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Abstract: Treating all attributes as equally important during classification can
have a negative effect on the classification results. An attribute weighting is
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methods were utilized in weighting the attributes. The machine learnt weighting
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1 were tested on otoneurological data with the nearest pattern method of the
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method using One-vs-All classifiers. The effects of attribute weighting on the
classification performance were examined. The results showed that the extent of
the effect the attribute weights had on the classification results depended on the
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1 Introduction

Treating all attributes as equally important during classification can have a negative effect
on the results by giving noisy, redundant and/or irrelevant attributes a higher influence on
the results than they should have. This can, for example, reduce the accuracy of the
classification (Lee et al., 2007). With instance-based learning methods, such as the k-
nearest neighbour method (k-NN) (Cover and Hart, 1967), that utilize all available
attributes in the distance calculation, the noisy and irrelevant attributes may dominate the
results (Wettschereck and Aha, 1995). With equal weighting, the noisy, redundant and/or
irrelevant attributes have as much effect on the distance calculations as the relevant ones
have. Therefore, the attribute weighting and selection is needed to grade the relevancy and
usefulness of the attributes - in some domains even class-dependently.

There are two extremes in the emphasis of classification methods on focusing on
relevant attributes: at one extreme there are the methods that use all available attributes in
the classification and at the other there are the classification and attribute subset selection
methods that explicitly attempt to select relevant attributes and reject the irrelevant and
redundant ones (Blum and Langley, 1997). Between these extremes there are attribute
weighting methods that aim to achieve good scaling behaviour without explicitly selecting
subsets of attributes.

Some of the attributes can be discarded during the data pre-processing based on
the abundant missing values or the value being constant with all classes. Statistical and
attribute selection methods are needed in order to find irrelevant and redundant attributes.
The attribute types occurring in the data set determine which methods to apply. Certain
methods can be used only with quantitative attributes, whereas some are suitable only for
qualitative attributes.

The attribute selection methods can be organized into three categories depending
on how they combine the attribute selection search with the construction of the
classification model: filter, wrapper and embedded methods (Blum and Langley, 1997;
Kohavi and John, 1997; Saeys et al., 2007). Filter methods are independent of the
classification models. They use attribute selection to filter attributes to the classification
(Blum and Langley, 1997). Filter methods assess the relevance of the attributes by looking
only at the intrinsic properties of the data set. Most filter methods calculate an attribute
relevance score based on which attributes with a high scoring are kept and attributes with
a low scoring are discarded. A subset of attributes with high relevance scores is given to
the classifier. The methods used in attribute filtering are, for example, statistical tests for
independence (e.g., X2 test), measures of association with their significance tests (e.g.,
Pearson correlation coefficient), information gain, regression and principal component
analysis (Blum and Langley, 1997; Saeys et al., 2007).

Wrapper methods wrap the attribute selection around the classification process:
The classifier itself is used as part of the function evaluating attribute subsets during the
search for a good attribute subset (Blum and Langley, 1997; Kohavi and John, 1997). A
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search in the space between possible attribute subsets (e.g., forward selection, backward
elimination or hill climbing) is defined: various subsets of attributes are generated and
evaluated with the classification method (Saeys et al., 2007). The attribute subset with the
highest evaluation is chosen as the final subset (Kohavi and John, 1997). Wrapper methods
have the ability to take into account of attribute dependencies and the interaction between
the data and the classifier. Wrapper methods are utilized with, for instance, nearest
neighbour methods and case-based reasoning (Blum and Langley, 1997).

Embedded methods embed the attribute selection within the classifier: the search
for an optimal attribute subset is already built into the classifier construction (Saeys et al.,
2007). Thus, embedded methods are specific to a given learning algorithm. Examples of
embedded methods are decision trees and weighted Naïve Bayes (Blum and Langley, 1997;
Saeys et al., 2007).

Heuristic search is a common technique in attribute selection (Blum and Langley,
1997). It is utilized to guide the search for an optimal attribute subset (Saeys et al., 2007),
especially with wrapper methods. Heuristic search can be started with an empty attribute
subset and continued by successively adding attributes (forward selection) or it can be
started with all attributes in the attribute subset and continued by successively removing
them (backward elimination). There exist also variations combining forward selection and
backward elimination, for instance, stepwise forward–backward selection that adds a given
number of attributes into the attribute subset and removes another given number of
attributes from the subset in each step (Schulerud and Albregtsen, 2004). Filter, wrapper
and embedded methods can be utilized in heuristic search.

The attribute weighting methods can be distinguished in a five-dimensional
framework: they can be separated into feedback, weight space, representation, generality
and knowledge dimensions (Wettschereck and Aha, 1995). The feedback dimension can be
divided by the way the attribute weighting methods assign weights to performance
feedback and to ignorant methods. The performance feedback methods, as incremental hill
climbers (e.g., the incremental instance-based learning method IB4 (Aha, 1992) and Relief
(Kira and Rendell, 1992)) and continuous optimizers (e.g., the genetic algorithm combining
its optimization capabilities with the classification capabilities of the weighted k-nearest
neighbour algorithm GA-WKNN (Kelly and Davis, 1991)), modify the weights to increase
the similarity of case x with the nearby cases of the same class and to reduce the similarity
with the cases of the other classes. With the ignorant methods, the attribute weights are
assigned with pre-existing models, like conditional probability, class projection or mutual
information (Wettschereck and Aha, 1995). The weight space dimension defines the size
of the search space of the weights and differentiates attribute selection from attribute
weighting methods; during attribute selection the search space is usually constrained to
binary values (0 or 1), whereas attribute weighting uses continuous values (Wettschereck
et al., 1997). In the representation dimension, the methods are distinguished by the way
they  handle  an  attribute  set:  is  the  set  used  as  it  was  given  or  is  it  transformed  before
weighting. The generality dimension divides the methods into global and local weight
setting methods. In global setting it is assumed that a single weight set can describe the
whole domain, whereas in local setting the weights can differ among the values of the
attributes and even be case-specific (Wettschereck and Aha, 1995). The knowledge
dimension separates the attribute weighting methods into knowledge poor and knowledge
intensive methods, depending on how they employ domain-specific knowledge in the
weighting. The above-mentioned dimensions with different weighting methods are
explored in more detail in (Wettschereck et al., 1997).

Machine learning (ML) and statistical methods have been utilized in setting
weights for attributes needed in other machine learning methods. For example, the
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properties of a decision tree have been applied to set weights to the Naïve Bayes classifier
(the minimum depth of the attribute) (Hall, 2007) and the k-nearest neighbour method
(path-specific information gain) (Cardie and Howe, 1997), the attribute weights for the k-
nearest neighbour method have been calculated with a genetic algorithm (Kelly and Davis,
1991; Lee et al., 2007) and from a score based on the X2 test statistic (Vivencio et al., 2007)
and neural network (Zeng and Martinez, 2004) (strength of related links in the neural
network), and weights for the attributes have been computed from a collaborative social
network using regression analysis (Debnath et al., 2008). Also, the perceptron updating rule
can be considered an attribute weighting method in addition to the least-mean squares
algorithm and the back propagation method (Blum and Langley, 1997). Filter, wrapper and
embedded approaches have been applied in attribute weighting: the X2 statistical test is a
filter method (Vivencio et al., 2007), IB4 (Aha, 1992) is an embedded method and the
genetic algorithm is a wrapper method (Kelly and Davis, 1991).

We are interested in the onward development of an otoneurological decision
support system ONE (Auramo et al., 1993) that supports the diagnostics of vertigo diseases.
Diagnosis of the otoneurological disorders is demanding because the diseases can simulate
each other with symptoms of a similar kind and the symptoms can vary over time, making
recognition difficult (Havia, 2004; Kentala, 1996). The system gives diagnosis suggestions
for new cases with an inference method utilizing the class-wise weights and fitness values
given to the attributes and their values in a knowledge base. Each attribute refers to a sign,
a symptom or a measurement data from a clinical test (Auramo et al., 1993). The attribute
value indicates, for example, whether the patient has a hearing loss (yes/no), how long the
vertigo attacks last (no attacks, less than 1 min, 1 min to 20 min, 20 min to 4 h, 4 to 24 h or
more than 1 day) or what the audiometry value is at 2000 Hz (-10–140 dB). The attribute
weights and fitness values of the attribute values describe the symptoms, signs and
measurement results related to the class; the attribute weight expresses the significance of
the attribute for the class, whereas the fitness value describes which attribute values fit the
class.

An earlier study showed the need for further enhancement of the knowledge
discovery method of ONE (Varpa et al., 2008). Previously, the fitness values for the
attribute values were computed by a machine learning method, but all the attributes were
equally weighted (each attribute had the weight 1). This alone enhanced the classification
accuracy compared with the knowledge descriptions defined purely by the domain experts,
but there were still difficulties in the recognition of certain disease classes. The attribute
weights defined by the experts were tested with the machine-learnt fitness values, but this
combination did not improve the classification as hoped. Therefore, in this study, machine
learning methods for attribute weight calculation are applied in order to improve the
classification of vertigo diseases.

The methods used for attribute weighting in this research are the Scatter method
for attribute importance evaluation (Juhola and Siermala, 2012; Siermala et al., 2007) and
the weight calculation method of the incremental instance-based learning algorithm IB4
(Aha, 1992). These methods were selected because they can express the relevance of a
single attribute and can learn attribute weights separately for each class. The Scatter method
does not have any prerequisites for the class distributions (Juhola and Siermala, 2012). It
can be used in attribute filtering, for example, by applying the scatter values in attribute
weighting or in the attribute subset selection. The Scatter method is based on traversing
through a data set by seeking the nearest case one at a time and concurrently counting the
class changes between cases. A scatter value expresses the attributes’ power to separate
classes  in  the  data  set  (Juhola  and  Siermala,  2012).  In  this  study,  the  scatter  values  are
calculated for each attribute in a different class versus other classes’ situations. The results
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of the Scatter method were promising in earlier studies (Juhola and Siermala, 2012), so, it
was used in this study. The weight calculation method of the IB4 classification method
computes attribute weights independently for each class with a simple performance
feedback algorithm (Aha, 1992). The attribute weights of IB4 reflect the relative
relevancies of the attributes in the class. The methods are described in more detail in section
3.2. The Scatter and IB4 methods both use a continuous weight space and a given
representation, calculate local weight settings and do not employ specific domain
knowledge in attribute weight setting. They both use pure data in weight setting. Scatter
and IB4 differ in the way they handle feedback: IB4 is a performance feedback method that
alters the weights based on the classification results during processing, whereas Scatter
creates weights based on the pre-existing model and ignores the classification results during
the runs.

Machine-learnt attribute weights are utilized with the inference mechanism of the
otoneurological decision support system ONE and with the attribute weighted k-nearest
neighbour method (wk-NN) (Kelly and Davis, 1991; Mitchell, 1997) using One-vs-All
(OVA) classifiers (Rifkin and Klautau, 2004). Otoneurology is a difficult domain by itself,
and with small disease classes and classes containing cases with confounding symptoms
included in the data classification of the vertigo diseases it is even more challenging.
Therefore, it is good to test the attribute weights with two machine learning methods that
have different approaches to the classification: with ONE, that searches for the most
compatible class pattern for the case, and with the attribute weighted k-NN OVA, which
classifies cases based on their nearest instances. The selected methods resemble each other
in the way they handle classes separately. The classification accuracies yielded by the
different attribute weight and fitness value combinations are compared with each other and
with the accuracies of the knowledge formed purely by the experts. In addition, the pair-
wise agreement between the machine and human expert classifications is examined using
Cohen’s kappa (Cohen, 1960).

2 Material

In this study, otoneurological data having 1,030 cases from nine different vertigo diseases
(classes) was used (Table 1). The data was collected over a decade starting from the 1990s
in the Department of Otorhinolaryngology at Helsinki University Central Hospital, Finland,
where experienced specialists confirmed all the diagnoses. The class distribution of the data
is imbalanced: over one-third of the cases belong to the Menière’s disease class, whereas
the smallest groups have only around 2 % of the cases.

The data set includes 176 attributes concerning a patient’s health status: occurring
symptoms, medical history and clinical findings in otoneurologic, audiologic and imaging
tests (Kentala et al., 1995; Viikki, 2002), from which 38 attributes are central (Siermala et
al., 2007). Clinical tests were not done for each patient and the values of the attributes are
missing in several test results. Attributes with low frequencies of available values were not
used in this research. After leaving out the attributes having over 35% missing values, 94
attributes remained to be used in this research: 17 quantitative (integer or real value) and
77 qualitative attributes (of which 54 were binary (yes/no), 20 were ordinal and 3 nominal).
Almost half of the remaining 94 attributes (46) have less than 5% missing values and 73
(77.7%) have less than 10% missing values. Only one attribute has information from all
cases. Thirteen attributes, all concerning clinical findings, have over 29% of their values
missing, and for one important attribute (type of hearing loss) even 53% of the values were
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missing. The type of hearing loss is crucial in the recognition of sudden deafness and could
not be excluded from the data set.

Table 1 The frequency distribution of vertigo disease classes

Disease name Abbreviation Frequency %
1 Acoustic neurinoma ANE 131 12.7
2 Benign positional vertigo BPV 173 16.8
3 Menière's disease MEN 350 34.0
4 Sudden deafness SUD 47 4.6
5 Traumatic vertigo TRA 73 7.1
6 Vestibular neuritis VNE 157 15.2
7 Benign recurrent vertigo BRV 20 1.9

8 Vestibulopatia VES 55 5.3
9 Central lesion CL 24 2.3
 Total 1030 100

The original data with missing attribute values was used in the classification runs
of ONE and the attribute weighted k-nearest neighbour method, and in the fitness value
computation. It was necessary to impute the data for the attribute weight computation
because the Scatter method needs complete input data to work properly. The IB4 method
can handle missing attribute values, but, in order to keep it comparable with the Scatter
method, the imputed data was also used in its weight calculation. If only the complete cases
in the original data had been used, the training set would have been too small. With 94
attributes, there were only 22 complete cases (2.1 %). The number of missing attribute
values (9.8 %) allowed the use of imputation. The imputation was done class-wise on the
basis of the whole data prior to data division into training and testing sets. The missing
values of the attributes were imputed (substituted) with the class modes of the qualitative
and the class medians of the quantitative attributes. These simple imputation methods have
been proven to be adequate enough for this otoneurological data (Laurikkala et al., 2000).

3 Methods

3.1 Weight utilizing methods

3.1.1 Nearest pattern method of ONE

The inference mechanism of the otoneurological decision support system ONE resembles
the nearest neighbour methods of pattern recognition (Auramo and Juhola, 1996). Instead
of  looking  for  the  nearest  case,  it  looks  for  the  most  fitting  class  for  a  new  case  in  its
knowledge base. In the knowledge base of ONE, a pattern is given to each class that
corresponds to one vertigo disease. The pattern can be considered a profile of a disease as
it describes its related symptoms and signs. Confounding symptoms are also acknowledged
in the pattern, such as age-related hearing loss and other symptoms not usually related to
the disease.
Each class in the knowledge base is described with a set of attributes with weight values
expressing their significance for the class. In addition, a fitness value for each attribute
value is given to describe how it fits the class (Figure 1).
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(a) <attribute name> <attribute weight> <attribute type>
   <minimum value> <maximum value>
   <value 1> < fitness value 1>

…

   <value n> < fitness value n>
   END
.

(b) ATT_OFTEN 4 V
        0.0 5.0
        0.0 0.0
        1.0 1.12
        2.0 23.60
        3.0 19.10
        4.0 43.82
        5.0 100.0
        END
.

Figure 1 (a) The general form of an attribute pattern in the knowledge base of ONE and (b)
an example attribute description ATT_OFTEN (frequency of vertigo attacks with
benign positional vertigo)

The weight values vary from 0 to a chosen maximum, where 0 means that the attribute does
not concern the class at all. The greater the weight value, the more important the attribute
is  for  the  class.  Fitness  values  can  have  values  between  0  and  100.  The  fitness  value  0
means that the attribute value does not fit the class, whereas the fitness value 100 shows
that the value fits the class perfectly.

The inference mechanism of ONE (Auramo and Juhola, 1996) searches for the
best fitting class in its knowledge base. It calculates scores for the classes from the weight
and fitness values of the attributes. The score S(c) for a class c is calculated in the following
way
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where A(c) is the number of the attributes associated with the class c,
x(a) is 1 if the value of attribute a is known and otherwise 0,
w(c,a) is the weight of the attribute a for the class c and
f(c,a,j) is the fitness value for the value j of the attribute a for the class c

(Auramo and Juhola, 1996). In the case of quantitative attributes, the fitness values are
interpolated by using the attribute values in the knowledge base as interpolation points. The
fitness values are altered to the range of 0 to 1 during the inference process. The class
pattern having the highest score is the best diagnosis suggestion.

In order to handle uncertainty caused by the missing attribute values, ONE
calculates the minimum and maximum scores for the classes using the lowest and the
highest fitness values for the attributes having missing values. The closer the minimum and
maximum scores are to each other, the more reliable the inference result is. There can be
diagnosis suggestions having exactly the same highest score (and minimum and maximum
score and their difference). In that case, the order of the suggestions having the same score
is randomized and the first class is randomly selected from the tied diagnosis suggestions.
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if x or y is unknown

if a is qualitative

otherwise

3.1.2 Attribute weighted k-nearest neighbour method with One-vs-All classifiers

The other method utilizing the weighting schemes is the attribute weighted k-nearest
neighbour method with One-vs-All classifiers (wk-NN OVA). The distance measure of the
basic k-nearest neighbour method (Cover and Hart, 1967) was expanded to take the
attribute weighting into account (Kelly and Davis, 1991; Mitchell, 1997). In addition, in
order to keep ONE and the k-nearest neighbour method comparable, we decided to convert
the multi-class classification problem into multiple binary classifiers - i.e., to divide the m
class problem into m binary problems by using One-vs-All classifiers with the k-nearest
neighbour method (Galar et al., 2011). Thus, the OVA classifiers and ONE both handle
class-wise information, from which the class of a new case is predicted. Each binary OVA
classifier was trained to separate a class from all the other classes by marking the cases of
this one class as member cases and the cases of the other classes as non-member cases in
the training set.

The attribute weighted k-NN OVA is an instance-based learning method that
searches for the k most similar cases (neighbours) of a new case from each classifier
separately. There is one classifier per each class and each classifier gives a vote for the case
being a member or non-member of the class based on the majority class of the k neighbours.
The final class of the new case is assigned from a classifier suggesting the case being a
member  of  a  class.  There  can  be  a  situation  in  which  the  new  case  gets  more  than  one
member of a class vote (a tie situation) or all of the classifiers vote for the other class (the
case to be a non-member of all the classes). In a tie situation, the class of the new case is
determined by searching for the most similar member case from the member voting
classifiers. The case gets the class of the member case with the shortest distance to it. When
all the classifiers vote for the case to be a non-member, the basic attribute weighted 1-
nearest neighbour classifier using the whole training data containing the original disease
classes is employed to find the most similar case (and its class) for the new case.

The similarity between the new case and the training cases within the classifiers
is calculated with a distance measure. In this study, the distance measure used in the
attribute weighted k-nearest neighbour method was the Heterogeneous Value Difference
Metric (HVDM) (Wilson and Martinez, 1997) with attribute weighting, which can handle
both qualitative and quantitative attributes in the data set. The attribute weighted HVDM is
defined as
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Because HVDM computes distances to qualitative and other attributes with different
measurement ranges, it is necessary to scale their results into approximately the same range
in order to give each attribute a similar influence on the overall distance. Thus, the
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measurements are normalized (Wilson and Martinez, 1997). The normalized distance to a
quantitative attribute is calculated with Equation 4
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where as  is the standard deviation of the numeric values of attribute a in the training
set of the current classifier, and to a qualitative attribute with Equation 5
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where C is the number of output classes in the problem domain (in this case C=2: the
data in the training set T of the classifier is divided into the member and non-
member classes),
Na,x(y),c is the number of cases in T that have a value x (or a value y) for attribute a
and the output class c, and
Na,x(y) is the number of cases in T that have a value x (or a value y) for attribute a

(Wilson and Martinez, 1997). In other words, we are calculating the conditional
probabilities to have the output class c when having attribute a with the value x (or the
value y).

3.2 Attribute weight setting methods
3.2.1 Domain experts

The original attribute weights and fitness values of attribute values for the knowledge base
of the decision support system ONE was defined by a group of experienced otoneurological
physicians in the 1990s (Kentala et al., 1998). A decade later, the knowledge base of ONE
was updated by two specialists during the upgrading of the decision support system (Varpa
et al., 2006), when new attributes were added to the knowledge base.

The original weighting was done on the basis of the experts’ knowledge and
experience, and on information obtained from the medical literature and data (Kentala et
al., 1998). For example, the newest diagnostic criteria for diseases were obtained from
medical journals. Furthermore, the collected data on several hundred patients was
employed in the knowledge formation (Auramo and Juhola, 1995). The original knowledge
base was used as a starting point in the knowledge updating process. The experts went
through the attributes and weights in the disease patterns one by one and changed the
weighting as necessary (Varpa et al., 2006). Weights were manually defined for each
attribute in each disease pattern. The experts used their knowledge and experience as the
basis when defining the weights. In addition, they were able to compare their assumptions
about the diseases with the collected data (all 1,030 cases) during the updating process.

The medical experts could define weights and fitness values for seven disease
classes: acoustic neurinoma, benign positional vertigo, Menière’s disease, sudden deafness,
traumatic vertigo, vestibular neuritis and benign recurrent vertigo. Two classes
(vestibulopatia and central lesion) were found to be too complex to describe with weight
and fitness values. Therefore, in classification runs with the experts’ knowledge, seven
disease classes with 951 cases were used in this study.
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3.2.2 Scatter method

The first machine learning method applied to the attribute weight setting is the Scatter
method (Juhola and Siermala, 2012; Siermala et al., 2007). The Scatter method can be
utilized to evaluate whether a data set includes meaningful information that can be used for
class separation. It has been used, for example, to solve the importance and separation
power of attributes and to map the overlap of the classes in the attribute space. A scatter
value describes the power of an individual attribute or attribute set to separate the classes
in the data. In this study, we were interested in each attribute’s power to differentiate one
class from the other classes and the possibility to transform the scatter values into weights
that can be utilized in the classification. Therefore, scatter values were separately computed
for all attributes within each disease class vs. all the other classes.

In order to calculate the scatter value, the entire data set must be traversed through
from a case to its nearest unvisited neighbour case. Before calculation, the attribute values
are normalized into the same scale [0, 1]. The Scatter method starts by randomly selecting
an initial case x from the data. The nearest case y for x is searched with the Euclidean
distance. If there are several cases with exactly the same distance, the nearest case y is
randomly selected from these nearest cases. The classes of x and y are compared: If the
cases are from different classes, a counter a is incremented; otherwise, (they are from the
same class) a is kept unchanged. After the comparison, case x is removed from the data set
and case y is set as a new x. A new nearest case y is searched from the diminished data set
and the classes are compared. These steps are repeated until only case x is left in the data
set. After going through all the cases in the data set, the scatter value s is calculated with
Equation 6

A
as = , (6)

where a is the total number of observed changes between the classes and
A is the theoretical maximum number of possible class changes.

A is computed as follows (Equation 7): Let mG be the size of the largest class and MO be
the sum of the number of cases in the other classes (in other words, MO = n- mG, where n is
the number of cases in the data set). When mG is greater than MO, A is equal to 2MO and,
otherwise, A equals n-1.
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Thus, the scatter value s describes the relationship between the number of observed class
changes and the theoretical maximum number of changes. The scatter values vary in (0, 1].
The closer the scatter value is to 0, the more accurately separated from each other the
classes are in the attribute space. The scatter value is close to 1 if the cases are selected
alternately from different classes, meaning that the classes are entirely overlapping in the
attribute space. The Scatter method is described in more detail in (Juhola and Siermala,
2012).

The scatter value describes the overlap of the classes within the attribute values:
the closer the scatter value is to 0, the better the attribute differentiates the classes.
Nevertheless, the interpretation of the attribute weight values is opposite to the scatter
values: the greater the weight value, the more important the attribute is. Therefore, we
needed to take inverses of the scatter values in order to use them as attribute weights.
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3.2.3 Instance-based learning algorithms IB4 and IB1w

The other machine learning method applied to the attribute weight formation is Aha’s
attribute weight learning algorithm from the incremental instance-based learning algorithm
IB4 (Aha, 1992). IB4 tolerates irrelevant attributes by learning attribute relevancies (i.e.
weights for attributes) independently for each class and using these weights in its similarity
function. It can also handle skewed class distributions. The learnt attribute weights are
receiving our special attention and we do not report the classification results of IB4, but we
do use the learnt weights with the nearest pattern method of ONE and the attribute weighted
k-nearest neighbour OVA method.

In the IB4 method, each class c is described with a separate class description CDc

and a set of attribute weights
acWeight (Aha, 1992). The class description contains a set of

cases with classification records about their past performance during classification, that is,
their number of correct and incorrect classification predictions. Based on their classification
performance, the cases stored in CDc are defined as statistically acceptable or mediocre.
Cases in CDc are regarded as statistically acceptable if their classification accuracy is
statistically significantly greater than their class’s observed frequency (the statistical
calculation is based on the confidence intervals) (Aha, 1992; Aha et al., 1991). Acceptable
cases are used in the subsequent classification tasks. If there are no acceptable cases in CDc,
mediocre cases are used in the classification instead. Mediocre cases are kept in the class
description as long as they are regarded as noisy. Noisy cases with significantly poor
classification performance (classification accuracy statistically significantly less than the
class’s observed frequency) are discarded from the CDc as soon as they are revealed. The
status of the saved cases in CDc can change during the learning of the attribute weights:
mediocre cases can change to noisy or acceptable and even cases previously regarded as
acceptable can be discarded from the description when they later appear to be noisy.

In the beginning, a class description is empty and the attribute weights are zero.
The first learning case x is moved directly into the class description. When there is at least
one case in the class description, the similarity between the learning case x and the cases in
CDc are calculated with an attribute weighted negative Euclidean distance measure

å
=

--=
m

a
aac yxWeightyxcSimilarity

a
1

22 )(),,( (8).

The attribute values of x and y are normalized to the range [0, 1] in order to have the same
(maximal) effect on the similarity with each attribute. If xa or ya is missing, these values are
assumed to be maximally different, i.e., the difference (xa -  ya) is 1. The most similar
acceptable neighbour is searched from the CDc and set as the nearest neighbour ymax. If
there are several acceptable cases with the same highest similarity, the class frequency
within these cases is checked and a case from the class having the highest frequency is
randomly selected as ymax. If there are no statistically acceptable cases in the CDc, a random
number i is selected within [1, |CDc|] and the ith most similar case from the CDc is set as
the nearest neighbour ymax (Aha et al., 1991). The classes of x and ymax are compared. When
the classes of x and ymax are different (x is misclassified), x is added to the class description
CDc. After the classification of x, the classification records of all saved cases in CDc that
are at least as similar as ymax are updated (the number of correct or incorrect classification
predictions are increased, depending on whether or not the class was correct). The saved
cases regarded as noisy are discarded from the CDc. In addition, all attribute weights are
adjusted after the classification of each learning case x through a performance feedback
algorithm (described in Algorithm 1) to reflect the relative relevancies of the attributes: the
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weights of attributes are increased when they correctly predict the classification and are
otherwise decreased. The attribute weights are defined in the range [0, 0.5], where the
weight 0 means that the attribute is irrelevant (Aha, 1992). The weight range is set to [0,
0.5] instead of [0, 1] because the total weight of an irrelevant attribute is expected to be half
of its total possible attribute weight (Aha, 1992).

Algorithm 1 The attribute weight updating algorithm of IB4 (Aha, 1992)

Since the cases are normalized, step 1 yields a value in [0,1].

Attributes: x = case being classified
ymax = the classifying case from CDc
c = the target class
λ = the higher observed relative frequency among x’s actual and predicted (ymax)
class members, value range [0,1]

For each attribute a:
1. LET difference = | xa -

a
ymax |

2. IF (x’s classification was correctly predicted (x_class == ymax_class)
  THEN

acWeightCumulative =
acWeightCumulative + (1- λ)*(1-difference)

   ELSE
acWeightCumulative =

acWeightCumulative + (1- λ)*difference

3.
acalizerWeightNorm  =

acalizerWeightNorm  + (1- λ)

4. Weight
ac = )0,5.0(max -

ac

c

alizerWeightNorm
WeightCumulative

a

The novel learning case x is classified in each class description (in this study to
seven and nine disease classes). Since the classes are represented separately, the cases are
either members or non-members of the class. As a result, there are separate class
descriptions and attribute weight sets for each disease class used.

In addition, the attribute weight algorithm was applied with IB1 (Aha et al., 1991),
a simpler version of the instance-based learning algorithm IB4. This was done because of
the imbalanced class distribution of the data in use: we wanted to see if there were any
differences in the attribute weights when handling the class descriptions in different ways.
We needed to modify the original IB1 method in order to use it appropriately in this
research. First of all, the weighted similarity function (Equation 8) was taken into use with
the IB1 method. IB1 usually handles all classes at the same time with one classifier. The
weight values are needed for each class separately. Therefore, we needed to alter the IB1
method to work like IB4, having class descriptions for each class separately. This variant
of IB1 is called IB1w. The difference between IB1w and IB4 is that IB1w saves all
processed cases in its class descriptions and does not discard any cases from the class
descriptions during runs. Also, the cases with poor classification records are kept in class
descriptions with IB1w.
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3.3 Cross-validation

We used a 10-fold cross-validation (CV) (Mitchell, 1997) to evaluate the classification
performance of the ONE and the attribute weighted k-nearest neighbour OVA methods
combined with different weighting schemes. In the 10-fold cross-validation, the data was
randomly divided into 10 subsets of approximately equal size. The division was made in a
stratified manner to ensure that the class distribution of each subset resembled the skewed
class distribution of the entire data set. In the 10 training and testing runs, each training data
set  included  the  cases  of  nine  subsets  and  the  testing  data  set  included  the  cases  of  the
remaining subset. The 10-fold cross-validation was repeated 10 times. Thus, in total, there
were 100 runs per each classification method - weighting scheme combination. The same
cross-validation divisions were used with all the combinations - i.e., each combination had
the same training and testing data sets used during the runs.

The class-wise fitness values (FV) of the attribute values for the nearest pattern
method of ONE were computed once for each CV training data set with the fitness value
method described in study (Varpa et al., 2008). The original data set containing also the
cases having missing attribute values were used in the fitness value calculation. The fitness
values for attribute values by experts were defined only once.

The attribute weights were calculated for each CV training set from the imputed
data. The calculation of the weights within each CV training set was repeated 10 times with
the Scatter, IB4 and IB1w methods in order to handle the randomness in these methods. In
the Scatter method, the randomly selected starting case and, possibly, randomly selected
nearest cases when having several neighbours with the same distance both have an effect
on the final result of the calculation. In the IB4 and IB1w methods, the order of the cases
in the data set affects the results (Wettschereck and Aha, 1995) and, therefore, the order of
the cases was mixed up within the repetitions. The mean weights of the 10 weight
calculation repetitions were saved into weight sets and used in the classification. Attribute
weights were necessary to calculate separately for seven and nine disease class
classifications. The attribute weights defined by the application area experts (we) were the
same in each CV run.

In order to prepare for a possible situation where all classifiers in the attribute
weighted k-nearest neighbour method with OVA vote a case to be a non-member, it was
necessary to calculate the Scatter-based weight values and IB4 and IB1w weights from the
training data set having the original classes in addition to the class-wise attribute weights.
In the OVA non-member voting situation, the basic attribute weighted k-nearest neighbour
method with one classifier and one weight set was used. These attribute weight calculations
were also repeated 10 times. In the non-member voting situations with the attribute weights
defined by the experts we needed to use weights 1 with the basic weighted k-NN because
the experts could not set a single combination of attribute weights that only contains one
weight for each attribute and can separate all disease classes. For the experts, it was more
natural to define the class-wise attribute weights by considering the characteristics of a
certain disease.

 Different weighting scheme and classification method (ONE and attribute
weighted k-NN OVA) combinations formed for each CV training data set were tested with
corresponding CV testing data sets using the original cases with the missing attribute
values. The research process in a CV run of the 10-fold CV is summarized in Figure 2.
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1 The weight setting methods were run 10 times in each CV run in order to handle randomness within the
methods. The weight sets contained the mean weights of 10 runs.
2 Weight sets w1 and we and experts’ fitness values expert FV were created only once.

Figure 2 Description of the research process within a cross-validation (CV) run of the 10-fold
CV. The 10-fold CV was repeated 10 times, so, this process was repeated 100 times.
In addition, the attribute weights were calculated and tested separately for seven and
nine disease classes.

4 Results

When testing the effect of attribute weights on the classification performance, five different
weight sets were used:

w1 Equal weighting, all attribute weights set to 1.

Data set

Experts

Testing

1 subset

Test data

5-NN OVA

ONE123

1-NN OVA

Classification

ONE1

wscat

wIB4

wIB1w

we2

w12

expert
FV2

ML FV

Weight Sets

Fitness Values

Training

9 subsets

Train data

FV method

Scatter1

IB41

IB1w1

Weight Setting

imputed
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we Weights set by the experts. The weights varied from 0 to 15, except the
weight 40 of the attribute hl_type for sudden deafness. The experts could
set weights for seven disease classes.

wscat  The weights computed with the Scatter method. The attribute weights
were inverse scatter values and varied from 1 to 14.

wIB4  The weights computed with the weight calculation method of Aha’s IB4
algorithm. Only the statistically acceptable and mediocre cases were kept
in the class descriptions during the weight calculations, and the non-
acceptable cases were dropped out. The weights varied from 0 to 0.5.

wIB1w  The weights computed with the weight calculation method of Aha’s IB4
algorithm, but the case handling was derived from Aha’s IB1 method: all
of the cases were added to the class descriptions and kept there. The
weights varied from 0 to 0.5.

These weight sets were used as attribute weights with the machine learnt fitness values in
the knowledge base of ONE and with the attribute weighted k-nearest neighbour method
having OVA classifiers (wk-NN OVA). In addition, classification run of ONE with the
knowledge base fully formed by the domain experts (ONE experts) was used as the basis
in the result comparisons. In this knowledge base, both the attribute weights and the fitness
values of attributes were defined by the experts. Expert-set attribute weights (we) for seven
disease classes were used with both classification methods and, in order to have the results
comparable with each other, attribute weight values were computed with the machine
learning methods from data containing the seven diseases. The attribute weight sets wscat,
wIB4 and wIB1w were also formed from data containing all nine disease classes in order to
compare the classification performance between the methods with more classes.

The classification performance of the methods with different attribute weight sets
is described with a class-wise true positive rate (TPR) and a total classification accuracy
(ACC). TPR is calculated as the percentage of correctly inferred cases in the class:

%,100
ccases

cpos

n
t

TPR = (9)

where
cpost is the number of correctly classified cases in the class c and

ccasesn is the number of all cases in the class c.
The total classification accuracy gives the percentage of all correctly classified cases within
the data set:

,%100
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ACC = (10)

where tpos is the total number of cases correctly classified in all classes and
ncases is the total number of cases used in the classification.

 In addition to the classification rates TPR and ACC, classification method – weight set
combinations were examined with Cohen’s kappa (K) (Ben-David, 2007; Cohen, 1960):
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, (11)

where Po is the total agreement probability (i.e. accuracy) and
Pc is the probability of predicting the correct class due to chance.

Cohen’s kappa was used separately for each classification method – weight set combination
to estimate the degree of agreement between their classification results and the actual class
labels, and, in addition, to evaluate the pair-wise agreement between the compared
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combinations. The value range of kappa is [-1, 1], where -1 means total disagreement
(worse than random performance), 0 is a random or majority-based classification and 1 is
perfect agreement. Usually, when the kappa value is higher than 0.81, the pair is considered
to have almost perfect agreement (Landis and Koch, 1977).

When comparing the classification results of the seven disease classes based on
the first diagnosis suggestion of ONE and the attribute weighted 1- and 5-nearest neighbour
methods with the OVA classifiers using the different attribute weight combinations in
Table 2, it can be seen that the highest total classification accuracy (79.7%), the highest
median true positive rate (75.2%) and the highest Cohen’s kappa (0.73) were achieved with
the Scatter weighted 5-nearest neighbour method (5-NN OVA wscat). The other nearest
neighbour methods classified 70.8% to 78.9% of the cases correctly, had a median TPR
between 60.6% and 74.3% and Cohen’s kappa varying from 0.61 to 0.72, whereas the total
classification accuracies of ONE combinations varied from 43.3% to 74.6%, with a median
TPR between 47.8% and 69.8% and Cohen’s kappa from 0.33 to 0.67. The ONE
combination having the highest total accuracy and Cohen’s kappa (74.6% and 0.67
respectively) was ONE with the Scatter weights (ONE1 wscat). The highest median TPR
(69.8%) was achieved with ONE using IB1w weights (ONE1 wIB1w). Based on the kappa
values, all of the weighted k-NN OVA and ONE variants except ONE1 experts and ONE1
we had a substantial agreement with the actual classes (kappa value over 0.6). Error bars
(with 99% confidence intervals) for the mean total accuracies, mean median true positive
rates and mean Cohen’s kappa of ONE and the attribute weighted 1- and 5-nearest
neighbour OVA methods with different weighting schemes achieved within 10 times
repeated 10-fold cross-validation are shown in Figure 3.
Figure 3 Error bars (with 99% confidence intervals) for the mean total accuracies, Cohen’s

kappas and median true positive rates (TPR) of classification methods from 10
times repeated 10-fold cross-validation with seven disease classes.
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Table 2 The true positive rates (TPR) of seven disease classes and the total classification accuracies with ONE’s first diagnosis suggestion (ONE1) and
the attribute weighted k-nearest neighbour method with OVA classifier (wk-NN OVA) in percentages (%) from 10 times repeated 10-fold cross-
validation. In addition, the Cohen’s Kappa (K) and the Kappa Chance agreement (Pc) are presented. The highest TPRs, accuracy and Kappas are
in boldface.

Disease Cases
ONE1

experts
ONE1

w1
ONE1

we
ONE1
wscat

ONE1
wIB4

ONE1
wIB1w

wk-NN OVA
w1

1-NN 5-NN

wk-NN OVA
we

1-NN  5-NN

wk-NN OVA
wscat

1-NN  5-NN

wk-NN OVA
wIB4

1-NN  5-NN

wk-NN OVA
wIB1w

1-NN  5-NN

E 131 24.4 65.6 16.7 62.3 63.8 66.3 68.5 64.6 67.6 65.9 63.0 63.1 63.3 60.5 63.0 60.6
BPV 173 65.9 54.7 47.8 55.6 50.3 53.5 69.9 71.8 69.3 74.3 69.4 70.9 70.6 70.7 68.4 68.5
MEN 350 42.0 91.7 75.8 91.9 81.4 90.5 82.4 95.4 87.2 92.1 80.7 93.7 84.2 94.9 88.5 95.3
SUD 47 68.1 62.6 85.5 71.9 68.1 65.1 45.7 29.4 45.3 51.9 68.7 84.3 28.1 25.5 27.4 27.4
TRA 73 67.1 79.0 40.1 83.2 94.5 83.7 63.3 67.9 74.8 79.0 80.8 86.6 67.4 72.7 50.5 54.4
VNE 157 15.9 67.8 66.1 67.8 63.8 68.0 68.8 72.8 74.4 80.7 70.9 75.2 68.9 73.0 69.2 72.7

BRV 20 65.0 36.5 23.5 43.0 43.0 39.5 26.5 20.0 19.0 19.0 25.0 18.5 17.5 19.5 19.5 17.5
Median of TPR 65.0 65.6 47.8 67.8 63.8 69.8 68.5 67.9 69.3 74.3 69.8 75.2 67.4 70.7 63.0 60.6
Total ACC 951 43.3 73.8 57.6 74.6 70.0 73.9 71.5 76.2 74.7 78.9 72.8 79.7 70.9 75.4 70.8 73.8
K 0.33 0.66 0.47 0.67 0.62 0.66 0.63 0.68 0.67 0.72 0.65 0.73 0.62 0.67 0.61 0.64
Pc 0.15 0.24 0.20 0.24 0.21 0.24 0.23 0.26 0.24 0.25 0.23 0.25 0.24 0.26 0.25 0.26
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In the figure, the Cohen’s kappa values are altered to the range [-100, 100] in order
to make the figure easier to interpret. The total accuracies, Cohen’s kappa and median TPR
of two of the weighted 5-NN OVA variants (5-NN OVA wscat and 5-NN OVA we) were
significantly higher than the results of the ONE and other k-NN OVA variants. ONE1
wscat, ONE1 wIB4, ONE1 wIB1w and ONE1 w1 had  similar  kind  of  results  with  the
weighted 1-NN OVA variants. ONE1 experts and ONE1 we had significantly lower results
based on the error bars. The total accuracies and kappa were quite stable between the 10-
fold cross-validation runs, whereas the median true positive rates varied by a few
percentage points.

The best true positive rates of the disease classes were achieved with different
methods and different attribute weights: the highest TPR (95.4%) was achieved on
Menière’s disease with the 5-nearest neighbour method with weights 1 (5-NN OVA w1).
The IB4 weighted ONE (ONE1 wIB4) had the best TPR for traumatic vertigo (94.5%),
ONE with the experts’ weights (ONE1 we) rated the best sudden deafness (85.5%) cases,
the 5-nearest neighbour method with the experts’ weights (5-NN OVA we) had the highest
TPRs for vestibular neuritis (80.7%) and benign positional vertigo (74.3%), the 1-nearest
neighbour method with weights 1 (1-NN OVA w1) had the best TPR for acoustic neurinoma
(68.5%) and ONE purely defined with the experts’ knowledge (ONE1 experts) had the
highest TPR for benign recurrent vertigo (65.0%).

From the classification results of ONE in Table 2 it can be seen that the knowledge
bases containing the machine learnt weights (ONE1 wscat, wIB4 and wIB1w) improved the
total classification accuracy by more than 26% compared with the knowledge base fully
formed by the domain experts (ONE1 experts) and more than 12% compared with the
knowledge base containing attribute weights defined by the experts (ONE1 we): ONE1
experts and ONE1 we classified 43.3% and 57.6% of the cases correctly and the knowledge
bases with the machine learnt weights 74.6%, 70.0% and 73.9% respectively. Knowledge
base ONE1 w1 treating all attributes as equally important performed better than ONE1
experts and ONE1 we and, in addition, better than ONE1 wIB4. Its total classification
accuracy was 73.8%.

Interestingly, for the 1-nearest neighbour OVA method, the best total accuracy of
74.7% and Cohen’s kappa of 0.67 were achieved with the experts’ weights (1-NN OVA we),
while the second best classifier was 1-NN OVA wscat with an accuracy of 72.8% and a
kappa value of 0.65. For the 5-nearest neighbour method, the Scatter based weights yielded
the best results: 5-NN OVA wscat classified 79.7% of the cases correctly and had a kappa
value of 0.73, whereas 5-NN OVA we achieved a total accuracy of 78.9% with a kappa
value of 0.72 and 5-NN OVA w1 achieved 76.2% and 0.68 respectively. The weights of the
IB4 and IB1w methods slightly reduced the total classification accuracy with both 1- and
5-nearest neighbour OVA methods. The best and worst results of the attribute weighted 1-
and 5-nearest neighbour methods with OVA classifiers using different weight settings were
much closer to each other than the results of ONE.

Classification method – weight set combinations were also evaluated pair-wise
with Cohen’s kappa within 10 times repeated 10-fold cross-validation runs in order to see
the interrelated agreement between two combinations (Figure 4).
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Figure 4 Error bars (with 99% confidence intervals) for the mean Cohen’s kappa for pair-wise method combinations from 10 times repeated 10-fold
cross-validation with seven disease classes.
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There were 19 combination pairs that had almost perfect agreement (a kappa value of
over 0.8) on their classification results in every 10-fold run:

ONE1 w1 - ONE1 wscat
ONE1 w1 - ONE1 wIB1w
ONE1 wscat - ONE1 wIB1w
ONE1 wIB4 - ONE1 wIB1w
1-NN OVA w1 - 1-NN OVA wscat
1-NN OVA w1 - 1-NN OVA wIB4
1-NN OVA w1 - 1-NN OVA wIB1w
1-NN OVA we - 5-NN OVA we
1-NN OVA wscat - 1-NN OVA wIB4
1-NN OVA wIB4 - 1-NN OVA wIB1w

5-NN OVA w1 - 5-NN OVA we
5-NN OVA w1 - 5-NN OVA wscat
5-NN OVA w1 - 5-NN OVA wIB4
5-NN OVA w1 - 5-NN OVA wIB1w
5-NN OVA we - 5-NN OVA wscat
5-NN OVA we - 5-NN OVA wIB4
5-NN OVA wscat - 5-NN OVA wIB4
5-NN OVA wscat - 5-NN OVA wIB1w
5-NN OVA wIB4 - 5-NN OVA wIB1w.

Four of these pairs consisted of ONE combinations; the others were 1- and 5- nearest
neighbour combinations. In addition to above mentioned pairs, “1-NN OVA wscat - 5-NN
OVA wscat”, “1-NN OVA wIB1w - 5-NN OVA wIB1w”, “ONE1 wscat – ONE1 wIB4”, “1-
NN OVA wIB4 - 5-NN OVA wIB4”, “5-NN OVA we - 5-NN OVA wIB1w” and “ONE1 w1
– ONE1 wIB4” had almost perfect agreement in some of the 10 times repeated 10-fold runs
(9, 9, 7, 5, 4 and 3 out of 10 respectively). The Cohen’s kappa shows that the 5-nearest
neighbour OVA variants with different weight sets are more similar to each other and agree
more on the classifications than the 1-nearest neighbour OVA and ONE combinations.
Thus, the weight sets have more effect on the classification results of the 1-nearest
neighbour OVA and ONE methods than on the results of the attribute weighted 5-nearest
neighbour OVA method.

In this domain, patients can have confounding and overlapping symptoms and
diseases can mimic other diseases (Havia, 2004; Kentala, 1996), which led us to investigate
the number of tied diagnosis suggestions of ONE and tied votes of k-NN OVA variants
within 10 times repeated 10-fold cross-validation. ONE had only one case with two tied
best suggestions (Table 3(a)). With the attribute weighted 1- and 5-nearest neighbour OVA
methods, the number of cases having tied voting classifiers was quite large (Table 3(b)).
There were situations where the 1- and 5-nearest neighbour method with OVA classifiers
voted a case to be a member of more than one classifier or voted it to be a non-member of
all classes. The total number of cases having tied voting classifiers varied with the 1-nearest
neighbour OVA method from 204 to 279 (from 21.5% to 29.3%) and with the 5-nearest
neighbour OVA method from 158 to 228 (from 16.6% to 24.0%) within 10 times repeated
10-fold cross-validation. The lowest total number of cases having tied voting classifiers
within 1-NN OVA (from 204 to 223) was yielded with 1-NN OVA wIB4 and within 5-NN
OVA (from 158 to 179) with 5-NN OVA wIB1w. The proportion of cases having non-
member voting classifiers with each 1- and 5- nearest neighbour OVA variant was quite
high: at worst, 14.5% of 1-NN OVA and 13.0% of 5-NN OVA cases could not be assigned
to a class with the OVA classifiers. In these non-member voting situations, the class was
solved using the basic attribute weighted 1-nearest neighbour method.

In order to see what diseases were mixed up with others, we created mean
confusion matrices for the classification methods ONE and 1- and 5- nearest neighbour
methods using OVA classifiers with the weight combinations that had the highest total
accuracy from the 10 times repeated 10-fold cross-validation (Table 4). The confusion
matrix of ONE1 experts was added for comparison.
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Table 3 The minimum and maximum number (n) of cases having tied diagnosis suggestions
or a tied voting situation occurring in 10 times repeated 10-fold cross-validation
with seven disease classes (the number of cases covers the entire 10-fold data).

(a) diagnosis suggestions of ONE with the same highest score and maximum score
and minimum score difference.

(b) tied voting with the attribute weighted 1- and 5-nearest neighbour methods with
OVA classifiers.

All disease classes were mixed up with Menière’s disease: in ONE1 wscat from
8.5% (TRA) to 26.0% of the cases (SUD), in 1-NN OVA we from 4.8% (TRA) to 28.5%
(SUD), in 5-NN OVA wscat from 2.7% (TRA) to 34.0% (ANE) and in ONE1 experts from
0% (TRA) to 10.6% (SUD). There were differences in the mixing: ONE1 wscat, 1-NN OVA
we and 5-NN OVA wscat mainly misclassified cases as Menière’s diseases, whereas ONE1
experts mostly mixed up all classes with benign positional vertigo from 4.3% (SUD) to
30.0% (BRV) and with benign recurrent vertigo from 8.2% (TRA) to 47.1% (VNE). In
addition, ONE1 experts classified 48.1% of the acoustic neurinoma cases as having sudden
deafness. ONE1 wscat, 1-NN OVA we and 5-NN OVA wscat also mixed up benign recurrent
vertigo with benign positional vertigo (27.5%, 44.5% and 44.0% of the cases respectively).
1-NN OVA we mixed 21.5% of sudden deafness cases with acoustic neurinoma.

n of tied voting
classifiers

ONE1
experts

ONE1
w1

min n   max n
ONE1

we

ONE1
wscat

ONE1
wIB4

ONE1
wIB1w

2 suggestions 0 0 1 0 0 0 0
total n of ties 0 0 1 0 0 0 0

n of tied voting
classifiers

1-NN OVA
w1

1-NN OVA
we

1-NN OVA
wscat

1-NN OVA
wIB4

1-NN OVA
wIB1w

min n  max n min n  max n min n max n min n  max n min n max n

2 class members 124 138 115 135 135 150 101 127 125 140
3 class members 2 7 8 14 3 9 2 8 2 7
4 class members 0 0 0 1 0 1 0 0 0 0
5 class members 0 0 0 0 0 0 0 0 0 0
6 class members 0 0 0 0 0 0 0 0 0 0
7 non-members 81 102 124 138 91 106 88 104 73 91
total n of ties 216 237 253 279 240 260 204 223 212 232

n of tied voting
classifiers

5-NN OVA

w1

5-NN OVA

we
5-NN OVA

wscat
5-NN OVA

wIB4
5-NN OVA

wIB1w

min n max n min n max n min n max n min n  max n min n max n

2 class members 62 67 94 105 88 100 54 66 60 75
3 class members 0 1 3 7 2 7 0 2 0 3
4 class members 0 0 0 0 0 0 0 0 0 0
5 class members 0 0 0 0 0 0 0 0 0 0
6 class members 0 0 0 0 0 0 0 0 0 0
7 non-members 105 111 102 119 97 106 111 124 95 106
total n of ties 169 178 205 228 191 211 171 189 158 179
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Table 4 Confusion matrices of seven disease classes in mean percentages (%) for ONE and
the 1- and 5-nearest neighbour OVA methods with the weight sets having the
highest total accuracies from 10 times repeated 10-fold cross-validation. Results of
ONE1 experts added for comparison.

ONE1 wscat: total accuracy 74.6%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV

ANE 62.3 0.7 21.2 13.2 0.0 1.5 1.1
BPV 0.0 55.6 25.9 1.0 2.7 0.6 14.2
MEN 0.0 0.9 91.9 4.0 0.6 0.3 2.3
SUD 2.1 0.0 26.0 71.9 0.0 0.0 0.0
TRA 0.0 3.0 8.5 3.6 83.2 1.5 0.3
VNE 0.0 5.2 15.7 2.4 1.6 67.8 7.2
BRV 0.0 27.5 24.0 0.0 0.0 5.5 43.0

1-NN OVA we: total accuracy 74.7%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV

ANE 67.6 3.1 25.0 1.6 0.5 2.3 0.0
BPV 0.5 69.3 20.4 0.5 1.4 1.3 6.6
MEN 1.5 4.9 87.2 0.7 0.9 3.0 1.8
SUD 21.5 0.6 28.5 45.3 0.0 4.0 0.0
TRA 1.5 14.7 4.8 0.4 74.8 1.4 2.5
VNE 0.0 7.8 11.8 0.1 1.1 74.4 4.8
BRV 0.0 44.5 22.5 0.0 0.0 14.0 19.0

5-NN OVA wscat: total accuracy 79.7%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV

ANE 63.1 1.2 34.0 0.2 0.0 1.5 0.0
BPV 0.5 70.9 23.5 0.0 1.7 1.4 2.0
MEN 0.3 2.3 93.7 0.3 1.6 1.1 0.7
SUD 2.3 2.1 11.3 84.3 0.0 0.0 0.0
TRA 0.0 5.3 2.7 3.7 86.6 1.6 0.0
VNE 0.0 8.6 11.0 0.6 1.6 75.2 3.1
BRV 0.0 44.0 23.5 0.0 0.0 14.0 18.5

ONE1 experts: total accuracy 43.3%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV

ANE 24.4 11.5 6.1 48.1 0.0 0.0 9.9
BPV 4.0 65.9 5.8 0.6 1.7 1.2 20.8
MEN 7.7 13.4 42.0 3.1 1.4 1.4 30.9
SUD 2.1 4.3 10.6 68.1 4.3 0.0 10.6
TRA 0.0 24.7 0.0 0.0 67.1 0.0 8.2
VNE 1.9 24.8 6.4 1.9 1.9 15.9 47.1
BRV 0.0 30.0 5.0 0.0 0.0 0.0 65.0
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In addition to confounding and overlapping symptoms, patients can actually have
two (or more) diseases present simultaneously (Kentala et al., 1996). Furthermore, vertigo
diseases resemble each other and can be difficult to differentiate from others, as can be seen
in Table 4. Therefore, it is good to check the classification results of ONE with more than
one  disease  suggestion.  In  the  end,  the  final  diagnostic  choice  must  be  made  by  the
physician based on the information given on all alternative diseases (Kentala et al., 1996).
The classification results when looking for the correct class among the first, second and
third diagnosis suggestions given by ONE are given in Table 5. Within the three diagnosis
suggestions, the weights computed with the Scatter and IB1w methods improved the total
classification accuracy: with the experts’ weights the accuracy was 86.2% (ONE123
experts) and 90.6% (ONE123 we), whereas with the IB1w weights the accuracy was 93.0%
(ONE123 wIB1w) and with the Scatter weights 94.4% (ONE123 wscat). The gap between
ONE123 w1, ONE123 experts and ONE123 we narrowed when looking at the three
diagnosis suggestions, but ONE123 w1 was still more robust with a total accuracy of 92.3%.
The Scatter-based and IB1w weights also increased the total accuracy compared with the
weights 1.

Table 5 The mean true positive rates of seven disease classes and the mean total
classification accuracies of the ONE variants having correct diagnosis suggestions
within the first, second and third diagnosis suggestions (ONE123) in percentages
(%) from 10 times repeated 10-fold cross-validation. The highest TPRs and
accuracies are in boldface.

Disease Cases
ONE123
experts

ONE123
w1

ONE123
we

ONE123
wscat

ONE123
wIB4

ONE123
wIB1w

ANE 131 78.6 90.3 73.9 86.6 82.7 93.6

BPV 173 95.4 88.3 85.5 97.5 84.6 89.7

MEN 350 78.6 97.9 97.6 98.1 95.6 97.7

SUD 47 97.9 98.9 100.0 100.0 99.6 99.4

TRA 73 100.0 100.0 94.4 100.0 100.0 100.0

VNE 157 87.9 82.5 91.7 85.7 78.0 82.4

BRV 20 100.0 77.0 76.0 90.5 99.0 79.0

Median of TPR 95.4 90.3 91.7 97.5 95.6 93.6

Total ACC 951 86.2 92.3 90.6 94.4 89.5 93.0

Even though the experts could not define weights for vestibulopatia and central
lesion, these two classes were used in the classification runs of ONE and the weighted k-
nearest neighbour method using OVA classifiers. With the machine learning methods we
were able to create weights for these two classes and were thus able to use nine disease
classes in the classification runs. When comparing the classification results of nine disease
classes with ONE and the attribute weighted 1- and 5-nearest neighbour methods (Table
6), the best results were achieved with the 5-nearest neighbour method with the weights
calculated by the Scatter method (5-NN OVA wscat). It classified 73.3% of cases correctly,
whereas other wk-NN OVA methods recognized 62.9% to 70.1% and ONE variants 59.1%
to 62.4% cases correctly. 5-NN OVA wscat also had the highest Cohen’s kappa value (0.66).
The highest median TPR (65.7%) was yielded with ONE1 wIB4.
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Table 6 The mean true positive rates of nine disease classes and the mean total classification accuracies of ONE’s first diagnosis suggestions (ONE1) and

the attribute weighted k-nearest neighbour method with OVA (wk-NN OVA) in percentages (%) from 10 times repeated 10-fold cross-validation. In
addition, Cohen’s Kappa (K) and the Kappa Chance agreement (Pc) are presented. The highest TPRs and accuracy are in boldface.

Disease Cases
ONE1

w1
ONE1
wscat

ONE1
 wIB4

ONE1
wIB1w

wk-NN OVA
w1

1-NN      5-NN

wk-NN OVA
wscat

1-NN      5-NN

wk-NN OVA
 wIB4

1-NN      5-NN

wk-NN OVA
wIB1w

1-NN      5-NN

ANE 131 65.6 62.7 66.2 66.6 64.7 61.6 60.6 60.0 60.3 57.1 59.0 56.4
BPV 173 32.6 31.4 25.1 29.4 57.7 64.6 57.5 65.1 60.2 64.5 58.6 60.0
MEN 350 81.3 80.2 65.7 79.3 78.4 94.4 77.3 93.1 81.3 93.5 86.0 94.0
SUD 47 61.3 68.9 76.2 63.0 37.0 28.3 61.5 81.5 20.2 23.0 24.0 28.7
TRA 73 69.6 77.3 95.6 79.3 59.2 73.4 73.8 85.2 61.4 73.3 47.4 55.5
VNE 157 63.9 64.9 58.3 64.3 62.7 72.7 65.8 75.4 64.8 73.2 64.6 70.4
BRV 20 4.0 4.0 20.5 3.0 19.5 12.5 19.0 14.5 11.0 14.0 13.5 17.0
VES 55 40.2 41.3 47.5 42.4 36.4 25.3 36.9 26.7 32.5 27.6 30.0 17.5

CL 24 46.7 46.7 89.2 40.8 23.3 7.5 22.9 7.5 16.7 7.5 12.5 7.5

Median of TPR 61.3 62.7 65.7 63.0 57.7 61.6 60.6 65.1 60.2 57.1 47.4 55.5
Total ACC 1030 62.2 62.4 59.1 61.9 62.9 70.1 64.6 73.3 62.9 69.2 63.0 66.6
K 0.54 0.54 0.52 0.54 0.54 0.61 0.56 0.66 0.53 0.60 0.53 0.56
Pc 0.18 0.18 0.15 0.18 0.20 0.23 0.19 0.22 0.21 0.23 0.22 0.24
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The highest total accuracy of the ONE variants at 62.4% was achieved with ONE1 wscat,
having a kappa value of 0.54 and a median TPR of 62.7%. Other machine learnt weights
(IB4 and IB1w) slightly reduced the total accuracy compared with the equally weighted
ONE and 5-NN OVA. The weights based on the Scatter method seemed to work with all
methods: ONE and 1- and 5-NN OVA with the Scatter-based weights had the highest total
accuracies within the methods.

The two added classes (vestibulopatia and central lesion) were difficult to
recognize with both the attribute weighted k-nearest neighbour OVA methods and ONE
(Table 6). Vestibulopatia was correctly classified with the weighted k-NN OVA
combinations from 17.5% to 36.9% of the cases and with the first suggestion of ONE’s
weight combinations from 40.2% to 47.5% of the cases. The classification of central lesion
was not much easier for the weighted k-NN OVA: from 7.5% to 23.3% of the cases were
correctly classified with the weighted k-NN OVA combinations. Instead, ONE classified
from 40.8% to 89.2% of the central lesion cases correctly. Furthermore, the addition of
these two difficult diseases to the classification reduced the true positive rates of the other
seven classes with some methods, especially with benign recurrent vertigo (39.0% decrease
with ONE1 wscat), benign positional vertigo (25.1% decrease with ONE1 wIB4), and
Menière’s disease (15.7% decrease with ONE1 wIB4) (Tables 2 and 6).

With the nine disease classes, the total number of cases having tied voting 1- and
5-nearest neighbour method OVA classifiers within the 10 times repeated 10-fold cross-
validations (Table 7) increased compared with the seven disease classes. However, ONE
did not have more than one case having the same highest score and the same max-min score
difference for two class suggestions. The total number of ties occurring within the cross-
validation runs varied with the 1-nearest neighbour OVA method from 270 to 332 (26.2%
to 32.2%) and with the 5-nearest neighbour OVA method from 244 to 290 (23.7% to
28.2%). The weighted 1- and 5-nearest neighbour OVA method having the lowest total
number of tied voting classifiers was achieved with 1-NN OVA wIB4 (270 to 302 ties) and
5-NN OVA wIB1w (244 to 267 ties). Interestingly, the proportion of non-member voting
classifiers with 1-NN OVA stayed almost the same with nine disease classes, whereas the
proportion increased with 5-NN OVA: during the classification of nine diseases with 1-NN
OVA there were at worst 14.1% non-member voting classifiers (14.5% with seven diseases)
and 20.8% with 5-NN OVA (13.0% with seven diseases).

Table 7 The minimum and maximum number (n) of cases having tied diagnosis suggestions
or a tied voting situation occurring in 10 times repeated 10-fold cross-validation
with nine disease classes (the number of cases covers the entire 10-fold data).

(a) diagnosis suggestions of ONE with the same highest score and maximum score
and minimum score difference.

n of tied suggestions
ONE1

w1
min n max n

ONE1 wscat ONE1 wIB4 ONE1 wIB1w

2 suggestions 0 1 0 0 0
total n of ties 0 1 0 0 0
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(b) tied voting with the attribute weighted 1- and 5-nearest neighbour methods with
OVA classifiers.

n of tied voting
classifiers

1-NN OVA

w1

1-NN OVA

wscat

1-NN OVA

wIB4
1-NN OVA

wIB1w

min n   max n min n  max n min n  max n min n   max n

2 class members 152 169 161 180 125 150 154 168
3 class members 6 11 9 15 7 13 6 11
4 class members 0 2 0 2 0 0 0 1
5 class members 0 0 0 0 0 0 0 0
6 class members 0 0 0 0 0 0 0 0
7 class members 0 0 0 0 0 0 0 0
8 class members 0 0 0 0 0 0 0 0
9 non-members 117 134 124 140 125 145 110 126
total n of ties 292 306 311 332 270 302 280 300

n of tied voting
classifiers

5-NN OVA
w1

5-NN OVA
wscat

5-NN OVA
wIB4

5-NN OVA
wIB1w

min n   max n min n   max n min n   max n min n   max n

2 class members 54 67 87 100 53 65 58 74
3 class members 0 1 3 6 0 1 0 2
4 class members 0 0 0 0 0 0 0 0
5 class members 0 0 0 0 0 0 0 0
6 class members 0 0 0 0 0 0 0 0
7 class members 0 0 0 0 0 0 0 0
8 class members 0 0 0 0 0 0 0 0

9 non-members 187 209 171 185 197 214 175 199
total n of ties 253 272 269 290 256 273 244 267

The mean confusion matrices for the classification methods ONE and 1- and 5-
nearest neighbour methods using OVA classifiers with weight combinations that had the
highest total accuracy from the 10 times repeated 10-fold cross-validation within nine
disease classes are given in Table 8. All disease classes were again mixed up with Menière’s
disease. In particular, the cases of sudden deafness were classified as Menière’s disease: in
ONE1 wscat 25.7%, in 1-NN OVA wscat 34.7% and in 5-NN OVA wscat 53.6%. The 1- and
5-nearest neighbour methods using the Scatter weights mixed up the cases of
vestibulopatia, central lesion and benign recurrent vertigo with benign positional vertigo
besides Menière’s disease. In addition, benign recurrent vertigo was badly mixed up with
vestibulopatia with all three methods: in ONE1 wscat 62.0%, in 1-NN OVA wscat 28.0%
and in 5-NN OVA wscat 32.5%. With ONE1 wscat, the cases of benign positional vertigo
were mixed up with vestibulopatia, central lesion and Menière’s disease.

When looking the correct class within the three best diagnosis suggestions of ONE
with the nine disease classes (Table 9), the best total accuracy was achieved with ONE123
wscat (85.0%). ONE123 w1 was the second best with 84.9% total accuracy and ONE123
wIB1w was the third best with 84.7% accuracy. However, the highest median TPR (91.2%)
was achieved with ONE123 wIB4. The addition of two disease classes reduced the true
positive rates of the other seven classes (Tables 5 and 9). The TPRs reduced at worst by
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31.2% (BPV with ONE123 wscat) and 30.0% (BRV with ONE123 w1) within the three
first diagnosis suggestions compared with results of ONE when using seven disease classes
in the knowledge base.

Table 8 Confusion matrices of nine disease classes in mean percentages (%) for the ONE
and the 1- and 5-nearest neighbour OVA methods with the weight sets having the
highest total accuracies within the methods from 10 times repeated 10-fold cross-
validation.

ONE1 wscat: total accuracy 62.4%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV VES CL

ANE 62.7 0.0 19.7 12.3 0.0 1.3 0.2 2.9 0.9
BPV 0.0 31.4 14.2 0.9 1.6 0.6 3.9 32.9 14.6
MEN 0.0 0.3 80.2 3.9 0.6 0.3 0.9 4.7 9.0
SUD 2.1 0.0 25.7 68.9 0.0 0.0 0.0 2.1 1.1
TRA 0.0 1.2 6.3 3.4 77.3 1.4 0.0 5.8 4.7
VNE 0.0 1.3 10.3 2.3 0.7 64.9 1.8 12.9 5.8
BRV 0.0 9.0 12.0 0.0 0.0 5.0 4.0 62.0 8.0
VES 0.0 4.9 21.8 0.0 0.0 0.0 8.9 41.3 23.1
CL 0.0 0.0 16.7 0.0 4.2 4.2 0.0 28.3 46.7

1-NN OVA wscat: total accuracy 64.6%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV VES CL

ANE 71.5 1.7 22.1 2.7 0.0 1.6 0.0 0.1 0.3
BPV 0.5 65.1 17.5 0.5 1.6 1.5 2.5 8.8 2.0
MEN 1.1 4.8 86.4 1.2 0.6 0.9 1.5 2.7 0.7
SUD 10.0 1.5 34.7 48.3 0.0 3.6 0.0 1.9 0.0
TRA 0.0 4.1 4.1 0.0 87.7 4.1 0.0 0.0 0.0
VNE 0.0 3.2 8.6 0.6 0.9 79.4 1.7 5.1 0.6
BRV 0.0 25.5 18.0 0.0 0.0 9.0 14.5 28.0 5.0
VES 1.8 21.5 22.9 0.0 0.0 3.6 11.6 28.9 9.6
CL 0.0 31.2 26.3 0.0 5.0 5.0 4.2 19.2 9.2

5-NN OVA wscat: total accuracy 73.3%

Correct class

Predicted class

ANE BPV MEN SUD TRA VNE BRV VES CL

ANE 68.7 0.6 26.6 2.0 0.0 1.8 0.0 0.2 0.2
BPV 0.5 64.6 25.1 0.0 1.0 0.7 0.6 6.6 0.9
MEN 0.0 2.1 95.3 0.0 0.5 0.8 0.3 1.0 0.0
SUD 13.2 0.9 53.6 28.7 0.0 2.8 0.0 0.2 0.6
TRA 0.0 4.7 7.1 0.0 83.2 0.5 2.3 2.2 0.0
VNE 0.0 5.2 12.7 0.0 0.7 77.6 0.4 3.2 0.0
BRV 0.0 33.5 19.0 0.0 0.0 5.0 10.0 32.5 0.0
VES 1.3 28.5 34.5 0.5 0.0 0.4 3.1 27.3 4.4
CL 0.0 21.7 44.2 0.0 4.2 4.2 0.4 22.5 2.9
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Table 9 The mean true positive rates of nine disease classes and the mean total classification
accuracies of ONE variants having correct diagnosis suggestion within the first,
second and third diagnosis suggestions (ONE123) in percentages (%) from 10 times
repeated 10-fold cross-validation. The highest TPRs and accuracies are in boldface.

Disease Cases ONE123
w1

ONE123
wscat

ONE123
wIB4

ONE123
wIB1w

ANE 131 87.3 80.5 75.7 86.1
BPV 173 63.9 66.3 61.0 64.3
MEN 350 97.4 96.7 91.2 96.9
SUD 47 92.6 97.0 96.8 92.1
TRA 73 96.7 96.3 99.7 98.2
VNE 157 73.6 72.4 70.0 72.6
BRV 20 47.0 68.5 74.0 59.0
VES 55 90.9 95.8 93.6 89.5
CL 24 80.8 86.7 97.9 80.8

Median of TPR 87.3 86.7 91.2 86.1

Total ACC 1030 84.9 85.0 81.7 84.7

5 Conclusions

The Scatter method and the weight calculation method of the instance-based learning
method with two variants (IB4 and IB1w) were used in the attribute weight calculation.
The created attribute weights were tested with the nearest pattern method of ONE and the
attribute weighted k-nearest neighbour method with One-vs-All classifiers. The expert-
defined weights and weights set to 1 were also used in the classification.

The previous study (Varpa et al., 2008) showed that learning fitness values for
attribute values with the machine learning method improved the classification of ONE.
However, there was a need for attribute weighting in order to ameliorate the discrimination
of the classes: some classes were mixed up with other classes when having equal attribute
weighting (all weights set to 1). Nevertheless, as the results of this study show, attribute
weighting is a demanding task and does not always help recognition. The Scatter-based
weights were the only machine learnt weights that improved the total accuracies compared
with the equal weighting. The IB4 and IB1w weights did not help the separation of classes
with the attribute weighted k-nearest neighbour OVA method and ONE. Overall, the best
total accuracy was achieved with the attribute weighted 5-nearest neighbour OVA method
using the Scatter weights.

Based on the total accuracies and the Cohen’s kappa values, the machine learnt
weights improved the classification of ONE compared with the weights defined by the
experts when classifying seven disease classes. The Scatter-based weights yielded the best
total accuracy and Cohen’s kappa for ONE (74.6% and 0.67). ONE with the weights set to
1 classified cases better than ONE with the experts’ weights. With the attribute weighted
1-nearest neighbour OVA method, the best total accuracy and Cohen’s kappa were
achieved with the experts’ weights (74.7% and 0.67), whereas with the attribute weighted
5-nearest neighbour OVA method, the best total accuracy and Cohen’s kappa were yielded
with the Scatter-based weights (79.7% and 0.73). Also, with nine disease classes, the best
total accuracy and Cohen’s kappa with ONE (62.4% and 0.54) and with attribute weighted
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1- and 5-nearest neighbour OVA methods (64.6% and 0.56 and 73.3% and 0.66
respectively) were achieved using the Scatter-based weights. Thus, the weights based on
the Scatter method worked well with both weight utilizing methods. The highest true
positive rates within the disease classes varied depending on the utilized inference
mechanism and class: in some disease classes even the weights set to 1 or the weights
defined by the experts produced the best accuracy.

When adding two difficult diseases (vestibulopatia and central lesion) to the
knowledge base of ONE, the true positive rates of the other seven disease classes decreased
considerably, especially with the diseases benign recurrent vertigo, benign positional
vertigo and Menière’s disease. The decrease can also be seen in the results of the attribute
weighted k-nearest neighbour with OVA classifiers. This confirms that certain disease
classes have overlapping and confounding symptoms (Kentala et al., 1998), and, therefore,
are mixed up with other diseases during classification.

The kappa chance value Pc describes the “agreement” probability that can really
be attributed to chance alone (Ben-David, 2007). In Ben-David’s research, the average
kappa chance within different classification methods (C4.5, sequential minimal
optimization, Naïve Bayes, logistic regression and random forest) tested with different data
sets from the UCI Machine Learning Repository were 0.35, thus showing that more than
one-third of the hits in the classification results could not be attributed to the classifiers’
sophistication. Compared with this average kappa chance value, ONE and the attribute
weighted k-nearest neighbour OVA methods do not seem to let chance affect the
classification results as much. The kappa chance values varied with ONE from 0.15 to 0.24
with seven diseases, from 0.15 to 0.18 with nine diseases and with the weighted 1- and 5-
nearest neighbour methods from 0.23 to 0.26 and 0.19 to 0.24 respectively.

Otoneurology is a difficult domain: there are many reasons for vertigo and some
diseases are considered challenging to diagnose because of the overlapping and similar
symptoms within diseases. Therefore, physicians see tools that support making a diagnosis
as very useful (Aalto, 2005). In order to support more diagnosing, we are aiming to make
ONE a hybrid decision support system - i.e., to use several inference methods while making
diagnosis suggestions. With more than one inference method it is possible to make more
reliable decisions. Therefore, in this research we used the attribute weighted k-nearest
neighbour OVA method with ONE’s classification method. ONE and the attribute weighted
k-nearest neighbour OVA method have different approaches to the classification problem:
ONE handles descriptions of the diseases and can advise the user why the diseases could
be possible or not (e.g., do the occurring symptoms fit the disease and what tests need to
be done in order to confirm the diagnosis), whereas the attribute weighted k- nearest
neighbour OVA method handles cases individually and classifies new cases based on their
k most similar neighbours giving information about similar cases.

The next step in the attribute weighting of ONE is to use more adaptive machine
learning methods in the attribute weight calculation. In our next study, we will use a genetic
algorithm (Michalewicz, 1992; Mitchell, 1996) as an adaptive weight calculation method.
This approach has been shown to improve the results with a k-nearest neighbour classifier
(Kelly and Davis, 1991).

As the results showed, it is important to have appropriate attribute weights. The
extent of the effect the attribute weights had on the classification results depended on the
classification method used. Based on the Cohen’s kappa evaluations, the ONE method is
more sensitive to the attribute weights. The attribute weighted 5-nearest neighbour OVA
variants with different weight sets agreed more with each other than attribute weighted 1-
nearest neighbour OVA and ONE with different weight sets.
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The machine learning methods for weight calculation described in this study are
not domain-dependent and can be applied in totally different domains. The only
prerequisite is that there is enough data in order to apply machine learning methods in
attribute weight calculation. In the future, the attribute weighting methods will be tested
with several data sets from different domains. Also other attribute weighting and weighted
classification methods will be taken into use in further research.
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