported aging-associated CpG sites and their direction 
of association with aging. In the second comparison analysis (option 2), the top 21 sites were 
selected with the following criteria. (1) CpG site was identified in Study I and in the study by Marttila 
et al. (2015a) with V90_2010 population, and also in two or more other studies. (2) The sites were 
reported as aging-associated in blood samples and the data were obtained using 450BeadChip 
technology. Here, methylation level differences in YFS population between the highest and the 
lowest age groups i.e. between 40- and 49-year-old individuals; (calculated from the medians of 
residuals after adjusting for effects of gender and cell subtype proportions), are illustrated as bars. 
The bars are colored according to the hypomethylation or hypermethylation status (grey = 
hypomethylated, black = hypermethylated). Gene annotation is shown for each bar, where 
applicable (na = no gene annotation). (Study I) 
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5.3 DNA methylome ages (II, III, IV) 

The epigenetic age (DNAmAge) was quantified for each subject in V90 and YFS 
populations at baseline and follow-up time points using a multi-tissue age predictor 
termed Horvath’s DNA methylome age calculator (Horvath 2013). At first stage in 
the analysis of Study III, the DNAmAge values were compared to subjects’ 
chronological ages. Overall, as shown in Table 5 and Figure 10, the median values 
of DNAmAge were less than the corresponding chronological ages within most, but 
not all, subjects: the median DNAmAges of the subjects aged 19-34 years in the 
V90_2014 cohort were higher than their chronological ages.  

The relationships between chronological age and DNAmAge values were 
explored cross-sectionally with Spearman’s rank sum correlation analysis. In the 
YFS_1986 population, the coefficients were 0.785 (P=8.10x10-25) and 0.702 
(P=1.25x10-11) among women and men, respectively. The corresponding values in 
the YFS_2011 population were 0.635 (P=4.24x10-14) and 0.591 (P=7.36x10-8). In the 
V90_2010 population, the coefficients were among women and men 0.594 
(P=3.6x10-11) and 0.661 (P=3.4x10-6), and in V90_2014 population the coefficients 
were 0.925 (P=5.4x10-24) and 0.903 (P=1.2x10-10), respectively.  

5.3.1 Follow-up of DNA methylome age values (III) 

In Study III, the quantities of DNA methylome aging during follow-up periods were 
calculated (DNAmAge change  = DNAmAge at follow-up time point – DNAmAge 
at baseline time point) for YFS and V90 populations. When the subjects in V90 
population were categorized as nonagenarians (N=41) and young controls (N=7), 
the median±MAD (±median absolute difference) values of DNAmAge change from 
the year 2010 to 2014 were 4.53±3.52 and 7.39±2.11 years, respectively. The median 
value of DNAmAge changes from 1986 to 2011 in YFS population (N=183) was 
23.26±2.97. In order to compare the results of YFS to V90, this change corresponds 
to 3.7 years of methylome aging in four chronological years. 

In addition, the difference between chronological age and DNA methylome age 
(Δ-cAge-DNAmAge at baseline and follow-up time points for each subject) was 
calculated, and the relationship between these two values in both populations is 
presented in Figure 11. In the YFS population, the Spearman’s rank sum correlation 
coefficient between the Δ-cAge-DNAmAge values in 1986 and 2011 was 0.535 
(P=6.1x10-15) for all subjects (N=183). The corresponding Spearman’s rank sum 
correlation coefficient value of V90 population (N=48) between the Δ-cAge-
DNAmAge values in 2010 and 2014 was 0.895 (P=9.2x10-18).  
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Figure 10.  The DNAmAge values in the YFS samples at baseline and after 25 years are visualized as boxplots. The YFS_1986 sample (N=183) is 
shown in panel a, and the YFS_2011 sample (N=183) is shown in panel b. The subjects were organized into separate groups according to chronological 
age (cAge) and gender. The differences in the median DNAmAge values between men and women at each cAge group were not significant (Mann-
Whitney U-test, P>0.05). (Study III) 
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Table 5.  Summary of DNAmAge values and PBMC proportions for the V90 sample collected in 2010 and 2014. The values were categorized by chronological 
age group and gender. Table shows the median (median absolute deviation) values. Data not available are denoted as ‘na’. (Study III) 

 

Sample 
collection 

year Group N 
Chronological 

age 
DNAmAge 
of PBMCs 

CD3+  
of live-

gated cells 
(%) 

CD4+ 
of CD3+ 

(%) 

CD8+  
of CD3+ 

(%) 

CD4+: 
CD8+ 
ratio 

CD28- 
of CD4+ 

(%) 

CD28- 
of CD8+ 

(%) 

CD19  
of live-
gated 
cells 
(%) 

CD14+ 
of live-

gated cells 
(%) 

 19-28 years, women 14 22.5 (3.0) 22.3 (2.5) 71.6 (3.3) 59.0 (4.5) 30.1 (6.0) 2.1 (0.5) 0.2 (0.1) 14.7 (6.8) na 2.0 (1.11) 

2010 20-29 years, men 7 24.0 (4.5) 22.5 (4.4) 67.0 (3.0) 60.2 (2.7) 31.8 (4.7) 1.9 (0.5) 0.3 (0.4) 18.1 (13.3) na 2.4 (0.44) 

 90 years, women 84 90.0 (0) 81.7 (7.3) 60.5 (9.6) 65.6 (15.6) 27.1 (13.0) 2.4 (1.7) 9.3 (9.7) 65.3 (17.5) na 8.5 (4.52) 

 90 years, men 31 90.0 (0) 87.2 (5.3) 54.3 (10.2) 57.2 (12.5) 28.7 (13.0) 2.0 (1.1) 9.2 (8.5) 69.0 (16.0) na 7.5 (4.30) 

 19-34 years, women 27 26.0 (4.4) 29.4 (6.8) 67.0 (7.0) 58.9 (5.6) 30.2 (6.8) 1.9 (0.5) 2.3 (2.4) 30.0 (10.8) 5.8 (2.5) 4.4 (4.6) 

2014 22-32 years, men 13 28.0 (4.4) 35.1 (9.2) 59.0 (6.2) 55.1 (4.2) 32.8 (4.7) 1.6 (0.3) 1.4 (1.9) 39.2 (17.0) 8.0 (4.4) 8.5 (9.9) 

 94 years, women 27 94 (0) 89.6 (7.2) 58.8 (11.7) 49.1 (18.2) 35.6 (19.1) 1.3 (1.1) 14.3 (12.2) 74.4 (16.5) 2.8 (2.3) 8.4 (8.7) 

 94 years, men 14 94 (0) 91.5 (11.8) 62.5 (8.9) 58.3 (19.3) 28.1 (14.6) 2.1 (1.5) 10.0 (11.6) 75.0 (16.1) 2.2 (0.7) 10.8 (11.6) 
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Figure 11.  The correlations between the Δ-cAge-DNAmAge values at baseline and follow-up time points are shown in scatterplots. Panel a: Subjects 
participating in the YFS in 1986 and 2011. The Spearman’s rank sum correlation coefficient between the Δ-cAge-DNAmAge values in 1986 and 2011 
was 0.535 (P=6.1x10-15) for all subjects (N=183).  Panel b: Subjects participating in the V90+ study in 2010 and 2014. The Spearman’s rank sum 
correlation coefficient value of V90+ population (N=48) between the Δ-cAge-DNAmAge values in 2010 and 2014 was 0.895 (P=9.2x10-18). The colors 
of the dots for each subject are explained in the graph legend. (cAge=chronological age) (Study III)
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5.3.2 Cytomegalovirus-association with epigenetic aging (II) 

In Study II, the CMV seropositivity (CMV+/-) of subjects in V90 population was 
measured. The V90_2010 population was analyzed in separate chronological age 
categories of young (N=21) and 90-year-old (N=122) subjects. Of the 
nonagenarians, there were 6 CMV- and 116 CMV+ subjects, and of the young 
controls, there were 9 CMV- and 12 CMV+ subjects. The Δ-cAge-DNAmAge values 
of CMV serostatus positive and negative subjects were compared, as shown in Figure 
12. The analysis revealed that CMV+ subjects demonstrated an increase in epigenetic 
aging when compared to CMV- subjects in both chronological age categories 
(P<0.05). In V90_2014, there were an insufficient number of survived nonagenarian 
CMV- subjects for a statistical analysis. However, CMV+ nonagenarians and young 
controls in V90_2014 showed a trend toward increased epigenetic aging when 
compared to CMV- subjects (young controls: Mann–Whitney U-test, P=0.191, 
nonagenarians P=na). 

 

Figure 12.  The epigenetic aging of CMV seropositive subjects was increased in a statistically 
significant level in both chronological age categories (21 young controls and 122 nonagenarians; 
within both categories, CMV+ and CMV- were compared; Mann–Whitney U-test, P<0.05). (Study 
II) 
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5.4 The effect of blood cell subtypes (I-IV) 

The blood cell counts in Studies I-IV were determined either using genome-wide 
DNA methylation profiles together with a specific cell count estimation algorithm 
(YFS) or FACS analysis (V90). The cell compositions of V90 and YFS samples are 
summarized in Table 5 and Figure 13, respectively. Specifically, the aging-associated 
shift in blood cell subtype proportions is demonstrated in the results shown in Table 
5. The difference between CD28-CD4+, CD28-CD8+ and CD14+ of live-gated cells 
between young controls and nonagenarians stands out the most. This is seen in both 
time points, in 2010 and in 2014.  

 

 

Figure 13.  Estimated cell counts of CD8T, CD4T, NK, B cell, monocytes and granulocytes in 
samples of YFS populations (N=183) at different time points (in 1986 and 2011, grey and green, 
respectively) are visualized as boxplots. (Studies I, III)  

Study I highlighted that a large proportion (24%) of the variance in the genome-
wide DNA methylation data is explained by the variability in blood cell subtypes. 
This was explored in a correlation analysis where at first, principal components (PCs) 
of the genome-wide DNA methylation data were defined with principal component 
analysis (PCA), and then the PCs were correlated against the cell count estimates of 
monocytes, granulocytes, CD8, CD4, NK and B cells. The results showed that the 
main principal components (PCs) correlated highly (-0.5 > correlation coefficients 
>0.5) with the blood cell subtype counts. Similar correlation analysis with DNA 
methylation data of the 1202 aging-associated CpG sites alone revealed that the cell 
counts were important determinants of variation also in that data. In the end, the 
cell count estimates were adjusted for in the final regression analyses where the 
aging-association and mortality-association hypotheses were tested one by one 
(Studies I and IV).  
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Table 6.  The associations between PBMC subtype proportions and Δ-cAge-DNAmAge values in 
different age groups in V90 sample at baseline (in 2010) and follow-up (in 2014). Additional young 
control subjects (N = 33) were recruited at follow-up in 2014. The cell counts were determined 
using FACS, and the associations were determined using Spearman rank-sum correlation 
analysis; for the purpose of interpretation, as a clarification: larger and smaller Δ-cAge-DNAmAge 
values are referred to as ‘younger’ and ‘older’ DNA methylome age, respectively. Data not available 
are denoted as ‘na’. Associations with P<0.05 are denoted by ‘*’. (Study III) 

 Nonagenarians Young controls 

 

Δ-cAge-
DNAmAge at 

baseline in 2010, 
N=115 

Δ-cAge-
DNAmAge at 
follow-up in 
2014, N=41 

Δ-cAge-
DNAmAge at 

baseline in 2010, 
N=21 

Δ-cAge-
DNAmAge at 
follow-up in 
2014, N=40 

Cell type proportion (%) r p r p r p r p 
CD3+ of live-gated 
cells 0.106 0.261 -0.251 0.114 -0.065 0.780 0.404* 0.010 

CD4+ of CD3+ 0.316* 0.001 0.311* 0.048 0.505* 0.019 0.382* 0.015 

CD8+ of CD3+ -0.310* 0.001 -0.326* 0.038 -0.233 0.309 -0.232 0.150 

CD4+:CD8+ ratio 0.309* 0.001 0.346* 0.027 0.396 0.075 0.332* 0.036 

CD4+ CD28- -0.540* 4.75e-10 -0.626* 1.20e-5 -0.222 0.333 -0.344* 0.030 

CD8+ CD28- -0.269* 0.004 -0.327* 0.037 -0.369 0.100 -0.348* 0.028 
CD14+ of live-gated 
cells -0.112 0.235 0.033 0.836 -0.139 0.549 0.077 0.635 
CD19+ of live-gated 
cells na na 0.246 0.122 na na -0.025 0.879 

 

Table 7.  The associations of whole blood cell subtype counts with Δ-cAge-DNAmAge values at 
baseline in 1986 (cAge 15-24 years) and at follow-up in 2011 (cAge 40-49 years) of the subjects 
in the YFS. The cell counts were determined using genome-wide DNA methylation profiles and a 
specific cell count estimation algorithm (Jaffe and Irizarry 2014). Associations were determined 
using Spearman rank-sum correlation analysis; larger and smaller Δ-cAge-DNAmAge values are 
referred to as ‘younger’ and ‘older’ DNA methylome age, respectively. Associations with a p-value 
less than 0.05 are denoted by ‘*’. (Study III) 

 YFS, Δ-cAge-DNAmAge in 1986, 
N=183 

YFS, Δ-cAge-DNAmAge in 2011, 
N=183 

Cell type proportion (%) R p r p 

CD8+ T cells -0.085 0.255 -0.089 0.231 

CD4+ T cells 0.150* 0.044 0.093 0.211 

CD4+:CD8+ ratio 0.106 0.16 0.224* 0.003 

NK cells -0.024 0.747 -0.192* 0.009 

B cells 0.106 0.152 0.115 0.12 

Monocytes -0.028 0.711 -0.015 0.84 

Granulocytes 0.029 0.7 0.054 0.465 
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Table 8.  Correlations of the PBMC subtype proportions of subjects (N=63) in the V90 between 2010 
and 2014. The cell counts of the samples were determined using FACS. Associations were 
determined using Spearman rank-sum correlation analysis. Associations with a p-value less than 
0.05 are denoted by ‘*’. Correlation analysis was performed on the total sample without further 
categorization due to a small sample size. (Study III) 

Cell type proportion (%) r P 

CD3+ of live-gated cells 0.628* 2.26E-06 

CD4+ of CD3+ 0.830* 5.34E-13 

CD8+ of CD3+ 0.855* 2.13E-14 

CD4+:CD8+ ratio 0.811* 7.93E-16 

CD4+ CD28- 0.901* 9.48E-24 

CD8+ CD28- 0.838* 2.06E-13 

CD14+ of live-gated cells 0.317* 3.01E-02 

Table 9.  Correlations of blood cell subtype counts for subjects in the YFS population between 1986 
and 2011. The cell counts were determined using genome-wide DNA methylation profiles and a 
specific cell count estimation algorithm (Jaffe and Irizarry 2014). Associations were determined 
using Spearman rank-sum correlation analysis. Associations with a p-value less than 0.05 are 
denoted by ‘*’. (Study III) 

 YFS, all N=183 YFS, women N=113 YFS, men N=70 

Cell type proportion (%) R p r p r p 

CD8+ T cells 0.317* 1.20E-05 0.356* 1.35E-04 0.261* 2.90E-02 

CD4+ T cells 0.312* 1.57E-05 0.349* 1.86E-04 0.360* 2.19E-03 

CD4+:CD8+ ratio 0.453* 1.97E-10 0.464* 4.12E-07 0.511* 1.00E-05 

NK cells 0.398* 2.18E-08 0.430* 2.79E-06 0.312* 8.55E-03 

B cells 0.545* 1.33E-15 0.484* 8.69E-08 0.589* 8.39E-08 

Monocytes 0.547* 9.73E-16 0.561* 1.79E-10 0.521* 3.71E-06 

Granulocytes 0.206* 4.92E-03 0.268* 4.60E-03 0.08 0.509 

 
In Study II, the effect of PBMC subtype proportions on DNAmAge in V90_2010 

samples was evaluated using the linear multivariate regression model; the DNA 
methylome age was explained with the cell subtypes and CMV serostatus. The 
analysis showed that the proportion of CD4+CD28− determines most of the 
variation in the DNAmAge, and is a more important covariate than the CMV 
serostatus or all the other blood cell subtypes.  

In Study III, the associations between the blood cell subtype counts and Δ-cAge-
DNAmAge values in V90 and YFS samples were determined using Spearman rank 
sum correlation analysis at each time point (shown in Tables 6 and 7). A large 
proportion of the cell subtypes correlated significantly with the Δ-cAge-DNAmAge 
in separate age groups and time points.  
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In nonagenarians of V90_2010 and V90_2014 populations, CD4+CD28− cells 
were the most significant PBMC subtype correlate with the Δ-cAge-DNAmAge 
(Figure 14). Interestingly, as shown in Figure 14C, the proportion of CD4+CD28− 

cells demonstrated remarkable stability during the follow-up period, and this 
phenomenon was also observed consistently among other cell subtypes (Tables 8 
and 9).  

 

 

Figure 14.  CD28−CD4+ cell counts of the subjects in V90_2010 and V90_2014 correlate with 
their corresponding DNAmAge values and with one another (Study III). These associations are 
visualized as scatterplots. Each dot corresponds to one subject; the colors of the dots are explained 
in the graph legends. a) The CD28−CD4+ proportions of 90-year-old subjects in V90_2010 
correlated with their DNAmAge in 2010 (r = 0.540, P = 4.75 × 10−10, N = 115). b) The CD28-CD4+ 
proportions of 94-year-old subjects in V90_2014 correlated with their DNAmAge in 2014 (r = 0.626, 
P = 1.20 × 10−5, N = 41). c) The CD28−CD4+ proportions of all participants in V90_2010 correlated 
with their CD28−CD4+ proportions in V90_2014 (among all: r = 0.901, P = 9.48 × 10−24, N = 63; 
among elderly: r = 0.864, P = 3.33 × 10−16, N = 51; among young controls: r = 0.684, P = 0.014, N 
= 12). (Study III) 
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In addition to analysis using simple Δ-cAge-DNAmAge, the associations between 
cell subtypes and epigenetic age in Study III were confirmed to be highly similar 
when using DNAmAge residuals adjusted for chronological age instead of plain Δ-
cAge-DNAmAge (data not shown). In the analysis, the residuals were fetched from 
the regression model, where the Horvath DNAmAge was regressed on 
chronological age.  

5.5 Methylomic predictors of mortality (IV) 

The Cox univariate assessment highlighted 19 621 and 15 505 CpG sites associated 
with mortality (P<0.05) in the 2.55-year and 4-year follow-up data of nonagenarians 
(N=111), respectively. Of those, 19 CpG sites for the 2.55-year follow-up and seven 
CpG sites for the 4-year follow-up data showed significance at the level of FDR<0.5. 
The Ingenuity Pathway Analysis (IPA) gene networks were generated for the 16 
known genes associated with the 19 top-ranking CpG sites at the 2.55-year follow-
up (Figure 15). Analogous analysis was also performed with genes harboring the 250 
top-ranking CpG sites. In both cases, NF-κB was displayed as the central node, and 
were enriched for the common term ‘Hematological System Development and 
Function’. The canonical pathway analysis demonstrated a wide spectrum of cellular 
signaling functions associated with methylomic predictors. Of those, several were 
inflammation and immunity-related processes. The IPA analysis with seven or 250 
top-ranking predictor CpG sites of the 4-year follow-up data resulted as non-
significant. Due to low number mortality-associated CpG sites with FDR<0.5 in the 
4-year follow-up data, further analyzes were not performed with that data. 

Correlation analysis between the DNA methylation levels in the 19 mortality-
associated CpG site methylation level (the standardized weighted residuals) and the 
corresponding (i.e. transcript and CpG site in overlapping genomic location) gene 
expression levels were analyzed using Spearman's rho. The transcripts were selected 
in the analysis if the gene expression level was above threshold of 5. Thus, the list of 
genes in the analysis was ATP5SL, FOXP1, HIVEP3, IQSEC1, ITPR3, MAP3K14, 
METAP1, RGS10, RIOK1 and VOPP1. This analysis resulted three significant CpG 
site/transcript pairs. Inverse correlations were observed between the cg03348466 
(CRTC3) and CRTC3 mRNA level and between cg04182483 (RGS10) and the 
RGS10 mRNA level. A positive correlation was observed between cg22794214 
(HIVEP3) and HIVEP3 mRNA level.  

The Ridge regression selection-procedure revealed that the model with 
methylomic markers performed better than models with conventional aging 
biomarkers (listed in Table 2). In the selection procedure, mortality-predictive 
accuracy of separate Ridge regression models was compared between: (1) a model 
containing only the conventional biomarkers, (2) a model containing both the 
conventional biomarkers, and the 19 mortality-associated CpG sites, and (3) a model 
containing only the 19 mortality-associated CpG sites. A DNAmAge estimate was 
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included in the regression models as part of a group of conventional biomarkers. 
The best prediction model was selected based on goodness of fit descriptive and 
Akaike Information criterion. The most important methylomic predictors were 
selected from the 19 CpG sites. The final mortality-predicting signature shown in 
Table 10 was assessed using a Cox regression model, and the discriminative power 
(Harrell’s C) for this model was 89.9%.  
 

Table 10.  The final mortality-predicting methylomic signature from the 2.55-year follow-up 
data (V90_2010, N=111 with full pattern of variables shown in Table 2) assessed from the Ridge 
regression-selection procedure and Cox regression analysis. These seven CpG sites of the 19 top-
ranking sites provided the best Cox regression model. Symbols: HR=hazard ratio, CI=confidence 
level interval, S.E. =standard error, Z=Wald statistics. (Study IV) 

 

 HR (95% CI) S.E. Z P 

cg08421934 (NA) 0.41 (0.26-0.64) 0.1 -3.84 <0.001 
cg15770702 (MAP3K14) 0.40 (0.27-0.61) 0.08 -4.38 <0.001 
cg08596308 (ATP6V1G2; NFKBIL1) 0.50 (0.34-0.73) 0.1 -3.6 <0.001 
cg23282964 (RIOK1) 0.56 (0.37-0.84) 0.12 -2.82 0.005 
cg16720947 (PLEC1) 0.52 (0.34-0.80) 0.13 -2.94 0.003 
cg27027151 (IL21R) 2.09 (1.44-3.02) 0.39 3.9 <0.001 
cg26843567 (NA) 0.68 (0.46-0.99) 0.13 -2.01 0.045 

 
Finally, it was examined whether the methylomic mortality-predictors are central 

contributors to the aging-associated epigenetic drift. Therefore, the top-ranking 250 
mortality-associated CpG sites were compared to the lists of previously reported 
aging-associated methylation sites (Marttila et al. 2015a; summary by Steegenga et al. 
2014). The examination showed that there were no overlapping sites. Furthermore, 
the epigenetic age (DNAmAge) showed no association with mortality in Study IV. 
The epigenetic ages of survivals and non-survivals for 2.55-year follow-up analysis 
are shown in Table 2. There were no significant differences between 2.55- or 4-year-
follow-up survivals and non-survivals in their baseline DNA methylome ages.  
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Figure 15.  The highest-ranking networks from the genes with (panel a) the top 19 and (panel 
b) the top 250 mortality-associated CpG sites. These sites were identified in the 2.55-year follow-
up (V90_2010, N=111 with full pattern of variables). The green color of the molecules indicates 
that hypomethylation of a CpG site in the gene was associated with increased mortality, and the 
red indicates that hypermethylation of a CpG site in the gene was associated with increased 
mortality. (Study IV) 
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6 DISCUSSION 

6.1 The Studies 

In this thesis, the objective was to investigate aging-associated changes in DNA 
methylation landscape (I) and the behavior of the epigenetic clock that is manifested 
in the human immune cells (III). Methylomic markers predicting survival in the 
nonagenarians were explored (IV) and the effect of immune system aging-
accelerating marker CMV in epigenetic aging was analyzed (II). Special interest was 
given to the epigenetic age that is demonstrated with DNA methylome age 
estimation algorithm (Horvath 2013).  

The specific hypotheses for this thesis comprised the following issues. The 
longitudinal behavior of the epigenetic age (i.e. Horvath’s DNAmAge) as well as the 
blood cell subtype distributions appeared to be indefinite. Discrepancies in the lists 
of reported aging-associated methylation sites had emerged, thus requiring further 
evaluations. Another question concerned methylomic mortality predictors: were 
there methylation sites that might be used as survival predictors in the elderly (90+ 
years of age) and might those predictors even overcome conventional biomarkers of 
aging in the survival analysis? Moreover, the associations between epigenetic aging 
and biomarkers related to immune system aging (such as CMV or blood cell 
distribution) was unclear.  

6.2 Aging-associated DNA methylation changes at single CpG sites 

Overall, observations in Study I support the existence of epigenetic drift and the 
epigenetic clock. The study showed that clocklike-behaving CpG site methylation 
may be reliably detected from a cross-sectional sample with an age range less than 
10 years and relatively small sample size. In the study, aging-associated CpG sites 
were explored using EWAS approach on YFS_2011 sample. The blood cell subtype 
counts in the samples were characterized using methodology based on methylation 
signatures (Jaffe and Irizarry 2014), and the cell subtype influence on DNA 
methylation was shown to be significant. The resulting top-rank aging-associated 
CpG sites are shown in Tables 3 and 4.  

The different characteristics of hypomethylation and hypermethylation during 
aging have been reported (Zampieri et al. 2015), and in Study I, this difference was 
seen in GO term enrichment analysis, in Pscan transcription binding partner analysis 
(Zambelli et al. 2009), and in numbers of association hits per gene. Even though 
active demethylation pathways exist (Tahiliani et al. 2009; Kohli and Zhang 2013; 
Rasmussen and Helin 2016), aging-accelerated global hypomethylation seems to 
largely resemble random erosion (Zampieri et al. 2015), and appears to be influenced 
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by many factors including aging-associated deficiency of methyl group donors in the 
one-carbon cycle (Guéant 2016). Hypermethylation is a more actively guided process 
in nature, as the addition of methylation group itself is always an enzymatic reaction 
(Riggs 2002; Rasmussen and Helin 2016). In Study I, there was a clear enrichment 
bias of the GO function terms and process terms within genes with aging-associated 
CpG sites. The terms were enriched to genes with hypermethylated CpG sites, 
exclusively, while hypomethylated genes showed no enrichment. The most 
statistically significant processes enriched to genes with hypermethylated CpG sites 
were ‘anatomical structure development’ and ‘morphogenesis’, both of which cluster 
under the term ‘developmental process’. The enrichment of hypermethylated aging-
associated CpG sites to these processes has been previously reported (Rakyan et al. 
2010; Hernandez et al. 2011; Johansson et al. 2013; Florath et al. 2014; Marttila et al. 
2015). In addition, other studies have demonstrated (Reynolds et al. 2014; Yuan et 
al. 2015) that the CpG sites hypermethylated during aging are enriched to common 
processes and exhibit shared features, whereas hypomethylated CpG sites are a less 
homogenous group. Furthermore, aging-associated hypermethylation interactome 
hotspots have been reported (West et al. 2013).  

Regarding the numbers of aging-associated CpG sites per one gene, aging-
associated hypermethylation was more frequent within genes with more hits of 
aging-association (Figure 7). Moreover, the Pscan analysis demonstrated that genes 
with hypermethylation-associated CpG sites were predicted to be regulated by 
several common transcription factors, whereas there were no common transcription 
factors found for genes with hypomethylated CpG sites. Thus, with these findings 
in Study I, the differing characteristics of aging-associated hypermethylation and 
hypomethylation in sites covered by 450Beadchip array are underlined even further. 

6.2.1 Comparison analysis of different studies 

The most commonly replicated aging-associated DNA methylation sites were 
explored in Study I. In the exploration, the resulting lists of aging-associated CpG 
sites in Study I and other studies (Garagnani et al. 2012; Hannum et al. 2013; Florath 
et al. 2014; Marttila et al. 2015a) were compared. All of the studies in the comparison 
had been using similar array technology (Illumina 450Beadchip) and heterogeneous 
blood specimens. Specifically, the reproducibility of these aging-associations was 
explored in two ways: (option 1) using studies with virtually identical bioinformatics 
analysis pipelines with blood cell subtype count considerations, and (option 2) using 
studies with varying analysis pipelines without cell subtype count considerations.  

Comparison analysis of option 2 revealed that the number of the same aging-
associated CpG sites reported by multiple studies was substantially low (Figure 9). 
This discrepancy in results is an acknowledged paradigm. For instance, a study by 
Dozmorov (2015), where comparison analysis highly similar to Study I was 
performed, reached the same conclusion. The author reported that of the seven 
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studies in comparison, only one aging-associated methylation region was identified 
uniformly, and 335 overlapping regions out of 16 854 regions were reported by three 
studies (Dozmorov 2015).  

Various environmental and genetic factors modify the aging-associated epigenetic 
drift (van Dongen et al. 2016). Factors that are uncontrolled in the methylomic 
analyses may explain the differences between results from separate EWASs focusing 
on aging. In particular, the heterogeneity of the blood samples has shown its 
importance. A study by Gervin et al. (2016) supports this conclusion in an analysis 
using longitudinal setting with 2-, 10- and 16-year-old subjects and reduced 
representation bisulfite sequencing. The sequencing method captured 635899 CpG 
sites. The authors concluded that the effects of aging seen in methylomic landscape 
in blood cells are largely mediated through variation in cell subtypes. Less than 10% 
of the 346 aging-associated CpG sites demonstrated association with age directly. 
(Gervin et al. 2016) Earlier findings have also demonstrated that caution is required 
when interpreting results from whole blood samples without cell proportion 
considerations (Reinius et al. 2012; Jaffe and Irizarry 2014). 

Nevertheless, in spite of the discrepancies at single CpG site resolution, aging-
associated methylation changes reported by different studies demonstrate many 
universal characteristics (e.g. Polycomb Repressive Complex 2 signature (Dozmorov 
2015) and enrichment bias of hypermethylation and hypometylation (Zampieri et al. 
2015). The most acknowledged and repeatedly aging-associated single CpG site is 
cg16867657, which is located in promoter region in gene ELOVL2. 
Hypermethylation of cg16867657 has been reported as aging-associated in multiple 
tissues and populations with different surrounding environments (populations 
comprising, for example, European, Hispanic, Arab, and African hunter-gatherers). 
(Garagnani et al. 2012; Gopalan et al. 2017) cg16867657 association with age was 
also seen in Study I (Table 3). Furthermore, the DNA methylation levels of Elovl2 
have been shown to change in several tissues of mice in a directionally consistent 
manner when compared to humans (Spiers et al. 2016). In spite of the solid evidence 
of the aging-association, the functional role of ELOVL2 gene in the aging process 
is unclear. A study that focused in ELOVL2 methylation in details (Bacalini et al. 
2017), has suggested that hypermethylation level of ELOVL2 is a descriptive of 
number of replication events in whole-blood cells. They observed using EpiTYPER 
assay that CMV-serostatuspositive nonagenarians exhibit higher methylation levels 
in a specific locus in the gene. However, currently, the link between fundamental 
aging-related processes, ELOVL2 and its methylation is missing. ELOVL2 is a gene 
that encodes polyunsaturated fatty acid elongase. The enzyme operates in 
condensation reaction during the very long fatty acid elongation cycle in the 
endoplasmic reticulum (Leonard et al. 2002; Jakobsson et al. 2006). Noteworthy, 
while DNA methylation of ELOVL2 clearly increases during aging, studies 
analyzing aging-associated transcriptomic changes in human populations have not 
observed differential expression of the gene (Steegenga et al. 2014; Marttila et al. 
2015).  
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In summary, regarding comparison analysis, Study I and study by Marttila et al. 
(2015a) were compared in option 1, and in both of these, the cell subtype 
heterogeneity was controlled and similar analysis pipelines were used. When option 1 
(i.e. results from studies with virtually identical bioinformatics analysis pipelines with 
blood cell subtype count considerations) was compared to option 2 (i.e. results from 
studies with varying analysis pipelines without blood cell subtype count 
considerations), there were multiple times higher number of overlapping aging-
associated CpG sites in option 1 (as shown in Figure 8 and Figure 9). Moreover, 987 
CpG sites shown in Figure 8 demonstrated clocklike behavior through entire 
adulthood. These sites appear to change their methylation levels linearly as a function 
of growing chronological age. This is assumed to be because the sites were observed 
as aging-associated in a cross-sectional sample of middle-aged individuals with 
narrow chronological age range (9 years; Study I) as well as in a sample of two age 
groups having substantially wider chronological age range (~60 years; Marttila et al. 
2015a). Thus, these 987 CpG sites exemplify the paradigm of epigenetic clock. 

The results in Study I underline that the blood cell subtype consideration is a 
mandatory practice for replicative EWASs in blood. Results in this thesis 
demonstrated that the number of overlapping association hits increases when the 
analysis is adjusted for cell heterogeneity. In other words, in order to detect 
association between aging and DNA methylation only, cell heterogeneity may 
interfere this analysis. This is because cell composition is remodeled during aging, 
and specific DNA methylation signatures are so tighly connected to different cell 
subpopulation types.   

As another conclusion, Study I suggests that the aging-associated 987 CpG sites 
might be discovered as universally clocklike-behaving sites in the blood in almost 
any human adult cohort with various age ranges when using appropriate analysis 
techniques. Future replication studies may determine whether this is true.  

6.3 Methylomic mortality predictors 

Analogous to Study I, Study IV was performed at single CpG site resolution meaning 
that associations between mortality and DNA methylation levels were analyzed in 
each CpG site covered by 450Beadchip array. The methylomic all-cause mortality-
prediction analysis was performed genome-wide in nonagenarians (V90_2010) with 
the blood sample heterogeneity consideration. As a result, the top-ranking mortality-
associated CpG sites were identified. These sites were different from the established 
aging-associated DNA methylation sites, and performed better in mortality 
prediction than conventional aging biomarkers. The addition of epigenetic age to the 
mortality analysis did not enhance the predictive capacity of the regression model. 
Moreover, the methylomic predictor signature established in this thesis supports the 
genomic-level role of NF-κB at the very end of the human lifespan.   
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The methylomic mortality prediction signature of blood specimens has the 
potential to serve as a molecular biomarker for the detection of health risk factors 
and increased mortality risk. Because the epigenetic landscape is reversible in nature 
and changes due to environmental input, population-based intervention studies 
using methylomic mortality risk scores might provide new information for the basis 
of health guidance.  

In Study IV, the performance of conventional aging biomarkers in mortality 
prediction was compared to the methylomic ones. The final mortality-predicting 
model in Study IV built up from the top-ranking 19 mortality-associated CpG sites 
at the 2.55-year follow-up alone showed the best predictive accuracy when compared 
to other models containing either the conventional aging biomarkers (listed in Table 
2) only, or conventional aging biomarkers (Table 2) in combination with the CpG 
sites. Even though the biomarkers presented in Table 2 are acknowledged measures 
of aging rate and commonly associated with altered mortality risk, the results here 
imply that the methylomic signature may be an even more sensitive marker of 
increased risk of death than the conventional biomarkers. However, the magnitude 
of change in these mortality-predicting CpG sites is unknown. Without DNA 
methylation levels measured from multiple time points before deceasing, it remains 
as being only a hypothetical suggestion that changes in DNA methylation levels may 
indicate imminent death. Furthermore, the effect on gene expression mediated by 
these methylomic mortality predictors appears to be complicated and warrant further 
studies. In Study IV, the mRNA levels of transcripts that are situated in overlapping 
locations with mortality-predicting CpG sites showed only few moderate signs of 
being associated with DNA methylation levels.  

The top-ranking mortality predicting DNA methylation signatures established in 
nonagenarians in Study IV turned out to be different from other studies (Moore et 
al. 2016; Zhang, Wilson et al. 2017) that have been performing corresponding 
methylomic mortality analyses genome-wide in population-based samples. However, 
some of the findings in Study IV are consistent with a study by Zhang et al. (2017b) 
in which discovery, validation and replication cohorts spanning the age range of 31-
82 years were utilized. The authors found 58 CpG sites that are all-cause mortality-
associated, and these findings were also independent from the DNA methylome age 
estimate and independent from CpG sites on the basis in the DNA methylome age 
calculation.  In a similar manner to Study IV, Zhang et al. (2017b) comprised a top-
hit panel of the best mortality-predicting CpG sites. Furthermore, the authors used 
the panel in mortality risk-score calculation. Risk-score approach was verified in an 
independent replication cohort, and the score also predicted cancer, cardiovascular 
disease and all-cause-mortalities in those samples. 

The top-ranking 58 sites by Zhang et al. (2017b) mapped to 38 genes that are 
linked to various aging-associated diseases including cancers and cardiovascular 
diseases. Tobacco smoking was an important covariate as it was associated with 48 
of the 58 mortality-CpGs. The well-known smoking-site (cg03636183) located in 
gene F2RL3 (Breitling et al. 2011; Zhang et al. 2014) was also among these mortality-
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predicting CpGs. Regarding this finding, it is interesting that tobacco smoking is an 
important mortality risk increasing lifestyle factor. It is also notable that previous 
research has indicated that the hypomethylation of the cg03636183-smoking-site 
might be reversed in the following decades after smoking has ceased (Zhang et al. 
2014), and this underlines the importance of findings by Zhang et al. (2017b). The 
data in this thesis have pointed to smoking-associated changes in cg03636183 located 
in gene F2RL3: the quality control exploration of Study I showed that tobacco 
smokers in the YFS_2011 sample demonstrated hypomethylation of cg03636183.   

The genes with mortality-associated CpGs clustered functionally around the 
nuclear factor kappa B (NF-κB) complex (Figure 15). The genes, nuclear factor of 
kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) and ataxia telangiectasia 
mutated (ATM) were also identified in the network. Consequently, these results 
demonstrate the role of NF-κB complex in human longevity and support previous 
findings of its lifespan-regulating role. Specifically, the NF-κB complex is associated 
with accelerated aging and cellular senescence in studies with mouse models (Osorio 
et al. 2012; Tilstra et al. 2012; Jurk et al. 2014). The studies implied that disrupted 
NF-κB activation influenced by NFKB1 and ATM regulation and the following 
chronic systemic inflammatory state is driving the senescence and aging-associated 
decline.  

Moore et al. (2016) also performed genome-wide methylomic mortality-
association analysis using a population-based sample with the age range of 30-100 
years. The participants were followed for, on average, 4.4 years. The study reported 
88 mortality-associated CpG sites and 76 CpG sites where the rate of methylation 
level change was associated with mortality. The individual mortality-associated CpG 
sites in the study did not overlap with those of Study IV, but the study was in 
accordance with Study IV in other aspects. The mortality-associated CpG sites were 
largely different from the most acknowledged aging-associated sites. Interestingly, 
mortality-associated CpG sites by Moore et al. (2016) also comprised genes with 
immunoinflammatory functions and a link to NF-κB regulation. (Moore et al. 2016) 

In conclusion, the results (Study IV, Moore et al. 2016) suggest that the genomic 
factors controlling mortality operate through mechanism(s) that involve(s) an 
inflammatory component. However, it should be underlined that, instead of 
complete mechanistic link(s), Study IV and other such analyses provide only 
associations between mortality and DNA methylation changes in the predictor CpG 
sites. 

The age range appears to be the main difference in the study design in Study IV 
(nonagenarians) and data by Zhang et al. (2017b; all participants aged 32-82 years) 
and Moore et al. (2016; participants aged 30-100 years). The individual top-ranking 
mortality-predicting CpG sites in the Study IV were different from those reported 
by Zhang et al. (2017b) and Moore et al. (2016). It may be speculated that the 
outcome differences between studies using participants with differing ages are 
equally plausible, as genetics appears to have a greater impact on the survival rate at 
ages above 60 years (Jylhava et al. 2010). In general, the biological factors influencing 
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mortality risk at a younger age (below 80 years) appear to be different from those in 
the oldest group. A previous population-based epidemiological study with 19 430 
participants has demonstrated that chronic diseases in the eldest group (aged 90-99 
years) are less powerful all-cause mortality predictors when compared to younger 
adults (aged 50-59 years). (Lee et al. 2008) In this light, the mortality predictors are 
likely to differ between age categories, and the methylomic predictor model 
presented in Study IV (Table 10), may be an old-age mortality-predicting signature 
that is unsuitable for populations with other age ranges. 

On the other hand, analysis protocols used in many studies (e.g. Study IV and 
Zhang et al. (2017b)) have been utilizing Lasso or Ridge regression that are designed 
to capture the most predictive variables among a large set of variables demonstrating 
high dimensionality and multicollinearity. For example, principal component analysis 
similarly aims at the dimensionality shrinkage. Consequently, it is less likely to 
capture precisely identical CpG sites to the final and statistically fine-tuned 
prediction signatures. Preferably, the overlapping sites might be found through list 
comparison with the preliminary lists of mortality-associated sites. Often, the 
preliminary association lists are unpublished. 

6.4 Longitudinal analysis of the epigenetic age 

In Study III, the behavior of human epigenetic clock, assessed as the DNAmAge 
estimate and DNAmAge acceleration (the difference between chronological age and 
DNAmAge estimate; Δ-cAge-DNAmAge), was characterized longitudinally using 
two independent populations representing early adulthood, middle-age and 
advanced ages. As a main finding, longitudinal data provided evidence that the 
difference between chronological and epigenetic age is surprisingly stable over 
several years or even decades of human life, and when accompanied with previous 
reports, it may be concluded that the main trajectory of the blood DNA methylome 
aging rate is largely set before adulthood. 

In line with previous research (Christiansen et al. 2016; Armstrong et al. 2017), 
the estimated epigenetic ages in Study III were at lower level than the actual 
chronological ages of the nonagenarians (90±0 and 94±0 years of age, Table 5). 
Whether this issue is a DNAmAge algorithm-based underestimation problem or a 
true phenomenon remains to be shown. However, it may be hypothesized that this 
observation is an indication of a higher survival rate at earlier adulthood due to 
overall younger epigenetic age. DNAmAge algorithm-based underestimation may be 
another explanation, because there were considerably low number of individuals 
with >90 years of age in the original epigenetic age-predictor training analysis 
(Horvath 2013). Due to insufficient algorithm training, the epigenetic age estimates 
of nonagenarians may rely on more unreliable assumptions than other age groups 
with better coverage in the training analysis. 
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However, the results in Study III demonstrated, in both samples (V90 and YFS), 
with varying age ranges and follow-up periods, that the difference between 
epigenetic and chronological ages was largely unchanged during the follow-ups 
(Figures 11A and 11B). The analysis in Study III pointed that, at the age of 15-24 
years, the level of epigenetic aging was already on an individual-specific level, in such 
way that over the 25-year follow-up period, very little deviation from this line was 
observed. A clear association in the scatterplot in Figure 11A demonstrates this 
finding. In the elderly and in the young adults, the DNA methylome ages were 
similarly fixed for four years (Figure 11B).  

Several environmental factors, such as diet, physical characteristics and toxin 
exposure, may influence the ticking rate of the epigenetic clock (Zampieri et al. 2015; 
Simpkin et al. 2016; Nevalainen et al. 2017; Quach et al. 2017). Consequently, it is 
possible that the shifts from the epigenetic age trajectories shown in Figure 11 are 
caused by environmental factors. The shift is demonstrated in the observation that 
some of the Δ-cAge-DNAmAge values diverge from the diagonal lines in the 
scatterplots in Figure 11A and 11B. Furthermore, laboratorial technical issues of the 
DNAmAge measurement may contribute to the scattering. Even though numerous 
factors may have an impact on the DNAmAge estimate, astonishingly high 
correlation coefficients between within-subject Δ-cAge-DNAmAge values at the 
follow-ups were exhibited in both study populations in Figure 11A and 11B.  

Other epigenetic studies with cross-sectional data have shown similar signs of the 
epigenetic age behavior as seen in Study III. Horvath (2013) first reported in his 
study using cross-sectional DNAmAge data that the epigenetic clock-ticking rate is 
accelerated before adulthood and thereafter the rate slows down (Horvath 2013). 
Moreover, the DNA methylomic profiles of twin pairs are highly similar (77% 
similarity) at birth and begin to deviate from then on, and by the late adulthood, the 
DNA methylomic profiles of twins display only 39% similarity (at median age of 63 
years, all women) (Horvath 2013).  

Above all, a recent follow-up study (Simpkin et al. 2016) on children (baseline at 
birth, follow-up time points at 7 and 17 years of age) demonstrated that the 
difference between chronological and epigenetic age in the children is smaller on 
average at the time of birth when compared to later stages of childhood. The 
deviation in epigenetic age acceleration on those children increased in association 
with chronological age. The authors observed several factors that are related to 
epigenetic age acceleration in children, including in utero exposure to alcohol 
consumption and smoking. Importantly, Simpkin et al. (2016) concluded that within-
subject correlation between epigenetic ages at different time points increases with 
increasing chronological age; in other words, at the time of birth and during 
childhood, the children exhibited lower correlations of epigenetic ages between two 
sequential time points than during later periods of life. Consequently, these results 
are consistent with the conclusion that the primary trajectory of epigenetic age (i.e. 
difference between epigenetic and chronological ages) is fixed before adulthood. 
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Figure 16.  A hypothesis for development of epigenetic age trajectory during human lifespan 
based on findings in Study IV and Simpkin et al. (2016). Negative or positive Δ-cAge-DNAmAge 
value correspond to old or young DNA methylome age, respectively. Before adulthood, the 
epigenetic aging is either decelerated (A) or accelerated (C) when compared to the situation where 
Δ-cAge-DNAmAge is 0 (B). In this hypothesis, the trajectory i.e. Δ-cAge-DNAmAge values change 
less during adulthood.  

Early years during the human lifespan are extremely important determinants of 
future health span. Previous findings from the acknowledged Dunedin study in New 
Zeeland clearly demonstrate this issue. The study comprises full birth cohort 
including 1037 individuals and has been followed with unique intensity (participation 
rate>90%) for 40 years starting from the time of birth. (Poulton et al. 2015) 
Moreover, specific biomarkers, for example, telomere length (Kananen et al. 2010; 
Naess and Kirkengen 2015) and the epigenetic data from Study III and by Simpkin 
et al. (2016) have now shown support for this early-years-development-paradigm.  

As a conclusion, the rate of the epigenetic age acceleration varies to some extent 
but less in adulthood, even at the old ages, and the main difference between 
epigenetic age and chronological age is set to a certain general level before adulthood, 
probably during childhood (as shown in Figure 16). Overall, the model proposed in 
Figure 16 is thought provoking, because older epigenetic age is also associated with 
increased mortality in adulthood (B. H. Chen et al. 2016; Zhang et al. 2017). 
Therefore, epigenetic changes in the beginning of life gain an even more crucial 
meaning for the entire human lifespan. 
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6.5 Cytomegalovirus infection 

In order to obtain a perspective on another aspect of immune system aging, the 
association of CMV+/- infection status with epigenetic aging was investigated in 
Study II. Previously, human CMV infection has been connected in epidemiological 
studies to aging-related conditions such as frailty and functional impairment (Wang 
et al. 2010; Moro-Garcia et al. 2012) as well as all-cause and cardiovascular mortality 
(Strandberg et al. 2009; Roberts et al. 2010; Gkrania-Klotsas et al. 2013). 
Furthermore, CMV infection in humans seems to drive notable changes in the T cell 
repertoire and functioning, and thus the infection is a possible contributor to 
immunosenescence (Pawelec and Derhovanessian 2011; Tu and Rao 2016).  

The analysis in Study II was performed in separate chronological age categories, 
because it was suggested that nonagenarians and young controls probably differ in 
their CMV infection timeframes; the nonagenarians may have had the acute CMV 
infection decades ago and therefore the latent virus has had more time to facilitate 
inflammaging and immunosesescence. Interestingly, in both categories, the CMV+ 
subjects turned out to be older by their epigenetic age than the CMV- subjects (Figure 
12). As such, these findings support the biological significance of the DNAmAge 
estimate.  

6.6 The effect of blood cell subtypes  

The data in this thesis indicate that the aging-associated changes in the cell 
composition appear to be relatively small during many stages of lifespan. 
Nevertheless, based on the data, the aging-associated shift in the cell composition by 
the time of 90 years of age is also apparent. Furthermore, the data suggest that the 
epigenetic age is associated with the varying blood cell subtype distributions. In 
practice, these blood cell composition-related issues generate complexity for the 
interpretations of results from blood cell-based experiments.  

In line with prior knowledge (Weiskopf et al. 2009; Pawelec et al. 2010; Tu and 
Rao 2016; B. H. Chen et al. 2016) the cell count data of V90 population showed that 
the cell composition is remodeled in the elderly (as shown in Table 5). The aging-
associated shift was explored cross-sectionally in both time points (in 2010 and 
2014), and the change in cell composition was seen between young controls and 
nonagenarians, whose age difference was close to 60 years. For instance, the 
proportions of CD28-CD4+, CD28-CD8+ and CD14+ cells differed greatly between 
these groups (Table 5).  

A study by Chen et al. (2016) has underlined the acknowledged (Pawelec 2017) 
aging-associated shift in blood cell composition. The DNA methylomic profiles may 
be utilized to estimate cell subtype counts in blood specimens (Houseman et al. 2012; 
Jaffe and Irizarry 2014), and the aging-associated shift was demonstrated using this 
estimation technology. The estimates of blood cell subtype counts were clearly 
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associated with chronological age in a mortality prediction meta-analysis of 13 
cohorts comprising over 13 000 participants. The study showed that, when 
compared to other cell subtypes, the quantities of CD8+ naïve cells were decreased 
and CD8+CD28-CD45RA- cells were increased the most by age. That is to say, in the 
meta-analysis, the highest reported correlation coefficient was 0.48 for CD8+CD28-

CD45RA- cells and the lowest was -0.53 for CD8+ naïve cells. (B. H. Chen et al. 
2016) In V90_2010 data (Table 5), there are also clearly differing proportions of 
CD8+ naïve cells between young controls and nonagenarians. Interestingly, the 
utilization of blood cell count information to the methylomic analysis improved the 
mortality prediction capability in the initial analysis of the report by B. H. Chen et al. 
(2016).  

In addition to the aging-associated shift discussed above, the longitudinal data of 
blood cell composition provided evidence that within-subject changes in blood cell 
subtype proportions are relatively small in young adulthood, in middle age, as well 
as in the advanced age for several years or even decades. This is demonstrated in 
significant intra-individual correlations of the blood cell subtype distributions 
between sequential time points (Table 8 and 9, Figure 14C). In other words, in Study 
III, young adults and nonagenarians were followed for 4 or 25 years, and the results 
showed that within-subject changes in the immune cell landscape were relatively 
small during those years. As shown in Figure 14C and Table 8, in V90 population 
(both young adults and nonagenarians), the CD28−CD4+ proportions in blood 
samples collected in 2010 were highly similar to those CD28−CD4+ proportions in 
blood samples which were collected 4 years later. Other blood cell types showed 
similarly noticeable within-subject correlations in both V90 and YFS populations 
(Tables 8 and 9). For instance, the B cell and monocyte counts as well as the 
CD4+:CD8+ cell count ratio measured from the blood samples of middle-aged 
participants in YFS_2011 sample correlated clearly (r≥0.5) with their corresponding 
cell counts in the YFS_1986 sample collected 25 years earlier. These results suggest 
that the major shifts in the blood cell composition that are seen in Table 5 might 
take place somewhere after middle age and before advanced ages. However, the age 
groups in the study populations in this thesis comprised young and middle-aged 
adults as well as nonagenarians, while children and the age group between middle 
age and advanced ages were lacking. Accordingly, it remains to be experimentally 
verified when exactly the major shift in the blood cell composition occurs.  

In Study III, the epigenetic age was associated with the varying blood cell subtype 
distributions (Table 6 and 7). Specifically, CD4+CD28− and CD8+CD28- cells were 
the most clear blood cell subtype correlates with the Δ-cAge-DNAmAge. Overall, 
the blood cell subtype that correlated with Δ-cAge-DNAmAge the most was 
CD4+CD28− cells; an increased frequency of these cells was associated with older 
DNA methylome age in the nonagenarians at both time points (Table 6; Figure 14). 
Moreover, CD4+CD28− cells were similarly associated with DNAmAge in the young 
controls (Table 6; Figure 14).  



 

107 

The observation that increased proportions of immunosenescence-
demonstrating cell subtypes (CD4+CD28− and CD8+CD28− cells) and a reduced 
CD4+:CD8+ cell ratio emerged as highly significant correlates of older DNAmAge 
is of specific importance to aging and age-related conditions. However, the 
association between DNAmAge and immune cell distribution is not limited to aging 
alone. A study by Horvath and Levine (2015) demonstrated that accelerated 
epigenetic aging in HIV-1 patients is accompanied by higher frequencies of NK and 
CD8+CD28−CD34RA− T cells and decreased frequencies of granulocytes, naïve 
(CD4+ and CD8+) T cells. The study was performed using six DNA methylation 
datasets comprising brain and blood samples. The average increase in epigenetic age 
between cases and controls was 7.4 years in the brain tissue and 5.2 in the blood. 
(Horvath and Levine 2015) It is worth noting that prematurely developed aging-
related conditions are more common in individuals with HIV-1 infection (Pathai et 
al. 2014).  

While experimental evidence is limited, Horvath and Levine (2015) have already 
proposed a few models that might underlie the association between blood cell 
subtype proportions and epigenetic age acceleration (Horvath and Levine 2015). 
Specifically, the authors conducted these models regarding HIV-1 infected 
individuals but these suggestions might be generalized to a wider perspective to 
concern CMV infection and even aging in general. According to the authors, in one 
of the most promising suggestions, the burden of the virus infection on the 
epigenetic age acceleration is mediated through the increased quantities of senescent 
or exhausted T cells (e.g. HIV-1 infection → increased proportion of 
CD28−CD45RA− CD8+ T cells in blood → higher epigenetic age measured in 
blood). However, the authors find weaknesses in this model, as it may not be 
generalized to the brain tissue, which is isolated by the blood-brain barrier, and 
epigenetic aging is seen in the brain at the same time. Another model by Horvath 
and Levine (2015) suggests that the causal relationship between the three 
components is missing; the quantities of exhausted T cells are increased due to virus 
infection and epigenetic age are independently changed as a result of virus infection. 
Moreover, the authors propose that the viral integration into the host genome might 
weaken the genomic stability, which might be further coupled with epigenomic 
instability, and thus the changes in the DNA methylome age are plausible. Faults in 
the DNA methylation maintenance machine might arise and this could be seen as 
epigenetic age acceleration.  

In Study II, the proportion of CD4+CD28− cells correlated more strongly with 
the epigenetic age acceleration than the CMV serostatus. The suggested models by 
Horvath and Levine (2015) may also apply to this finding. Either the CMV serostatus 
might accelerate epigenetic aging seen in the blood cells by exhausting the immune 
cell pool, or these two events exist in parallel without no causality in between. 
However, because altered CD4+CD28− and CD8+CD28- cell proportions are so 
tightly linked with cytomegalovirus infection (Tu and Rao 2016), it may be difficult 
to differentiate and solve these issues experimentally.  
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In spite of the limited knowledge of causalities, in practice, studies (Study I-III; 
Reinius et al. 2012; Jaffe and Irizarry 2014; Horvath and Levine 2015; Marttila et al. 
2015a) have shown that the blood cell subtype proportions are potential 
confounding factors in EWASs or analysis focusing on epigenetic age estimate. 
Moreover, as demonstrated in this thesis and elsewhere (Marttila et al. 2015), 
CD4+CD28− cells appear to be a specifically important confounder in methylomic 
aging-association studies in the blood. The overall variation in genome-wide DNA 
methylation profile has been shown to correlate greatly with the proportion of 
CD4+CD28− in PBMCs (Marttila et al. 2015a). This implies that these cells have 
crucially different and unique methylomic landscapes when compared to other cell 
types within PBMCs. The mechanistic basis for the role of CD4+CD28− cells in 
immune system aging is not fully understood and further studies are needed. 
However, it may be speculated that alterations in aging-associated changes in DNA 
methylation profiles as well as in the epigenetic clock sites may be connected to 
certain central features of these cells, i.e. their cytokine secretion profile, shortened 
telomeres and resistance to apoptosis (Weiskopf et al. 2009; Arnold et al. 2011). In 
addition to aging, the expansion of these cells have been reported in certain immune-
related diseases, such as multiple sclerosis, rheumatoid arthritis and acute coronary 
syndromes (Broux et al. 2012). Therefore, observations regarding blood cell 
landscape in this thesis may also have implications on the methylomic analyses of 
those disorders. 

6.7 β value vs DNA methylation status 

The varying DNA methylation levels (β values or methylation level percentages) are 
the output measure used in the EWASs. It is less acknowledged in the literature that 
the basis of the varying β values is highly complex paradigm, as illustrated in a 
schematic presentation in Figure 17, and the problematics concern epigenetic studies 
as a whole. In practice, β value of a biological sample with numerous cells may be a 
result of various situations. The output value of a single CpG site from the Illumina 
450Beadchip analysis is the continuous methylation value β, which ranges between 
0% and 100%.  

Value β is the sample-specific average of all methyl groups attached to certain 
DNA methylation site in the cells. In a sample of only one cell where the two DNA 
double strands with identical CpG sites are located, there might be three different 
situations. The sites may be either completely unmethylated corresponding to the 
measured average methylation level of 0%, only the other CpG site in the other 
DNA double strand is methylated corresponding to 50%, or both of the double 
strands are methylated corresponding to the average of 100%. It is yet to be shown 
how common a situation the average of 50% is in a single cell, and what the 
functional consequences for that cell are. Correspondingly, from a CpG site in two 
cells, the measured average of β value may be either 0%, 25%, 50%, 75% or 100%. 
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Based on this principle (shown in Figure 17), after increasing the number of cells to 
high number, the average methylation level from a single CpG site may be in a linear 
range between 0% and 100%.  

 

Figure 17.  Models describing the basis of the varying β value. Continuous methylation value β 
is the output from the Illumina 450Beadchip analysis, and the value is ranging between 0% and 
100%. β value is the average of all methylation events in a typical sample with a high number of 
cells. In theory, there are numerous possibilities for how the β value is initially formed. In this 
schematic presentation, the two DNA double strands (black lines) are shown inside each cell (large 
circles). A) Here, in each DNA double strand, there are two different CpG sites (in grey and white 
color). The model situations 1-3 illustrate scenarios when the methyl groups (in purple) are either 
at the same time present (100%), partially present (50%) or absent (0%). B) Bottom panels illustrate 
longitudinal setting (time point 1, left; time point 2, right) where during the follow-up methylation β 
values are changed from 50% to 10% (grey CpG site) and from 30% to 80% (white CpG site).  
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At this moment, it is unknown, for example, how DNA methylation changes by 
age are established in a pool of a large number of somatic cells in such a manner that 
the gradually changing DNA methylation pattern of 353 CpG sites in DNAmAge 
estimator (Horvath 2013) reflects the chronological age (or even biological age?) of 
an individual. As observed in Study III and elsewhere (Horvath 2013; Zampieri et 
al. 2015; Jylhava et al. 2017), the DNAmAge estimate correlates with chronological 
age remarkably well (correlation coefficient > 0.7), even though the route from single 
methylation marker states to the final epigenetic age estimate is very complex. In 
conclusion, regarding average DNA methylation levels measured from a tissue 
sample with numerous cells, the cell population contributing to the average may 
potentially be largely heterogenic. Consequently, it is even more fascinating that the 
epigenetic age estimation is predicting the chronological age of an individual from 
multiple human tissues.  

6.8 Limitations 

The data in this thesis add knowledge regarding epigenetic aging, immune aging and 
survival in human populations. In particular, the longitudinal sample of the 
nonagenarians (V90) with the combination of DNA methylome and FACS analyses 
provides unique information. However, this thesis has some limitations. Studies II 
and IV lacked independent validation cohorts. Moreover, the age groups in the study 
populations comprised young and middle-aged adults as well as nonagenarians, but 
children and the age group between middle age and advanced ages were lacking. The 
number of follow-up time points and sample sizes might have been higher. The 
micro array based methodology used here is enriched with certain genomic locations, 
and thus it is not representative of the complete human genome. That is, the arrays 
are biased when compared to full genome scanning methods. 

Regarding blood specimens used in this thesis, instead of heterogeneous blood 
cells, purified cell subtypes are more suitable material. This issue was controlled with 
characterizations of the blood cell subtype counts. However, the cell count data were 
generally lacking detailed information of minor cell subtypes. The flow cytometry 
data comprised minor cell subtype proportions from CD4+CD28− and CD8+CD28− 
cells alone; and FACS-characterization with more detailed cell subtype classifications 
is advantageous.   

In Study III, the data do not provide explanations why the proportions of the 
specific blood cell types are so strongly associated with the DNAmAge estimate 
(Figure 14, Tables 6 and 7), but the fact that the blood cell composition changes with 
age is also apparent in these results (Table 5). The results do not demonstrate any 
causal relationships between the aging-associated changes in cell composition and 
the actual DNA methylation changes in specific site per cell passage. However, it is 
very interesting that cell subtype proportions and epigenetic age estimate fluctuate 
in parallel as a function of age, and is worth of further research. 
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Specifically, the complete mechanism underlying the epigenetic clock is unclear. 
The epigenetic age estimate (Horvath 2013) has been shown to reflect many aspects 
of human health, and is considered as the measure of biological age. However, the 
phenomenon is difficult to prove credibly using heterogeneous human populations. 
Importantly, all the numerous features related to biological age may confound the 
analyses (Jung and Pfeifer 2015). Animal models provide more homogenous 
experiment conditions for analyzing the question. Nevertheless, it is not a 
straightforward task to generalize research findings from animals to humans. 
Accordingly, studies in human populations have great value but systematic 
summarization of research findings is challenging. 

Most of all, knowledge of complete mechanisms, which influence epigenetic 
changes, is limited. For example, a full understanding of de novo and maintenance 
DNA methylation as well as DNA demethylation pathways and their interplay with 
each other is lacking. Regarding EWASs, the aging-associations are pure associations 
and DNA methylation is lacking experimental causal evidence of being an 
independent hallmark of aging (Lopez-Otin et al. 2013). Current knowledge (Leenen 
et al. 2016) suggests that DNA methylation might be merely a side effect ( i.e. caused 
by aging) and is not one of the most crucial cellular mechanisms promoting aging 
process. In this manner, aging-associated DNA methylation changes might serve 
only as a biomarker of other functional changes in the cell. However, because of the 
problematics in the experimental evidencing, these issues remain to be solved.  
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7 SUMMARY AND CONCLUSIONS 

This dissertation aimed to characterize (1) aging-associated and (2) mortality-
associated methylation features at single CpG site resolution genome-wide. The 
longitudinal behavior of (3) the epigenetic age and (4) blood cell subtype counts were 
explored. In addition, (5) the association of CMV infection with epigenetic aging was 
investigated.   

 
Based on this work, the main conclusions are as follows: 

1)  a.  Clocklike-behaving CpG site methylation may be reliably detected from a 
cross-sectional sample with age range of less than 10 years. 

b.  Generally, aging-associated hypermethylation and hypomethylation at single 
CpG site resolution were related to different cellular functions, and thus the 
findings underline the different natures of those events. When compared to 
hypomethylation, hypermethylation shows signs of being a less random event. 

c.  In order to obtain replicative results from EWASs with heterogenic tissue 
samples such as whole blood, cell count adjustment appeared to be essential. 

2) The mortality-predicting methylomic signature performed better than the 
conventional aging biomarkers and was independent from the aging-associated 
epigenetic drift. The signature supports the genomic-level role of NF-κB at the 
very end of the human lifespan.  

3) Longitudinal methylomic data provided evidence that the difference between 
chronological and epigenetic age is surprisingly stable during several years or 
even decades, and when accompanied with previous reports, it may be concluded 
that the main trajectory of the blood DNA methylome aging rate appears to be 
largely set before adulthood. 

4) a. The longitudinal data of blood cell composition also provided evidence that, in 
parallel with aging-associated shifts in the immune cell composition, intra-
individual changes in blood cell subtype proportions are relatively small during 
young adulthood, middle age, as well as in advanced age for several years or 
even decades. These results suggest that the major shifts in the blood cell 
composition might occur somewhere after middle age and before advanced 
ages.  

b.  The cell proportions correlated with epigenetic aging.  

c. Consequently, these blood cell composition-related issues warrant careful 
consideration when interpreting blood cell based results concerning 
individuals with varying ages.  

5) The increased DNA methylome age of the blood cells was associated with latent 
CMV infection in the populations of young adults and nonagenarians; however, 
this finding may be a reflection of changes in the blood cell composition. 
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Noteworthy, this thesis provides evidence that the epigenetic age of blood is 
tightly associated with blood cell subtype frequencies, especially with the 
immunosenescence-reflecting markers, the CD4+CD28− and CD8+CD28− cells and 
the CD4+:CD8+ ratio (Study III). The most significant correlate linked with DNA 
methylomic data was CD28- T cells, which is a marker of immune system exhaustion 
and aging.  

As the most intriguing finding, the results imply that most of the differences in 
the epigenetic age arise before adulthood and that the changing rate of the epigenetic 
age is rather stable thereafter (Study III, Figures 11 and 16). However, it remains to 
be determined how the inter-individual differences in the epigenetic age arise. 
Moreover, other very important questions remain to be answered: to what extent is 
it possible to alter the ticking rate of the epigenetic clock by implementing lifestyle 
changes (diet, physical activity, etc.) during different stages of life (childhood, 
adulthood or later)?  

In order to answer to these questions, further epigenetic analyses are needed. 
Long-term follow-up studies with comprehensive phenotypic information similar to, 
for instance, the Dunedin study setting (Poulton et al. 2015) might provide a deeper 
understanding of features influencing the epigenetic clock-ticking rate in human 
populations. In such an analysis, the birth cohort might be followed intensively from 
the in utero life through early childhood to later adulthood. These data might be 
further coupled with equivalent data from the family and non-relatives in the 
surrounding environment. 

The prospective research has numerous issues to resolve. Single-cell experiments 
might solve many problematics including that presented in Figure 17. The 
hypothesized mechanistic links based on associations presented in this thesis and in 
the literature might be further evaluated using controlled (in vitro, in vivo) functional 
studies. Methods with higher genomic coverage instead of using micro array based 
methodology might provide less biased results (i.e. no enrichment of promoter 
regions). Preferably, the EWAS might be coupled with multiple omics data 
(transcriptomics in cis and in trans, metabolomics, proteomics). Overall, the precise 
functional role of DNA methylation in aging is still largely unsolved. Therefore, full-
scale omics analysis, including epigenetics and covering complete genome in 
combination with single-cell experiments in human samples and animal models, 
might unravel many unclear details in the biology of aging. In this way, the role of 
DNA methylation in the aging process might become clearer. 
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Abstract

Background: Chronological aging-associated changes in the human DNA methylome have been studied by multiple
epigenome-wide association studies (EWASs). Certain CpG sites have been identified as aging-associated in multiple
studies, and the majority of the sites identified in various studies show common features regarding location and
direction of the methylation change. However, as a whole, the sets of aging-associated CpGs identified in different
studies, even with similar tissues and age ranges, show only limited overlap. In this study, we further explore and
characterize CpG sites that show close relationship between their DNA methylation level and chronological age during
adulthood and which bear the relationship regardless of blood cell type heterogeneity.

Results: In this study, with a multivariable regression model adjusted for cell type heterogeneity, we identified 1202
aging-associated CpG sites (a-CpGs, FDR < 5 %), in whole blood in a population with an especially narrow age range
(40 - 49 years). Repeatedly reported a-CpGs located in genes ELOVL2, FHL2, PENK and KLF14 were also identified.
Regions with aging-associated hypermethylation were enriched regarding several gene ontology (GO) terms (especially
in the cluster of developmental processes), whereas hypomethylated sites showed no enrichment. The genes with
higher numbers of a-CpG hits were more often hypermethylated with advancing age. The comparison analysis
revealed that of the 1202 a-CpGs identified in the present study, 987 were identified as differentially methylated also
between nonagenarians and young adults in a previous study (The Vitality 90+ study), and importantly, the directions
of changes were identical in the previous and in the present study.

Conclusions: Here we report that aging-associated DNA methylation features can be identified in a middle-aged
population with an age range of only 9 years. A great majority of these sites have been previously reported as aging-
associated in a population aged 19 to 90 years. Aging is associated with different types of changes in DNA
methylation, clock-like as well as random. We speculate that the a-CpGs identified here in a population with a narrow
age-range represent clock-like changes, as they showed concordant methylation behavior in population spanning
whole adulthood as well.

Keywords: Aging-associated, DNA methylation, EWAS, CpG sites, Adulthood, Hypermethylation, Blood cell type
heterogeneity
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Background
The epigenome includes DNA methylation (DNAmet),
post-translational histone modifications and chromatin re-
modeling. Tens of millions of nucleotides referred to as
CpG sites, which are prone to DNAmet, exist in the hap-
loid human genome. Furthermore, the genome-wide
DNAmet profile is maintained through cell divisions.
DNA methyltransferases apply methyl groups on CpG
sites to form 5-methylcytosine, whereas demethylation
may occur either passively due to dysfunction of the trans-
ferring enzyme or actively through 5-hydromethylcytosine
formation. Genomic regions spanning approximately 0.5
kilobases with a high density of CpG sites are called CpG
islands, and these are commonly localized near transcrip-
tion start sites. CpG sites in such islands are often less
methylated; thus, the genes are available for initiation of
transcription. Moreover, DNAmet plays crucial roles in
gene expression by not only blocking the promoter region
but also altering the activities of regulatory elements, such
as enhancers and insulators. Alternatively, gene body
methylation may influence alternative splicing [1, 2]. Thus,
the cell identity is in part determined and maintained by a
cell type-specific genome-wide methylation pattern, which
may therefore be used in the laboratory as a marker to
characterize the cell types [3–5].
The genome-wide DNAmet profile of the cell

changes; DNAmet patterns are altered in diseases, such
as Alzheimer disease, cancer and type 2 diabetes, and
are also influenced by the accumulating effects of
environmental factors such as toxin exposure and diet
[1, 6, 7]. Single CpG sites undergo hypo- and hyperme-
thylation either randomly by stochastic factors or via
more systematic mechanisms [1]. For example, expos-
ure to environmental factors such as smoking induces
hypomethylation of a well-characterized single CpG site in
the gene F2RL3; this represents an example of a non-
random change in DNAmet because the magnitude of the
change is dose and exposure-time dependent [8, 9].
Furthermore, the epigenome is modified by the bio-

logical aging process. As also Heyn et al. [10] reported
and Zampieri et al. [1] reviewed, in general, aging in-
duces a decrease in average DNA methylation level
genome-wide (global hypomethylation). This was dem-
onstrated by whole-genome bisulfite sequencing of new-
borns and centenarians with as high as ~90 % genomic
coverage. The comparison of methylation states between
the two extremes of the human lifespan also revealed
how the systematic methylation patterns of the CpG
sites are eventually lost and how inter-individual differ-
ences increase with advanced age. In addition, hyper-
methylation in regions near promoters can cause
down-regulation of essential genes that influence vitally
important pathways; Heyn et al. [10] reported that
aging-accelerated hypermethylation events occurred in

13 % of the CpG sites among the millions of sites in the
genome. Therefore, methylation alterations may be
considered as one important factor in the development
of aging-associated diseases [1, 10].
Many studies have addressed the aging-associated

DNAmet changes in blood cells using Illumina array
technology-based methods, which cover 27000 or 485000
CpG sites in the genome [1]. The methylation levels of
specific CpG sites are known to be associated with
chronological aging in a wide variety of tissues [11–13].
However, as a whole, the sets of aging-associated CpGs
identified in different studies, even with comparable tis-
sues and age ranges, show limited overlap. Only few
EWASs on age have taken the cell type heterogeneity into
account [14–17]. We and others [4] hypothesize that lack
of cell type adjustment may have potentially distorted the
results obtained, and this may have contributed to the lack
of concordance observed between the studies.
In this study, we aimed to discover and characterize

regions where the DNAmet levels are associated with
chronological age (a-CpGs) in a middle-aged population
(aged 40–49 years) through analysis where the cell type
heterogeneity was adjusted for. Middle-aged individuals
were selected from the Young Finns Study (YFS) [18]
follow-up in 2011; the selection in the present study is a
balanced sample (i.e. the number of subjects in each age
group was equal and the groups had similar sex-
distribution), and it therefore provides an excellent
opportunity to inspect the effects of aging on DNA
methylome. Furthermore, this sample comprises individ-
uals in an extremely narrow age range of only nine years.
The subjects’ DNA methylomes were characterized
using Illumina Infinium HumanMethylation450 Bead-
Chips and the cell type heterogeneity and sex were
adjusted for in the analysis.
Additionally, our findings were interpreted together

with compatible data obtained using the same
450BeadChip technology, including our previous re-
sults obtained from an EWAS on age (The Vitality 90
+ Study, V90+), in which the subjects’ ages ranged
from 19 to 90 years [15], as well as other results
compiled by Steegenga et al. [19]. The results from
the YFS were interpreted by considering that rates of
aging-associated DNAmet changes fluctuate, especially
during the growth period before adulthood and at the
end of the lifespan [11, 20]. Accordingly, the a-CpGs
found in the YFS that overlap with those established
from adult samples with wider age ranges, such as
V90+ study, may be speculated to be DNAmet re-
gions with constant rate of change throughout adult-
hood. Thus, we aimed to explore the a-CpGs where
level of methylation changes in a clocklike fashion
throughout adulthood from those that show a more
random aging-associated pattern.
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Results
Aging-associated alterations in DNA methylation
In this study, the genome-wide DNAmet levels in whole
blood samples of middle-aged individuals were measured
using 450BeadChip technology. The sample heterogen-
eity (i.e., the proportions of CD8T and CD4T cells,
monocytes, granulocytes, and NK and B cells) were esti-
mated by comparing DNAmet profiles to the reference
dataset [4] (Additional file 1: Figure S1). The cell type
proportions were verified as important determinants of
variation in DNAmet using Spearman’s correlation ana-
lysis, in which the cell type proportions were correlated
with the main principal components (PCs). The PCs
were defined with principal component analysis (PCA)
from the DNAmet data without cell subtype adjustment
(Additional file 2: Table S1a). The analysis revealed that
PC1 to PC6 together explained a large proportion (24 %)
of the variance in the DNA methylome data. Among
those PCs, several PCs had considerable large (-0.5 >
r >0.5) correlation coefficients; thus, adjustments for the
cell type proportion in the analysis were mandatory. The
hypothesis whether DNAmet level of a CpG site is asso-
ciated with chronological age was tested at each CpG

site using generalized linear regression analysis (‘beta re-
gression’), where sex and cell type proportions were ad-
justed for.
We found 1202 a-CpGs (i.e. CpG sites where age was

a statistically significant variable in the multivariable re-
gression model, FDR < 5 %) in middle-aged individuals
(aged 40–49 years), of which 622 (52 %) were hypo-
methylated and 580 (48 %) were hypermethylated with
advancing age. These hypo- and hypermethylated sites
were annotated on 440 and 437 genes, respectively. Lists
of the most significant aging-associations in YFS are
shown in Tables 1 and 2 and in Additional file 3: Table
S4. Frequently reported CpG sites (summarized by
Steegenga et al. [19]) located in the ELOVL2
(cg16867657, cg24724428 and cg21572722), three sites
in the FHL2 (cg06639320, cg22454769 and cg24079702),
two sites in the PENK (cg16219603, cg16419235), and
two sites in the KLF14 (cg08097417, cg09499629 and
cg07955995) were also identified as hypermethylated in
the present study.
Interestingly, similar to correlation analysis results

shown in Additional file 2: Table S1a, the cell type pro-
portions were important determinants of variation in

Table 1 The top 20 hypermethylated a-CpGs in middle-aged individuals. The hypermethylated and hypomethylated a-CpGs are
shown separately in Tables 1 and 2, respectively. The top-ranking hypermethylated a-CpGs were selected with the following criteria:
1) direction of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more than one hit
identified per gene (q-value < 0.05 which corresponds to false discovery rate <5 %) and 3) the top-ranking p-values. The full list of
a-CpGs is shown in Additional file 3: Table S4. The q-value denotes the Benjamini-Hochberg-corrected p-value

ProbeID Gene name CHR Coordinate Betareg estimate of age q-value

cg16867657 ELOVL2 6 11152863 0.022 0.00E + 00

cg24724428 ELOVL2 6 11152874 0.021 4.80E-07

cg21572722 ELOVL2 6 11152880 0.013 3.46E-06

cg06639320 FHL2 2 105382171 0.018 3.46E-06

cg00059225 GLRA1 5 151284550 0.013 5.13E-06

cg08097417 KLF14 7 130069673 0.020 1.87E-05

cg22454769 FHL2 2 105382199 0.021 5.03E-05

cg07553761 TRIM59 3 161650671 0.016 6.12E-05

cg01588592 ETV3L 1 155335949 0.011 1.14E-04

cg11176990 LOC375196 2 39041037 0.014 1.54E-03

cg09499629 KLF14 7 130069676 0.018 1.54E-03

cg22158769 LOC375196 2 39041043 0.020 2.43E-03

cg18898125 NEFM 8 24826286 0.012 2.49E-03

cg21911021 ZIK1 19 62786823 0.020 3.07E-03

cg27217742 RGS12 4 3335078 0.013 3.07E-03

cg17737681 DLX1 2 172660382 0.015 3.29E-03

cg24079702 FHL2 2 105382203 0.015 5.99E-03

cg16219603 PENK 8 57523140 0.013 7.00E-03

cg23930856 TFAP2B 6 50919683 0.013 7.22E-03

cg11152943 TRAPPC9 8 141318170 0.013 7.57E-03
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DNAmet levels of the 1202 a-CpGs as well (Additional
file 2: Table S1b). In this second correlation analysis, the
PCs were defined with PCA from DNA methylation data
of the 1202 a-CpGs (aging-associated CpG sites, FDR <
5 %); methylation data in PCA were not adjusted for the
cell subtype heterogeneity. Correlation analysis revealed
that PC1-PC6 determined more than 50 % of variance in
methylation levels of these a-CpGs and these PCs corre-
lated clearly with age and the cell counts. It is also worth
of mentioning that of the 1202 a-CpGs in our initial
aging-association analysis, there were 526 multivari-
able regression models (corresponding 526 CpG sites)
where all cell count variables (monocytes, granulo-
cytes, NK, CD8T and CD4T cells) were detected as
statistically significant (FDR < 5 %) predictors of DNA
methylation levels.
The importance of the cell count considerations was

explored with an additional set of regression models,
where the DNA methylation level in each CpG site
genome-wide was explained with age and sex only while
the cell counts were not adjusted for. In this analysis,
only 56 sites were classified as aging-associated (FDR <
5 %) and these sites were all included to the original

pool of 1202 a-CpGs. The 56 a-CpGs are pointed out in
the Additional file 3: Table S4.
Aging-associated hypermethylation and hypomethyla-

tion differ in their features. The exploration of aging-
associations in the YFS revealed that hypermethylation
was more frequent within genes with more association
hits as shown in Additional file 4: Table S5 and Fig. 1).
Specifically, there were 70 genes in total either with
more than one hypomethylated or more than one hyper-
methylated a-CpGs per gene. Of those, 22 genes com-
prised more than one hypomethylated a-CpGs per gene
and 48 genes comprised more than one hypermethylated
a-CpGs per gene as shown in Additional file 4: Table S5.
Next, the genomic locations of the a-CpGs were inves-

tigated, revealing that 388 of the 1202 a-CpGs were lo-
cated on CpG islands rather than island shores, shelves
or non-island regions, and a majority (N = 331) of those
were hypermethylated (Additional file 1: Figure S2). The
remaining sites were distributed to shores, shelves and
non-island regions with opposite manner as shown in
Additional file 1: Figure S2; the aging-associated hypo-
methylation was more abundant on those regions. The
a-CpG locations on genes were also investigated; no

Table 2 The top 20 hypomethylated a-CpGs in middle-aged individuals. The hypermethylated and hypomethylated a-CpGs are
shown separately in Tables 1 and 2, respectively. The top-ranking hypomethylated a-CpGs were selected with the following criteria:
1) direction of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more than one hit
identified per gene (q-value < 0.05 which corresponds to false discovery rate < 5 %) and 3) the top-ranking p-values. The full list of
a-CpGs is shown in Additional file 3: Table S4. The q-value denotes the Benjamini-Hochberg-corrected p-value

ProbeID Gene name CHR Coordinate Betareg estimate of age q-value

cg00791074 MTHFD1L 6 151227862 -0.018 7.51E-04

cg18618815 COL1A1 17 45630323 -0.018 5.99E-03

cg14169886 PRDM16 1 3101709 -0.014 5.99E-03

cg01820374 LAG3 12 6752344 -0.014 9.24E-03

cg19421125 LAG3 12 6753117 -0.022 1.02E-02

cg14829066 NTRK3 15 86360145 -0.013 1.49E-02

cg03290281 C6orf195 6 2577606 -0.021 1.49E-02

cg05561193 DCLK2 4 151218492 -0.017 1.96E-02

cg20249566 NWD1 19 16691739 -0.024 1.97E-02

cg23928726 PEX10 1 2334858 -0.014 1.97E-02

cg20007894 SCAND3 6 28648421 -0.019 2.08E-02

cg16355231 PEX10 1 2334839 -0.019 2.14E-02

cg15058210 HDAC4 2 239861814 -0.018 2.16E-02

cg06030846 TMEM108 3 134581182 -0.011 2.16E-02

cg25994988 UBASH3B 11 122157592 -0.011 2.16E-02

cg18345924 NCAM2 21 21294102 -0.016 2.18E-02

cg00638021 COL1A1 17 45622061 -0.013 2.26E-02

cg19344626 NWD1 19 16691749 -0.024 2.36E-02

cg01288258 ITFG2 12 2792128 -0.011 2.41E-02

cg05221385 TAF10 11 6590080 -0.010 2.43E-02
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enrichment of a-CpGs was detected in the regions of 3′
untranslated regions (UTRs), 5′UTRs or close distances
to transcription start sites or gene bodies (Additional file
1: Figure S3a and b). The distributions of the a-CpGs on
chromosomes were also investigated; hypermethylated a-
CpGs were over-represented on chromosome 18, whereas
hypomethylated sites were not enriched on any chromo-
some (hypergeometric test, nominal p-value of 0.05)
(Additional file 1: Figure S3c). In addition, we ensured
using visual examination that there were no spatial local
cluster(s) of a-CpGs on Chr-18.

Sex specificity of the aging-associated CpG sites
To evaluate the sex specificity of the aging-associations,
an interaction model with variables corresponding to
sex, age and the interaction of sex and age (age*sex) was
constructed. No sex-specific a-CpGs were identified, as
analysis revealed that no interaction term had a false dis-
covery rate (FDR) below 5 % (q-value < 0.05) in the
interaction models. Furthermore, we analyzed women
(N = 111) and men (N = 73) separately as well: sex-
specific a-CpGs were explored among all CpG sites with
an multivariable regression model (‘beta regression’)
where age and cell type proportion variables were used
to predict DNA methylation level in each CpG site.
These analyses revealed that there were 105 and 173 a-
CpGs (FDR < 5 %) among men and women, respectively;
these CpG sites were all included to our original pool of

1202 a-CpGs which were detected using whole sample
(N = 184). Importantly, as shown in Additional file 1:
Figure S5, when the directions of change among the
1202 a-CpGs were cross-compared between men and
women (without p-value cut-off ), all sites, except one,
showed concordant behavior regarding hypermethylation
or hypomethylation during aging (i.e. whether the esti-
mate of age variable in the regression model was nega-
tive or positive value). This behavior was also identical
to the directions of change among the 1202 a-CpGs in
the initial analysis (N = 184). As a conclusion, these re-
sults were in line with our interaction analysis: there
were no significantly sex-specific a-CpGs among middle-
aged individuals.

Functional roles of a-CpGs in the YFS
The gene ontology (GO) functions and processes of the
genes with a-CpGs were investigated using the Gene
Ontology enRIchment anaLysis and visuaLizAtion
(GOrilla) tool [21]. The analysis was conducted separ-
ately for genes with hypermethylated a-CpGs and for
hypomethylated a-CpGs (N = 440 and N = 437, respect-
ively). The analysis revealed an unambiguous differences
between hypo- and hypermethylated a-CpGs, as 73 GO
process terms and to 8 GO function terms were enriched
to genes with hypermethylated a-CpGs (Tables 3 and 4, re-
spectively; Additional file 2: Table S2.), whereas there was
no enrichment of terms among the genes with hypomethy-
lated a-CpGs (Bonferroni-adjusted p-value threshold of
0.05). The most statistically significant processes were ana-
tomical structure development (GO:0048856, p= 1.02*10-11)
and morphogenesis (GO:0009653, p = 5.02*10-10), both of
which cluster under the term ‘developmental process’.
In addition, Pscan [22] was used to predict whether

there were common regulators for groups of genes. The
hypermethylation-associated genes were predicted to be
regulated by 11 common transcription factors (Additional
file 2: Table S3), several of which were zinc coordinating.
For hypomethylation-associated genes, no common tran-
scription factors were found. A large proportion of the 11
regulators of genes with hypermethylated a-CpGs in the
YFS were zinc coordinating, and four (E2F1, EGR1, SP1,
TFAP2A) were identical to those identified in the V90+
study [15].

Comparisons to other studies
In the explorative cross-comparison analysis, the a-CpGs
identified in middle-aged individuals of the YFS were
compared to aging-associated DNA methylome alter-
ations between nonagenarians and 19–30-year-old indi-
viduals evidenced in our previous study (the V90+
study) [15]. The a-CpGs identified in the V90+ study
were strongly associated with aging while the cell type
heterogeneity was adjusted for in the analysis. A total of

Fig. 1 Numbers of aging-associated CpG sites (hits) per gene in
regard to hypermethylation and hypomethylation is visualized as bars.
Aging-associated hypermethylation was more frequent within genes
with more association hits. First, the genes were categorized into
groups based on the number of hypermethylated or hypomethylated
a-CpG hits per gene. Next, the frequencies of hypermethylated and
hypomethylated a-CpGs within the groups were calculated. The
number of a-CpGs for each group is shown inside each bar
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the 1202 a-CpGs established in the YFS cohort, 999 a-
CpGs were also aging-associated in the V90+ sample
(FDR < 5 %, Additional file 3: Table S4). Of these 999 a-
CpGs, 464 (46 %) were hypermethylated, and 535 (54 %)
were hypomethylated with advancing age. Furthermore, in
987 of the overlapping 999 a-CpGs the direction of the
aging-associated change was the same: in the present and

in the V90+ study, 455 a-CpGs were hypermethylated,
and 532 were hypomethylated with advancing age (Fig. 2).
Finally, a-CpGs that were characterized from whole

blood samples as aging-associated using 450 BeadChip
technology and previously reported by Hannum et al.
(number of hits, 89) [13], Garagnani et al. (number of hits,
9) [12] and Florath et al. (number of hits, 162) [23] and
presented as summary table in Steegenga et al [19] were
further compared with our data. The corresponding age of
the samples ranged between 19 -101, 9–83 and 50–75
years, respectively. The comparison revealed 21 common
CpG sites out of the 999 a-CpGs in two or more studies
in addition to the YFS and the V90+ study (Fig. 3).

Discussion
In this study, we identified 1202 a-CpGs where the
DNAmet level was associated with aging in middle-aged
individuals (i.e. with an age range of 40 to 49 years), in
whom the growth and development of youth has ended
yet old age and its associated diseases had not begun. Of
the 1202 a-CpGs, 622 (52 %) were hypomethylated, and
580 (48 %) were hypermethylated with advancing age,
with annotations on 440 and 437 different genes, re-
spectively. In general, the functional features of these
aging-associated sites are mostly similar to those identi-
fied from cohorts with larger age differences. Our study
highlights also that a large number of sites undergo
aging-associated DNAmet level changes throughout
adulthood and we speculate that a great proportion of
those probably change with a clock-like manner.
A large fraction of the DNAmet sites are altered dur-

ing the lifespan, as shown by previous studies performed
using 450BeadChip technology [15, 24] and whole-
genome bisulfite sequencing [10]. Furthermore, the rates
of these changes may fluctuate at different stages of the
lifespan. Studies have shown that a-CpGs behave differ-
ently during the growth period before adulthood and at
the end of the lifespan [11, 20]. Nonetheless, there are
genes (ELOVL2, SFMBT1, KLF14, PENK, and FHL2)
with CpG sites that are consistently detected as being
aging-associated despite of differences in sample tissue

Table 3 Several GO process terms were enriched within genes
with hypermethylated a-CpGs in the analysis with GOrilla [21, 43].
This table represents the main clusters of processes (53 redundant
GO terms were filtered out of 73 terms using REViGO [44]). The full
list of processes is shown in Additional file 2: Table S2

GO term Description of the process p-value (-log10)

GO:0048856 Anatomical structure development 10.9914

GO:0050794 Regulation of cellular process 8.9788

GO:0007389 Pattern specification process 8.2343

GO:0032502 Developmental process 8.2041

GO:0009893 Positive regulation of metabolic process 8.0511

GO:0044708 Single-organism behavior 7.5544

GO:0035108 Limb morphogenesis 7.5544

GO:0003002 Regionalization 7.3585

GO:0051239 Regulation of multicellular organismal
process

7.301

GO:0006357 Regulation of transcription from RNA
polymerase II promoter

7.2248

GO:0065007 Biological regulation 7.1675

GO:0007610 Behavior 7.08

GO:0048598 Embryonic morphogenesis 7.0778

GO:0048518 Positive regulation of biological process 6.8761

GO:0048519 Negative regulation of biological process 6.7122

GO:0008285 Negative regulation of cell proliferation 6.4921

GO:0048523 Negative regulation of cellular process 5.8827

GO:0010842 Retina layer formation 5.8041

GO:0051961 Negative regulation of nervous system
development

5.7423

GO:0032774 RNA biosynthetic process 5.4225

Table 4 GO function terms were enriched within genes with hypermethylated a-CpGs in the analysis with GOrilla. Table contains
the full list of enriched GO function terms (Bonferroni-adjusted p < 0.05) obtained from analysis with GOrilla [21, 43]

GO term Description of the function p-value (-log10)

GO:0043565 Sequence-specific DNA binding 10.001

GO:0000981 Sequence-specific DNA binding RNA polymerase II transcription factor activity 7.322

GO:0001071 Nucleic acid binding transcription factor activity 6.721

GO:0003700 Sequence-specific DNA binding transcription factor activity 6.721

GO:0003677 DNA binding 6.625

GO:0005326 Neurotransmitter transporter activity 5.148

GO:0005488 Binding 4.967
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types or age distributions [11–13, 15]; notably, these
genes were also identified in the present study as being
aging-associated (Tables 1 and 2; Additional file 3: Table
S4). However, a recent meta-analysis on three DNAmet
data sets obtained using 450BeadChip illustrated dis-
crepancies in the lists of regions where DNAmet levels
were altered during the entire human lifespan, ranging
from 0 to 100 years of age [2]. Because blood sample
heterogeneity has been shown to have a great impact on
EWASs [4, 15], our speculation is that the discrepancies
might be due to the presence of different cell types.
In the primary analysis, we aimed to identify a-CpGs

in middle-aged individuals representing general popula-
tion with age range of only one decade. Then, we cross-
compared the results to those obtained with similar
analysis pipeline from a population aged 19 to 90 years
(Vitality 90+ study) [15]. Among the 1202 a-CpGs char-
acterized from the YFS with an age range of nine years,
987 sites had an identical association direction as de-
tected in the Vitality 90+ study, as shown in Fig. 2 and
in Additional file 3: Table S4. We hypothesize that sites
displaying aging-associated methylation changes in
both populations possibly represent sites where the
change in DNA methylation follows a clock-like pat-
tern. We further speculate that the non-overlapping
CpG sites identified in the population with a wider age
range (19 to 90 years of age) may possibly represent

sites where the aging-associated change is accelerated
in either early or late adulthood; the a-CpGs identified
only when comparing group of nonagenarians to young
adults may represent changes that reflect e.g. aging-
associated pathologies or accumulation of aging-
associated impairments.
As aging influences the immune system of men and

women differently and as the risk rates of several dis-
eases between sexes are unequal [25, 26], 1) an inter-
action analysis was performed to address the sex
specificity of a-CpGs, and 2) the aging-associations
were also evaluated in separate analyses among men
and women. These analyses revealed no sex-specific
single a-CpGs; thus, the identified a-CpGs are univer-
sally altered in both men and women. These results are
in accordance with our previous results from the V90+
study, in which the DNAmet states of nonagenarians
were compared with 19–30-year-old individuals [15],
and with results published by others [24, 27]. However,
studies have shown that as a whole, the DNA methy-
lomes of males age more rapidly than those of females
[13, 28].

Fig. 2 The direction of aging-association in 1202 a-CpGs is visualized
as scatterplot. Each dot corresponds to single a-CpG; directions of
associations correspond to estimates of age which are fetched from
the regression models. Of 1202 sites, 987 CpG sites were similarly
associated with aging in both the YFS and in the V90+ study. The
analyses in both studies were adjusted for leukocyte cell subtype
proportions, and the studies consisted of the samples with distinct
age ranges: the YFS comprised 40 to 49 years old subjects whereas
the V90+ study consisted of 19–30-year-old individuals and
nonagenarians. The corresponding data illustrated in the Fig. 2 is
presented in Additional file 3: Table S4

Fig. 3 The top 21 most commonly reported a-CpGs and their
direction of association with aging. The top 21 a-CpGs were selected
with following criteria: the a-CpG was identified in present study
and in the V90+ study, as well as in two or more other studies
(Hannum et al. [13], Garagnani et al. [12] or Florath et al. [23]); the
sites were reported as aging-associated in blood samples and the
data were obtained using 450 BeadChip technology. Methylation
level differences in YFS between the highest and the lowest age
groups (between 40- and 49-year-old individuals; calculated from
the medians of residuals after adjusting for effects of sex and cell
type proportions), are illustrated as bars. The bars are colored
according to the hypomethylation or hypermethylation status
(grey = hypomethylated, black = hypermethylated). Gene annotation
is shown for each bar, where applicable (na = no gene annotation).
The corresponding data is presented in Additional file 3: Table S4
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Aging-accelerated hypomethylation may be thought as
an erosion-like event, whereas hypermethylation may be
thought as an actively guided process. In practice, the
difference between these features is manifested, for ex-
ample, through the enrichment of GO terms for groups
of genes and for signaling pathways [1, 15]. The distinct
roles of the methylation status were demonstrated in the
present study with the numbers of a-CpG hits in a gene,
as we observed notable enrichment of hypermethylation
events located in genes with more than one a-CpG
(Fig. 1). The functional roles of genes with a-CpGs were
established by GO term enrichment analysis, which re-
vealed obvious difference between hypo- and hyper-
methylated a-CpGs, even though the analysis was
conducted with an equal number of genes in the GO
term analyses. A high number of GO terms were
enriched to genes with hypermethylated a-CpGs
(Tables 3 and 4; Additional file 2: Table S2), whereas
there was no GO term enrichment within genes with
hypomethylated a-CpGs. The most statistically signifi-
cant processes enriched to genes with hypermethylated
a-CpGs were ‘anatomical structure development’ and
‘morphogenesis’, both of which cluster under the term
‘developmental process’. The enrichment of hypermethy-
lated a-CpGs to these processes has been reported previ-
ously [14, 23, 24, 29]. Reynolds [30] and Yuan [16]
reported also that the CpG sites hypermethylated dur-
ing aging are enriched to common processes and ex-
hibit shared features, whereas hypomethylated a-CpGs
are a less homogenous group. Furthermore, age-
associated hypermethylation interactome hotspots have
been reported [31].
In addition to the details mentioned above, we observed

other similar hypermethylation characteristics in the YFS,
as those reported in previous studies [1, 15]. For example,
the majority (85 % out of 388) of a-CpGs localized in
CpG-islands (instead of shores, shelves or other regions)
were hypermethylated, and an excess of hypermethylated
a-CpGs were also found on chromosome 18. However,
there was no enrichment of a-CpGs on chromosome 19.
In the V90+ study, the hypermethylated a-CpGs located in
the genes encoding zinc-associated proteins were more
abundant on chromosome 19 [15], where zinc-finger
genes are clustered. The zinc-finger genes (such as
ZNF154) located in chromosome 19 are proposed to be
repressors of endogenous retroviruses (ERVs) [32], and
the repressor activity may be disturbed by hypermethyla-
tion. Interestingly, CpG sites located in the gene ZNF154
and almost all other genes encoding zinc-fingers on
chromosome 19 were absent from our pool of 1202 a-
CpGs. Thus, as the hypermethylation of CpG sites located
in genes encoding zinc-fingers was observed in the oldest
age group, we hypothesize that rates of methylation level
changes at the CpG sites located in ERV repressor genes

(e.g. ZNF154) may fluctuate throughout the lifespan and
that the rates may be enhanced in association with other
senescence-related factors. Therefore, it is possible that
DNAmet-based dysfunction of the repression system
might explain the increased expression of ERVs in old age
[33]. Future studies are required to address these
questions.
To further inspect the roles of the genes with aging-

accelerated DNAmet changes, analysis of the common
regulators (transcription factors) of groups of genes with
hypermethylated and hypomethylated a-CpGs was con-
ducted with Pscan [22]. The results were again surpris-
ingly concordant with those in the V90+ study. There
were 11 regulators with unique identifiers for hyper-
methylated a-CpGs (Additional file 2: Table S3), whereas
hypomethylated a-CpGs had no common regulators. A
great proportion of the 11 regulators of genes with
hypermethylated a-CpGs in the YFS were zinc coordin-
ating, and four (E2F1, EGR1, SP1, and TFAP2A) were
identical to those identified in the V90+ study results
[15]. Overall, the results from analysis of the functional
roles of the genes with a-CpGs were surprisingly well in
line with the observations from the V90+ study and sup-
ported the proposition that aging-associated hyperme-
thylation is a more tightly regulated process, whereas
aging-associated hypomethylation is induced more by
environmental effects and stochastic factors.
Finally, we demonstrated the lack of concordance in

previously reported pools of a-CpGs by comparing three
published lists of overlapping a-CpGs produced using
450BeadChips from whole blood samples from subjects
with age ranges of 50–75, 19–101 and 9–83 [12, 13, 23].
Although 987 of the a-CpGs in the YFS showed similar
association directions as in the V90+ study (Fig. 2 and
Additional file 3: Table S4), we observed only 61 over-
lapping a-CpGs in the YFS and the V90+ study, which
were also reported as aging-associated in one or more
other robustly compatible studies (same sample type and
array technology). Of these, only 21 a-CpGs were ob-
served in two or more of the studies in the comparison
(Fig. 3). To the best of our knowledge [4, 15], the main
factor that contributes to the DNAmet profiles in blood
cells is cell type heterogeneity; thus, we speculate that
the lack of cell type adjustments may account for the
majority of disparity in the cross-comparisons. The
results of aging-association analysis and combined PCA-
correlation analysis in this study supports our specula-
tion. Cell type heterogeneity should be taken into
account when analyzing samples composed of mixed cell
types, but a limited number of such studies have been
conducted [4, 14–17].
Notably, our study had an obvious limitation, it would

substantially benefit from being a follow-up; therefore,
future studies are needed. Nevertheless, the analysis is
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powered by well-designed sample characteristics because
each age group was matched by sex and sample size
and because adjustments were made for cell type het-
erogeneity. Thus, the analysis was sensitive enough to
detect DNAmet changes within an age range span-
ning nine years.

Conclusions
Here we report that aging-associated DNA methylation
changes can be identified in a middle-aged population
with a narrow age range of 9 years. Aging-associated
DNAmet changes are not uniform, but occur due to dif-
ferent reasons, at different rates and directions in differ-
ent parts of the genome and are not alike in all cell
types. Thus, due to this diverse nature of aging-
associated DNA methylation changes, all confounding
factors should be accounted for in the analysis, in order
to obtain comparable results. Our results support the
notion that cell type heterogeneity should be adjusted
for when analyzing tissues consisting of mixed cell types.
Moreover, our results imply that considerable proportion
of DNAmet changes show clock-like behavior through-
out adulthood.

Methods
Study population
The Young Finns study (YFS) comprises a series of six
cohorts, representing general population, born in 1962,
1965, 1968, 1971, 1974 and 1977 from five cities with
university hospitals in Finland (Helsinki, Kuopio, Oulu,
Tampere and Turku) [18]. A subsample of 184 individ-
uals was randomly assigned from a follow-up in 2011.
The sample collection in 2011 is described in more de-
tail elsewhere [34]. The categories of age in the methyla-
tion analysis were 40, 43, 46 and 49 years old, with
group sizes of 50, 44, 55 and 35, in which 58 %, 68.2,
56.4 and 60 % were women, respectively. All of the par-
ticipants were of western European descent. The study
followed the guidelines of the Declaration of Helsinki
and was approved by the Ethical Review Committee of
Turku University Hospital. All participants provided in-
formed consent.

DNA methylome quantification
Sample preparations
Leukocyte DNA of the YFS cohort was obtained from
EDTA-blood samples using a Wizard® Genomic DNA
Purification Kit (Promega Corporation, Madison, WI,
USA) according to the manufacturer’s instructions.
Genome-wide DNA methylation levels were obtained
using Illumina Infinium HumanMethylation450 Bead-
Chips [35–37] in the Core Facility at the Institute of
Molecular Medicine Finland (FIMM), University of
Helsinki according to the protocol by Illumina.

The methylation data set was preprocessed identically
with a previously described analysis pipeline which was
used in the DNA methylation analysis of the V90+ study
samples [15, 38, 39]. Briefly, methylation signal data was
preprocessed as a methylumiset object using R software
(R > = 2.15.3) with array-specific algorithms imple-
mented in the R package wateRmelon [40] and BMIQ
[38]. The resulting β values ranged linearly from 0 (non-
methylated, 0 %) to 1 (completely methylated, 100 %).
The quality of DNA samples and methylation data was
carefully ensured by standard examinations with princi-
pal component analysis (PCA) and visualizations with
density plots, boxplots and dotplots. Three of the YFS
samples were excluded due to atypically low probe in-
tensities compared with control probe intensities.
The YFS sample was lacking leukocyte cell type char-

acterizations; thus, the proportions were determined by
the estimation algorithm implemented in the estimate-
CellCounts function of the minfi Bioconductor package
[4] using R software (R > = 2.15.3). The algorithm utilizes
the selection of 600 control probes that represents spe-
cific signatures of CD8T and CD4T cells, monocytes,
granulocytes, and NK and B cells (Additional file 1:
Figure S1). The reference data used in the estimation is
available in the FlowSorted.Blood.450K Bioconductor
package [4].

Quality control of the DNA methylome data
As the cell type proportions contribute to most of the
variation in genome-wide DNAmet [4, 15], the signifi-
cance of the estimated cell counts in the DNAmet data
was investigated by PCA, and the main PCs of DNAmet
were correlated with the cell counts (Additional file 2:
Table S1a). Spearman’s correlation analysis indicated a
clear connection between methylation profiles and esti-
mated cell proportions. Thus, the estimated cell counts
as well as the genome-wide methylation data was shown
to behave as expected.
As part of the quality control step, a well-known CpG

site with phenotype association was selected. Smoking is
strongly associated with the hypomethylation of
cg03636183, located in the gene F2RL3 [8, 9]; our data
from the YFS replicated this finding, as we observed a
difference between daily smokers and others (Wilcoxon
rank sum-test, P = 2.4*10-6; Additional file 1: Figure S4).
Analysis with multivariable regression model (function
lm() in R) revealed that the cell type heterogeneity, age
or sex of the samples did not alter the finding of
cg0363618.

Detection of aging-associated methylation regions
Aging-associated CpG sites, the a-CpGs, were explored
using a generalized linear regression model, referred to
as the ‘variable dispersion beta regression’ in an iterative
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manner for each methylation locus (CpG site). The age
(categories of 40, 43, 46 and 49) was employed as a vari-
able to predict the site-specific methylation outcome in
the form of a β value (ranging from 0 to 1); this was
done in each equation using the mean model and a
linker function of logit. The cellular heterogeneity was
adjusted in the initial multivariable regression analyses:
in addition to age and sex variables, variables corre-
sponding to each estimated blood cell subtype propor-
tion (CD8T and CD4T cells, monocytes, granulocytes,
NK and B cells; all ranging linearly from 0 to 1) were in-
cluded to the regression models as predictors of DNA
methylation level. Additionally, sex-specific a-CpGs were
explored among all CpG sites using two approaches: 1)
with an interaction model where age, sex, sex*age and
cell type proportion variables were used to predict DNA
methylation level, and 2) with an regression model
where age and cell type proportion variables were used
to predict DNA methylation level separately for men
and women. Furthermore, to explore the relevance of
the cell count considerations in the regression analyses,
an additional set of age-association analyses was per-
formed. In these regression models, the DNA methyla-
tion level of each CpG site was explained with age and
gender variables only and the cell proportions were
not adjusted for. The analyses were performed using
R software (R > = 2.15.3), and the regression analyses
were mainly conducted with algorithms implemented
in the betareg package [41]. The nominal Benjamini-
Hochberg adjusted p-value (q-value) was set to 0.05.
The a-CpGs were annotated based on the assembly
provided by the R package, FDb.InfiniumMethyla-
tion.hg19 [42]. For the purpose of visualization in
Fig. 3, standardized weighted residual values of the
methylation levels were extracted for each CpG site
from regression models in which only sex and cell
type proportion variables were set as predictors.

Analysis of the functional roles of a-CpGs
The enriched gene ontology (GO) terms of the genes
with a-CpGs were discovered using GOrilla [21, 43],
and the significant terms were further clustered by
REViGO [44]. The GOrilla analysis was performed for
the process, function and component categories with
two un-ranked lists, of which the first list comprised
genes with hypomethylated or hypermethylated a-
CpGs (Additional file 3: Table S4), and the second
comprised the genes in the background (N = 20,902;
analysis date, 9.3.2015). Furthermore, the prediction
of common transcription factors of the groups of
genes with either hypermethylated or hypomethylated
a-CpGs (as two separate analyses) was conducted
using Pscan with the default settings (JASPAR
database; analysis date, 10.3.2015) [22]. The nominal

p-value was set to at the Bonferroni-corrected value
of 0.05 in each analysis.

Availability of supporting data
The methylation data presented in this manuscript have
been submitted to the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE69270.

Additional files

Additional file 1: Figures S1-S5. 1) A figure of estimated proportions
of CD8T, CD4T, NK, B cell, monocyte and granulocyte cells of peripheral
blood samples in YFS. Proportions are visualized as boxplots, categorized
by age group and organized to separate panels by sex. 2) A figure of
aging-associated CpG site locations in regard to CpG islands (CGIs).
Number of aging-associated CpG sites are visualized with stacked bars. 3)
A figure (a-c) presenting locations of a-CpGs. 4) A figure showing results
for association of DNA methylation level in cg03636183 with smoking. 5)
A figure presenting sex specificity of the aging-associated CpG sites
(a-CpGs). (DOCX 357 kb)

Additional file 2: Tables S1-S3. 1) Two summary tables (a and b) of
the results from Spearman correlation analyses between age, the cell
counts and the first principal components (PCs). PCs were defined from
either the whole methylation data or 1202 a-CpGs using PCA. 2) A table
of the GO terms of the bio processes that are enriched to genes with
aging-associated CpG-sites. 3) A table of common transcription factors for
genes with hypermethylated a-CpGs characterized using Pscan.
(DOCX 31 kb)

Additional file 3: Table S4. A full table of 1202 a-CpGs with detailed
information. (XLSX 183 kb)

Additional file 4: Table S5. A summary table where the 70 genes with
more than one hypomethylated or more than one hypermethylated a-
CpGs per gene are presented. (XLSX 15 kb)
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Epigenetic mechanisms such as DNA methylation (DNAm) have a central role in the regulation of gene expres-
sion and thereby in cellular differentiation and tissue homeostasis. It has recently been shown that aging is asso-
ciated with profound changes in DNAm. Several of these methylation changes take place in a clock-like fashion,
i.e. correlating with the calendar age of an individual. Thus, the epigenetic clock based on these kind of DNAm
changes could provide a new biomarker for human aging process, i.e. being able to separate the calendar and bi-
ological age. Information about the correlation of the time indicated by this clock to the various aspects of
immunosenescence is still missing. As chronic cytomegalovirus (CMV) infection is probably one of the major
driving forces of immunosenescence, we now have analyzed the correlation of CMV seropositivity with the epi-
genetic age in the Vitality 90+ cohort 1920 (122 nonagenarians and 21 young controls, CMV seropositivity rates
95% and 57%, respectively). The data showed that CMV seropositivitywas associatedwith a higher epigenetic age
in both of these age groups (median 26.5 vs. 24.0 (p b 0.02,Mann–WhitneyU-test) in the young controls and 76.0
vs. 70.0 (p b 0.01) in the nonagenarians). Thus, these data provide a new aspect to the CMV associated patholog-
ical processes.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Infectionwith the human cytomegalovirus (CMV) takes place usual-
ly in early childhood and its seroprevalence increases with age being
70–100% in elderly individuals in different populations. CMV stays in
the body in a latent form, but it can be reactivated e.g. due to physical
stress or immune suppression. CMV infections are associated with
several aging-associated pathologies such as increased rate of inflam-
mation, changes in the proportions of immune cell types, and conse-
quently, also with increased mortality of elderly individuals (reviewed
in Pawelec and Derhovanessian, 2011, Pawelec et al., 2012). However,
the published data are not consistent and the causality of these associa-
tions is not yet established. Now, we have adopted a new approach to
study the effects of chronic CMV infection, its effect on the epigenetic
age.
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Epigenetic mechanisms such as DNA methylation (DNAm) have a
central role in the regulation of gene expression and thereby in cellular
differentiation and tissue homeostasis. It has recently been shown
that aging is associated with profound changes in DNAm. At the
genome-wide level, thousands of the methylation-sensitive cytosines
in the cytosine/guanine (CpG) nucleotide pairs are either hypo- or
hypermethylated (reviewed in Zampieri et al., 2015). Surprisingly,
several of these methylation changes take place in a clock-like fashion,
i.e. correlating with the calendar age of an individual. Horvath (2013)
constructed an algorithm based on 353 CpG sites demonstrating this
kind of behavior. This “epigenetic clock” is thus an interesting new
candidate for determination of the biological age of an individual.

There are already a couple of reports, where the age indicated by this
epigenetic clock has been used to analyze the correlations with aging-
associated phenotypes. In Down syndrome, where the aging process is
accelerated, the epigenetic age is clearly higher than the calendar age
(Horvath et al., 2015). Obesity seems to increase the epigenetic age in
liver, thus being in line with the suspected aging-accelerating effect of
obesity (Horvath et al., 2015). In elderly individuals increased epigenet-
ic age correlates with both physical and mental fitness (Marioni et al.,
2015b). There is also one study showing that the epigenetic age corre-
lates with mortality. Marioni et al. (2015a) observed that 69–79 year
old individuals had a 16% increased mortality during a 4–10 year
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Fig. 1. Chronological age as a function of the epigenetic age in 21 young controls and 122
nonagenarians.

Fig. 2. The epigenetic age is illustrated as boxplots and categorized by age group (young
controls N = 21, nonagenarians N = 122) and CMV seropositivity/−negativity. The line
in the middle in each box corresponds to value of median and the box contains 50% of
the age values in a group.
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follow-up if the epigenetic agewas 5 years higher than the calendar age.
Now we have determined the epigenetic age in a cohort of both young
and old individuals and analyzed the effect of CMV seropositivity on this
figure.

2. Materials and methods

The study population consisted of 122 nonagenarians and 21 young
controls (healthy laboratory personnel). It is a subcohort from the Vital-
ity 90+ study, which is an ongoing prospective population-based pro-
ject, where all 90 year-old individuals living in the city of Tampere are
invited to participate. Biological samples have been collected in 2000
and 2010 (the present subcohort). The recruitment and characteriza-
tion of the participants have recently been described (Goebeler et al.,
2003). The study protocol was approved by the ethics committee of
the city of Tampere. The study has been conducted according to the
principles expressed in the declaration of Helsinki. Collection of the
blood samples and DNA purification from these same individuals has
recently been described in detail (Marttila et al., 2015).

Genome-wide DNA methylation was analyzed using the
Illumina Infinium HumanMethylation 450k BeadChip Array. Data
processing was performed as described (Marttila et al., 2015). The
‘DNA methylome age’ (DNAm age) in the PBMCs was determined
by the methodology presented in a recent study (Horvath, 2013).
The formula of DNAm age was discovered by utilization of 21,000
probes that are present in HumanMethylation450 as well as in
HumanMethylation27 BeadChips. The predictor was trained with
8000 samples of various tissue types in 82 Illumina DNA methylation
array data sets. Based on the training results, the ‘epigenetic clock’ i.e.
the regression model was built with 353 CpG-sites of which methyla-
tion level explains the most of the age variation. The algorithm is
available at http://labs.genetics.ucla.edu/horvath/dnamage/. The
anti-CMV titer was measured from the plasma samples using an
enzyme-linked immunosorbent assay (Enzygnost Anti-CMV/IgG,
Siemens Healthcare, Marburg, Germany). Seropositivity was defined
as a titer N230 according to manufacturer's instructions.

As alterations in the leukocyte pool are known to be associated with
aging and aging phenotypes, we assessed the relationship between
DNAm age and leukocyte proportions using linear regression. The
leukocyte subtypes available in our data were CD3+ cells (of live-
gated cells), CD4+ cells (of CD3+ cells), CD8+ cells (of CD3+ cells),
CD4+CD28− cells (of CD4+ cells), CD8+CD28− cells (of CD8+ cells)
CD4+CD25high (of CD4+ cells), CD14+ cells (of live-gated cells) and
the CD4+/CD8+ cell ratio (Marttila et al., 2011). All the cell proportions
that exhibited statistically significant association with the DNAm age in
the univariate assessment, were analyzed in a multivariate linear re-
gression model. CMV serostatus was also added to the multivariate
model as a covariate.

3. Results

The correlation of the epigenetic age and calendar age of the nonage-
narians (n=122) and young controls (n=21) is shown in Fig. 1. In the
controls, the correlation is relatively good, but the nonagenarians show
a clearly lower epigenetic age than the calendar age. The effect of CMV
seropositivity on the epigenetic age is shown in Fig. 2. The epigenetic
age was significantly higher in the CMV seropositives (median 26.5.
vs. 24.0 in the controls, p b 0.02, Mann–Whitney U-test, and 76.0 vs.
70.0, p b 0.01, in the nonagenarians). Results demonstrating the
relationships between DNAm age and leukocyte proportions are
shown in Supplementary Table 1.

4. Discussion

The role of CMV in aging-associated pathologies has extensively
been analyzed (reviewed in Pawelec and Derhovanessian, 2011,
Pawelec et al., 2012). However, the data are not consistent, mainly be-
cause several decades are required to its effects to occur and naturally,
because of the complexity of the aging process. The data presented
here add a new piece to this puzzle: the effect of CMV on the epigenetic
age.

This study has some limitations. The number of individuals is rela-
tively small and therefore the associations of the observed differences
in the epigenetic age with the known parameters of CMV induced
immunosenescence cannot be reliably analyzed. However, one of the
hallmarks of CMV seropositivity in aged individuals is the change in
the proportions of T cell subsets. Although according to the data from
Horvath (2013), the epigenetic age does not vary significantly in sorted
blood cells and the clock is accurate also in other cell types, we ad-
dressed this issue in our data. The assessment of the relationship
between DNAm age, CMV serostatus and leukocyte subpopulations
demonstrated that the proportion of CD4+CD28− explains most of
the variation in the DNAm age and replaces the CMV serostatus and
all the other cell types as a determinant. This finding suggests that
there is a complex interplay between CMV and the CD4+CD28− cell
population in relation to the DNAm age. This finding is somewhat
unexpected as the CD4+CD28− cells are not the primary target of
CMV. Nevertheless, as CMV seropositivity is strongly associated with
lower CD4+CD28− cell proportion in our data (p ≤ 0.001, Mann–Whit-
ney U-test), we speculate that for some (unknown) reason CMV and
CD4+CD28− cells are so tightly interlinked that it is virtually impossible

http://labs.genetics.ucla.edu/horvath/dnamage/


229L. Kananen et al. / Experimental Gerontology 72 (2015) 227–229
to disentangle their individual effects on the aging of the human
methylome. However, as the cell type typically considered to reflect
the effect of CMV on aging-related phenotypes, i.e., the CD8+CD28−,
did not explain the variation in the DNAm age better than CMV
serostatus, we suggest that the relationship between CMV and DNA
methylation age does not involve major CMV-induced alterations in
the lymphocyte pool.

The biological mechanisms of the clock-like methylation pattern of
someCpG sites are not clear. It has been suggested that it is an indication
of a general epigenetic maintenance system required to keep the epige-
nome stabile (Horvath, 2013). This interpretation is supported by the
finding that in childhood and adolescence the epigenetic age/calendar
age ratio is logarithmic, i.e. during active differentiation and growth ef-
ficient maintenance is required (Horvath, 2013). In aged individuals the
epigenetic clock seems to slow down. This is probably due to decreased
cell proliferation, regeneration or to slower metabolism of the elderly,
i.e. being a biomarker of biological aging. The median epigenetic age of
the nonagenarians in this cohort was 14 years lower than the calendar
age. This difference is even larger than that observed in the study of
Marioni et al. (2015a) in 66–79 year old individuals, maybe indicating
that the clock is continuously slowing down with advancing age. How-
ever, at present we cannot exclude the possibility that this observed
slowing down is not due to these biological mechanisms, but is rather
due to simple selection, i.e. individuals with a low epigenetic age have
better chances to attain the age of 90 years. Obviously, larger cohorts,
and preferably in a follow-up setting, are required to analyze this
phenomenon and its significance.

It has already been demonstrated that the host cellmethylation state
and sensitivity to CMV infection are correlated (Esteki-Zadeh et al.,
2012). Additionally, CMV infection seems to cause global hypomethyla-
tion in some cell lines (Esteki-Zadeh et al., 2012). Therefore, it is maybe
not surprising that these CMV infection—associatedmethylomic chang-
es are a part of this putative epigenetic maintenance mechanism. Thus,
it is also possible that other infections associated with epigenetic stress
would have an increasing effect on the epigenetic age.
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The trajectory of the blood DNA methylome ageing rate
is largely set before adulthood: evidence from two longitudinal
studies
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Abstract The epigenetic clock, defined as the DNA
methylome age (DNAmAge), is a candidate biomarker
of ageing. In this study, we aimed to characterize the
behaviour of this marker during the human lifespan in
more detail using two follow-up cohorts (the Young
Finns study, calendar age i.e. cAge range at baseline
15–24 years, 25-year-follow-up, N = 183; The Vitality
90+ study, cAge range at baseline 19–90 years, 4-year-
follow-up, N = 48). We also aimed to assess the rela-
tionship between DNAmAge estimate and the blood
cell distributions, as both of these measures are known
to change as a function of age. The subjects’

DNAmAges were determined using Horvath’s calcula-
tor of epigenetic cAge. The estimate of the DNA
methylome age acceleration (Δ-cAge-DNAmAge)
demonstrated remarkable stability in both cohorts: the
individual rank orders of the DNAmAges remained
largely unchanged during the follow-ups. The blood cell
distributions also demonstrated significant intra-
individual correlation between the baseline and follow-
up time points. Interestingly, the immunosenescence-
associated features (CD8+CD28− and CD4+CD28−
cell proportions and the CD4/CD8 cell ratio) were tight-
ly associated with the estimate of the DNA methylome
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age. In summary, our data demonstrate that the general
level of Δ-cAge-DNAmAge is fixed before adulthood
and appears to be quite stationary thereafter, even in the
oldest-old ages. Moreover, the blood DNAmAge esti-
mate seems to be tightly associated with ageing-
associated shifts in blood cell composition, especially
with those that are the hallmarks of immunosenescence.
Overall, these observations contribute to the understand-
ing of the longitudinal aspects of the DNAmAge
estimate.

Keywords DNAmethylation . DNAmAge . Epigenetic
clock . Follow-up . Immunosenescence

Abbreviations
cAge Calendar age
DNAmAge DNA methylome age
FACS Fluorescence-activated cell sorting

analysis
MAD The median of the differences between

DNAmAge and cAge
PBMC Peripheral blood mononuclear cell
PCA Principal component analysis
WBL White blood leukocyte
YFS Young Finns study
V90 Vitality 90+ study
Δ-cAge-
DNAmAge

The difference between calendar age
and DNA methylome age

Background

In the field of biogerontology, one important objective
has been to develop a universal biomarker of ageing that
describes an individual’s biological age as opposed to
calendar age (cAge). For example, one promising bio-
marker has been telomere length, which is conveniently
obtainable. However, the correlation between telomere
length and cAge age is only moderate (Benetos et al.
2001), and the relevance of telomere length as an un-
ambiguous biomarker of ageing is questionable (Mather
et al. 2011). Recently, based on large-scale epigenome-
wide association studies, the DNA methylation levels at
certain CpG sites (Garagnani et al. 2012; Horvath 2013;
Hannum et al. 2013; Steegenga et al. 2014; Kananen
et al. 2016) have been shown to be strongly associated
with cAge in multiple tissues; i.e. methylation at these
sites shows clocklike behaviour. These findings have

been further refined to produce DNA methylome age
(DNAmAge) calculation algorithms. These algorithms
provide surprisingly accurate age predictions, with cor-
relation coefficients between cAge and DNAmAge as
high as 0.9 and median absolute deviations (MADs, the
median of the differences between DNAmAge and
cAge) of age predictions as low as 3 years (Bocklandt
et al. 2011; Hannum et al. 2013; Horvath 2013; Weidner
et al. 2014; Florath et al. 2014). Horvath (2013)) gener-
ated a multi-tissue age predictor algorithm (available at
https://dnamage.genetics.ucla.edu/) based on elastic net
regression analysis using 21,000 probes from the
HumanMethylation450 and HumanMethylation27
BeadChips. This predictor algorithm was trained with
8000 samples of various tissue types and cAge ranges in
82 Illumina DNA methylation array data sets. On the
grounds of the training results, the ‘epigenetic clock’,
i.e. the regressionmodel, was constructed and the model
consists of 353 CpG sites whose methylation level best
explains the variation in cAge. Using this algorithm, the
difference between cAge and DNAmAge estimate (Δ-
cAge-DNAmAge) might be considered as a quantitative
measure of a person’s biological ageing.

Horvath’s epigenetic clock ticking rate has been
shown to be highest during organismal growth
(Horvath 2013). However, observations in non-
proliferative and immortalized tissues have indicated
that DNAmAge is different from mitotic age and that
DNAmAge might rather be a measure of the magnitude
of epigenetic maintenance (Horvath 2013; Horvath and
Levine 2015), although the available evidence is limit-
ed. In addition, analysis of twins provided some evi-
dence that the heritability of DNAmAge is 100 % at the
time of birth but decreases to 39 % by late adulthood
(Horvath 2013). Therefore, non-genetic factors appear
to influence the epigenetic clock ticking rate, but it
remains unclear when and how these inter-individual
differences in the epigenetic clock arise and how stabile
these differences during distinct stages of the human
lifespan are.

In recent studies, accelerated biological ageing, as
indicated by DNAmAge estimate, has been demonstrat-
ed regarding several ageing-associated phenotypes
(physical and mental fitness (Marioni et al. 2015b),
mortality (Marioni et al. 2015a) or phenotypes with
ageing-resembling features (HIV1 (Horvath and
Levine 2015) and Down syndrome (Horvath et al.
2015a)). In addition, obesity induces an increase in
DNAmAge in hepatocytes (Horvath et al. 2014).
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Nevertheless, some of these results are conflicting; e.g.
military personnel suffering from more severe post-
traumatic stress symptoms have been demonstrated to
have a lower DNAmAges (Boks et al. 2015). However,
because of the limited number of longitudinal studies on
DNAmAge, the behaviour and utility of the DNAmAge
as a biomarker of ageing are currently unknown. As
different blood cell types display distinct DNA methyl-
ation profiles (Houseman et al. 2012; Jaffe and Irizarry
2014) and the immune cell distribution changes as a
function of age (Weiskopf et al. 2009; Pawelec et al.
2010), the relationship between alterations in methyla-
tion patterns and blood cell distributions is specifically
relevant to ageing and age-related phenomena.

The immune cell repertoire in individuals aged
70 years and older demonstrates a notable decline; the
classic manifestation of immunosenescence is the in-
ability to generate appropriate responses to vaccines
and infections (Weiskopf et al. 2009). The phenomena
underlying immunosenescence include clonal expan-
sion of CD4+CD28− and CD8+CD28− cells, which
lack the costimulatory surface receptor CD28, a key
factor in Tcell activation. CD28− cells exhibit shortened
telomeres and produce excessive levels of proinflamma-
tory cytokines. Furthermore, the lifespan of CD28− cells
is prolonged and these cells may survive for years in the
periphery because they undergo apoptosis less frequent-
ly than e.g. CD28+ cells. (Weiskopf et al. 2009; Arnold
et al. 2011) Although CD28− cells constitute a minor
proportion of the total leukocyte pool, they are key
players in immune system ageing. Thus, the CD28−
cells should be considered when examining the impli-
cations of ageing on DNA methylation in leukocytes.

Horvath’s DNAmAge has been reported to be
relatively independent from variation in the compo-
sition of the major blood cell types, but these con-
siderations apply only to middle-aged men and to
samples from individuals with a mean cAge between
66 and 79 years (Horvath 2013; Marioni et al.
2015a). Furthermore, few population-based cross-
sectional studies have examined genome-wide meth-
ylation patterns accounting for blood cell type dis-
tributions, yet typically only the major blood cell
types have been analysed (Lam et al. 2012; Zilbauer
et al. 2013; Jaffe and Irizarry 2014; Marttila et al.
2015). Thus, longitudinal studies including more
detailed cell type characterizations and covering
wider age ranges of individuals of both sexes are
needed. Hence, using two Finnish follow-up

cohorts, The Vitality 90+ study (V90) (age of nona-
genarians at baseline of 90 years and age range of
young controls of 19–34 years, 4-year follow-up,
N = 48) and The Young Finns study (YFS) (age
range at baseline of 15–24 years, 25-year follow-
up, N = 183), we aimed to elucidate the longitudinal
characteristics of the DNAmAge estimate. Specifi-
cally, we addressed the individual trajectories of the
DNA methylome age acceleration estimate through-
out adulthood in both sexes and examined how the
DNAmAge estimate parallels with the age-related
fluctuation of blood cell composition. With specific
relevance to ageing, our data included also the
oldest-old individuals and we assessed the distribu-
tions of the specific immunosenescence-representing
parameters: the CD4+/CD8+ cell ratio and CD4+
CD28− and CD8+CD28− lymphocytes.

Results

DNA methylome age in individuals in the YFS

Horvath’s DNAmAge was determined for each indi-
vidual using a multi-tissue age predictor (Horvath
2013). First, the resulting DNAmAges of the YFS
participants were evaluated separately in relation to
cAge and gender using samples collected in years
1986 and 2011. As shown in Fig. 1a, b and Supple-
mentary Table 1 (Additional File 2), the gender-wise
medians of DNAmAge were less than the corre-
sponding cAge at both time points. The medi-
an ± MAD DNAmAges of the subjects in the
YFS_1986 cohort and the corresponding values of
the same subjects in the YFS_2011 cohort are
shown in Supplementary Table 1 (Additional File
2). Spearman’s rank sum correlation coefficients
be tween cAge and DNAmAge were 0 .785
(P = 8.10 × 10−25) among women and 0.702
(P = 1.25 × 10−11) among men in the YFS_1986
cohort. The corresponding values in the YFS_2011
cohort were 0.635 (P = 4.24 × 10−14) among women
and 0.591 (P = 7.36 × 10−8) among men.

The changes in DNAmAge from 1986 to 2011 (i.e.
how many years the DNA methylome of a person had
aged in 25 years: DNAmAge in 2011 − DNAmAge in
1986) were 23.23 ± 2.74 years amongwomen (N = 113),
23.92 ± 3.10 years among men (N = 70) and
23.26 ± 2.97 among all individuals (N = 183). This
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change corresponds to 3.7 years of methylome ageing in
4 calendar years. The changes in DNAmAge did not
significantly differ between men and women (Mann-
Whitney U test, P = 0.076).

DNA methylome ages in individuals in the V90

Similarly to the analysis using the YFS data, the
resulting DNAmAges of the V90 participants were first
evaluated separately in relation to cAge and gender
using samples collected in years 2010 and 2014.
Spearman’s rank sum correlation coefficients between
cAge and DNAmAge were 0.594 (P = 3.6 × 10−11)
among women and 0.661 (P = 3.4 × 10−6) among men
in the V90_2010 cohort. The corresponding values in
V90_2014 were 0.925 (P = 5.4 × 10−24) among women
and 0.903 (P = 1.2 × 10−10) among men. As shown in
Table 1, Fig. 2a, b and Supplementary Figs. 3 and 4
(Additional File 2), the median DNAmAges were less
than the corresponding cAges within most, but not all,
categories: the median DNAmAges of the subjects aged
19–34 years in the V90_2014 cohort were higher than
their cAges.

To determine whether DNA methylomes of men,
women, young, or old subjects aged differently during
the follow-up period, the changes in DNAmAge from
2010 to 2014 (DNAmAge in 2014 − DNAmAge in

2010) were calculated. Over this period, the methylome
of women aged 4.18 ± 3.04 years (N = 30) and that of
men aged 6.31 ± 2.60 years (N = 18) (Mann-Whitney U
test, P = 0.255, total N = 48). Within the cAge groups
(categorized as nonagenarians and young controls), the
changes of DNAmAge were 7.39 ± 2.11 years among
the young controls (N = 7) and 4.53 ± 3.52 years among
the nonagenarians (N = 41; Mann-Whitney U test,
P = 0.020) during the 4-year follow-up period. There
was no difference in the change in DNAmAge between
nonagenarian men (N = 14) and women (N = 27) during
the follow-up period (P = 0.582). The corresponding
gender-wise analysis of young controls in the V90 co-
hort was discarded due to the small sample size of
subjects participating at both time points.

Δ-cAge-DNAmAge in the YFS participants

The difference between calendar age and DNA
methylome age (Δ-cAge-DNAmAge) in whole blood
leukocytes (WBLs) was calculated for all study subjects.
In the YFS, the Δ-cAge-DNAmAge was 3.24 ± 3.17
(median ±MAD) amongwomen and 2.95 ± 3.20 among
men in 1986 (baseline, 15–24-year-old subjects), and in
2011 (follow-up, 40–49-year-old subjects), the corre-
sponding values were 1.50 ± 2.73 among women and
2.07 ± 2.77 among men. There was no statistically

Fig. 1 a, b The DNAmAge values in the YFS samples at baseline
and at follow-up after 25 years are visualized as boxplots. The
YFS_1986 sample (N = 183) is shown in panel a, and the
YFS_2011 sample (N = 183) is shown in panel b. The subjects
were categorized by cAge and gender. The boxes for women and

men are coloured dark and light grey, respectively. The differences
in the median DNAmAge values between men and women at each
cAge group were not prominent (Mann-WhitneyU test, P > 0.05).
More detailed information can be found in Additional Files 1 and
2. (Colour figure online)
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significant difference in the median Δ-cAge-
DNAmAge between genders in either YFS_1986
(P = 0.314) or YFS_2011 (P = 0.654). The Δ-cAge-
DNAmAge values are shown in further detail in Sup-
plementary Figs. 1 and 2 (Additional File 2), in which
the subjects were categorized by cAge group and gen-
der. Figure 3a illustrates the relationship between theΔ-
cAge-DNAmAge values in 1986 and those in 2011. The
Spearman’s rank sum correlation coefficient between
the Δ - cAge -DNAmAge va lues was 0 .515
(P = 5.2 × 10−9) for women (N = 113), 0.567
(P = 3.1 × 10−7) for men (N = 70) and 0.535
(P = 6.1 × 10−15) for all participants (N = 183).

Δ-cAge-DNAmAge in the V90 participants

In the V90, the median Δ-cAge-DNAmAge values in
2010 (baseline) were 6.27 ± 6.99 among all 90-year-old
subjects (N = 122) and −0.363 ± 2.83 among all 19–29-
year-old subjects (N = 21). In 2014 (follow-up), the
median Δ-cAge-DNAmAge values were 3.63 ± 8.74
among all 94-year-old subjects (N = 41) and
−3.87 ± 3.34 among all 19–34-year-old subjects
(N = 40). The Δ-cAge-DNAmAge values are shown
in further detail in Supplementary Figs. 3 and 4
(Additional File 2), in which the subjects were catego-
rized by cAge group and gender. The relationship be-
tween theΔ-cAge-DNAmAge values in 2010 and those
in 2014 (N = 48) is illustrated in Fig. 3b; the correspond-
ing Spearman’s rank sum correlation coefficient be-
tween the Δ-cAge-DNAmAge values was 0.895
(P = 9.2 × 10−18) for all subjects in the V90. Due to
limited sample sizes, further statistical analyses in sub-
groups of small sample sizes were not performed.

Associations of DNAmAge with cell counts

The cell counts were determined using either genome-
wide DNA methylation profiles together with a specific
cell count estimation algorithm (Jaffe and Irizarry 2014)
(YFS) or fluorescence-activated cell sorting (FACS)
analysis (V90). Then, the associations between the cell
counts and DNAmAge were determined using Spear-
man rank sum correlation analysis. First, the correlation
of proportions of blood cell types at each time point with
the correspondingΔ-cAge-DNAmAge values were ex-
amined (Tables 2 and 3). In the V90, the most significant
peripheral blood mononuclear cell (PBMC) subtype
correlate with Δ-cAge-DNAmAge was CD4+CD28−T
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cells among nonagenarians: an increased proportion of
these cells was associated with older DNAmAge. Other

significant correlates in nonagenarians were CD4+
CD3+, CD8+ of CD3+, CD8+CD28− cells and the

Fig. 2 a, b The DNAmAge values in the V90 samples are
visualized as boxplots. The V90_2010 sample (N = 143) is shown
in panel a, and the V90_2014 sample (N = 81) is shown in panel b.
The samples were categorized by cAge group (on the x-axis) and
gender (box colours). A general trend of gender difference was
observed in the DNAmAges of PBMCs in the nonagenarians and
the young controls at both time points of the V90. The difference
in the median DNAmAge values between nonagenarian men
(N = 33) and women (N = 89) was significant (Mann-Whitney U

test,P = 0.006) in the V90_2010 sample (panel a). However, in the
categories with smaller sample sizes, in the younger cAge groups
of the V90_2010 (panel a) andV90_2014 (panel b) samples and in
the 94-year-old group of the V90_2014 (panel b) sample, the
differences in the median DNAmAge values were not statistically
significant between men and women (Mann-Whitney U test,
P > 0.05). More detailed information can be found in Additional
Files 1 and 2

Fig. 3 a, b The correlations between the Δ-cAge-DNAmAge
values at different time points are shown in scatterplots. a Subjects
participating in the YFS in 1986 and 2011. The dots corresponding
to women (N = 113) are coloured red, and the dots corresponding
to men (N = 70) are coloured blue. b Subjects participating in the
V90 in 2010 and 2014 (N = 48). The colours of the dots for each

subject are explained in the graph legend. The Spearman’s rank
sum correlation coefficient between Δ-cAge-DNAmAge values
was 0.535 (P = 6.1 × 10−15) for the YFS sample (N = 183, panel a)
and 0.895 (P = 9.2 × 10−18) for all subjects in the V90 (N = 48,
panel b). More detailed information can be found in Additional
Files 1 and 2. (Colour figure online)
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CD4+/CD8+ ratio (Table 2). In the young controls, the
significant correlates were the CD4+/CD8+ ratio, CD3+
of live-gated, CD4+CD3+, CD4+CD28− and CD8+
CD28− cells (Table 2). Among the YFS individuals
aged 15–24 years, the significant WBL subtype corre-
late with Δ-cAge-DNAmAge was CD4+ T cells
(Table 3). However, after 25 years, the significant cor-
relates for the same individuals were the CD4+/CD8+
ratio and NK cells (Table 3).

Next, the fluctuations in cell subtype proportions in
blood over the follow-up period were evaluated using
correlation analysis. The proportion of each cell type
and CD4+/CD8+ ratio at baseline were correlated
against the corresponding variable at the follow-up
time-point (Tables 4 and 5). During the 4-year follow-
up period in the V90 participants, the cell proportions
were stationary (Table 4, Fig. 4c). The most stabile cell
types or ratios during the 25-year-follow-up period in
the YFS individuals were NK and B cells and the CD4+/
CD8+ ratio; the correlation coefficients for these vari-
ables were between 0.45 and 0.55 (Table 5).

Discussion

The human epigenetic clock, assessed as the DNAmAge
estimate or DNAmAge acceleration (the difference be-
tween cAge and DNAmAge estimate), has recently
gained much attention as a marker of human biological

age. However, the utility and the behaviour of this
marker in the course of the lifespan are incompletely
understood. Here, we present a longitudinal evaluation
of the characteristics of DNAmAge estimate (Horvath
2013) during adulthood and at advanced ages. The most
notable finding in our study is that the estimate of DNA
methylome age acceleration is remarkably stabile
throughout adulthood and that the rate at which this
trajectory proceeds appears to be set before adulthood.
The data from the YFS demonstrated that already at the
age of 15 years, the slope of DNA methylome ageing
was already on an individual-specific level, such that
over the 25-year follow-up period, very little deviation
from this line was observed. A clear correlation in the
scatterplot in Fig. 3a illustrates this finding. At old ages,
the DNA methylome ageing rate was likewise steady
(Fig. 3b). Previous findings provide support to our re-
sults. The creator of the DNAmAge calculator (Horvath
2013) reported first in his study using cross-sectional
DNAmAge data that the epigenetic clock ticking rate is
accelerated before adulthood and thereafter the rate
slows down. In addition, the DNAmethylomes of twins
are identical at birth and begin to diverge thereafter, and
by the late adulthood, the methylomes of twin pairs
display only 39 % similarity (at median age of 63 years,
all women) (Horvath 2013). Most importantly, a recent
follow-up study (Simpkin et al. 2016) on children (base-
line at birth, follow-ups at ages of 7 and 17 years)
showed that epigenetic age acceleration (the difference

Fig. 4 a–c The CD28−CD4+ cell counts of the participants
examined in 2010 and 2014 correlate with their corresponding
DNAmAge values and with one another. The associations are
visualized as scatterplots. Each dot corresponds to one subject;
the colours of the dots are explained in the graph legends. a The
CD28−CD4+ proportions of 90-year-old subjects in V90_2010
correlated with their DNAmAge in 2010 (r = 0.540,
P = 4.75 × 10−10, N = 115). b The CD28×CD4+ proportions of

94-year-old subjects in V90_2014 correlated with their
DNAmAge in 2014 (r = 0.626, P = 1.20 × 10−5, N = 41). c The
CD28−CD4+ proportions of all participants in V90_2010 corre-
lated with their CD28−CD4+ proportions in V90_2014 (among
all: r = 0.901, P = 9.48 × 10−24, N = 63; among elderly: r = 0.864,
P = 3.33 × 10−16, N = 51; among young controls: r = 0.684,
P = 0.014, N = 12). More detailed information can be found in
Table 2 and Table 4 and Supporting Material in Additional File 1
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between epigenetic and chronological age) is only mi-
nor at the time of birth when compared to later stages at
childhood: the divergence in epigenetic age acceleration
on those children was increased in association with
chronological age. Simpkin et al. (2016) concluded also
that within-subject correlation between epigenetic ages
at different time-points increases with increasing chro-
nological age. Thus, these results are well in line with
our conclusion that the primary trajectory of epigenetic
age is set before adulthood. Interestingly, Simpkin et al.

(2016) found several phenotypes that associated with
epigenetic age acceleration in the children: e.g. maternal
alcohol consumption and smoking during pregnancy
among others. Future long-term follow-up studies with
full-scale phenotypic information from the beginning of
life, through early childhood to later adulthood (e.g.
middle-age) would provide more exact knowledge of
epigenetic clock timing.

Several environmental factors, such as diet, physical
and cognitive characteristics and toxin exposure, may

Table 2 The associations of PBMC subtype proportions with DNAmAge values at baseline and at follow-up among nonagenarians (born in
1920) and young controls (aged 19–34 years) in the V90 sample

Nonagenarians Young controls

Δ-cAge-DNAmAge at
baseline in 2010, N = 115

Δ-cAge-DNAmAge at
follow-up in 2014, N = 41

Δ-cAge-DNAmAge at
baseline in 2010, N = 21

Δ-cAge-DNAmAge at
follow-up in 2014, N = 40

Cell type proportion (%) r P r P r P r P

CD3+ of live-gated cells 0.106 0.261 −0.251 0.114 −0.065 0.780 0.404* 0.010

CD4+ of CD3+ 0.316* 0.001 0.311* 0.048 0.505* 0.019 0.382* 0.015

CD8+ of CD3+ −0.310* 0.001 −0.326* 0.038 −0.233 0.309 −0.232 0.150

CD4+/CD8+ ratio 0.309* 0.001 0.346* 0.027 0.396 0.075 0.332* 0.036

CD4+CD28− −0.540* 4.75e−10 −0.626* 1.20e−5 −0.222 0.333 −0.344* 0.030

CD8+CD28− −0.269* 0.004 −0.327* 0.037 −0.369 0.100 −0.348* 0.028

CD14+ of live-gated cells −0.112 0.235 0.033 0.836 −0.139 0.549 0.077 0.635

CD19+ of live-gated cells na na 0.246 0.122 na na −0.025 0.879

The cell counts were determined using FACS. The associations were determined using Spearman rank-sum correlation analysis; larger and
smaller Δ-cAge-DNAmAge values are referred to as ‘younger’ and ‘older’ DNA methylome age, respectively. Data not available are
denoted as ‘na’. Associations with a P value less than 0.05 are denoted by asterisks. Additional young control subjects (N = 33) were
recruited at follow-up in 2014

Table 3 The associations of WBL subtype proportions with Δ-cAge-DNAmAge values at baseline in 1986 (cAge 15–24 years) and at
follow-up in 2011 (cAge 40–49 years) of the subjects in the YFS

YFS, Δ-cAge-DNAmAge in 1986, N = 183 YFS, Δ-cAge-DNAmAge in 2011, N = 183

Cell type proportion (%) r P r P

CD8+ T cells −0.085 0.255 −0.089 0.231

CD4+ T cells 0.150* 0.044 0.093 0.211

CD4+/CD8+ ratio 0.106 0.160 0.224* 0.003

NK cells −0.024 0.747 −0.192* 0.009

B cells 0.106 0.152 0.115 0.120

Monocytes −0.028 0.711 −0.015 0.840

Granulocytes 0.029 0.700 0.054 0.465

The cell counts were determined using genome-wide DNA methylation profiles and a specific cell count estimation algorithm (Jaffe and
Irizarry 2014). Associations were determined using Spearman rank-sum correlation analysis; larger and smallerΔ-cAge-DNAmAge values
are referred to as ‘younger’ and ‘older’ DNA methylome age, respectively. Associations with a P value less than 0.05 are denoted by
asterisks
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influence the ticking rate of the epigenetic clock
(Zampieri et al. 2015; Simpkin et al. 2016). Thus, in
the current study, these and various other factors may
underlie the observation that some of the individuals
deviated from the diagonal line in the scatterplots of
their Δ-cAge-DNAmAge values (Fig. 3a, b). In addi-
tion, some of the dispersion may be due to technical
reasons, i.e. inaccuracies in the DNAmAge measure-
ment. Although numerous factors may influence the
DNAmAge estimate, surprisingly high correlation coef-
ficients between inter-individual Δ-cAge-DNAmAge
values at the two time-points were observed in both
cohorts. Therefore, our results indicate that in the ma-
jority of individuals, ageing of the DNA methylome
proceeds surprisingly steadily (Fig. 3a, b).

Another important finding in our study is that the
DNAmAge estimate significantly paralleled the ageing-
related shifts in leukocyte proportions (Table 2). The most
significant PBMC subtype that correlated with Δ-cAge-
DNAmAge in the V90 sample was CD4+CD28− cells; an
increased frequency of these cells was associated with
older DNA methylome age in the nonagenarians at both
follow-up time points (Table 2, Fig. 4a, b). Moreover,
CD4+CD28− cells were similarly associated with
DNAmAge in the young controls (Table 2). The observa-
tion that increased proportions of immunosenescence-
representing cell types (CD4+CD28− and CD8+CD28−
cells) and a reduced CD4+/CD8+ cell ratio emerged as
highly significant correlates of greater DNAmAge is of
specific importance to ageing and age-related phenotypes.
That is, the CD4+CD28− cell count can be a potential
confounding factor in analyses of the associations between
DNAmAge and ageing-related phenotypes. Interestingly,
the association between DNAmAge and immune cell
distribution is not restricted to ageing. It has been demon-
strated that more rapid DNA methylome ageing estimate
inHIV-1 patients is accompanied by increased frequencies
of NK and CD28−CD34RA−CD8+ Tcells and decreased
frequencies of CD4+ granulocytes and naïve CD8+ T
cells (Horvath and Levine 2015). Notably, HIV-1 patients
are likely to prematurely develop ageing-related patholo-
gies (Pathai et al. 2014). Based on the correlation between
the DNAmAge estimate and the NK cell count in the YFS
cohort follow-up when the participants were 40–49 years
of age (Table 3), it seems that the NK cell count and
DNAmAge estimate are associated only in later adulthood
and not in adolescence and early adulthood. However,
identifying the basis of this observation and elucidating

Table 4 Correlations of the PBMC subtype proportions of sub-
jects (N = 63) in the V90 between 2010 and 2014

Cell type proportion (%) r P

CD3+ of live-gated cells 0.628* 2.26e−06
CD4+ of CD3+ 0.830* 5.34e−13
CD8+ of CD3+ 0.855* 2.13e−14
CD4+/CD8+ ratio 0.811* 7.93e−16
CD4+ CD28− 0.901* 9.48e−24
CD8+CD28− 0.838* 2.06e−13
CD14+ of live-gated cells 0.317* 3.01e−02

The cell counts of the samples were determined using FACS.
Associations were determined using Spearman rank-sum correla-
tion analysis. Associations with a P value less than 0.05 are
denoted by asterisks. Correlation analysis was performed on the
total sample without further categorization due to a small sample
size

Table 5 Correlations of WBL subtype proportions for subjects in the YFS sample between 1986 and 2011

YFS, all N = 183 YFS, women N = 113 YFS, men N = 70

Cell type proportion (%) r P r P r P

CD8+ T cells 0.317* 1.20e−05 0.356* 1.35e−04 0.261* 2.90e−02
CD4+ T cells 0.312* 1.57e−05 0.349* 1.86e−04 0.360* 2.19e−03
CD4+/CD8+ ratio 0.453* 1.97e−10 0.464* 4.12e−07 0.511* 1.00e−05
NK cells 0.398* 2.18e−08 0.430* 2.79e−06 0.312* 8.55e−03
B cells 0.545* 1.33e−15 0.484* 8.69e−08 0.589* 8.39e−08
Monocytes 0.547* 9.73e−16 0.561* 1.79e−10 0.521* 3.71e−06
Granulocytes 0.206* 4.92e−03 0.268* 4.60e−03 0.080 0.509

The cell counts were determined using genome-wide DNA methylation profiles and a specific cell count estimation algorithm (Jaffe and
Irizarry 2014). Associations were determined using Spearman rank-sum correlation analysis. Associations with a P value less than 0.05 are
denoted by asterisks
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the potential ageing- and immunosenescence-related
methylomic changes in NK cells warrants further studies
in purified NK cells.

As shown in our previous study (Marttila et al. 2015),
CD4+CD28− cells appear to be an obvious confounding
factor in analyses of age-related DNA methylation
changes at genome-wide level in PBMCs; the propor-
tion of CD4+CD28− cells explained a large part of the
variation in DNA methylation levels of ageing-
associated CpG sites. Although the mechanistic basis
for the role of CD4+CD28− cells in ageing and
immunosenescence is not completely clear, we specu-
late that certain intrinsic features of these cells, i.e. their
cytokine secretion profile, shortened telomeres and re-
sistance to apoptosis (Weiskopf et al. 2009; Arnold et al.
2011), might also be related to alterations in DNA
methylation patterns in the ageing-associated sites as
well as in the epigenetic clock sites. In addition to
ageing, expansion of these cells has been reported in
certain immune-related diseases, such as multiple scle-
rosis, rheumatoid arthritis and acute coronary syn-
dromes (Broux et al. 2012). Hence, our findings may
have implications on the methylomic analyses of these
disorders as well.

Previous studies have shown that DNA methylomes
of men age more rapidly than those of women (Hannum
et al. 2013; Weidner et al. 2014). Thus, the results were
interpreted according to gender. Although our subsam-
ple sizes of men and women were quite small for statis-
tical analysis, a general trend of gender difference was
observed in the DNAmAges of PBMCs in the nonage-
narians and the young controls at both time points of the
V90: men had older DNA methylomes than women
(Fig. 2a, b); the difference was statistically significant
in the V90_2010 cohort where the subsample sizes were
sufficient. In the WBL samples from the YFS partici-
pants, no significant gender differences in the DNA
methylome ages were observed in any cAge category
(Table 1 and Figs. 1a, b). A reason for this negative
result may have been the small sample size of the
different cAge groups or variability of the blood sample
types. However, in the YFS_1986 cohort, there was a
slight trend in which 15–24-year-old men and women
displayed unique, but constant trajectories of DNA
methylome ageing estimate as a function of cAge (i.e.
the slope of the trend line of this change was different
between genders); women aged faster than men, as
shown in Fig. 1a. Nevertheless, the overall ageing rate
of DNA methylomes (i.e. how many years the DNA

methylome had aged over the 4- or 25-year follow-up
period) did not differ between women and men in either
the V90 or the YFS. Further studies using larger samples
are needed to clarify these observations.

Analogous to previous findings (Horvath 2013;
Marioni et al. 2015a), the DNAmAge values correlated
with cAge, showing high correlation coefficients
(Spearman’s rho >0.5) and high statistical significance
(P < 4 × 10−6) in both of our follow-up studies. Inter-
estingly, as shown in Table 1 and Supplementary
Table 1 (Additional File 2) as well as in Figs. 1 and 2,
the median DNAmAges were often smaller than the
corresponding median cAges; thus, the Δ-cAge-
DNAmAge values were positive in the majority of
samples, as shown in Figs. 3a, b and Supplementary
Figs. 1–4 (Additional File 2). This result may be
interpreted as an indicator of a ‘young’ DNA
methylome age of blood cells (on both PBMC and
WBL). Nevertheless, some of the young controls in
the V90 exhibited older DNA methylomes in their
PBMCs (Supplementary Fig. 4 in Additional File 2,
Table 1). Analysis of the follow-up data revealed that
the DNAmethylomes inWBLs of the YFS subjects had
aged by an average of ∼23 years during the 25-year
follow-up period; this rate corresponds to 3.7 years of
methylome ageing in 4 calendar years. During the
4-year-follow-up in the V90 cohort, the DNA
methylomes in PBMCs of the individuals aged
19–34 years appeared to age faster than those of nona-
genarians (∼7.4 years compared to ∼4.5 years). These
results may refer to the slightly varying rates of DNA
methylome ageing in PBMCs between different stages
of the human lifespan. However, our results also indicate
that the DNA methylome ageing rate is rather stabile
after young adulthood, even at extreme ages (Figs. 3a, b).

Previous studies have shown that there are non-
pathologic tissue-specific differences in DNAmAge.
For example, the DNA methylome of the cerebellum
ages more slowly (Horvath et al. 2015b) and the DNA
methylome of sperm is considered much younger
(Horvath 2013) than that in other parts of the human
body. Studies of the within-individual differences inΔ-
cAge-DNAmAge values between leukocytes and other
healthy tissues using reasonable sample sizes are lack-
ing. Few reports have assessed the estimated blood cell
subtypes in their DNAmAge analyses (Horvath 2013;
Marioni et al. 2015a) and concluded that DNAmAge is
relatively independent of the fluctuation in the predom-
inant blood cell subtypes. Nevertheless, these studies
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have assessed only the major blood cell categories, and
most importantly, these studies have not examined very
old individuals.

Our results demonstrate in both of our follow-up
cohorts that (i) the DNAmAge is associated with the
cell subtype distributions (Tables 2 and 3); (ii) there are
highly significant intra-individual correlations of the
blood cell subtype distributions during several years of
follow-ups (Tables 4 and 5, Fig. 4c) and (iii) the differ-
ence between DNAmAge estimate and cAge is largely
unchanged during the follow-ups (Fig. 3a, b). Our data
do not permit us to elucidate why the proportions of the
specific blood cell types are so strongly associated with
the DNAmAge estimate, but the fact that the blood cell
composition changes with age is also evident in our
results (Table 1). This issue may be one of the major
reasons for average DNA methylation differences in
PBMCs over age. However, our results do not indicate
a causal relationship between the ageing-associated
changes in cell composition and the actual DNA meth-
ylation changes in specific loci per cell passage.

Our study contains evident limitations due to limited
sample sizes. In addition, we did not obtain flow cytom-
etry data for the proportions of minor cell subtypes aside
from CD4+CD28− and CD8+CD28− cells. Further-
more, the cell counts of the YFS samples were deter-
mined using a prediction algorithm that relies on
genome-wide cell-type-specific methylation profiles
(Jaffe and Irizarry 2014). Moreover, the DNA samples
were of slightly different origin: YFS sample DNAwas
extracted from WBLs, and V90 DNA was extracted
from PBMCs. Nevertheless, we detected analogous re-
sults from the two independent follow-up cohorts ex-
amined in this study.

Conclusions

In summary, our results demonstrate that most of the
differences in estimated DNAmAge arise before
adulthood and that the estimated DNAmAge changing
rate is rather stabile thereafter. We also provide evidence
that DNAmAge estimate is tightly associated with blood
cell subtype frequencies, especially with the
immunosenescence-reflecting markers, the CD4+
CD28− and CD8+CD28− cells and the CD4+/CD8+
ratio. However, it remains to be determined how and
exactly when before adulthood the inter-individual dif-
ferences in the DNAmAge arise. Moreover, other very

important questions remain to be answered: to what
extent is it possible to alter the ticking rate of the
epigenetic clock by implementing lifestyle changes (di-
et, physical activity, etc.) during adulthood? Future stud-
ies are needed to address these questions.

Methods

Study populations

The Young Finns study

The YFS consisted of a series of cohorts representing
the general population born in 1962, 1965, 1968, 1971,
1974 and 1977 from five cities with university hospitals
in Finland (Helsinki, Kuopio, Oulu, Tampere and Tur-
ku) (Raitakari et al. 2008). A subsample of 183 individ-
uals was randomly selected for this study from a follow-
up study performed in 1986 (denoted as the YFS_1986
sample), and the same individuals were analysed again
from a follow-up study performed 25 years later in 2011
(denoted as the YFS_2011 sample). The sample collec-
tions in 1986 and 2011 are described in further detail
elsewhere (Akerblom et al. 1989; Nuotio et al. 2014). At
baseline in 1986, the sample examined in the current
study contained four age groups: 15-, 18-, 21- and 24-
year-old subjects. The respective group sizes were 49,
44, 55 and 35, and the respective percentage of women
was 59.2, 68.2, 56.4 and 60.0 %. All of the participants
were of western European descent. This study followed
the guidelines of the Declaration of Helsinki and was
approved by the Ethical Review Committee of Turku
University Hospital, and all participants provided in-
formed consent.

The Vitality 90+ study

The Vitality 90+ study (V90) is an on-going prospective
population-based study that includes both home-
dwelling and institutionalized subjects aged 90 years
or older who live in the city of Tampere, Finland. The
recruitment and characterization of the subjects were
performed as reported for previous V90 cohorts
(Goebeler et al. 2003). In the DNAmethylation analysis,
the study population at baseline in 2010 (denoted as
V90_2010) consisted of 122 subjects born in 1920
(women N = 89, men N = 33) and 21 young control
subjects (19–28-year-old women N = 14, 20–29-year-
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old men N = 7). Of these subjects, 48 (control subjects
N = 7 and 94-year-old surviving subjects N = 41; de-
noted as the V90_2014 sample) participated in a 4-year
follow-up examination. In addition, 33 new control
subjects (22–33-year-old men N = 9, 19–34-year-old
women N = 24) were recruited together with the 4-
year follow-up participants; therefore, the full sample
size of the V90_2014 sample was 81. In total, 223 DNA
samples from 176 subjects were used in the DNAmAge
analysis. In addition, 136 subjects in the V90_2010
sample (95 % of the total sample size; young N = 21
and old N = 115) and 81 subjects in the V90_2014
sample (100 % of the total sample size; young N = 40
and old N = 41) were examined for PBMC subtype
composition characterization via flow cytometry
(FACS); PBMC samples from 63 subjects (51 nonage-
narians and 12 young controls) were characterized using
FACS at both time points, at baseline in 2010 and at
follow-up in 2014. Further, of these subjects, 48 (the
same as those mentioned above) were used for
DNAmAge measurement at both time points. All study
subjects were of Western European descent and had not
suffered from any infections or received any vaccina-
tions in the 30 days prior to blood sample collection.
The study participants provided their written informed
consent. This study has been conducted according to the
principles expressed in the Declaration of Helsinki, and
the study protocol was approved by the ethics commit-
tee of the city of Tampere (1592/403/1996; 765/
13.03.01/2008, PSHP 7/2014, ETL R14002).

Sample preparation

WBL DNA of the YFS cohort at baseline and at the 25-
year follow-up was obtained from blood samples stored
in EDTA using a Wizard® Genomic DNA Purification
Kit (Promega Corporation, Madison, WI, USA) accord-
ing to the manufacturer’s instructions. The blood sam-
ples of the subjects in the V90 at baseline and at follow-
up were collected into EDTA-containing tubes during a
home visit. The samples were directly subjected to
leucocyte separation on a Ficoll-Paque density gradient
(Ficoll-Paque™ Premium, cat. no. 17-5442-03, GE
Healthcare Bio-Sciences AB, Uppsala, Sweden). The
PBMC layer was collected and suspended in 1 ml of a
freezing solution (5/8 FBS, 2/8 RPMI-1640 medium,
1/8 DMSO) (FBS: cat. no. F7524, Sigma-Aldrich, St.
Louis, MO, USA; RPMI: cat. no. R0883, Sigma-Al-
drich, St. Louis, MO, USA; DMSO: cat. no.

1.02931.0500, VWR, Espoo, Finland) and stored in
liquid nitrogen. DNAwas extracted from PBMCs using
the QIAampDNAMini Kit (Qiagen, CA, USA) accord-
ing to the centrifugation protocol provided in the man-
ufacturer’s instructions. The DNAwas eluted in 60 μl of
AE elution buffer and stored at −20 °C. The concentra-
tion and the quality of the DNA were assessed via the
Qubit dsDNA HS Assay (Invitrogen, Eugene, OR,
USA).

DNAmAge quantification

The genome-wide DNA methylation levels in WBLs
from the YFS_2011 individuals and in PBMCs from
the V90 participants were obtained using Illumina
Infinium HumanMethylat ion450 BeadChips
(Illumina, San Diego, CA, USA) (Bibikova et al.
2006; Bibikova et al. 2009; Bibikova et al. 2011)
according to the manufacturer’s protocol at the Core
Facility of the Institute of Molecular Medicine Fin-
land (FIMM), University of Helsinki. The corre-
sponding DNA methylat ion profi les of the
YFS_1986 samples were measured using the same
methodology at Helmholtz Zentrum, München, Ger-
many. Samples were applied to the arrays in a ran-
domized order. Aliquots of 1 μg of DNA were
subjected to bisulphite conversion using the EZ-96
DNA Methylation Kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions.
A 4-μl aliquot of bisulphite-converted DNA was
subjected to whole-genome amplification, followed
by enzymatic fragmentation and hybridization to an
Infinium HumanMethylation450 BeadChip. The
BeadChips were scanned with the iScan reader
(Illumina), and the measured probe intensities were
transformed to β values using a standard equation in
which β is the ratio of the methylated probe (m)
intensities to the overall intensities (m + u + α,
where α is the constant offset, 100, and u is the
unmethylated probe intensity). Thus, in the
heterogenic sample, the resulting β values ranged
linearly from 0 (completely unmethylated, 0 %) to 1
(completely methylated, 100 %). The quality of the
DNA samples and the methylation data was careful-
ly ensured using standard examinations, such as
principal component analysis (PCA), gender predic-
tion and visualizations. The methylation intensity
values and the PCA results were viewed using den-
sity plots, boxplots and dotplots. The gender
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prediction was based on the average levels of DNA
methylation at CpG sites located in X chromosomes.
Finally, the absolute methylation values (β values)
of the selected probes (N = 28,587) were extracted
from all data sets, and those values were used as the
input for calculation of the DNAmAge (https://
dnamage.genetics.ucla.edu/home) (Horvath 2013).
The methylation data were inputted into the calcu-
lator in a blinded manner, i.e. without any prelimi-
nary background information concerning sample
type, cAge or gender. Batch effects were normalized
using the BMIQ function implemented in the
DNAmAge algorithm.

FACS analysis of the V90 samples

The proportions of different leukocyte subtypes were de-
termined with randomized sample orders using
fluorescence-activated cell sorting analysis (FACS; BD
FACSCanto II). In 2010, the results were analysed with
BD FACSDiva, version 6.1.3 (BD Biosciences, Franklin
Lakes, NJ, USA), and in 2014, the results were analysed
with FlowJo software (Tree Star Inc., Ashland, OR, USA).
The antibodies used were FITC-CD14 (cat. no. 11-0149),
PerCP-Cy5.5-CD3 (45-0037), APC-CD28 (17-0289), PE-
CD19 (12-0199) (eBioscience, SanDiego, CA,USA), PE-
Cy™7-CD4 (cat. no. 557852) and APC-Cy™7-CD8
(557834) (BD Biosciences). In 2010, CD19 antibody
was not used. Staining was performed in phosphate-
buffered saline (PBS) containing 1 % foetal bovine serum
(FBS) after an incubation step with Fc Receptor Binding
Inhibitor (cat. no 16-9161, eBioscience) to minimize non-
specific staining of the cells.

Cell count estimates of the YFS samples

The leukocyte cell type distributions in the YFS samples
were determined using R software (R>= 2.15.3) and the
e s t ima t i on a lgo r i t hm imp lemen t ed in t he
estimateCellCounts function of the minfi
Bioconductor package (Jaffe and Irizarry 2014). This
algorithm utilizes a subset of 600 control probes in the
450 BeadChip, which represent specific DNA methyla-
tion signatures of CD8+ and CD4+ T cells, monocytes,
granulocytes, NK cells and B cells. The reference data
used in the estimation algorithm are available in the
FlowSorted.Blood.450K Bioconductor package.

Statistical analyses

Descriptive statistical analyses of the DNAmAges in-
cluded calculations of medians and MADs. Between-
group comparisons were conducted using non-
parametric Mann-Whitney U tests (two-sided
Wilcoxon’s test), and the correlation analyses were per-
formed using non-parametric Spearman’s rank sum
tests. The nominal P value threshold was set to 0.05.
Analyses and visualizations were performed using R
software (R>= 2.15.3) and IBM SPSS Statistics v.22
(IBM Corporation, Armonk, NY, USA).
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ABSTRACT
Changes in the DNA methylation (DNAm) landscape have been implicated in aging 

and cellular senescence. To unravel the role of specific DNAm patterns in late-life 
survival, we performed genome-wide methylation profiling in nonagenarians (n=111) 
and determined the performance of the methylomic predictors and conventional risk 
markers in a longitudinal setting. The survival model containing only the methylomic 
markers was superior in terms of predictive accuracy compared with the model 
containing only the conventional predictors or the model containing conventional 
predictors combined with the methylomic markers. At the 2.55-year follow-up, 
we identified 19 mortality-associated (false-discovery rate <0.5) CpG sites that 
mapped to genes functionally clustering around the nuclear factor kappa B (NF-κB) 
complex. Interestingly, none of the mortality-associated CpG sites overlapped with 
the established aging-associated DNAm sites. Our results are in line with previous 
findings on the role of NF-κB in controlling animal life spans and demonstrate the role 
of this complex in human longevity.

INTRODUCTION

The influential role of genomic factors, such as 
DNA methylation (DNAm) in the course of development, 
aging and age-related pathologies is well established. 
Several studies have also reproducibly demonstrated that 
the level of methylation at specific CpG sites changes 
as a function of age [1-5], hence providing a marker 
of chronological and, potentially, biological age. An 
intriguing characteristic of age-related DNAm signatures 
is that many of the age-associated DNAm changes have 
been observed to be common in several different tissues, 
such as whole blood, brain, lung and cervix [1, 3, 6]. 
These observations suggest that a global mechanism(s) 
might be responsible for age-associated modifications 
in the epigenetic landscape. Nevertheless, studies with 
monozygotic twins have demonstrated that the rate of 

divergence in methylomic patterns increases with age [7, 
8], suggesting that the age-related modifications in DNAm 
are also subject to various environmental, stochastic and 
life style-related effects. 

However, the consequences of the aging-
accompanied DNAm alterations for late-life health 
and functional abilities are largely unknown. A recent 
epigenome-wide association study (EWAS) demonstrated 
that the association between age-related DNAm changes 
and healthy aging phenotypes in individuals 32-80 years 
of age is negligible [8]. The results of this study also 
reveal that the DNAm regions associated with aging 
phenotypes are distinct from those associated with 
chronological age. These findings suggest that the CpG 
sites involved in health-related outcomes in later life are 
largely regulated by sites other than the established age-
related DNAm regions [8]. In addition, using an EWAS 
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approach, we have recently demonstrated that the CpG 
sites that are associated with aging-related inflammation, 
i.e., inflammaging [9] are largely different from the 
sites associated with age [5]. This phenomenon is also 
observable in regard to gene expression profiles and old 
age mortality. We have previously demonstrated that the 
genes exhibiting aging-related changes in expression 
levels are predominantly different from those that predict 
mortality in late life [10]. These findings underscore the 
complexity and unknown nature of the genomic factors 
that control the human health span and late-life events. 

Nevertheless, the mortality-predicting genes in our 
previous study were found to be functionally connected 
to the nuclear factor kappa B (NF-κB) complex, which 
is a central mediator in immunoinflammatory responses 
and has been advocated as the culprit in aging and cellular 
senescence (reviewed in [11]). Aberrant activation of NF-
κB has been reported in various age-associated conditions, 
such as neurodegeneration, immunosenescence, 
inflammaging, sarcopenia and osteoporosis (reviewed in 
[12-14]), whereas studies involving mouse models have 
observed that NF-κB activation is a key determinant of 
accelerated aging and longevity [15, 16]. In the mouse 
models, it was demonstrated that the hypothalamic 
activation of NF-κB is a driving force of systemic aging 
through immune-endocrine connections [16]. 

Life span regulation in humans is a multifactorial 
process, and very little is known about the genomic 
determinants that control late-life mortality after the 
ages of the common killers, i.e., cardiovascular events 
and cancer, have passed. In this study, we sought to 
explore how the human genome-wide methylome is 
associated with old-age survival within a shorter (2.55 
years) and a longer (4 years) follow-up time. A large 
panel of traditional (bio)markers and mortality risk 
factors was assessed alongside the methylomic markers 
to elucidate the relationship between the aging-related 
biophysiological changes and epigenetics. 

RESULTS

The characteristics of the study population and 
distribution of the variables in the population with 
methylation data available (n = 111) are presented in Table 
1. The variables (i.e., the conventional markers) exhibiting 
significant (p < 0.05) univariate and multivariate 
associations at the 2.55 follow-up are presented in 
Supplementary Table 1. The predictors remaining in the 
multivariate model, body mass index (BMI) and Mini-
Mental State Examination (MMSE) test score, were used 
as the model factors in the assessment of the predictive 
accuracy of modeling (see Methods). The measure of 
“epigenetic clock” [17], the DNA methylation age was not 
predictive of mortality in our cohort (p = 0.733). 

In the Cox univariate assessment, 19,621 and 15,505 

CpG sites were associated with mortality (p < 0.05) in 
the 2.55-year and 4-year follow-up data, respectively 
(Supplementary Tables 2 and 3). After B-H correction 
(FDR < 0.5), 19 CpG sites remained significant for the 
2.55-year follow-up and 7 CpG sites for the 4-year follow-
up data (Supplementary Tables 2 and 3). The Ingenuity 
Pathway Analysis (IPA) -generated network from the 16 
known genes harboring the 19 significant CpG sites at 
the 2.55-year follow-up is presented in Figure 1a. This 
network displayed NF-κB as a central node and involved 
10 of 16 of the genes mapped to the 19 mortality-
associated CpG sites (FDR < 0.5). We also ran the IPA 
network and pathway analyses from the genes harboring 
the 250 top-ranking CpG sites according to the 2.55-
year follow-up data (sites presented in Supplementary 
Table 2). The highest-ranking network in this analysis 
also placed NF-κB as a central complex (Figure 1b). The 
significant B-H-corrected canonical pathways from this 
data set are presented in Table 2. At the 4-year follow-up, 
the functional implications of the methylomic predictors 
were attenuated as no significant B-H -corrected canonical 
pathways were identified in IPA from the genes harboring 
the 250 highest-ranking CpG sites and no significant 
network enrichment was observed among the genes 
harboring the 7 CpG sites (FDR < 0.5). 

Assessment of the predictive accuracy of the tested 
models revealed that the Ridge regression containing 
only the methylomic markers (Ridge1) performed 
better than the other models; i.e., a model containing 
only the conventional predictors, a Ridge regression 
model containing both the conventional predictors 
(Ridge2) and the methylomic markers and a model 
containing only the methylomic markers selected on 
the basis of their significance level in Cox univariate 
assessment. Specifically, the methylomic markers alone 
exhibited the smallest median deviance from the null 
model (Supplementary Figure 1), and were thus used in 
assessing the final mortality-predicting signature in the 
Cox multivariate model for 2.55-year follow-up data. The 
deviances of the conventional markers exhibited clearly 
the smallest variation but their median was nevertheless 
higher than that of the methylomic markers in Ridge1.

The Ridge regression-organized 19 methylomic 
markers entered to the Cox multivariate model are 
presented in Supplementary Table 4. Inclusion of the 
methylomic markers in the final model was based on 
selection of the model with the best goodness of fit 
(Akaike Information criterion, AIC), which for the 
selected model was 239.0. The final Cox multivariate 
model is presented in Table 3 and the distributions of 
the beta values for the seven CpG sites (batch effect 
-corrected) included this mortality-predicting signature 
are presented in Supplementary Figure 2. 

The discriminative power (Harrell’s C) for this 
model was 89.9%. The proportionality assumption in the 
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Table 1: Characteristics of the study population (n = 111). Distributions of the variables are presented according to the data 
at the 2.55-years mortality follow-up.

Non-survivors Survivors
Variable Mean/Med SEM/IQR/% Mean/Med SEM/IQR/%
Women (n/%) 27 75.0 54 72.0
Age (months) 1079.5 0.61 1080.2 0.37
Systolic blood pressure (mmHg) 145 4.6 149 3.4
Diastolic blood pressure (mmHg)* 71.5 13.5 74.0 19.0
Weight (kg) 61.9 2.2 70.6 1.6
BMI (kg/m2) 24.3 0.75 27.5 0.54
Waist circumference (cm) 89.6 2.1 95.5 1.4
Hip circumference (cm)* 98 10.0 102 12.0
MMSE* 23.5 8.0 26.0 4.0
Barthel index* 95.0 20.0 95 5.0
Handgrip (kg)* 18.0 11.0 20.0 7.0
Able to perform chair-rise test (n = yes/%) 19 57.6 59 78.7
Able to perform chair-stand test (n = yes/%) 22 71.0 62 82.7
Frailty index (n/%)
  Non-frail 3 8.3 26 34.7
  Pre-frail 22 61.1 37 49.3
  Frail 11 30.6 12 16.0
CRP level (ng/ml)* 1.8 3.3 1.9 3.5
IL-1β level (pg/ml)* 14.2 27.6 19.0 34.0
IL-6 level (pg/ml)* 4.5 3.3 3.8 3.8
IL-7 level (pg/ml)* 7.8 5.3 6.4 5.2
IL-10 level (pg/ml)* 1.8 1.5 1.5 2.6
cf-DNA level (μg/ml)* 0.93 0.19 0.87 0.16
Unmethylated cf-DNA level (μg/ml)* 0.75 0.20 0.67 0.15
Plasma mtDNA (copy number)* 4.30E8 2.37E8 3.75E8 2.09E8

Alu repeat cf-DNA (GE)* 74.4 50.4 66.8 38.3
DHEAS (μg/ml)* 0.25 0.48 0.25 0.31
Cortisol (ng/ml)* 133 54.3 117 68.0
IDO activity (Kyn/Trp)* 44.3 25.5 51.8 25.3
Anti-CMV antibody titer* 19.000 8.000 19.000 9000
Anti-EBV antibody titer* 405 315 410 410
DNAm age 76.1 1.04 76.1 0.64
CD3+ cells (%)*a 62.0 15.8 57.9 12.0
CD4+ cells (%)b 62.9 2.5 63.8 1.6
CD8+ cells (%)b 30.6 2.3 28.9 1.5
CD4+/CD8+ cells (ratio)* 2.4 2.3 2.3 2.4
CD4+CD28- cells (%)* 9.2 16.2 9.2 13.0
CD8+CD28- cells (%) 63.3 2.8 63.3 2.1
CD14+ cells (%)*a 8.3 5.9 8.1 6.3

*median values and IQR presented
apercentage of live-gated cells; bpercentage of total T lymphocytes (CD3+ cells);
cpercentage of CD4+ cells; dpercentage of CD8+ cells
Abbreviations: BMI, body mass index; CD, cluster of differentiation; CMV, cytomegalovirus; CRP, C-reactive protein; cf-DNA, cell-free DNA; DHEAS, 
dehydroepiandrosterone sulfate; DNAm, DNA methylation; EBV, Epstein-Barr virus; GE, genomic equivalent; IDO, indoleamine 2,3-dioxygenase; IL, 
interleukin; Kyn, kynurenine; MMSE, Mini-Mental State Examination; mtDNA, mitochondrial DNA; Trp, tryptophan
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Figure 1: The highest-ranking networks from the 16 known genes harboring the top 19 significant (FDR < 0.5) CpG 
sites a. and from the genes harboring the top 250 CpG sites b. in the 2.55-year follow-up (n = 111). Both networks displayed NF-κB 
as a central node and were enriched for the common term Hematological System Development and Function. The green color of the 
molecule indicates that hypomethylation of a CpG site in the gene was associated with increased mortality, and the red color indicates 
that hypermethylation of a CpG site in the gene was associated with increased mortality. The networks were generated through the use of 
QIAGEN’s Ingenuity Pathway Analysis (IPA®,QIAGEN Redwood City, www.qiagen.com/ingenuity).
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Table 2: Canonical pathways constructed from the genes harboring the top 250 CpG sites associated with mortality 
at the 2.55-year follow-up. 
Ingenuity Canonical Pathways -log(p)* Ratio Molecules

Chronic Myeloid Leukemia Signaling 1.91 7.61E-02 TGFBR2, GAB2, HDAC4, SMAD3, PIK3R2, 
NFKB1, ATM

Germ Cell-Sertoli Cell Junction Signaling 1.58 5.13E-02 TGFBR2, MAP3K14, MAP3K10, ACTA2, 
KEAP1, ITGA2, PIK3R2, ATM

Role of NFAT in Cardiac Hypertrophy 1.58 4.55E-02 IL6ST, TGFBR2, HDAC4, ITPR3, IGF1R, 
SLC8A3, PIK3R2, ATM

Cell Cycle: G1/S Checkpoint Regulation 1.58 7,94E-02 CCND2, HDAC4, CCND3, SMAD3, ATM

Regulation of the Epithelial-Mesenchymal 
Transition Pathway 1.58 4.40E-02 MAML1, TGFBR2, FZD3, SMAD3, PIK3R2, 

NFKB1, SMURF1, ATM

iCOS-iCOSL Signaling in T Helper Cells 1.58 5.83E-02 GAB2, CD28, ITPR3, PIK3R2, NFKB1, ATM

Rac Signaling 1.58 5,83E-02 CYFIP2, ITGA2, PIK3R2, NFKB1, ATM, ANK1

NF-κB Activation by Viruses 1.58 6.85E-02 MAP3K14, ITGA2, PIK3R2, NFKB1, ATM

Hepatic Fibrosis/Hepatic Stellate Cell 
Activation 1.58 4.08E-02 TGFBR2, TNFSF4, ACTA2, MYH14, SMAD3, 

IGF1R, NFKB1, FAS

GADD45 Signaling 1.58 1.58E-01 CCND2, CCND3, ATM

PKCθ Signaling in T Lymphocytes 1.57 5.31E-02 MAP3K14, MAP3K10, CD28, PIK3R2, NFKB1, 
ATM

Molecular Mechanisms of Cancer 1.57 3.06E-02 TGFBR2, GAB2, CCND2, CCND3, FZD3, 
SMAD3, ITGA2, PIK3R2, NFKB1, FAS, ATM

CNTF Signaling 1.46 8.16E-02 IL6ST, CNTF, PIK3R2, ATM

B Cell Receptor Signaling 1.44 4.09E-02 GAB2, MAP3K14, MAP3K10, PAG1, PIK3R2, 
NFKB1, ATM

RANK Signaling in Osteoclasts 1.44 5.81E-02 MAP3K14, MAP3K10, PIK3R2, NFKB1, ATM

Virus Entry via Endocytic Pathways 1.44 5.62E-02 ITSN1, ACTA2, ITGA2, PIK3R2, ATM

Crosstalk between Dendritic Cells and 
Natural Killer Cells 1.44 5.62E-02 CD28, ACTA2, KLRD1, NFKB1, FAS

Lymphotoxin β Receptor Signaling 1.44 7.41E-02 MAP3K14, PIK3R2, NFKB1, ATM

Death Receptor Signaling 1.44 5.49E-02 MAP3K14, ACTA2, PARP12, NFKB1, FAS

Colorectal Cancer Metastasis Signaling 1.43 3.46E-02 IL6ST, TGFBR2, FZD3, SMAD3, PIK3R2, 
NFKB1, PTGER4, ATM

Myc Mediated Apoptosis Signaling 1.40 6.90E-02 IGF1R, PIK3R2, FAS, ATM
T Cell Receptor Signaling 1.40 5,21E-02 CD28, PAG1, PIK3R2, NFKB1, ATM

Estrogen-Dependent Breast Cancer Signaling 1.30 6.45E-02 IGF1R, PIK3R2, NFKB1, ATM

CD40 Signaling 1.30 6.25E-02 MAP3K14, PIK3R2, NFKB1, ATM
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Cox Regression model was tested using the global test by 
calculating the scaled Schoenfeld residuals for each of the 
independent predictors in the final Cox model. Statistically 
significant dependence of mortality on time was not 
observed (p = 0.280) indicating that the proportionality 
assumption was not violated.

Due to the small number of mortality-associated 
CpG sites in the methylomic data at the 4-year follow-
up, no comparison of the prediction accuracies of the 
different modeling options or assessment of the final 
mortality-predicting signature was performed for the 
4-year mortality data. 

Correlation analysis between the methylation 
levels in the mortality-associated CpG sites and the 
corresponding gene product(s) revealed a significant 
correlation between three CpG site/transcript pairs. Inverse 
correlations were observed between the cg03348466 
(CRTC3) and CRTC3 mRNA level and between 
cg04182483 (RGS10) and the RGS10 mRNA level. A 
direct correlation was observed between cg22794214 
(HIVEP3) and HIVEP3 mRNA level. All the correlations 
are presented in Supplementary Table 5.

Analysis of the genomic locations of the top 19 
CpG sites (FDR < 0.5, in Supplementary Table 2) for 
transcription factor (TF) binding sites and other genomic 
regulatory elements revealed that a majority of the sites 
were located on active cis-regulatory regions; they either 
harbored TF binding sites, DNAse I hypersensitivity 
regions, and/or were identified as “Predicted promoter 
region including transcription start site (TSS)”, “Predicted 

enhancer (E)” or “Predicted weak enhancer or open 
chromatin (WE)”. In addition, six CpG sites demonstrated 
functional significance as they were annotated for 
“Predicted transcribed region (T)”. The most abundant 
TFs were POLR2A and RELA which both had binding 
sites on four CpG site loci. Full data of this assessment are 
presented in Table 4. 

DISCUSSION

We have previously demonstrated, using genome-
wide gene expression data, that the NF-κB complex is 
centrally involved in controlling human old-age mortality 
[10]. In the present study, we expanded the examination 
of the genomic factors regulating late-life survival 
by analyzing the predictive ability of genome-wide 
methylomic data at the 2.55-year follow-up. The results 
of this study corroborate the role of NF-κB in all-cause 
elderly mortality; the molecular network constructed 
from the genes harboring the mortality-associated CpG 
sites displayed the NF-κB complex as a central mediator 
(Figure 1). The genes nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 1 (NFKB1) and 
ataxia telangiectasia mutated (ATM) were also identified 
in the network. Intriguingly, both NFKB1 and ATM have 
previously been linked with accelerated aging and cellular 
senescence in studies with genetically engineered mice 
[15, 18, 19]. These studies advocated that NFKB1 and 
ATM-regulated aberrant NF-κB activation and the ensuing 
chronic systemic inflammatory state are the ultimate 

HGF Signaling 1.30 4.81E-02 MAP3K14, MAP3K10, ITGA2, PIK3R2, ATM

Pancreatic Adenocarcinoma Signaling 1.30 4.72E-02 TGFBR2, SMAD3, PIK3R2, NFKB1, ATM

NGF Signaling 1.30 4.72E-02 MAP3K14, MAP3K10, PIK3R2, NFKB1, ATM

T Helper Cell Differentiation 1.30 5.97E-02 IL6ST, TGFBR2, CD28, IL21R
IL-9 Signaling 1.30 8.82E-02 PIK3R2, NFKB1, ATM

*Benjamini-Hochberg-corrected p-value

Table 3: The final mortality-predicting signature at the 2.55-year follow-up assessed from the Ridge 
regression -organized methylomic markers. 

HR (95% CI) S.E. Z p
cg08421934 (NA) 0.41 (0.26-0.64) 0.10 -3.84 <0.001
cg15770702 (MAP3K14) 0.40 (0.27-0.61) 0.08 -4.38 <0.001
cg08596308 (ATP6V1G2; NFKBIL1) 0.50 (0.34-0.73) 0.10 -3.60 <0.001
cg23282964 (RIOK1) 0.56 (0.37-0.84) 0.12 -2.82 0.005
cg16720947 (PLEC1) 0.52 (0.34-0.80) 0.13 -2.94 0.003
cg27027151 (IL21R) 2.09 (1.44-3.02) 0.39 3.90 <0.001
cg26843567 (NA) 0.68 (0.46-0.99) 0.13 -2.01 0.045

Abbreviations: CI, confidence interval; HR, hazard ratio; NA, not available; S.E., standard error
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drivers of senescence and aging-associated deterioration 
[15, 18]. Although our data do not provide a mechanistic 
link between the hypomethylation of these CpG sites and 
the risk of mortality, we speculate that the mechanism 
involves an inflammatory component by which the 
genomic factors control late-life mortality. 

Analysis of the 19 mortality-associated CpG sites 
(FDR < 0.5) for genomic regulatory elements revealed that 
a majority of the sites were located on active cis-regulatory 
regions (Table 4). That is, they harbored TF binding 
sites, located on DNAse I hypersensitivity areas and/or 
displayed one of the following predicted genomic states: 

Table 4: Assessment of the 19 mortality associated CpG sites (FDR<0.5) in the 2.55-year follow-up (n = 111) for 
transcription factor binding sites and other functional genomic elements using ENCODE data in the UCSC genome 
browser.

CpG site (gene) GRCh37/hg19 
coordinate Transcription Factors Genome 

status
DNAse I 
Hypersensitivity 
Cluster

cg24859528 (IQSEC1) chr3:12941421 T NO
cg03348466 (CRTC3) chr15:91104770 CEBPB T YES

cg02395768 (ATP5SL) chr19:41945578

SIN3AK20, POLR2A, SP2, SP1, 
CHD2, NFYB, PBX3, MAZ, NFIC, 
GTF2F1, MTA3, TAF1, TBL1XR1, 
JUND, KDM5B, STAT5A, HDAC1, 
SAP30, FOS, YY1, PHF8, FOXM1, 
TBP, CEBPB, REST, TCF12, IRF1, 
TEAD4, ZBTB7A, GABPA, MEF2A, 
PML, RELA

TSS YES

cg15770702 
(MAP3K14) chr17:43384845

PML, STAT5A, NFATC1, CEBPB, 
BCL3, TCF12, EBF1, FOXM1, 
EP300, RELA, STAT3, NFIC, 
TBL1XR1, JUND, MEF2A, PAX5, 
BHLHE40, MEF2C, ATF2, SP1, 
BATF, RUNX3, IRF4, BCL11A

TSS/T YES

cg16720947 (PLEC1) chr8:145048137 n.a. YES
cg22794214 (HIVEP3) chr1:42123463 CTCF WE/R YES
cg08596308 
(ATP6V1G2;
NFKBIL1)

chr6:31516045
CHD1, RBBP5, ZNF274, POLR2A, 
E2F6, E2F4, KDM5B, MYC, MAX, 
MAZ

TSS YES

cg23282964 (RIOK1) chr6:7417780 T NO
cg21200667 (NA) chr2:30628085 R YES
cg08421934 (NA) chr6:33942413 R NO
cg08486432 (ITPR3) chr6:33598003 T/R YES
cg08352439 (VOPP1) chr7:55637123 POLR2A, POU2F2 TSS YES
cg25356639 (FOXP1) chr3:71349304 R NO
cg04395703 (METAP1) chr4:99982762 T YES
cg03171419 (GPR124) chr8:37700802 POLR2A T YES
cg26843567 (NA) chr12:104846281 R YES
cg00291478 (RGS10) chr10:121301041 RELA, RUNX3, RBBP5 TSS YES

cg27027151 (IL21R) chr16:27461638 POLR2A, MTA3, NFATC1, RELA, 
BCLAF1, EBF1 E/R YES

cg04182483 (RGS10) chr10:121259610 T NO

Abbreviations: TSS, Predicted promoter region including transcription start site (TSS); T, Predicted transcribed region; WE, 
Predicted weak enhancer or open chromatin cis-regulatory element; E, Predicted enhancer; R, Predicted Repressed or Low 
Activity region
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promoter region including transcription start site, enhancer 
or weak enhancer/open chromatin. It is possible that the 
association between these sites and longevity is mediated 
through altered binding of TFs or methyl-binding domain 
proteins, of which the latter recruit chromatin-modifying 
proteins to achieve a repressive chromatin state. However, 
our data do not allow us to determine whether disrupted 
regulation of chromatin permissiveness underlies the 
increased mortality risk. Interestingly, RELA, which is a 
subunit of the NF- κB complex, was identified to have 
a binding site on four of the analyzed 19 CpG sites. 
This observation further supports the hypothesis of the 
functional role of NF-κB in old-age mortality. 

Region of a predicted transcription start site 
was observed for cg02395768 (ATP5SL), cg15770702 
(MAP3K14), cg08596308 (ATP6V1G2; NFKBIL1), 
cg08352439 (VOPP1) and cg00291478 (RGS10). 
However, the methylation levels in these sites were not 
correlated with gene expression (Supplementary Table 
5). Instead, methylation levels of cg03348466 (CRTC3), 
cg22794214 (HIVEP3) and cg04182483 (RGS10) 
correlated with the corresponding transcript expression 
level. The observation that the correlations were overall 
modest is, however, in line with previous findings on 
minimal correlations between age-associated changes 
methylation and transcription [5, 20, 21]. Six sites, 
including cg03348466 (CRTC3) and cg04182483 (RGS10) 
resided in predicted transcribed area, and can hence also 
be considered functionally significant. The potential 
regulatory role of these sites (in the gene body region) 
may involve e.g. alternative splicing. However, the exact 
mechanism connecting the mortality-associated changes 
in methylation to alternative splicing requires further 
research.

The canonical pathways constructed from the 
genes harboring the top 250 mortality-associated CpG 
sites at the 2.55-year follow-up covered a wide variety 
of cellular signaling functions among which several 
inflammation and immunity-related processes were 
represented. Interestingly, pathways termed NF-κB 
Activation by Viruses, GADD45 Signaling and Cell 
Cycle: G1/S Checkpoint Regulation were also identified. 
The emergence of these pathways suggests that NF-κB 
might also be involved late-life control of cellular growth 
and survival, DNA repair and apoptosis, as these functions 
are ascribed to the induction of the NF-κB- GADD45 
cascade [22]. Interestingly, in our previous paper on the 
transcriptomic mortality predictors, we observed that an 
increased expression of GADD45B was predictive of an 
increased risk of mortality in these nonagenarians [10]. 

However, as the number of mortality-associated 
CpG sites was markedly reduced from the 2.55-years 
follow-up to the 4-years follow-up, we speculate that 
the methylomic markers might exhibit a dynamic nature 
even in the extreme ages. That is, a substantial part of 
the genomic CpG sites might be constantly remodeled, 

and during 4 years, their methylation levels are likely 
to change to an extent that their predictive ability in our 
population is reduced. The longer follow-up time also 
allows more time for stochastic mortality determinants, 
such as trauma, to operate, which may thus weaken the 
role of the genomic predictors.

Although the methylomic markers did not exhibit 
very strong statistical significances after FDR-correction 
and we used a liberal threshold for including them in 
the Ridge regression (FDR < 0.5), the methylomic 
data demonstrated good performance in terms of 
generalizability and discriminative power. Specifically, 
the methylomic data alone exhibited better predictive 
accuracy than the conventional markers alone or in 
combination with the methylomic markers, and the seven 
CpG sites in the final Cox model had a discriminative 
power of 89.9%. In this respect, the methylomic data 
also performed better than the transcriptomic mortality 
predictors in our previous study [10]. Nevertheless, we 
acknowledge that the major weaknesses of our study are 
a lack of a separate verification cohort and a rather small 
study population. Hence, the results must be considered as 
tentative and hypothesis-generating. The strength of our 
study, however, is the fact that all the study participants 
were 90 years of age at baseline. Therefore our results 
are not confounded by the effect of chronological age on 
DNAm.

A recent study by Moore et al. analyzed genome-
wide methylomic mortality predictors in individuals 
with a wide age range (30-100 years at 9-year follow-
up, mean mortality follow-up time 4.4 years) [23]. They 
identified 76 CpG sites where the rate of change in DNAm 
was associated with mortality and 88 markers where the 
year 9 level of DNAm was associated with mortality. 
Interestingly, their mortality-associated DNAm sites 
also included genes with immunoinflammatory functions 
and a link to NF-κB regulation. However, no overlap 
between individual mortality-associated CpG sites were 
found in our data sets. These differences may arise due to 
different population characteristics, such as age range and 
the causes of death. Hence, further studies are required 
to establish the potentially age and population-specific 
relationships between DNAm and mortality. 

When we examined the seven final signature 
mortality-predicting CpG sites and their corresponding 
genes (Table 3) for overlap with the genes harboring the 
most commonly aging-associated CpG sites - ELOVL2, 
FHL2 [2, 21, 24-26], KLF14 [2, 21, 25, 26], SST [2, 
25, 26], OTUD7A [2, 24, 26], PENK [2, 21, 24, 25] and 
EDARADD [2, 6, 24, 26] - we found no overlap between 
these markers. Moreover, none of our top 250 mortality-
associated methylomic sites (Supplementary Table 2) were 
among the 525 common age-associated CpG sites that 
have been observed in more than one study (summarized 
in [21]). Moore et al. [23] have also in observed a similar 
phenomenon in their population: very few ( < 0,05%) 
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of the aging-associated CpG sits were also mortality-
associated. These observations suggest that aging-
associated epigenetic drift and the epigenetic control of 
the life span in old age might operate through different 
genomic mechanisms. This hypothesis is also in line with 
our previous findings on age-associated transcripts [27], 
which displayed very little similarity with mortality-
predicting transcripts [10]. 

Despite the increasing body of data that suggests 
that several manifestations of organismal aging and 
development are of epigenetic origin, the associations 
reported thus far on DNAm and aging-phenotypes are 
scarce and/or the findings have been negative. Bell 
et al. (2012) examined the genome-wide associations 
between DNAm and 16 age-related phenotypes and 
found that two phenotypes - lung function and low-
density lipoprotein levels - exhibited an association with 
one CpG site (cg16463460 in WT1 and cg03001305 in 
STAT5A, respectively) and maternal longevity exhibited an 
association with two CpG sites (cg13870866 in TBX20 and 
cg09259772 in ARL4A) [8]. In another EWAS, Marioni 
et al. (2015) detected no individual CpG sites associated 
with physical or cognitive fitness in an elderly population 
[28]. However, they did find a cross-sectional association 
between a measure of DNAm age - the epigenetic clock 
based on the Horvath predictor [17] -, and physical and 
cognitive fitness yet the DNAm age was not predictive 
of a longitudinal chance in the fitness measures [28]. The 
DNAm age has also been recently demonstrated to predict 
all-cause mortality in four different cohorts of elderly 
individuals [29] and in Danish twins [30]. However, 
the DNAm age was not predictive of mortality in our 
study. One reason for the negative finding might be that 
individuals in our cohort were all very old at baseline 
(90 years), and death at this age likely has different 
underpinnings than at younger old ages and when assessed 
in cohorts with wider age spectra. 

In conclusion, the results of this study support 
the genomic-level role of NF-κB at the very end of the 
human life span. We hypothesize that our findings could 
relate to the recent observation of a programmatic role of 
hypothalamic NF-κB and IκB kinase-β activation in the 
control of the life span in experimental mouse models 
[16]. Adhering to the conclusion of this mouse study 
that the decisive role of hypothalamic NF-κB is exerted 
systemically level through immune-neuroendocrine 
crosstalk [16], we suggest that our findings on immune 
cells might represent the peripheral correspondence of 
hypothalamic NF-κB activation. However, establishing 
the systemic-level events that connect NF-κB function 
to all cause-mortality in aged humans will require further 
research.

MATERIALS AND METHODS

Study population

The study population consisted of nonagenarian 
subjects participating to the Vitality 90+ study, which 
is an ongoing, prospective population-based study on 
individuals aged 90 years and above and who reside in 
the city of Tampere, Finland. The Vitality 90+ study was 
initiated in 1995, and since then several nonagenarian 
cohorts have been recruited and examined for biological, 
clinical, demographic and social measures. Mortality 
rates have been analyzed longitudinally using complete 
follow-ups. The recruitment protocol and characterization 
of the subjects in the current study has been previously 
described [10]. The data in this study concern individuals 
born in 1920 and recruited in 2010 for sample collection. 
Genome-wide methylation data and the full covariate data 
including cell type proportions were available for 111 
subjects (n = 81 women and n = 30 men). The all-cause 
mortality data were collected from the Population Register 
Center. As we wanted to assess both shorter and longer-
term survival predictors for this cohort, the mortality 
data was collected in two different time points. The first 
data collection was performed on 31st of January in 2013 
corresponding to a 2.55-year median follow-up and the 
second one was on 31st of May in 2014 corresponding to 
a 4-year follow-up. The mortality rate at the 2.55-year 
follow-up was 32.4% (36/111) and 47.7% (53/111) at the 
4-year follow-up. All the participants gave their written 
informed consent. The study was conducted following the 
guidelines of the Declaration of Helsinki, and the study 
protocol was approved by the ethics committee of the city 
of Tampere.

Sample collection and processing

Venous blood samples were collected in EDTA-
containing tubes by a trained home-visiting medical 
student between 8 am and 12 am. Plasma was separated 
and stored at -70°C. Genomic DNA and total RNA were 
extracted from PBMCs in which the blood samples were 
subjected to leucocyte separation using a Ficoll-Paque 
density gradient (Ficoll-Paque™ Premium, cat. no. 17-
5442-03, GE Healthcare Bio-Sciences AB, Uppsala, 
Sweden). The PBMC layer was collected, and the cells 
allocated for RNA extraction were suspended in 150 µl of 
RNAlater solution (Ambion Inc., Austin, TX, USA). Cells 
that were allocated to FACS analysis and DNA extraction 
were suspended in 1 ml of a freezing solution (5/8 FBS, 
2/8 RPMI-160 medium, 1/8 DMSO; FBS cat. no. F7524, 
Sigma-Aldrich, MO, USA; RPMI: cat. no. R0883, Sigma-
Aldrich, MO, USA; DMSO: cat. no. 1.02931.0500, VWR, 
Espoo, Finland).
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Characterization of the subjects for their 
anthropometric measures, functional performance, plasma 
biomarkers and blood cell distributions (all parameters 
presented in Table 1) has been previously described 
(please see [10] and the references therein). In addition to 
these variables, in the current study we also determined a 
measure of the “epigenetic clock” - the DNAm age in the 
PBMCs - using the methodology presented in the study by 
Horvath et al. (2013) [17], (algorithm available at https://
dnamage.genetics.ucla.edu/). Initially, the age predictor 
was generated by Horvath with elastic net regression using 
21,369 probes that are present in HumanMethylation450 
as well as in HumanMethylation27 BeadChips. The 
predictor was trained with 8,000 samples of various tissue 
types in 82 Illumina DNA methylation array data sets. 
Based on the training results, the “epigenetic clock” i.e. 
the regression model was built with 353 CpG-sites whose 
methylation level explains most of the age variation. 

Illumina methylation array and preprocessing of 
the data

Genome-wide DNA methylation profiling was 
performed using the Infinium HumanMethylation450 
BeadChip (Illumina, San Diego, CA, USA) according to 
the manufacturer’s protocol at the Institute for Molecular 
Medicine Finland (FIMM) Technology Centre of the 
University of Helsinki. For bisulfite conversion, 1 µg 
of DNA was used (EZ-96 DNA Methylation Kit, Zymo 
Research, Irvine, CA, USA) and 4 µl of the bisulfite-
converted DNA was subjected to whole-genome 
amplification and enzymatic fragmentation. Hybridization 
was carried out according to the manufacturer’s protocol. 
Samples were run on the arrays in a randomized order and 
the chips were scanned with the iScan reader (Illumina).

The methylumiset object in the R software with the 
wateRmelon array-specific package from Bioconductor 
was used in preprocessing of the data. Probes mapping 
to sex chromosomes (n = 11,648) were also removed. 
In addition, all polymorphic sites and sites exhibiting 
unspecific probe binding (n = 76,775) were filtered out 
based on database information [31]. CpG target sites 
demonstrating technically poor quality were filtered 
out, including sites with a beadcount of < 3 in 5% of the 
samples (n = 515) and sites for which 1% of the samples 
had a detection p-value > 0.05 (n = 698). The annotation 
information for the CpG sites was retrieved using the 
GRCh37/hg19 genome assembly (released in February 
2009). The dasen method was used for background 
correction and quantile normalization individually for the 
two applied chemistries in the Illumina platform (Infinium 
I and II) and for the intensities of methylation (m) and 
un-methylation (u). Following the dasen method, the 
u and m intensities were transformed to beta (β) and M 
values, where β is the ratio of the methylated probe (m) 

intensity in relation to the overall intensities (m + u + α), 
where α is the constant offset, i.e., 100. Lastly, the batch 
effect of the different chemistries was corrected using the 
BMIQ method, which is based on beta mixture models 
and the EM algorithm [32]. The batch effect produced by 
two different run series was corrected using an Empirical 
Bayes-based algorithm implemented in the R package 
Combat. Because the proportions of the CD4+CD28-, 
CD8+CD28- and CD14+ cells and the CD4+ to CD8+ 
cell ratio were associated with the variation in methylation 
data in the principal component analysis [33], the data 
was regressed in the variable dispersion beta regression 
model from Ferrari and Cribari-Neto [34] with the 
explanatory variables of gender and the proportions of 
blood cell types after which the standardized weighted 
residuals were extracted and used in all further statistical 
analyses. The model utilizes beta density function with 
parameterizations: 
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where Γ(.) is the gamma function; y is the 

continuous response variable with a mean value of µ, 
which is assumed to follow a beta distribution inside the 
interval y  ϵ (0,1); and ϕ < 0 is the precision parameter. 
The variance of y is inherited from the binomial variance 
µ(1-µ), and it can be written as µ(1- µ)/(1+ ϕ). Beta 
regression utilizes maximum likelihood for estimating 
the parameters in the equation, and the mean value of 
y is connected to the linear equation with the canonical 
link function logit. The model is implemented in the R 
package betareg as a default setting. The methylation data 
are available in the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) under the accession number GSE68194.

All the CpG sites passing the quality control and 
preprocessing criteria described above as well as the 
conventional variables presented in Table 1 were first 
analyzed for their univariate association with mortality 
after which all the significant methylomic markers (p < 
0.05) were corrected for FDR with the B-H -method (FDR 
< 0.5). The Cox regression models were performed using 
Stata software (version 13.0 for Windows, StataCorp LP, 
TX, USA), and the corrections for FDR were performed 
using R version 3.0.2. 

Ridge regression

Due to the high dimensionality and multicollinearity 
of the genome-wide data, the standard Cox regression 
method cannot be directly applied to yield parameter 
estimates. Hence, several different dimension reduction 
and feature selection procedures have been presented 
for such data. In this study, we made use of the Ridge 
regression [35] that is based on penalized partial 
likelihood, and provides a means to avoid overfitting and 
unstable predictors. It has also been shown to produce 
reproducible results in whole-genome data sets by others 

https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/
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[36] and us [10]. 
Ridge regression is a technique to analyze data 

when predictors are correlated with other predictors. In 
the presence of this multicollinearity, the variance of 
the regression coefficients is increased making them 
unstable. By adding a little bias (tuning parameter λ) to 
the coefficients, the Ridge regression reduces the variance 
considerably. In the Ridge regression, the regression 
coefficients are regularized by imposing penalties on their 
size. Thus, the coefficients are shrunk toward zero and 
toward each other, and the tuning parameter λ controls for 
the amount of shrinkage. There is no definitive rule for 
choosing λ, but the objective is to produce only a small 
increase in the weighted sum of square errors [37]. To 
select an optimal value of λ, a k-fold cross-validation is 
often performed. For the Cox proportional hazards model, 
Verweij and van Houwelingen [38] introduced a cross-
validated partial log-likelihood method. In k-fold cross-
validation, the data set is split in k pieces, using k - 1 of 
those used to build the model and from thereon validating 
on the kth, and via cycling through this assessment, 
validating on each of the k pieces sequentially, and then 
averaging or summing the k different deviances [39].

We estimated the optimal value of λ by maximizing 
the 10-fold cross-validated log partial likelihood. The 
optimal λ was then used to obtain parameter estimates 
for the different models, i.e., the conventional markers 
(MMSE and BMI) alone, the methylomic markers (the 19 
CpG sites with an FDR < 0.5) alone and in combination 
with the above-mentioned conventional markers, and the 
methylomic markers ordered according to their statistical 
significance (p-value) in the univariate selection. The R 
package penalized was used in this assessment.

Assessment of the predictive accuracy of modeling 
(generalizability) through cross-validation

We sought the most accurate mortality prediction 
model by assessing the differences in the deviances 
through cross-validation. The tested data sets were the 
above-mentioned three models i.e., the conventional 
markers alone, Ridge regressions containing the 
methylomic markers alone (Ridge1) and combined with 
the conventional markers (Ridge2) and the methylomic 
markers assessed through univariate selection. The 
procedure was performed following the guidelines 
presented by Bovelstad et al. (2011) [40]. In specific, the 
study population was randomly split 50 times into training 
and test sets (74 and 37 individuals, respectively). The 
difference in deviance between the fitted model and the 
null model containing no covariates is given by

,
where  and  are the Cox log partial 

likelihoods for the test data evaluated at  and o, 

respectively. A small value of  is indicative of good 

performance.

Assessment of the final mortality-predicting 
signature

The final signature predictive of mortality in the 
population with methylation data available (n = 111) was 
assessed at the 2.55-year follow-up. The variables (19 
CpG sites with an FDR-corrected p-value < 0.5) were 
collected from the model demonstrating the best accuracy 
of prediction (i.e., the Ridge regression containing only 
the methylation markers) and assessed in a stepwise Cox 
multivariate regression model. AIC was used to select the 
Cox regression model congaing the best set of predictors. 

Pathway analyses

IPA (QIAGEN Ingenuity Pathway Analysis (IPA®, 
QIAGEN Redwood City, www.qiagen.com/ingenuity) 
was used to identify canonical pathways and networks 
for the mortality-associated genes harboring the CpG 
sites (presented in Supplementary Table 2). If a CpG site 
was mapped to more than one gene, each of the genes 
were included in the network and pathway analyses. 
A description and principles of the pathway analysis 
have been previously provided in more detail [10]. B-H 
correction for FDR was used to assess the significance 
of the pathways; canonical pathways were considered 
significant at p < 0.05 (corresponding to a -log p < 1.3). 

Correlations between the methylomic markers 
and gene expression

The genome-wide gene expression analysis was 
performed using HumanHT-12 v4 Expression BeadChip 
(Cat no. BD-103-0204, Illumina Inc., CA, USA) at the 
Core Facility of the Department of Biotechnology of 
the University of Tartu. Preprocessing and analysis of 
the data were performed as previously described [10]. 
Briefly, the lumi pipeline was used; the background was 
corrected with the bgAdjust.affy package, the data were 
log2-transformed and quantile-normalized. Poor-quality 
data and background noise were filtered out as follows: 
probes exhibiting expression levels of < 5 or > 100 in 
more than 5 (3.3%) samples per transcript were excluded. 
The gene expression data are available in the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/) under the 
accession number GSE65218. The correlations between 
the transcript expression levels and CpG site methylation 
level (the standardized weighted residuals) were analyzed 
using Spearman’s rho. In the analysis we included the 
top 19 mortality-associated GpC sites presented in 
Supplementary Table 2 and the corresponding transcripts 
with expression level above the selected threshold of 5 i.e., 
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ATP5SL, FOXP1, HIVEP3, IQSEC1, ITPR3, MAP3K14, 
METAP1, RGS10, RIOK1 and VOPP1. 

Analysis of the mortality-associated CpG site loci 
for gene regulatory elements

To obtain further functional information about the 
mortality-predicting CpG sites, the single-base resolution 
locations of these sites were examined for gene regulatory 
elements using the Encyclopedia of DNA Elements 
(ENCODE) Consortium data [41] in the UCSC genome 
browser (http://genome.ucsc.edu/, accessed 02/2016). 
Specifically, we searched for TF binding sites (ChIP-
seq data), genome states determined through combined 
genome segmentation data (ChromHMM and Segway 
programs) and DNAse I hypersensitivity clusters 
indicative of genomic regulatory regions. Default settings 
were used in inspecting the elements. However, we 
considered data only from cell types of blood origin; that 
is, the DNAse I hypersensitivity clusters and TFs were 
included in the results only if cells of blood origin were 
included in the cluster score, and for the analysis genomic 
states, data from GM12878 and K562 cells were accepted. 
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