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Abstract  

The lung in cystic fibrosis (CF) is home to numerous pathogens that shorten the lives of patients. The aim 

of the present study was to assess changes in the lung bacteriome following antibiotic therapy targeting 

Pseudomonas aeruginosa in children with CF. The study included nine children (9-18 years) with CF 

who were treated for their chronic or intermittent positivity for Pseudomonas aeruginosa. The 

bacteriomes were determined in 16 pairs of sputa collected at the beginning and at the end of a course of 

intravenous antibiotic therapy via deep sequencing of the variable region 4 of the 16S rRNA gene, and the 

total bacterial load and selected specific pathogens were assessed using quantitative real-time PCR. The 

effect of anti-pseudomonal antibiotics was observable as a profound decrease in the total 16S rDNA load 

(p = 0.001) as well as in a broad range of individual taxa including Staphylococcus aureus (p = 0.03) and 

several members of the Streptococcus mitis group (S.oralis, S. mitis, and S. infantis) (p = 0.003). 

Improvements in forced expiratory volume (FEV1) were associated with an increase in Granulicatella sp. 

(p=0.004), whereas a negative association was noted between the total bacterial load and white blood cell 

count (p=0.007). In conclusion, the data show how microbial communities differ in reaction to anti-

pseudomonal treatment, suggesting that certain rare species may be associated with clinical parameters. 

Our work also demonstrates the utility of absolute quantification of bacterial load in addition to the 16S 

rDNA profiling.  

 

Key words: lung bacteriome; antibiotic therapy; cystic fibrosis; Pseudomonas aeruginosa; clinical 

parameters; children 
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Introduction 

Cystic fibrosis (CF) is caused by mutations in the gene for Cystic Fibrosis Transmembrane Conductase 

Regulator (CFTR) protein which, among other effects, causes impairments in mucociliary clearance. This 

enables bacteria to become established in the lungs, which leads to a decline in pulmonary function and 

ultimately to respiratory failure. One of the most important CF pathogens is Pseudomonas aeruginosa. 

This species often dominates the CF lung bacteriome not only in adults (Cox et al. 2010; Hauser et al. 

2011) but also in a considerable number of children (Hauser et al. 2011; Li et al. 2005; Pillarisetti et al. 

2011). Once present in the lower airways, it can cause chronic infections that are difficult to treat (Doring 

and Hoiby 2004). However, antibiotic treatment of patients with chronic P. aeruginosa infection 

occasionally improves the patient’s health status, including their lung function, despite the fact that the 

quantity of the pathogen in the lower airways remains seemingly unchanged (Price et al. 2013; Zemanick 

et al. 2013). Pulmonary exacerbations in CF patients are not solely dependent on the presence of P. 

aeruginosa in the lung (Zemanick et al. 2010). Therefore, interest has expanded towards other species 

that may cohabit the lower airways and play either beneficial or harmful roles in the development of the 

CF lung disease (Zemanick et al. 2011). This area is especially important with respect to the lung 

bacteriome during childhood, which is believed to be amenable to changes (Coburn et al. 2015; Li et al. 

2005).  

 

Our study aimed to investigate changes in the lung bacteriome in patients with chronic or intermittent P. 

aeruginosa infection in relation to intravenous antibiotic treatment. The novel aspect of the study design 

was a combination of 16S rDNA profiling with a set of species-specific PCR reactions that allowed us to 

measure changes in the absolute quantity of several bacterial species other than P. aeruginosa.  
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Material and Methods 

Subjects  

All study subjects attended the CF Centre at the Motol University Hospital, Prague, the Czech Republic; 

this centre takes care of more than 200 children and young persons with the disease. The main inclusion 

criterion for the patients was an intermittent or chronic infection by P. aeruginosa (intermittent infections 

were characterized by less than 50% positive samples for P. aeruginosa over the last 12 months, while 

chronic infections were defined with more than 50% of samples for P. aeruginosa over the last 12 

months, as per Leeds criteria (Lee et al. 2003)).  

 

We recruited nine patients (7 females) aged from 9 to 18 years (median age 14.5 years); two of them (1 

female) having intermittent P. aeruginosa infection and the remaining seven having chronic infection. 

The patients had a combined total of 16 courses of antibiotic therapy with a combination of intravenous 

antibiotics. Seven of the courses were indicated for pulmonary exacerbation, while nine were prescribed 

as part of chronic suppressive anti-pseudomonal therapy. Virtually every patient received a different 

cocktail of two or more antibiotics with the aim to control their P. aeruginosa infection. The choice of 

antibiotics (Supplementary Table S1) was based not only on susceptibility test results of the most recent 

P. aeruginosa isolate (Supplementary Table S2, supplementary material S1.1) but also on drug toxicity, 

tolerability and clinical benefit observed upon their previous use (Doring et al. 2012). Patient records of 

inflammatory markers [white blood cell (WBC) count, C-reactive protein (CRP)] and forced expiratory 

volume (FEV1) were also collected (Table S1). The study was run between September 2012 and 

November 2013. A written consent was obtained from all patients or their guardians, and the study was 

approved by the institutional Ethics Committee, University Hospital Motol, Prague on September 19, 

2012, EK-1445/12. 
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Sputum samples 

Spontaneously expectorated sputum was collected on the day when antibiotic therapy started and on the 

last day of antibiotic treatment, hereinafter referred to as “before” and “after” antibiotic therapy. The 

courses of antibiotic therapy lasted from 11 to 21 days (median 13.5 days). Three patients provided a 

single pair of samples covering one course of antibiotic therapy, five patients underwent two courses, and 

one patient had three courses of the therapy. The time interval between multiple applications of 

intravenous antibiotics ranged from 79 to 212 days (median 120 days). We analysed a total of 32 samples, 

and they were also investigated by routine culture-based microbiological methods and microscopically 

validated as lower airways samples.  

 

DNA extraction 

An aliquot of sputum was frozen immediately upon expectoration. When thawed, it was liquefied with a 

mixture of saline with 46 mmol/L KH2PO4, 32 mmol/L NaOH and 0.9 mg/mL acetylcysteine (Hexal AG, 

Holzkirchen, Germany) and centrifuged. The bacterial pellet was pre-treated by incubation with 50 µg 

lysostaphin (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 37°C, followed by incubation with proteinase 

K; DNA was then extracted using a QIAamp DNA kit (Qiagen, Hilden, Germany). The extraction 

efficiency was checked by adding a plasmid containing a fragment of Arabidopsis thaliana DNA as an 

exogenous internal control that was then quantified using a specific PCR reaction; this control was not 

intended for normalizing for the sputum content. 

 

Deep sequencing profiling of the 16S rDNA and data processing 

Deep sequencing to identify the content and structure of bacterial community targeted the V4 region of 

the 16S rRNA gene and was performed on a MiSeq sequencer with a 2x250 bp sequencing kit (Illumina, 

San Diego, CA, USA). Data were processed using the tools QIIME (Caporaso et al. 2010) and Mothur 

(Schloss et al. 2009). The process is described in detail in supplementary material, S2.1 and S2.2. To 
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control the sequencing process and subsequent analysis steps, an artificial Mock Community was 

sequenced along with the samples (courtesy of BEI Resources, NIAID, NIH; Genomic DNA from 

Microbial Mock Community B - Even, Low Concentration - v5.1L, for 16S rRNA Gene Sequencing, 

HM-782D). All samples including the Mock Community and negative controls were sequenced in 

triplicate, with each replicate prepared in a separate PCR plate. 

 

Conversion of data from 16S rDNA relative quantity to absolute quantities and specific PCR 

To estimate the absolute quantities of individual taxonomic units per µL DNA, we used the quantification 

results of the overall 16S rDNA content (supplementary material S2.3). To validate the above 

estimations of absolute quantity, we checked the following pathogens by specific quantitative PCR in 

real-time format: Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae and three 

members of the Streptococcus mitis group (reaction detecting S. oralis, S. mitis, and S. infantis) 

(supplementary material S2.4). 

 

The clinical and sequencing data as well as generic and specific PCR results have been deposited at the 

NCBI Sequence Read Archive (SRA) under project ID PRJNA339813; the study ID for the sample data 

is SRP083112.  

 

Diversity metrics, markers of inflammation and statistical analysis 

Alpha diversity was measured based on an OTU table normalized for 10,000 reads per sample by several 

indices (Observed species, Chao1, ACE, Shannon, Simpson, Inverse Simpson and Fisher; paired t-test).  

 

For analyses based on relative quantity, operational taxonomic units (OTUs) were clustered based on 97% 

similarity and filtered for being present in at least 5% of samples by at least 50 reads. The dominant 
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pathogen in each sample was defined as the one exceeding by at least two times the relative abundance of 

the second most abundant taxon (Carmody et al. 2013; Coburn et al. 2015).  

 

Species richness and evenness was compared using Shannon index between groups of samples from 

patients positive and negative for markers of inflammation: the upper normal limits were 13 x 109/L 

WBC and 8 mg/L CRP. The effect of antibiotic treatment on the total bacterial load and on absolute 

concentrations of abundant taxa was assessed using the Wilcoxon paired test with the Bonferroni 

adjustment for multiple comparisons, and the associations with clinical outcomes (FEV1 % predicted, 

WBC count, CRP) were assessed using generalized estimating equations in models which accounted for 

the repeated character of measurements. Analyses were performed using R package version 3.2.2 (R Core 

Team 2016) and the phyloseq package (McMurdie and Holmes 2013). 
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Results 

To analyse both the overall bacteriome composition and the quantity of its most abundant individual 

species, we exploited features of two different molecular approaches. While the taxa identification with 

their relative abundance was obtained by the 16S rDNA profiling using next generation sequencing 

(NGS), the absolute quantity of selected taxa was determined by using either a species-specific RQ-PCR 

[P. aeruginosa, S. aureus, H. influenzae and part of the Streptococcus mitis group (S. oralis, S. mitis, S. 

infantis)], or for less traditional CF-related pathogens, a product of relative abundance from 16S rDNA 

profiling with quantity from 16S rDNA panbacterial RQ-PCR. The results obtained by both approaches 

are summarized in Figure 1 A - D.  

 

Bacterial taxa change upon antibiotic therapy in both absolute and relative quantities 

The 16S rDNA triplicates of each sample were inspected for consistency using clustering graphs and 

merged, yielding between 48,641 and 194,050 sequences per sample (interquartile range 25,179 - 38,663; 

median 29,206). The total number of 824 OTUs were generated, many of them belonging to well-known 

CF pathogens, such as Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, 

Stenotrophomonas maltophilia and Achromobacter xylosoxidans. The first 11 taxa ranked by overall 

relative abundance are listed in Table 1, where their quantities are compared before and after the therapy. 

S. aureus was the most abundant pathogen in our samples, followed by P. aeruginosa. The effect of anti-

pseudomonal antibiotics on the relative 16S rDNA profiles as well as on absolute quantities was 

significant yet heterogeneous among individual taxa (Figures 2, Supplemental Figure S1, Figure 2). 

We noted a substantial decrease in the total bacterial load following antibiotic therapy (p = 0.001, Figure 

1C); this decrease was most profound in the samples where S. aureus or P. aeruginosa dominated. 

 

The absolute quantity of S. aureus measured by species-specific PCR showed a constant and significant 

decrease (Figure 2, Pcorrected = 0.03) and responded well to anti-pseudomonal treatment with post-



 

9 

 

antibiotic quantities that were often undetectable. The 16S rDNA profiling showed that S. aureus was 

dominant in pre-antibiotic samples from five courses of antibiotic therapy but remained the most 

abundant only in two of them following antibiotic therapy (Figure 2A), again indicating a profound 

response to antibiotic treatment. However, in two post-antibiotic samples (P4 course 2, P8 course 2), 16S 

rDNA profiling showed an increase in relative abundance of Staphylococcus spp. (comprising S. aureus, 

S. epidermidis, and S. hominis), while species-specific PCR targeting only S. aureus was negative 

(Figure 2A). This implies that S. epidermidis and/or S. hominis were responsible for this increase, as the 

V4 region of the 16S rRNA gene is identical for the three species, and they cannot be distinguished by the 

NGS method alone.  

 

P. aeruginosa was ranked second in quantity after S. aureus and was detected in 8 courses of antibiotic 

therapy by NGS and in 11 courses by species-specific PCR (Figure 2B). P. aeruginosa dominated the 

lung bacteriome in three of eight pseudomonas-positive pre-antibiotic samples and in three of seven post-

antibiotic samples (Table 1). P. aeruginosa was susceptible to antibiotics with a decrease in its absolute 

quantity in most cases (7 of 11 courses, Figure 2B). However, overall changes in P. aeruginosa quantity 

seemed to be dependent on its proportion in the bacteriome: two courses of antibiotic therapy (P7 course 

2, P9 course 1) in patients, whose samples were not dominated by P. aeruginosa, resulted in almost no 

change in its absolute quantity after antibiotic treatment. Furthermore, in two courses (P2 course 2, P6 

course 1) both the absolute and relative quantities of P. aeruginosa significantly increased despite the fact 

that in-vitro antibiotic susceptibility tests showed that it was  susceptible to the antibiotics used (Table 

S2). In both cases P. aeruginosa was not a dominant species in the pre-antibiotic sample.  

  

In addition to P. aeruginosa and S. aureus, other traditional CF pathogens were also found in the pre-

antibiotic samples. H. influenzae and A. xylosoxidans were both dominant in the pre-antibiotic samples 

(Figure 2, Figure S1 C), and both responded well to anti-pseudomonal treatment (Pcorrected for H. 
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influenzae = 0.055). By contrast, S. maltophilia was dominant only after antibiotic therapy and the 

increase with therapy was observed also in absolute numbers(Figure 1B). Several members of the 

Streptococcus mitis group (S. oralis, S. mitis, and S. infantis) detected by group-specific real-time PCR 

also showed a significant and consistent absolute decrease with antibiotic treatment (Pcorrected = 0.003) 

(Figure S1 D).  

 

Exploration of alpha diversity 

Antibiotic therapy for pulmonary exacerbations was borderline-associated with a decrease in the 

complexity of the lung bacteriome (Supplementary Figure S2). This tendency towards the decrease in 

diversity was indicated by some alpha (within-sample) diversity indices (Observed species, praw = 0.03, 

Chao1, praw = 0.05, and ACE, praw = 0.03, Fisher, praw = 0.022; paired t-test), but in contrast, the Shannon 

and Simpson diversity indices, often used for their ability to also distinguish the evenness of the species 

distribution, did not appreciably change (praw = 0.89, praw = 0.74, respectively).  

 

Association with clinical markers, and with the dominant pathogens 

Species richness measured by Shannon index had a borderline-significant tendency towards inverse 

association with CRP, but not with increased leukocytes (Supplemental Figure S2 - B). A significantly 

lower Shannon index was found in samples with dominant pathogens among the 'traditional' CF-related 

bacteria (P. aeruginosa, S. aureus, A. xylosoxidans, H. influenzae, S. maltophilia), P < 10-5 when 

compared to samples without a dominant species, or with samples dominated by other organisms. The 

Shannon index also decreased with decreasing values of FEV1%, p = 0.003 (Supplemental Figure S2 - 

B). 

 

We then tested the association of the 11 most abundant taxa (Table 1) with a change in markers of 

clinical improvement. The 11 taxa were chosen based on their presence as a dominant pathogen or based 
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on their average relative abundance in all samples higher than 5%. The following clinical parameters 

were tested: FEV1 % predicted, as a parameter of lung function, and WBC count and CRP, as markers of 

inflammation. An association with improvement of lung function was found for Granulicatella sp. 

(present in five pre-antibiotic samples and six post-antibiotic samples); in the regression model, a ten-fold 

increase in its quantity was associated with an increase in the FEV1 of 5.5 % (p = 0.004). We also 

detected a significant association of the total bacterial load with the WBC count; a ten-fold decrease in the 

total 16S rDNA load was associated with a decrease in WBCs by 2 x 109/L (p = 0.007). No associations 

with CRP levels were noted.  

 

Correlation between specific PCR detection and 16S rDNA profiling 

To assess the accuracy of calculated absolute quantities (obtained by the conversion of the taxon 

proportion from the NGS 16S rDNA profile, multiplied by the total 16S rDNA load from generic real-

time PCR), these values were directly compared to quantities from species-specific real-time PCR. The 

comparison for P. aeruginosa is illustrated in Supplementary Figure S6. Although the overall results 

acceptably correlate (R = 0.92, p < 10-10; Spearman rank correlation test), a discrepancy can be noted in 

samples found negative by specific PCR: here the 16S rDNA NGS profiling reports a low, but positive 

signal. Similarly to P. aeruginosa, in S. aureus and H. influenzae the absolute quantities obtained by PCR 

and NGS correlate generally well (p < 10-6, Spearman rank correlation test), but NGS yielded several 

false-positive samples.  

 

Relative and absolute quantification 

Presented results were obtained by using two different approaches, the relative quantity resulting from 

16S sequencing and absolute quantity obtained by either species-specific PCR or by a conversion of 16S 

results with the total 16S load. Inspecting the same pairs of sputum samples, the results by both 

approaches differed, as illustrated in Figure 2: in 2 antibiotic courses species-specific PCR reported a 
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decrease in quantity of P. aeruginosa while an increase in relative quantity was reported by 16S 

sequencing(courses P2c1, P9c1). Similar inconsistency was noted for S. aureus (course P9c1, courses 

P4c2 and P8c2 reported an increase of relative abundance of S. epidermidis/ hominis) and for other 

species (data not shown).  

 

Contaminating signals 

The analysis of multiple negative controls indicated that the signal of E. coli most likely originated from 

PCR chemicals rather than from the sputum itself (Supplementary Figure S3). The signal of Escherichia 

coli, which was found in all samples in average proportion of 2.4%, also seemed to change with the 

antibiotic therapy: it consistently increased in relative quantity in all post-antibiotic sputum samples 

(Supplementary Figures S4 - A, S5). After a conversion of E.coli 16S profiles to absolute quantity 

values by multiplication with the total 16S load, an actual decrease of quantity was noted in 9 courses of 

antibiotic therapy (Supplementary Figures S4 - B) and the change in E. coli absolute quantity seemed to 

inversely copy the change in absolute bacterial concentration (Supplementary Figure S5, S4C).  
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Discussion 

Our study assessed the lung bacteriome profiles in sputum samples from paediatric patients chronically or 

intermittently infected with P. aeruginosa. Samples were taken at the beginning and at the end of 

intravenous antibiotic treatment either as a part of maintenance treatment or for treating an acute 

exacerbation. Both the total bacterial load and the composition of the sputum 16S rDNA profile changed 

in all sputum pairs. Apart from detection of changes in the bacteriome we also compared different 

methods used for studying lung microbes.  

 

The total bacterial load, measured by quantitative real-time PCR of the 16S rDNA, significantly 

decreased following antibiotic therapy; this decrease was as great as four orders of magnitude over two 

weeks and was significantly associated with a decrease in WBCs. However, the total bacterial load 

change was not associated with changes in lung function (FEV1 %), which can be explained by the degree 

of diversity among individual lung microbiota that contained species ranging from obligate CF pathogens 

to bacteria potentially beneficial to CF patients. The rapid and profound response of the total bacterial 

load to the i.v. therapy may indicate plasticity of paediatric lung bacteriome; this observation is in 

contrast to data published in adults (Price et al. 2013; Zemanick et al. 2013).  

 

Diversity indices enabled us to observe the complexity of the bacteriome. The most important driver of 

alpha (within-sample) diversity was the dominant pathogen, as has been reported by previous studies 

(Carmody et al. 2015; Coburn et al. 2015; Filkins et al. 2012). Communities dominated by streptococci 

were associated with significantly higher diversity than those dominated by Pseudomonas or 

Staphylococcus. Furthermore, Streptococcus-driven communities are also known to be very stable not 

only during periods of clinical stability but also during periods of exacerbation (Carmody et al. 2015), 

which was true e.g. for all three courses of antibiotic therapy experienced by patient 5 (Figure 2).  
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Interestingly, higher species richness was associated with better clinical status, as measured by FEV1 and 

marginally also by CRP as a marker of inflammation. Similar association was observed in other studies 

(Coburn et al. 2015; Fodor et al. 2012; van der Gast et al. 2014; Zhao et al. 2012).We believe that the 

richer species distribution in such communities (which are devoid of classical CF pathogens) can better 

mimic the transient polymicrobial nature of healthy lungs and can be a marker of less severe lung disease 

in CF patients, as previously described (Zhao et al. 2012). Alpha diversity indices of Observed species, 

Chao1 and ACE significantly decreased with therapy, whereas the Shannon and Simpson indices did not. 

The latter two represent richness as well as evenness, and their usage has been encouraged by other 

studies (Carmody et al. 2015; Carmody et al. 2013; Price et al. 2013; Zemanick et al. 2013).  

 

A considerable response to anti-pseudomonal therapy was noted for all detected CF-related pathogens, 

such as P. aeruginosa, S. aureus, H. influenzae, and A. xylosoxidans, confirming that anti-pseudomonal 

treatment was effective against a broad spectrum of pathogens. In two instances (courses P2c2 and P6c1), 

other pathogens (H. influenzae, S. aureus) were profoundly reduced, whereas P. aeruginosa increased 

both in relative proportion and absolute numbers despite its in vitro sensitivity to the administered 

antibiotics. The reason for this is not at hand – heterogeneity of P. aeruginosa strains which co-exist in 

the lungs probably plays a role (Winstanley et al. 2016). A similar relative increase of the bacterium 

during antipseudomonal therapy was reported by Daniels et al. (Daniels et al. 2013) using a T-RFLP 

method; however, the authors reported no absolute bacterial quantities; therefore, their results are difficult 

to compare to the present observations.  

 

Apart from these commonly detected pathogens, we observed a number of species that are less often 

regarded to be part of traditional CF microbiology, especially anaerobes. These species are becoming a 

focus of research for their relatively frequent occurrence as dominant pathogens (Carmody et al. 2015; 

Price et al. 2013) even at the time of pulmonary exacerbations (Zemanick et al. 2010) when the 16S 
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rDNA profiling of CF respiratory samples is applied. Proving causative links has been extremely 

complicated because of their concurrent occurrence in the upper airways (Goddard et al. 2012) and the 

lack of routine culture-based results. Interestingly, the species-specific PCR showed that several members 

of the Streptococcus mitis group (S. oralis, S. mitis, and S. infantis) significantly decreased in quantity 

upon antibiotic therapy. Streptococci found in the sputum samples have also been often identified in oral 

flora (Filkins et al. 2012), which complicates our understanding their role in CF lungs, as they might 

originate from upper airways. This effect is especially true for children because of their limited ability to 

expectorate sputum. However, many studies support the presence of streptococci and other non CF-

related species in lower airways and their potential role in CF lung disease, as reviewed by Caverly et al. 

(Caverly et al. 2015).  

 

At present, we have no plausible explanation for the positive association of Granulicatella spp. with 

increased FEV1. The genus Granulicatella was established in 2000 and previously belonged to 

nutritionally variant streptococci (Cargill et al. 2012). The genus is a component of the normal oral 

microflora, similar to the viridans streptococci that were also found in CF lungs (Cargill et al. 2012; 

Filkins et al. 2012). The genetic relatedness of Granulicatella to these streptococci can also be indicative 

of its association with better lung function, similar to what was observed for streptococci (Filkins et al. 

2012). To the best of our knowledge, no association between clinical status and Granulicatella has been 

described, so the finding merits further investigation. Indeed, relationships similar to what we detected, 

especially for non-CF related pathogens, are known from the literature, but no consistent conclusions can 

be drawn (Carmody et al. 2013; Zemanick et al. 2013). Interestingly, Granulicatella adiacens was found 

to be associated with the lung cancer (Cameron et al. 2017), which may further support its utility as a 

marker organism in various processes.    
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One strength of our study is the focus on children, an age group often underrepresented in the literature 

regarding the lung bacteriome. Similar to other authors, we believe that bacteriome features are different 

in children compared to adult patients. A study by van der Gast et al. (van der Gast et al. 2014) that 

included children and adults with different chronic lung diseases revealed a high degree of clustering 

within the paediatric cohorts; however, the adults clustered neither within the adult cohort nor with their 

paediatric counterparts. Interestingly, the most common species detected in paediatric patient cohorts 

were also found in four healthy children included in that study. Children and adults are also reported to 

differ with regard to species richness; higher species richness is associated with better lung function in 

children (Coburn et al. 2015; van der Gast et al. 2014). Antibiotic treatment for pulmonary exacerbation 

represents the key factor for species turnover, as described previously (Cuthbertson et al. 2015), and is 

therefore an important variable in shaping the lung bacteriome.  

 

A second strength of our study is that we determined both relative and absolute quantities of bacterial 

species. 16S rDNA profiling, which confers the information about relative quantity only, was utilized for 

identification of taxa and to determine their fraction in the bacteriome. However, the real effect of 

antibiotics on bacterial mass cannot be revealed unless absolute quantities are also known. The situation 

is exemplified in Figure 1, where an increase of relative proportion of bacteria was noted while the 

“true”, absolute quantity reported a decrease in several instances. Although most studies describe 

bacterial lung communities by relative abundance (Coburn et al. 2015; Cuthbertson et al. 2015; van der 

Gast et al. 2014), few have also evaluated the absolute quantity (Carmody et al. 2015; Zemanick et al. 

2013). We used specific real-time PCR to quantify not only the overall bacterial load but also the four 

most important groups of CF pathogens. The use of absolute quantities also helps resolve the weak 

contamination of PCR polymerases by bacterial DNA. It is known that some recombinant polymerases 

are weakly contaminated by E. coli 16S rDNA or other bacterial DNA (Spangler et al. 2009). This 
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contamination emerges in the bacteriome profiles only if there is little bacterial DNA in the sample; the 

contaminant proportion, therefore, logically increases in post-antibiotic samples (Figure S4).  

 

The use of two methodological approaches also revealed the difference in the true detection thresholds 

and specificity: species-specific PCR performed better than NGS 16S profiling. The NGS profiling 

produces several false low-positive signal, probably caused by a signal cross-bleed among samples. This 

is a known phenomenon caused by imperfection in the currently available sample indexing strategy, and 

has been reported by others and us (Kircher et al. 2012; Kramna et al. 2015). Furthermore, low abundance 

bacteria may be diminished in the 16S profiles - more abundant species are amplified preferentially as 

compared to species present in low quantities (Gonzalez et al. 2012).  

 

Among the limitations, we do not know whether we detected predominantly live bacteria, or also 

leftovers of DNA from dead cells. Detecting DNA from dead bacterial cells may lead to underestimation 

of the antibiotic effect on taxa, as reported by Rogers et al. (Rogers et al. 2010). Given that the dynamics 

of bacteriome profile changes were extreme (several orders of magnitude quantity changes), we believe 

that the majority of the signal came from live organisms. Secondly, the use of chemicals such as 

propidium monoazide (PMA) enables one to block the dead cell signal; however, numerous other issues 

connected with the use of PMA may act as a source of bias, as reviewed in (Caverly et al. 2015). The 

quantitative PCR efficacy may also marginally differ among species, as the bacteria do not have equal 

copy numbers of the 16S rRNA genes, and primers themselves may also vary in efficacy; the assessment 

of calibration curves, however, suggested that this source of variation is not prominent. Furthermore, we 

used lysostaphin, but no other enzymes in the DNA extraction protocol. Rather than sole use of 

lysostaphin, it seems that the present protocols tend towards enzyme cocktails, although their composition 

has not been agreed upon universally (Bera et al. 2005). A cocktail of enzymes might have further 

improved the lysis of bacterial walls (Bag et al. 2016; Yuan et al. 2012).  
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Furthermore, the use of the sole V4 region was not be able to distinguish among certain groups of 

pathogens, such as for staphylococci: S. aureus, S. epidermidis, S. hominis. While S. aureus is known 

pathogen, other two have been reported as comensals on the skin (Otto 2009; Weinstein et al. 1998) and 

have not normally been linked with a lung condition. Most of the time they appear as sample 

contaminants (Otto 2009; Weinstein et al. 1998), so the presently available data cannot resolve whether 

the increase in their quantity observed in treatment courses P4c2 and P8c2 are genuine or not.   

 

Finally, our data have limited generalizability, primarily because of the limited patient sample size, 

frequency of sampling and a gender imbalance. It was previously reported that females are more prone to 

a progression of pseudomonal infection than males (Chotirmall et al. 2012). We also did not take into 

account the fact that the virulence of individual taxa likely changes when crossing a certain quorum 

(Ulrich et al. 2010). At last, our results monitor only the period of antibiotic treatment and we do not 

know what happened later during the recovery, as studied elsewhere (Cuthbertson et al. 2015; Price et al. 

2013).   

 

In conclusion, our study exemplifies the heterogeneity of changes in the composition of the paediatric 

lung bacteriome following intravenous therapy for chronic or intermittent infection with P. aeruginosa. 

This study supports the use of absolute bacterial counts derived from the combination of total bacterial 

load quantification by real-time PCR and 16S rDNA profiling using next generation sequencing. Finally, 

we observed a possible novel association of Granulicatella sp. with an improvement in lung function.  
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Table 1: Top 11 bacterial taxa in samples before and after antibiotic therapy 

  Samples before antibiotic treatment Samples after antibiotic treatment 

Bacterial species a 

The average 

relative 

abundance (%) 

The number of 

occurrences  

(N, %) d 

The number of 

samples where species 

was dominant (%) e 

The average 

relative 

abundance (%) 

The number of 

occurrences  

(N, %) d 

The number of samples 

where species was 

dominant (N, %) e 

Staphylococcus spp. (S. aureus, S. 

epidermidis, S. hominis)b 

 

 

30 10 (63) 5 (31), all of them 

being S. aureus 

21 8 (50) 4 (25), of these: 

2 S. aureus 

2 S. epidermidis or 

hominis 

Pseudomonas aeruginosa 15 8 (50) 3 (19) 18 7 (44) 3 (19) 

Streptococcus mitis group (S. oralis, S. 

dentisani, S. mitis, S. infantis, S. 

tigurinus) 

9.5 12 (75) 2 (6) 6.9 9 (56) 0 

Veillonella dispar 8.0 12 (75) 1 (6) 5.7 6 (38) 0 

Rothia mucilaginosa 4.5 8 (50) 0 6.6 9 (56) 0 

Prevotella melaninogenica 4.3 10 (63) 0 2.9 6 (38) 0 

Stenotrophomonas maltophilia 0.08 0 0 6.6 2 (13) 1 (6) 

Granulicatella spp. (G. adiacens, G. 

balaenopterae) 

1.1 5 (31) 0 5.2 6 (38) 1 (6) 

Streptococcus salivarius spp. (S. 

thermophilus, S. salivarius) 

3.7 8 (50) 0 1.7 4 (25) 0 

Haemophilus spp. (H. influenzae, H. 

haemolyticus)c 

5.09 2 (13) 1 (6) 0.19 1 (6) 0 

Achromobacter xylosoxidans 3.8 1 (6) 1 (6) 0.06 0 0 

Other species with average relative 

abundance above 1% - 4.9% 

Actinomyces odontolyticus, Escherichia coli, Prevotella sp. oral taxon g70, Scardovia inopinata f0304, Lactobacillus spp. (L. 

paracasei, L. casei), Parvimonas micra, Catonella morbi ATCC 51271, Prevotella nanceiensis, Fusobacterium necrophorum 
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Taxa are ordered according to their overall average relative abundance. Taxa were chosen based on their 

presence as a dominant pathogen or based on their average relative abundance higher than 5%. Further 

taxa with an average relative abundance of 1% to 4.9% are noted in the last line of the table.  

 

(a) Several taxa were identifiable only as a group of species because of the limited discriminating ability 

of the variable region 4 of the 16S rRNA gene. S. aureus and H. influenzae were further distinguished 

from the other species within their OTU groups by specific PCR.  

(b) This OTU group includes the three listed species. S. aureus was further identified in samples by 

specific real-time PCR targeting the nuc gene. 

(c) Identified as H. influenzae by specific PCR. 

(d) Species present in the sample by at least 1% of relative abundance. 

(e) Dominance is defined as being at least 2x more abundant than the second most abundant species 

(Carmody et al. 2013; Coburn et al. 2015) 
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Figure Legends and Footnotes 

Figure 1 A - D: The effect of antibiotic treatment on the composition of the lung bacteriome. 
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A sample after a course of antibiotic therapy was compared to its paired sample before therapy. Changes in 

the sputum bacteriome were assessed by three methods.  

 

Panel (A) - the relative 16S rDNA profiles are used for calculations of the fold-changes, disregarding the 

overall quantity of bacteria in the sputum sample.  

Panel (B) - the fold-changes are calculated from absolute quantities of each taxa, which were derived from 

the proportion of the taxon within the 16S rDNA profile multiplied by the absolute concentration of all 

bacteria in µL of sputum, as determined using real-time PCR.  

Panel (C) - the total bacterial 16S rDNA concentration, assessed using real-time PCR with generic primers 

in pre-antibiotic sample (red circle) and its corresponding post-antibiotic sample (blue circle). The arrow 

shows the direction and magnitude of response. 

Panel (D) - fold-change in the total bacterial concentration between the paired sputum samples taken before 

and after the antibiotic therapy. Identical data as in Panel C, presented in relative scale.  

 

Panels A and B show 16 taxa with the highest relative abundance in the overall sputum bacteriome; the last, 

E. coli, is a product of bacterial contamination of the polymerase utilized for 16S rDNA amplification 

(Spangler et al. 2009). The colour codes show the decadic logarithm of the relative change between the 

paired samples before and after the antibiotic treatment (blue for a decrease with treatment, red for an 

increase with treatment, white for no appreciable difference). Rows - individual bacterial taxa, ordered by 

the average relative share in sputum. Columns - individual episodes = courses of antibiotic therapy, coded 

by numeric identification of the patient, and the sequential identification of the course. 



 

27 

 

 

Figure 2: Changes in absolute and relative quantity of two most abundant pathogens 

 

 

Upper graphs summarize the difference in absolute quantity (gene copies per µL) obtained by a species-

specific PCR. Lower graphs show the relative quantities (%) from 16S rDNA sequencing. The pre- versus 

post-antibiotic samples are coded by colours of the bar .  

 

(A) S. aureus and its changes over the courses of antibiotic treatment. While the specific detection shows a 

good response to antibiotic treatment, the 16S rDNA sequencing (lower panel) in antibiotic courses P4c2 

and P8c2 documents an increase in the proportion of reads: the V4 region of the rDNA gene does not allow 

distinguishing S. aureus from S. epidermidis and S. hominis, this signal therefore comes from either of the 

latter two species. 
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(B) P. aeruginosa and its changes over the courses of antibiotic treatment. Species-specific PCR had a lower 

detection threshold than 16S rDNA sequencing.  
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Figure 3: Changes in relative abundance of the top 11 taxa assessed by NGS  

 

 

Each pair of bars represents one course of antibiotic therapy; the first bar represents a sample taken at the 

beginning of antibiotic therapy (referred to as “before”) and the second is taken at the end of the therapy 

(referred to as “after”). Patient and the course of antibiotic treatment are identified at the top of the bar.  

 

Each colour represents the fraction of one of the top11 OTUs. These 11 were selected because of their 

presence as a dominant pathogen in any of the samples or if their average relative abundance exceeded 5%. 

Several OTUs were identified only as a group of taxa that could not be distinguished by the V4 region of the 

16S rRNA gene - therefore potential species of this OTU are listed.  

 

The sum of remaining OTUs is shown in light blue, and they fill each bar up to 100%. 




