
Shortening Testing Time of a Web-based Business Application in

Scrum using Automated Testing

Muhammad Qasim

University of Tampere

Faculty of Natural Sciences

Software Development

M.Sc. thesis

Supervisor: Timo T. Poranen

December 2017

 ii

University of Tampere

Faculty of Natural Sciences

Software Development

Muhammad Qasim: Shortening Testing Time of a Web-based Business Application in a

Scrum using Automated Testing

M.Sc. thesis, 38 pages and 12 appendix pages

December 2017

Manual testing of web-based business applications causes delay in software delivery

time because it is time-consuming, slow, error prone and less reliable. Automated

testing is faster as compared to manual testing because it requires less human effort and

thus reduces the error and maintenance cost. Based on the research findings from

literature review, it was concluded that Selenium performs better as compared to other

automated testing tools for testing a Single Page Application (SPA). This thesis focused

on using Selenium as an automated testing tool for testing SPA. Furthermore, best

practices of automated testing were utilized which resulted in faster software testing

time. Interviews were conducted to assess the time taken per release during manual

testing phase. Historical data from the past three years were also collected and analyzed

to measure time difference in manual testing and automated testing. A significant effect

was observed in testing time with the introduction of automated testing as compared to

manual testing. Findings from the thesis conclude that automated testing leads to

achieve shorter testing time and increased chances of detecting errors in a SPA web

application.

Keywords and terms: automated testing, Selenium, Single Page Application (SPA),

testing time, automated testing best practices, Scrum

 iii

ACKNOWLEDGMENTS

حِيْمِ حْم نِ الرَّ بِسْمِ اللِ الرَّ

In the name of Allah (God), the Most Gracious, the Most Merciful.

I would like to express my deepest gratitude to thesis supervisor Dr. Timo T. Poranen at

the University of Tampere, Finland for his valuable knowledge, time and supervision

throughout this thesis.

I would like to thank the software company PlanMill Oy for providing me the

opportunity to conduct the research at its premises and my colleagues, especially project

manager Marjukka Niinioja for her swift feedbacks and assistance.

This thesis is dedicated to my friends and family, especially my late father Mr. Muzahir

Hussain for instilling in me the inspiration, confidence, and passion for achieving the

highest. Moreover, I would like to thank my elder brother Dr. Raza Habib for his

guidance during the thesis and their unconditional love and support.

 iv

Contents

1. Introduction ... 1

2. Web Applications and Development Process .. 3

2.1. Single Page Application ... 5

2.2. Software Development Process Models .. 6

3. Software Testing, Tools and Best Practices .. 9

3.1. Types of Software Testing ... 9

3.2. Methods of Software Testing ... 11

3.3. Levels of Software Testing .. 12

3.4. Testing Tools.. 13

3.5. Selenium Testing Tool ... 16

3.6. Concerns related to testing SPA ... 18

3.7. Automated Testing Best Practices ... 19

4. Case Study ... 21

4.1. Background .. 21

4.2. Hypothesis Development ... 21

4.3. Research Questions .. 22

4.4. Implementing Automated Testing Tool for SPA ... 22

4.4.1. Designing Test Cases ... 23

4.4.2. Automating Test Cases... 28

4.5. Implementing Automated Testing Best Practices .. 30

5. Results and Conclusion ... 32

5.1. Selenium tool for testing SPA .. 32

5.2. Shorter testing time with automated testing ... 32

References .. 34

Appendices ... 39

 1

1. Introduction

Web-based business applications make use of the state-of-the-art technology to provide

internet based solutions to its users which enhances efficiency and business

productivity. In today's ever changing technology in emerging competitive information

markets, fast paced implementation of vital business applications helps to cut down

costs and boosts market share. On one hand, competitive advantage can be achieved by

being a first mover in the market as compared to being late, while on the contrary

delivering a defective and erroneous software application would be catastrophic. One

way to prevent the errors in a software application or a program is by testing it before

delivering it to the customer.

Testing is the process of executing a software program with intent of finding an

error [Myers, 2004]. An error is a behaviour that differs from the expected behaviour of

a software program. A typical example of an erroneous situation is an unexpected crash

of a program. An inoperative state (erroneous condition) occurs within the existing

functionality due to modification or addition to the existing code while developing

software. These states or conditions are called regression. In order to identify a

regression, it is essential to redo testing of already tested components of a software

program every time the code is altered.

Testing can be done manually or automatically. In manual testing, a test plan is

manually executed step-by-step by a software tester which is time-consuming and prone

to human error. In automated testing, specialized testing software executes a test plan

which is fast and error-free. Automated testing is becoming more and more essential,

when businesses today are trying to deliver their software as fast as possible.

This thesis is structured in five chapters. First, the literature review is conducted in

Chapter 2 and Chapter 3. It includes types of software testing: manual and automated

testing, bottlenecks of manual testing and need of automated testing, benefits of

automated testing and comparison of popular software testing tools available in the

market. In Chapter 4, methodology and details of the approach to solve the problem is

explained. It includes test cases, tools and techniques adopted for building the

automated testing tool to test a Single Page Application used for daily time reporting.

This chapter also covers the implementation of automated testing best practices for a

web-based Enterprise Resource Planning (ERP) business application to reduce its

testing time in a Scrum development methodology. In Chapter 5, empirical findings of

the practiced approach to automate testing on TimeApp SPA and testing time difference

between manual and automated regression testing of ERP business application are

discussed in detail. This chapter also concludes the thesis.

This thesis also contains appendices. Appendix A shows the code snippet written in

Java for automating TimeApp SPA. Appendix B lists all the Selenium function used to

 2

automate this SPA. Appendix C depicts the work flow, using sequence diagrams,

between test program and SPA. Appendix D lists all the hardware and software required

to setup test environment. Appendix E includes the guide on interview conducted at

PlanMill Oy with manual testers to know the time taken to perform manual regression

testing of company’s ERP application and Appendix F presents, in tabular format, the

actual testing time recorded by both manual and automated testing over a period of past

3 years from January 2014 to December 2016.

 3

2. Web Applications and Development Process

Web-based applications are well known and widely used types of software programs

[Dobolyi et al., 2011]. Web applications have gained popularity due to ubiquity of web

browsers and also maintaining a web application requires relatively less amount of

complexity. A web application can either be a small website or a multi-tiered

application and can serve thousands of heterogeneous globally distributed users

simultaneously.

Client-Server Architecture

In client-server architecture there are two entities, a client and a server. When a browser

on the client side requests a webpage, server responds to HTTP requests from that

client. After server receives a HTTP request, it analyses the URL, extracts the folder

path and the document name request by the client and serves the client with requested

information. Client side data is short lived and is lost when page is refreshed. However,

server side data is persistent. Client-Server architecture is illustrated in Figure 1.

Figure 1: Web application client-server architecture [László, 2010].

Web application is a client-server application in which web browser acts as a

client. When a user accesses a webpage using a web browser, server prepares the

webpage containing response data. The webpage is delivered to client via HTTP

requests and data is displayed in elements of that web page. Although client and server

application could run on a same computer, but in standard web applications client and

server execute on different computers.

A server could perform centralized or decentralized processing of incoming client

requests. In a centralized processing a single host computer manages all requests

whereas in distributed processing more than one decentralized computer handles client

requests. These multiple host computer could either be located at the same location or

could be at geographically dispersed location.

Document Object Model

The Document Object Model (DOM) describes the structure and relationship between

different elements in a webpage. A webpage is a document displayed in a web browser.

 4

The DOM of a webpage represents elements of a webpage which can be manipulated. It

provides a standard API to access data from HTML and XML documents. DOM can be

used to add and access elements in the document using a logical hierarchical structure.

Document Object Model is illustrated in Figure 2.

Figure 2: Document Object Model [Chow, 2016].

HTML or XML elements can be treated as tree structure, therefore, can be selected

as object. Elements in a form of a webpage such as a link or an image can be accessed

using hierarchical object structure of DOM. For example, to access the first link

element in a form, the DOM access structure would be

document.form[0].getElementById(0).href. There exist many different browsers freely

available to navigate websites. Although, each browser may have taken a different

approach in implementing DOM, they all follow the DOM conformance standard

developed by World Wide Web Consortium [W3C, 1994].

AJAX

Asynchronous JavaScript and XML (AJAX) is modern method of client server

communication. AJAX based webpages are dynamic and user-friendly as compared to

traditional websites. Using AJAX a client can receive response from servers in formats

such as JSON and XML. AJAX uses JavaScript and XML together in order to

communicate with server. AJAX can be used in websites which require real time

validation of user data. In a traditional website, that would not be possible for the user

without him having to completely fill all data and submit the form to get validation

errors.

Before AJAX was used in client-server communication, whenever a client sent a

request to server, the entire web page had to refresh to display the updated received

information. However, with AJAX, the communication with server is “asynchronous”.

This means that the client browser does not have to wait for a response from server. The

browser user interface does not show blocked or loading symbol for the time period

when the request is being processed. User can continue using the website as usual and

 5

when the server completes and sends data response to clients, only the elements

responsible for displaying the updated information are refreshed without requiring

refreshing the whole page. Difference between classic and AJAX web application

models is depicted in Figure 3.

Figure 3: Classic vs AJAX web application model [Garrett, 2005].

The benefit of AJAX based client server communication is that it takes relatively

less response time and network resources to serve a request as compared to traditional

method of communication. This enhances user experiences and makes a user feel

comfortable when he interacts with website.

2.1. Single Page Application

Single Page Application (SPA) is a web application that has single webpage inside

which dynamically updates the page information based on the user input. SPA starts and

stays on a single page after loading and provides a desktop like user experience. SPAs

are responsive as they are built using AJAX which does not require full page reload to

update the displayed web content. Server-side is stateless in a SPA. Silver [2016] states

that AJAX call handles the routing at client-side instead of at the server and requires

client side development.

 6

SPA JavaScript Framework

Due to the rapid application development requirement, JavaScript frameworks can be

used to develop interactive web applications. Most SPAs are built using JavaScript

framework and help developers to use HTML and JavaScript fluidly. Although,

traditionally JQuery [2016] has been used to build complex web interfaces, in the last

couple of years JavaScript frameworks have gained popularity in developing complex

user interfaces for the SPA. Using JavaScript frameworks allows developers to focus on

UI development without diving into the code complexities. Some of the most popular

JavaScript libraries to develop SPA are Angular [2016], React [2016] and Backbone

[2016].

Oscillot [2016] explains React is developed by Facebook and helps to extract

information from web elements by separating DOM into components. React creates an

internal state machine for the existing DOM elements on a webpage. When DOM

elements change on reloading of AJAX, the new elements are added to the state

machine representation. This approach allows for updating the DOM very quickly.

2.2. Software Development Process Models

This section covers information on software development process models including

incremental process model. It also discusses agile software development methodology

including Scrum to develop and deliver software to the customers.

A software process is a group of related activities that produces software

[Sommerville, 2010]. According to Sommerville [2010] the following four activities

are, in some form, part of many software processes:

Software specification: The specification defines the functionality and limitations

of the software.

Software design and implementation: The designed software is implemented and it

meets the specification.

Software validation: Validation is performed on the implemented software to make

sure that it matches the specification.

Software evolution: The software is evolved to cope with the changing customer

requirements.

A software process model represents a basic form of a software process

[Sommerville, 2010]. There are many different process models that are used in

development of software. Some examples include Waterfall model, Incremental model

and Spiral model. The applicability of these models depends on the requirements to

develop software. In this thesis incremental process model is discussed only.

Incremental Process Model

The incremental process development model holds the notion of developing an initial

implementation of software, receiving the user feedback on it and iterating it through

 7

several increments until an acceptable system by customer is developed [Sommerville,

2010]. In this model, the first three software process activities: specification,

development, and validation are interrelated, with feedback across activities.

Incremental development works the way we are accustomed to solve our problems.

We seldom develop a complete solution to a problem. We work our way towards the

solution by taking steps in a linear fashion, backtracking to the step when realizing a

mistake is made. In a similar manner, software is developed in increments. It is cheaper

and easier to make changes in software when produced incrementally.

Each increment of the software implements some of the requirements demanded by

the customer. It is usually seen that the businesses include the most important or most

urgently required functionality by the customer in early increments of the software. This

gives customers an early access to the software to evaluate it for the needed

functionality. These early increments are then modified for any missing or unnecessary

functionality. The benefit of following this pattern is that only this increment has to be

improved which is much easier and cheaper at this stage of development. Customers

can also propose new requirements to be included in the later increments of the

software.

Nowadays, incremental development is the most common approach to develop

software applications. One of the approaches to develop software applications is agile

software development approach which is discussed in detail in following sections.

Agile Software Development

Of the incremental development methods, agile software development method is one of

them which rely on small increments and rapid feedback from customers which are

made available to them every two or three weeks. Informal communications rather than

formal meetings are preferred in this method to minimize the documentation.

Agile methods are well suited for projects where the software requirements change

rapidly during the development process. These methods can deliver working software

rapidly to the customers. This enables them to propose new and changed functionality to

be included in later increments of the software.

The leading developers of agile methods agreed on a manifesto called as an agile

manifesto [Agile Manifesto, 2001] to reflect agile methods which states: “We are

uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value: individuals and interactions over processes

and tools, working software over comprehensive documentation, collaboration over

contract negotiation, and responding to change over following a plan. That is, while

there is value in the items on the right, we value the items on the left more”.

 8

Scrum Method

Scrum [Larman, 2003] is an agile software development method that was realized by

Jeff Sutherland and his development team in the early 1990s. The principles of this

method are consistent with the agile manifesto. Scrum consists of three phases. The first

phase also known as an outline planning phase includes forming the goals for the

software project and designing the software architecture. This phase is followed by the

sprint cycles which deliver the software in gradual increments to the customers.

A sprint cycle could be of two or three weeks or more. This depends on the team

size and velocity of software increment. A sprint cycle starts with a sprint planning

meeting. Sprint is a planning unit in which requirements to be delivered to customers

are assessed and prioritized for the development and gets implemented as well. The

entire team brainstorms on prioritised tasks and discusses possible solution at an

abstract level. Sprint planning notes are added to the task. Near the end of the sprint

there is a sprint review meeting held between the development team, the product owner

and scrum master. The team then presents briefly the solution to the tasks implemented.

Product owner decides whether the task at hand fully satisfies the definition of done

only in which case the task will be eligible for release in the upcoming release cycle.

Otherwise it would be pushed back to the backlog as a technical debt.

The final phase closes the project with the delivery of completed software to the

customer, writing of the required documentation such as user manuals and a formal

meeting with all the stakeholders of the project to assess the lessons learned from the

project. After a sprint is completed successfully, the team gets together for sprint

retrospective meeting. The team ponders and reflects on the good aspects, discuss

possible improvements and identifies tasks for the next sprint cycle.

 9

3. Software Testing, Tools and Best Practices

A software bug is a failure or flaw in a software application which leads the program to

behave in unintended ways. Generally, bugs are caused by inadequate or incorrect

coding logic but could be due to an error or unintended mistake. Such an erroneous

code produces invalid output and hence could lead to software crash. Finding errors in

the code requires a program to be tested properly.

Myers [2004] defines testing as the process of executing a program with the intent

of finding errors. Whenever a new software system is developed or an addition is made

to the existing software, it should undergo testing. Testing ensures that what is

developed is not error prone and is not bound to fail. Software testing ensures that the

software will not crash. Although it is not possible to reach absolute zero bug state for

large scale software, testing ensures customer happiness by delivering a close to bug-

free software. Testing make sure that the features fixed or improved in the new version

of software release have not affected the functionality of other software component and

all parts of the software system are working as expected.

Testing a software application requires setting up a test environment, identifying

major functional units in the system that must be incorporated in writing a test plan and

validating business rules and processes by taking into consideration available resources

and time constraints [Al-Hossan and Al-Mudimigh, 2011]. However, a tester might

have misunderstood the functionality of the program and may have a written test case

that might not correctly identify and handle borderline test scenarios [Leitner et al.,

2007].

Furthermore, a test plan can have many test scenarios. A test case, however,

constitutes a basic component of any test plan. A test case includes pre-conditions, post-

conditions and test input parameters. The testing process ensures that almost all possible

valid and invalid scenarios which could occur have been considered. Testing is a step

forward towards ensuring that the incremental release will be bug-free.

3.1. Types of Software Testing

There are two types of software testing: manual and automated testing.

Manual Testing

Manual testing is the testing of software manually, i.e., without using any automated

testing tool or any test script. Testers position themselves as an end user and use the

software features to ensure it is bug free. A written test plan is followed to perform

manual step-by-step testing of the application [Kumar, 2012]. Manually testing the

same parts of a software program every time the code is changed sounds a little boring

and time-consuming. Other drawbacks of manual testing include that it provides less

test coverage, results in a higher number of errors and requires a large number of testing

 10

staff. Some challenges in manual testing are: Manual testing is laborious activity and

depends on tester’s skills set such as patience, speculativeness, creativeness and his

ability to think of all possible test data input. On large software applications performing

repetitive manual testing is complicated. Sharma [2014] mentions that for large

applications, repetitive manual testing can prove to be tedious and extremely time-

consuming effort. Maintaining test documents for traceability and software audit

purposes is difficult. Manual testing requires more human involvement. With the

increase in the size of the manual test pool, organizations need to hire and train more

and more testers. The increase in size of the manual test pool creates issue related to re-

testing, transparency and knowledge sharing between the testers. Changes in Cascading

Style Sheets (CSS), JavaScript and size difference of objects in the user interface are

difficult to identify in manual testing.

Automated Testing

Considering the shortcomings of manual testing, there is a growing need to automate

the testing process. Automated testing is the use of software (under a set of test

preconditions) to execute tests and verify whether the actual outcomes and the

anticipated outcomes are identical.

Enterprises have failed to successfully implement automated testing due to

incoherent and unworkable test automation solutions [Locke and Balaraman, 2012].

They claim that plausible methodology would be to consider the technical and monetary

requirements of implementing automated testing. As testing is a continuous activity, a

dedicated testing team is required to maintain the existing test automation script every

software increment which requires considerable time and effort [Locke and Balaraman,

2012].

Automated testing involves using best practice and incorporating well-established

tool in the software industry to automate the software testing. As the software evolves,

new features and business processes are implemented. This increase in software

complexity and size impacts the testing time and has financial repercussions. Therefore,

there is a need to reduce testing time which could be achieved by incorporating

automated testing. Automated testing aims at full computerization [Bertolino, 2007].

However, complete automation has not yet fully achieved in the software industry

[Berner et al., 2005]. Malekzadeh and Ainon [2010] state that product’s quality is

improved by automated testing. Additionally, Karhu [2009] claims that automated

testing reduce the number of defects thus improving the quality of the software product.

Wissink and Amaro [2006] claim that automation reduces the overall running time of

tests, i.e. the time required for testing. Similarly, du Bousquet and Zuanon [1999]

mention that automation tests allow for running more tests within an allocated time

period. In the case of repeated running tests, higher reliability is achieved with

automated testing [Fewster and Graham, 1999]. They also assert that developers are

 11

more confident with the software being delivered when they employ automated testing.

The same set of the test cases that are frequently repeated and reusable leads to benefits

[Dallal, 2007]. Polo and others [2007] mention that using test automation enhances

testing tasks quality and reduces costs.

Adopting Automated Testing in Scrum

One of the most popular agile frameworks for completing large complex software

programs is Scrum. In a Scrum process, there is Sprint of which the duration is two to

three weeks. New functionality is added to the existing system in every Sprint cycle and

the increment is released to the customer. A software release is a fully developed

increment of a software product. As an example of very fast increment cycle O'reilly

[2005] explains that Flickr has extremely different development model in which they

deploy new builds up to every half hour.

In a running Sprint, testing of developed code starts as soon as there are items to

review in a Scrum Board. Thus, testing should be performed comprehensively and

rapidly in an agile working environment. Using automated testing techniques enables

testers to test the developed software thoroughly. Al-Zain and others [2012] also

emphasizes that in agile software development process, software testing is not a

separate phase executed at the end of Sprint but instead is integrated into the

development process. Regression tests are extremely necessary to be carried out in agile

development in order to make sure that enhanced functionality does not break the

existing system.

3.2. Methods of Software Testing

Software testing is composed of two different testing methods, black-box testing and

white-box testing.

Black-Box Testing

Black-box testing does not take into consideration the internal process of the software

but examines the input and output of the software. The tester will not examine the code

structure, internal paths and implementation details of the software. It is entirely based

on software requirements and specifications. A black-box could be an OS, a database or

even a website. The steps involved in performing a black-box testing are:

 System requirements and specifications are initially analysed.

 Tester selects valid input scenarios to check whether the application being tested

processes input correctly. This is filled by selecting invalid input scenario to

identify if the software under test is able to detect it.

 The expected output of these scenarios is determined.

 Relevant test case with selected input is developed and executed.

 Software tester then compares the actual output with the expected output.

 12

 Bugs and defects are identified and fixed and the system is re-tested.

White-Box Testing

White-box testing method validates the internal structure and working of the software

code and examines functional requirements. It examines the working details of the each

subsystem of the software application. It focuses on strengthening security, the input

and output flow through the application and enhancing usability. White-box testing

helps to identify bugs and poorly structured paths in the coding process, the

functionality of conditional loops because each statement, object and function is tested

on an individual basis. The steps involved in performing a white-box testing are:

 Understand the source code of the application.

 Write test cases and execute them.

In summary, black-box testing involves testing of an end-user type perspective, thus

giving an abstraction from code. On the other hand, white-box testing is a detailed

internal system test which helps detect internal errors which may lower the performance

of the system. White-box testing can be quite complex depending on the application

being tested.

3.3. Levels of Software Testing

There are four main levels of software testing: unit, integration, system and acceptance

testing.

Unit Testing

Unit tests are developed to perform modular testing of a program's functional

behaviour, in which every unit is composed of a set of functions and each function is

independently tested by providing input values [Sen et al., 2005]. Unit testing is also

known as component testing. Unit testing ensures that all individual components of the

software program perform expected functionality. This type of testing demands software

tester to be able to understand the application code in order to check if the module is

developed correctly. Unit testing involves checking valid and invalid test cases. Unit

tests are usually developed by software developers.

Integration Testing

Integration testing is performed after two or more software modules are integrated into a

large software system. This test ensures that the developed software modules integrate

successfully with the existing system and does not break any existing functionality. Data

transfer and communication between different modules is tested thoroughly. In Big

Bang Integration testing, tester waits for all modules to be developed but it comes with

a disadvantage that it increases the project execution time. Alternatively, incremental

integration testing approach can be employed in which modules are tested as and when

 13

they are available. In such a testing scenario developers will develop a stub (not a

complete implementation) to facilitate testing if their module is not yet fully developed

to facilitate for testing. To increase integration testing effectiveness a top-down

approach can be used in which higher level modules are tested first.

System Testing

System testing is performed when all the modules of a software product are complete

and fully integrated. Completed software is interfaced with other software and hardware

systems. Therefore, system testing validates the quality of the whole software system.

Quality attributes such as reliability, security, and maintainability are tested in this type

of testing [Luo, 2001].

Acceptance Testing

Acceptance testing is done when software is tested for compliance with the business

requirements and whether it can be delivered to customer or not. In this testing, the non-

functional features of the software (such as usability) are tested which establishes

confidence of the customer in the software. The main testers of acceptance testing are

customers and users of the software.

Regression Testing

Regression testing can be done at any of the four main levels. Regression testing means

re-testing the previous working software after changing parts of the code to ensure

unmodified parts of software program continue to function as expected. Therefore, such

a testing ensures code changes did not introduce new errors in the existing software

[Mittal and Acharya, 2003]. Furthermore, it also confirms that the software program

continues to implement all the desired features as expected in the software increment

and there is no grey area. This testing is performed to ensure software reliability and

quality. If executed manually on each software increment release, regression testing

becomes repetitive and laborious task because manually running all regression tests is

bound to time constraints. Tester, therefore, chooses selective test cases and hence

unnoticed defects remain part of the delivered software.

3.4. Testing Tools

Different automated web application testing tools are discussed in this section and also

compared based on multiple criteria such as pricing, application and language support.

Manually defining input values for performing functional testing is time-consuming and

error prone and does not promise to test all aspects of the program under test [Sen et al.,

2005]. Therefore, automated testing tools have to be employed to perform

comprehensive testing. There are various automated testing tools such as SoapUI

 14

[2005], HP Quick Test Pro [2001], TestComplete [1999], Coded UI [2010] and

Selenium [2015] that vary in functioning, pricing and ease of use.

SoapUI is a cross-platform, open source API testing tool. It is used to perform

automated functional and regression tests. HP Quick Test Pro is a commercial, licensed

and user-friendly tool which works well with Web-based and Windows applications.

During the execution, screenshots of each page navigated is stored [Kaur and Kumari,

2011]. TestComplete is a licensed tool which runs on different operating systems such

as Windows, Web, Android, and on iOS applications. A tester can use record and play

option to create attest manually which later can be played over and over again as an

automated test [Dubey et al., 2014]. Coded UI is used for testing user interfaces

[Nagarani et al., 2012]. Using Visual Studio, the tester will either record user actions or

write test cases which can be later then played back for verification of user interactions.

Selenium supports testing on multiple browser platforms [SeleniumHQ, 2015]. Along

with testing web application, Selenium can be used for testing in the continuous

integration environment. It supports many high-level programming languages such as

Java, C# and PHP. Brief comparison of these automated testing tools is given in Table

1.

 15

Comparison of Automated Web Testing Tools

Tools/

Criteria

Selenium SoapUI HP QTP/UFT TestComplete Coded UI

Pricing

(USD)

Open source

and free of

cost

Open source

but

commercial

license

version for

499

Licensed and

very expensive

8000

Licensed and

costs 1999

999

Cross

Platform

Windows,

Linux, Mac,

Unix

Windows XP

and later

Windows only Windows 7 and

later

Windows

7 and

Higher

Application

Support

Web

applications

only

Web

applications

as well as

Client /Server

applications

Client/Server

application,

Mobile

application

Web, Desktop

and Mobile

application

IE Only

Web

Browser

Support

Chrome,

Firefox, IE

and Opera

IE, Firefox,

Chrome

IE-Firefox-

Chrome

IE, Firefox,

Opera, Chrome

Scripting

Language

Java, C#,

Ruby, PHP,

Python,

JavaScript

Groovy,

JavaScript

JavaScript VBScript,

Delphi,

C++,C#,

JavaScript

VB.net-

C#

Technical

Support

No technical

support

Good

technical

support

Good technical

support

Good technical

support

Good

technical

support

Product

Support

Open Source

community

SmartBear

support

HP support SmartBear

support

Microsoft

Table 1: Comparison of automated testing tools based on the listed features (Adopted

from [Monier and El-mahdy, 2015]).

 16

3.5. Selenium Testing Tool

Selenium is an automated web testing tool which contains Selenium WebDriver API.

WebDriver API for Selenium provides an object-oriented application programming

interface used to extract dynamic changing elements from web pages. Selenium sends

direct calls to a particular browser's built-in automation features and does not inject the

JavaScript code into the browser. Following are the details on three main browser

drivers [Selenium WebDriver, 2012].

Firefox Driver

WebDriver interacts with Firefox browser using Firefox Driver as a plugin. Firefox

Driver can be used on major platforms such as Windows, Mac and Linux which support

Firefox browser. Firefox driver supports JavaScript tests in the actual Firefox browser.

Internet Explorer Driver

This driver implements wire protocol of WebDriver and runs as a server. Internet

Explorer Drive supports all major versions of Windows platform such as Windows

Vista, Windows 7 and 10. Just like Firefox driver, it also supports JavaScript tests in the

actual Internet Explorer browser.

Chrome Driver

WebDriver utilizes Chrome Driver binary to interact with Chrome browser. Google

Sites [2016] explains that WebDriver uses Chrome Driver to interact with Chrome

browser. Chrome Driver can be used on major platforms such as Windows, Mac and

Linux which support Chrome browser. Furthermore, Chrome Driver also supports

JavaScript tests in the actual Chrome browser.

Selenium WebDriver API Commands and Operations

Fetching a Webpage

Extracting text value on a page is performed by calling the “get” method. It should be

noted that WebDriver might not receive the page load complete event or control may

return before the page finished loading. Therefore, it is recommended to use Explicit

and Implicit Waits along with the “get” functionality.

Locating Web Elements

Web elements can be located using WebDriver object and calling “Find Element”

method. An exception is thrown if an element could not be found. This method utilizes

“By” query object with ID, Class name, Tag name, Name, Link Text, CSS or XPath.

Few of these are explained below with examples:

 17

By ID: Locate an element by id is the most preferred method. An example below

shows how to find an element by id in Java.

<div id="start">...</div>

WebElement news= driver.findElement(By.id("start"));

By Name: Locating an element by name attribute is very common. An example

below shows how to find an element by name attribute in Java.

<input name="news" type="text"/>

WebElement news= driver.findElement(By.name("news"));

By CSS: In case, a particular browser does not support style sheets then the method

Sizzle is used. An example below shows how to locate an element using cssSelector in

Java.

<div id="news">

sports

latest on sports

</div>

WebElement news= driver.findElement(By.cssSelector("#news span.sports.latest"));

By XPath: WebDriver utilizes browser’s built-in XPath query functions. An

example below shows how to locate an element using XPath in Java.

<input type="text" name="news" />

List<WebElement> inputs = driver.findElements(By.xpath("//input"));

Drag and Drop

Below is an example of how to perform a drag and drop operation

WebElement element = driver.findElement(By.name("source"));

WebElement target = driver.findElement(By.name("target"));

(new Actions(driver)).dragAndDrop(element, target).perform();

 18

3.6. Concerns related to testing SPA

Silver [2016] explains that JavaScript routing instead of browser based navigation is

the root cause of many issues such as handling navigation and fast back, remembering

navigation and history position, handling navigation cancelling and increase

performance issues.

Furthermore, SPA’s have an undesirable feedback mechanism and thus badly

affects user experience. In a SPA application, unlike a normal page in which browser

displays loading indicator giving feedback to the user about the status of load progress,

JavaScript client side routing requires developers to use JavaScript-based indicators to

update load progress to UI which is not very efficient. Silver [2016] explains that

although SPA’s are supposed to provide a better experience but it is difficult to design

them because an entire website is implemented into a single document using JavaScript.

Some of the major concerns are explained in subsequent sections.

AJAX timeout issue

SPA extensively uses AJAX which implies that selenium may not be notified when the

AJAX method completed. This behaviour is different from when a (real) page finishes

loading. Selenium does not receive any signal when the AJAX - Send a Request to a

server call has finished. Therefore, code optimization techniques are required for each

method call in Selenium to handle timeouts of XMLHttpRequest calls. One way to

achieve this in Selenium is before continuing at the next automated task the code waits

for a certain amount of time to elapse. This is done by using explicit and implicit waits

[WebDriver, 2016]. During testing, the automated code using Selenium is waiting for

the timeout: the occurrence of which is undefined and it could take longer than normal

to finish an AJAX call. This has direct implication on the test execution and as a result

leads to slower automated tests.

Testing React based SPA issue

Fox [2009] explains that when writing Selenium-based tests, UI framework using which

the application is developed poses distinctive challenges. Oscillot [2016] explains that

React causes problems as explained below when used with Selenium for testing:

 Failure to enter text in the input element.

 Problems with reading a value of an element.

 Events not fired correctly when Selenium changes value in input fields.

 Validation failure on web-form submission.

 19

Stateless SPA issue

SPA’s UI may not necessarily reflect the correct application state if it is not

maintaining user state. For example, in a case of network failure, the application loses a

synchronous connection with a remote database; the UI might not reflect the current

changes until the connection is restored. This adds complexity in the testing because

tester must either recreate server states to emulate all possible scenarios due to

statelessness of the application [Fox, 2009].

3.7. Automated Testing Best Practices

Automated testing best practices in an agile software development are a way to increase

the efficiency of automated testing tool resulting in shortening the software testing time

According to Stockdale [2016], automation of test cases significantly reduces software

tester’s manual testing time of repetitive tasks. Automated testing keeps software

development processes agile and lean. Best practices of automated testing for reducing

the software testing time include choosing the right test cases to automate which means

test cases which consume large amount of time such as repetitive tests, test with large

data sets and test cases to be run in different web browsers should be considered for

automation. Automated testing should be done throughout a sprint i.e. running the test

cases before, during and after the sprint. Moreover, developing automated tests that last

longer i.e. the testers should focus on writing small test cases which focus on software

units. Furthermore, such test cases are written which are independent of UI and thus are

not affected by the UI changes.

SmartBear [2016] claims that following automated testing best practices ensure a

complete software testing: decide the test cases to automate, test often and test early,

choose the correct automated testing tool, create test data of good quality, and create

automated tests that are not affected by changes in user interface.

Srivastava [2002] explains that testing time is reduced by implementing automation

and thus affects the quick time-to-market increment of the developed software

application. With no human intervention automated test cases can run unattended

twenty-four hours and thus testing can be completed faster as compared to manual

testing.

Motwani [2010] discusses that before starting-off with automated testing the tester

has to make sure that interface to be tested has been identified, scope of automation has

been defined, individual test cases to be automated have been identified, test cases have

been fine-tuned., the right tool has to be decided, follows proper test scripting standards

and identifying common steps and converting them into functions.

Bach [1999] recommends that distinction is to be made between the automation and

the process that it automates. The test tool should be carefully selected and assure

product maturity to reduce maintenance costs. Right automation tool selection depends

 20

on the application to be tested. Polo et al. [2013] provide a list of guidelines on test

automation claiming that for a particular project, scalability should be taken into

consideration when selecting test automation tool. Moreover, for each test activity, entry

and exit conditions should be defined and test cases should be as specific as possible for

testing software features. Furthermore, he mentions that input and output for each test

case should be clear. Atlassian [2016] recommends running automated tests in parallel.

 21

4. Case Study

A case study was conducted at PlanMill Oy [PlanMill, 2016]. PlanMill Oy is a leading

software company providing user-friendly web-based Enterprise Resource Planning

(ERP) cloud solutions designed for the service businesses. As a vendor, the core

objectives of the company are to ensure long lasting customer relationships and

credibility. To ensure these accomplishments, a company has to establish itself as both

dependable and reliable. It must be noted that many factors may affect the customer

relationship such as late product deliveries or deliveries failing to match customer's

expectations.

4.1. Background

The company incorporated the Scrum method involving sprint cycles of two to three

weeks for developing and delivering software increments to the customers.

Approximately three years ago, the company was using manual testing approach to test

the software application for regression before delivery of the increment to the customer.

This manual testing job involved four testers. Testers were manually executing the test

scripts written on the document. The test scripts were composed of test cases to perform

regression testing on user interface of web-based ERP application before every

increment was delivered to the customer. There were total of fifty test cases. Manual

testing, being time-consuming task, was taking too much time to test the application.

Over the years, the company’s customer base grew exponentially and to serve all the

customers’ requests the software should be delivered more frequently to the customers

but manual testing was slowing down this frequent delivery. To achieve the frequent

software delivery, the company developed an automated regression testing tool using

Selenium to shorten the testing time in a Scrum.

The company also started developing the Single Page Application besides its

traditional client-server application. The React JavaScript library was used to build the

first SPA. It was necessary to automated regression testing of this application as well.

4.2. Hypothesis Development

As mentioned in previous Section 4.1, the company started using Selenium to perform

automated regression testing; it was assumed that Selenium could also be used to

execute automated regression testing on Single Page Application. Hence, following

hypothesis was formulated which is as follows:

Hypothesis H1: Selenium could be used to perform automated regression testing on

ReactJS based Single Page Application.

 22

As also mentioned in the previous Section 4.1, realizing the need of automated

testing; the company started using it to perform regression testing on the software

increment before delivery to the customer. However, the company did not incorporate

any best practices for automated testing while developing the automated regression

testing tool. It was assumed that implementing best practices could further shorten the

regression testing time. Hence, second hypothesis was formulated which is as follows:

Hypothesis H2: Using automated testing best practices in the existing automated

regression testing tool could shorten testing time.

4.3. Research Questions

Based on the hypothesis, this thesis focused on answering following two research

questions:

1. Can Selenium testing tool is used to automate regression testing of a ReactJS

based Single Page Application?

2. Can the application of automated testing best practices help in shortening the

testing time of a web-based business application in a Scrum?

4.4. Implementing Automated Testing Tool for SPA

This work in this section was set to demonstrate the first hypothesis H1. It involved

creating an automated test tool using Selenium for testing a web-based calendar SPA

called as Time App. This is a calendar application which was used for reporting time by

employees of the company. The screenshot of landing page of TimeApp calendar

application is shown in Figure 4. It has three views: day, week and month. We have

used weekly view of Time App to do automated testing. It has functionality to create,

update, resize, move and delete time reports. The methodology that was incorporated to

implement automated testing is explained in following sections.

 23

Figure 4: Screenshot of landing page of TimeApp web-based calendar application.

4.4.1. Designing Test Cases

Five test cases to perform automated testing on Time App were created based on its

functionality. These five test cases are: Create Time Report, Update Time Report,

Resize Time Report, Move Time Report and Delete Time Report. Sequence diagrams

for these test cases also added in Appendix E.

 24

Test Case ID: 01

Test Case Name: Create Time Report

Test Case Description: Create a time report on the specified time slot of the calendar

application with input data, i.e. time report duration in hours and minutes, task name,

billable or non-billable time report and comment for time report.

Preconditions: User logged in to calendar application successfully and loaded Time

App with weekly view.

Postconditions: Created time report was saved in database.

Test

Step #

Test Step Test Data Expected Result

01 Click on the specified time

slot

Time slot day: today

Time slot: 10:00-10:30

Open new time

report creation

dialog

02 Enter time report duration

in hours and minutes text

boxes

01 in hours

30 in minutes

Display entered

duration

03 Select task name task_create_time_report Display selected task

04 Switch billable option on Select billable option

05 Enter comment for time

report

comment_time_report_1 Display entered

comment

06 Click save button on dialog Display created time

report on calendar

07 Validate data on created

time report

task_create_time_report

comment_time_report_1

10:00 - 11:30

1:30

Valid data

 25

Test Case ID: 02

Test Case Name: Update Time Report

Test Case Description: Update a time report on the specified time slot of the calendar

application with input data, i.e. time report duration in hours and minutes and comment

for time report.

Preconditions: User logged in to calendar application successfully and loaded Time

App weekly view having one time report from 14:00-14:30 in today’s date.

Postconditions: Updated time report was saved in database.

Test

Step #

Test Step Test Data Expected Result

01 Click on the time

report

Time report task name:

task_update_time_report

Open edit time

report dialog

02 Enter time report

duration in hours and

minutes text boxes

03 in hours

00 in minutes

Display entered

duration

03 Enter comment for

time report

comment_timereport_updated Display updated

comment

04 Click save button on

dialog

 Display updated

time report on

calendar

05 Validate data on

updated time report

task_update_time_report

comment_timereport_updated

14:00 - 17:00

3:00

Valid data

 26

Test Case ID: 03

Test Case Name: Resize Time Report

Test Case Description: Resize a time report on the specified time slot of the calendar

application.

Preconditions: User logged in to calendar application successfully and loaded Time

App with weekly view having one time report from 12:30-13:00 in tomorrow’s date.

Postconditions: Resized time report was saved in database.

Test

Step

Test Step Test Data Expected Result

01 Hold handle on time

report and drag

downwards to add 1

hour

Time report task name:

task_resize_time_report

Display resized

time report having

an additional hour

02 Validate data on

resized time report

task_resize_timereport

comment_timereport_resized

12:30 - 14:00

1:30

Valid data

 27

Test Case ID: 04

Test Case Name: Move Time Report

Test Case Description: Move a time report to the specified time slot on the calendar

application.

Preconditions: User logged in to calendar application successfully and loaded Time

App with weekly view having one time report from 18:00-18:30 in today’s date.

Postconditions: Moved time report was saved in database.

Test

Step #

Test Step Test Data Expected Result

01 Click and hold time

report and move it to

yesterday from today

time slot

Destination time slot day:

yesterday

Destination time slot: 18:00-

18:30

Time report task name:

task_move_time_report

Display moved

time report in

destination time

slot

02 Validate data on

moved time report

task_move_time_report

comment_timereport_moved

18:00 - 18:30

0:30

Valid data

Test Case ID: 05

Test Case Name: Delete Time Report

Test Case Description: Delete a time report on the specified time slot of the calendar

application.

Preconditions: User logged in to calendar application successfully and loaded Time

App with weekly view having one time report from 16:00-18:00 in tomorrow’s date.

Postconditions: Time report was deleted from database.

Test

Step #

Test Step Test Data Expected Result

01 Click on the time

report

Time report task name:

task_delete_time_report

Open edit time

report dialog

02 Click delete

button on dialog

 Delete time report

on calendar

 28

4.4.2. Automating Test Cases

Automating test cases requires a selection of automated test tool at first place.

Although, it was assumed in hypothesis H1 that Selenium could be used to automate

testing of TimeApp SPA, there were some business conditions from the company

management as well to select an automated testing tool. The criteria were that the

selected test tool should be able to automate testing without difficulty, provide decent

technical support from the vendor as well as from user community, support Java

programming language and should be free of cost. Selenium fulfils these criteria as

indicated in the review of automated testing tools in Section 3.4.

The WebDriver part of the Selenium was used to automate the test cases. A

development environment was set up to build the automated testing tool. Maven was

used to setup a Selenium WebDriver Java project. Maven downloaded the Java bindings

(Selenium WebDriver Java client library) and all its dependencies using pom.xml

configuration file and created a project ready to be imported in Eclipse IDE. Details on

hardware and software can be found in Appendix D. Although the WebDriver API is

rich, most of the times the test code will just find elements and interact with them using

simple Selenium functions such as sendKeys or click. A complete list of Selenium

functions used in the developed of automated testing tool for SPA can be found in

Appendix B.

To locate web elements on the web-based calendar application, XPath expression

was used by Selenium. WebElement was an important interface during development. It

represented an HTML element. Generally, all webpage interactions were performed

through this interface. Test cases were written in Java programming language and were

mainly executed in Chrome browser.

The tests were dependent on test data to perform testing. The dependency test data

for each test case was inserted directly into SQL Server [SQL Server, 2014] database

using DbUnit library [DbUnit, 2002]. The command mvn clean install verify was

executed in command line on Windows command prompt in project’s directory to

execute the tests and to generate the reports.

In following section, code implementation of test cases using Selenium functions is

shown. Dependency test data which were inserted using DbUnit includes a project and a

task assigned to a person.

Automating Create Time Report: Creating a time report requires a time slot to be

specified on the calendar. This time slot was represented by Selenium WebElement and

was located using XPath expression. The screenshot of create time report in TimeApp

calendar application is shown in Figure 5.

String xpath_div = "//tr//td[@class='fc-widget-content']//div";

WebElement divClick = element(By.xpath(xpath_div));

 29

As the new time report was created by performing a click on the calendar, so offsets

x and y representing date and time respectively were calculated to locate the point to be

clicked. These offsets combined with WebElement were passed as parameters to

moveToElement() method of Selenium WebDriver where it moves to the element (and

scroll it into view) and then performs a click on it.

new Actions(webDriver).moveToElement(divClick, xOffset,

yOffset).click().perform();

This click on WebElement opens a new dialog window to enter and save details of

time report. Details include time report duration specified in hours and minutes, task,

billable status and a comment. After time report creation, its data was validated. Again

XPath was used to locate elements of time report. For example, task WebElement.

String xpath_task = "//div[@class='fc-content-skeleton']//td[" + dayOfWeek +

"]//div[@class='fc-task ellipsis' and text()='" + task_name + "']";

We have to wait explicitly for the visibility of task WebElement before validating

its data like below:

wait.until(ExpectedConditions.visibilityOf(element(By.xpath(xpath_task))));

Figure 5: Screenshot of create time report in TimeApp calendar application.

Other code which was written that uses Selenium functions other than mentioned

above can be found in Appendix A. Similar to automating create time report as above,

other time report methods such as Update, Resize, Move and Delete were also

implemented in TimeApp web-based calendar application.

 30

4.5. Implementing Automated Testing Best Practices

This work was set to prove the second hypothesis H2. It involves implementing the best

practices, discussed in Chapter 3, in an automated testing tool for the web-based ERP

application used at the company to detect any regression before the delivery of software

increment to the customer. As a first step, individual test cases to be automated were

identified. This included identifying create, read, update and delete operations for each

ERP module, for example, a sales order module. Test data addressing different test

cases for a given operation was created carefully to ensure good quality test data. The

scripts to setup and teardown test data were also created to infuse self-sufficiency in

individual test cases. This test data was inserted directly into the SQL Server database

using DbUnit library to save time. Otherwise, subsequent test cases had to wait for the

preceding test case to finish execution and create test data. The test data independence

was also essential for running automated tests in parallel.

Parallel automated testing was implemented by splitting sequential test cases into

manageable self-sufficient test cases. In the non-parallel implementation of the

automated testing tool, tests were executed in a hierarchical order: the child test cases

were dependent on the parent test cases to create the test data. For example, to create a

user in the system, an account must already be present. For this reason, the test case to

create an account must run before creating a user. This also means that if the preceding

test case fails, then all the subsequent test cases fail to run. This hierarchy of test cases

was removed in parallel automated testing.

Measuring Testing Time Difference

The testing time spent on doing regression testing on web-based ERP application can be

divided into three phases based on the use of manual and automated testing types. Every

phase spans over a period of one year. First phase includes when there were no

automated tests and testers at the company were executing the regression tests

completely manually. It is dated from January 2014 to December 2014. Second phase

includes the introduction of automated testing tool without the implementation of

automated testing best practices. It dates from Jan 2015 to December 2015. The third

phase starts when the automated testing best practices were implemented in existing

automated regression testing tool. It spans from January 2016 to December 2016.

The time required for manual testing was recorded by conducting an interview with

employees of the company who were involved with manual regression testing in phase

1. The time spent on manual testing was recalled by the interviewees and answered in

the interviews. The interviewees were also part of the decision-making team and have

good insight into the transition phase from manual testing to automated testing.

Structured interview questions were asked with basic interview guideline to follow

[Kvale, 1996]. Interviewees responded to interview guide (referred in Appendix E)

 31

which was sent in advance to them via email. The language of the interviews was

English.

The time expended on automated regression testing in second and third phases was

collected from the Jenkins [Jenkins, 2011] server. Jenkins was used to execute

automated regression tests at the end of every sprint cycle and it maintained the history

of the all the executed automated tests with the record of consumed testing time over

the period of past five years.

 32

5. Results and Conclusion

This chapter discusses the results and answers the research questions brought forward in

Chapter 4. It also concludes the thesis.

5.1. Selenium tool for testing SPA

According to hypothesis H1, it was assumed that Selenium could be used to automate

testing of ReactJS based Single Page Application. In the literature review, it was

mentioned that SPA uses JavaScript / AJAX calls to handle the routing at client-side

instead of at the server and this is the root cause of many issues such as handling

navigation, remembering navigation and history position, handling navigation

cancellation and increasing performance issues. It is considered difficult to test SPA

purely because unlike a normal page in which browser displays loading indicator, giving

feedback to the user about the status of load progress, JavaScript client side routing

require developers to use JavaScript-based indicators to update the load progress of a

webpage on UI which is not very efficient. As discussed in Section 4.4.2, Selenium was

able to automate testing of TimeApp, a ReactJS based Single Page Application. All of

the above mentioned issues were handled successfully by Selenium testing tool.

5.2. Shorter testing time with automated testing

According to hypothesis H2, it was assumed that regression testing time of a web-based

ERP application can further be shortened by incorporating best practices of automated

testing in existing automated regression testing tool used in the company. The

implementation of the best practices was discussed in Section 4.5.

In order to discuss the advantages of implementing automated testing best practices,

the expended regression testing time to test a software increment in a sprint cycle before

and after introducing automated testing was measured as mentioned in Section 4.5. The

collected data is presented in Appendix F. The following Table 2 presents and compares

the regression testing time measured in all the three phases discussed in Section 4.5.

 33

Phase 1

(Jan 2014 - Dec 2014)

Phase 2

(Jan 2015 - Dec 2015)

Phase 3

(Jan 2016 - Dec 2016)

Complete Manual Testing Automated Testing

without Best Practices

Automated Testing with Best

Practices

Number of testers doing

testing: 4

Number of testers doing

testing: 1

Number of testers doing

testing: 1

Number of test cases: 50 Number of test cases: 50 Number of test cases: 50

Avg. testing time: 12

hours

Avg. testing time: 1.16

hours

Avg. testing time: 0.58 hours

Table 2: Testing time before and after automated testing.

In phase 1, four testers were engaged in performing regression testing. Automated

testing was not introduced at this point which led to a substantial amount of time being

consumed to perform manual testing. The number of test cases to test was fifty. The

average of all the manual testing time spent in testing of individual sprints was twelve

hours. In phase 2, automated testing tool was introduced the company. The significant

change as compared to previous phase was in the reduction of number of testers from

four to one and decreases in average amount of testing time. The testing time was

reduced twelvefold. In phase 3, as assumed in hypothesis H2, the implementation of

automated testing best practices further reduced the amount of testing time as compared

to testing time in phase 2. The testing time was reduced to half of previous time.

In conclusion, manual testing causes a delay in application delivery time because

manual testing is time-consuming. Automated testing, however, requires less human

effort and less amount of testing testing. Automating the testing of TimeApp indicated

that, among other testing tools, Selenium is definitely a good choice for testing SPA.

Selenium is considered a great automated testing tool. It is well-suited for agile projects

and is also effective as a web automated testing tool on ReactJS based Single Page

Application. Findings from the thesis also conclude that use of automated testing best

practices leads to achieving reduced regression testing time in a Scrum.

 34

References

[Agile Manifesto, 2001] Agile Manifesto. http://agilemanifesto.org, 2016.

[Al-Hossan and Al-Mudimigh, 2011] Amel Al-Hossan and Abdullah S. Al-Mudimigh,

Practical guidelines for successful ERP testing. Journal of Theoretical & Applied

Information Technology. 27(1), 2011, 11-18.

[Allamaraju et al., 2000] Subrahmanyam Allamaraju, Professional Java Server

Programming J2EE Edition. Peer Information Inc., 2000.

[Angular, 2016] AngularJS. https://angularjs.org, 2016.

[Atlassian, 2016] Atlassian Software. https://www.atlassian.com, 2016.

[Al-Zain et al., 2012] Samer Al-Zain, Derar Eleyan and Joy Garfield, Automated User

Interface Testing for Web Applications and TestComplete. In: Proc. of the CUBE

International Information Technology Conference, 350-354.

[Bach, 1999] James Bach, Test Automation Snake Oil. In: Proc. of the 14th

International Conference and Exposition on Testing Computer Software.

[Backbone, 2016] BackboneJS. https://backbonejs.org, 2016.

[Berner et al., 2005] Stefan Berner, Roland Weber, and Rudolf K. Keller, Observations

and Lessons Learned from Automated Testing. In: Proc. of the 27th International

Conference on Software Engineering, 571-579.

[Bertolino, 2007] Antonia Bertolino, Software testing research: Achievements,

Challenges, Dreams. In: Proc. of the Workshop on the Future of Software Engineering,

85-103.

[Coded UI, 2010] Coded UI. https://msdn.microsoft.com/en-us/library/jj620891.aspx,

2016.

[Chow, 2016] Ming Chow. Web programming. Document Object Model (DOM).

https://tuftsdev.github.io/WebProgramming/notes/dom.html, 2016.

[Chrome, 2008] Google Chrome, https://www.google.com/chrome/browser, 2016.

[ChromeDriver, 2013] Google ChromDriver,

https://sites.google.com/a/chromium.org/chromedriver/downloads, 2016.

 35

[Dallal, 2007] Jehad Al Dallal, Automation of object-oriented framework application

testing, In: Proc. of 5th IEEE GCC Conference and Exhibition, 425-434.

[DbUnit, 2002] DbUnit, http://dbunit.sourceforge.net, 2016.

[Dobolyi et al., 2011] Kinga Dobolyi, Elizabeth Soechting, Westley Weimer.

Automating regression testing using web-based application similarities. International

Journal on Software Tools for Technology Transfer, 13 (2), 111-129.

[du Bousquet and Zuanon, 1999] L. du Bousquet and N. Zuanon, An Overview of

Lutess: A Specification-based Tool for Testing Synchronous Software. In: Proc. of the

14th Conference on Automated Software Engineering, 208-215.

[Ebert, 2012] Christof Ebert, Global Software and IT: A Guide to Distributed

Development, Projects, and Outsourcing, John Wiley & Sons, 2012.

[Fewster and Graham, 1999] Mark Fewster, Dorothy Graham, Software Test

Automation: Effective Use of Test Execution Tools. Harlow: Addison-Wesley, 1999.

[Fox, 2009] Brian Fox, Testing Nexus with Selenium: A lesson in complex UI testing

(Part 1). http://blog.sonatype.com/2009/09/testing-nexus-with-selenium-a-lesson-in-

complex-ui-testing-part-1, 2016.

[HP Quick Test Pro, 2001] HP Quick Test Pro. https://saas.hpe.com/en-us/software/uft,

2016.

[Jenkins, 2011] Jenkins Continuous Integration Server. https://jenkins.io, 2016.

[Garrett, 2005] Jesse James Garret, Ajax: A New Approach to Web Applications.

http://adaptivepath.org/ideas/ajax-new-approach-web-applications, 2016

[JQuery, 2016] JQuery, https://jquery.com, 2016.

[Karhu, 2009] Katja Karhu, Tiina Repo, Ossi Taipale, and Kari Smolander, Empirical

Observations on Software Testing Automation. In: Proc. of 2nd International

Conference on Software Testing Verification and Validation, 201-209.

[Kumar, 2012] Vivek Kumar, Comparison of Manual and Automation Testing.

International Journal of Research in Science and Technology, 1(5), 2012.

[Kvale, 1996] Steinar Kvale, InterViews: An introduction to qualitative research

writing. Thousand Oaks: Sage Publications, 1996.

 36

[Kaur and Kumari, 2011] Manjit Kaur and Raj Kumari. Comparative Study of

Automated Testing Tools: TestComplete and QuickTest Pro. International Journal of

Computer Applications, 24 (1), 2011, 1-3.

[Larman, 2003] Craig Larman. Agile and Iterative Development: A Manager’s Guide.

Addison-Wesley, 2003.

[László, 2010] Kottyán László. Application Development in Web Mapping.

http://www.tankonyvtar.hu/en/tartalom/tamop425/0027_ADW1/ch01s02.html, 2016

[Leitner et al., 2007] Andreas Leitner, Ilinca Ciupa, Bertrand Meyer, and Mark Howard,

Reconciling Manual and Automated Testing: the AutoTest Experience. In: Proc. of the

40th Hawaii International Conference on Systems Science, 261.

[Locke and Balaraman, 2012] Gareth Locke and Reghunath Balaraman. Test

Automation at the Enterprise Level. https://www.infosys.com/IT-services/independent-

validation-testing-services/white-papers/Documents/test-automation-enterprise-

level.pdf, 2016.

[Luna, 2014] Eclipse Luna. https://projects.eclipse.org/releases/luna, 2016.

[Malekzadeh and Ainon, 2010] Mehdi Malekzadeh and Raja Noor Ainon, An

Automatic Test Case Generator for Testing Safety-Critical Software Systems. In: Proc.

of the 2nd International Conference on Computer and Automation Engineering, 136-

167.

[Maven, 2004] Apache Maven. https://maven.apache.org, 2016.

[Mittal and Acharya, 2003] Naina Mittal and Ira Acharya, An Open Framework for

Managed Regression Testing. In Testing of Communicating Systems, 265-278.

[Monier and El-mahdy, 2015] Mohamed Monier and Mahmoud Mohamed El-mahdy,

Evaluation of automated web testing tools, International Journal of Computer

Applications Technology and Research. 4(5), 405-408.

[Motwani, 2010] Vivek Motwani, The When & How of Test Automation.

https://www.infosys.com/IT-services/validation-solutions/white-

papers/Documents/when-how-test-automation.pdf, 2016.

[Myers, 2004] Glenford J. Myers, The Art of Software Testing. Wiley, 2004.

 37

[Nagarani et al., 2012] P. Nagarani and R. Venkata Ramana Chary, A tool based

approach for automation of GUI applications. In: Proc. of Third International

Conference on Computing, Communication and Networking Technologies, 201-202

[Optimus, 2015] Optimus Information. Best Practices for Test Automation.

http://www.optimusinfo.com/best-practices-for-test-automation, 2016.

[O'reilly, 2005] Tim O'reilly, What is Web 2.0: Design patterns and business models for

the next generation of software, http://www.oreilly.com/pub/a/web2/archive/what-is-

web-20.html, 2016.

[Oscillot, 2016] Oscillot, Testing against React.js.

https://www.reddit.com/r/selenium/comments/3py4u7/anybody_testing_against_reactjs

_we_are_having, 2016.

[PlanMill, 2016] PlanMill Oy. https://www.planmill.com, 2016.

[Polo et al., 2007] Macario Polo, Sergio Tendero, and Mario Paittini, Integrating

Techniques and Tools for Testing Automation, Software Testing, Verification and

Reliability, 17(1), 3-39.

[Polo et al., 2013] Macario Polo, Pedro Reales, Mario Piattini, and Christof Ebert, Test

Automation. IEEE software, 30(1), 84-89.

[React, 2016] React. https://facebook.github.io/react, 2016.

[Sand, 2005] Sand, What’s my testing ROI?, http://robertvbinder.com/wp-

content/uploads/sites/4/2011/06/Whats-My-Testing-ROI1.pdf, 2016.

[Selenium, 2004] Selenium, http://www.seleniumhq.org, 2016.

[SeleniumHQ, 2015] SeleniumHQ,

http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp, 2016.

[Selenium WebDriver, 2012]. Selenium WebDriver,

http://www.seleniumhq.org/docs/03_webdriver.jsp#introducing-webdriver, 2016.

[Sharma, 2014] R. M. Sharma, Quantitative Analysis of Automation and Manual

Testing. International Journal of Engineering and Innovative Technology, 4(1).

[Silver, 2016] Adam Silver, The disadvantages of Single Page Application.

http://adamsilver.io/articles/the-disadvantages-of-single-page-applications, 2016.

 38

[Sites, 2016] Google Sites. Chrome Driver - WebDriver for Chrome,

https://sites.google.com/a/chromium.org/chromedriver/getting-started, 2016.

[SmartBear, 2016] SmarBear Software, Automated Testing Best Practices,

https://support.smartbear.com/articles/testcomplete/automated-testing-best-practices,

2016.

[SoapUI, 2005] SoapUI. https://www.soapui.org, 2016.

[Sommerville, 2010] Ian Sommerville, Software Engineering. Addison-Wesley, 2010.

[SQL Server, 2014] SQL Server. https://www.microsoft.com/en-

US/download/details.aspx?id=42299, 2016.

[Schwaber and Beedle, 2001] Ken Schwaber and Mike Beedle, Agile Software

Development with Scrum. Addison-Wesley, 2001.

[Stockdale, 2016] Dayana Stockdale. How to Develop an Automated Testing Strategy.

https://testlio.com/blog/how-to-develop-an-automated-testing-strategy, 2016.

[Techopedia, 2016] Software Bug,

https://www.techopedia.com/definition/24864/software-bug-, 2016.

[TestComplete, 1999] TestComplete.

https://smartbear.com/product/testcomplete/overview, 2016.

[Tortoise, 2002] Tortoise SVN, https://tortoisesvn.net, 2016.

[WebDriver, 2016] WebDriver: Advanced Usage,

http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp, 2016.

[WebFinance, 2016] WebFinance. Application Software,

http://www.businessdictionary.com/definition/application-

software.html#ixzz48LF9M17C, 2016.

[Windows 7, 2009] Microsoft Windows 7, https://www.microsoft.com/en-us/software-

download/windows7, 2016.

[Wissink and Amaro, 2006] Tom Winssink and Carlos Amaro, Successful Test

Automation for Software Maintenance. In: Proc. of 22nd IEEE International

Conference on Software Maintenance, 265-266.

[W3C, 1994] World Wide Web Consortium (W3C). https://www.w3.org/Consortium,

2016.

https://testlio.com/blog/author/dayanastockdalegmail-com-dayana-stockdale/

 39

Appendices

Appendix A: Code Snippet for Automating TimeApp

 /**

 * Checks existence of a time report dialog form

 *

 * @param name Title of a time report dialog form

 */

 public void timereport_dialog_form(String name) {

 String xpath_time_report_dialog = "//div[@class='time-report-form mui-dialog

mui-dialog-window mui-is-shown']//h3[@class='mui-dialog-title' and text()='"

 + name + "']";

 if (isElementPresent(By.xpath(xpath_time_report_dialog))) {

 element(By.xpath(xpath_time_report_dialog));

 }

 else {

 Assert.fail("TIME APP: Time report dialog form doesn't exists!!");

 }

 }

 /**

 * Enters duration of a time report in hours and minutes fields of a time

report dialog form

 *

 * @param duration Duration of a time report e.g. 2:00

 */

 public void enter_duration(String duration) {

 String hours = duration.substring(0, duration.indexOf(":"));

 String minutes = duration.substring(duration.indexOf(":") + 1,

duration.length());

 if (isElementPresent(By.id("hour-input"))) {

 WebElement hour_input = webDriver.findElement(By.id("hour-input"));

 $(hour_input).type(hours);

 }

 else {

 40

 Assert.fail("TIME APP: Hour duration textbox on time report dialog form

doesn't exists!!");

 }

 if (isElementPresent(By.id("minute-input"))) {

 WebElement minute_input = webDriver.findElement(By.id("minute-

input"));

 $(minute_input).type(minutes);

 }

 else {

 Assert.fail("TIME APP: Minute duration textbox on time report dialog form

doesn't exists!!");

 }

 }

 /**

 * Clicks a button on a time report dialog form

 *

 * @param button_id Button to be clicked

 */

 public void click_button(String button_id) {

 if (button_id.equals("x")) {

 String xpath_button = "//button[@class='close-button md-close md-lg mui-

icon-button mui-enhanced-button']";

 if (isElementPresent(By.xpath(xpath_button))) {

 element(By.xpath(xpath_button)).click();

 }

 else {

 Assert.fail("TIME APP: Button on time report dialog form doesn't

exists!!");

 }

 }

 else {

 if (isElementPresent(By.id(button_id))) {

 webDriver.findElement(By.id(button_id)).click();

 }

 }

 }

 41

Appendix B: Selenium function used to automate TimeApp

● click()

● clickAndHold()

● moveByOffset()

● findElement()

● findElements()

● moveToElement()

● sendKeys()

● getText()

● wait.until()

● release()

● perform()

● switchTo()

● frame()

● defaultContent()

● ExpectedConditions.visibilityOf()

● ExpectedConditions.presenceOfElementLocated()

● ExpectedConditions.elementToBeClickable()

● ExpectedConditions.visibilityOfElementLocated()

● ExpectedConditions.visibilityOfElementLocated()

 42

Appendix C: Sequence Diagram of TimeApp Test Cases

Create Time Report:

Update Time Report:

 43

Resize Time Report:

Move Time Report:

Delete Time Report:

 44

Appendix D: Hardware and Software Used

Hardware

An x64-based computer with Intel Core i5 CPU @ 2.40 GHz and 1GB of RAM was

used for developing the automated testing tool.

Software

 Windows OS: Microsoft Windows [Windows 7, 2009] version 7 for 64-bit

computers was running as an operating system on automated testing tool

development computer.

 Java: Java Enterprise Edition [Allamaraju et al., 2000] version 7 was used to

develop the automated testing tool.

 Eclipse: Luna version of Eclipse [Luna, 2014] was used as an Integrated

Development Environment for developing automated testing tool.

 Maven: Apache Maven [Maven, 2004] version 3.3.3 was used as a build

management tool to manage libraries used in the development. Maven build

plugins (clean, compiler, surefire, failsafe) were also used to configure

automated testing tool development project. The pom.xml file is the core of a

Java project's configuration in Maven.

 Selenium: Selenium [Selenium, 2004] was used to automate testing of the web

application.

 Chrome Browser: Automated tests were run in Google Chrome [Chrome,

2008] version 44 browser application.

 ChromeDriver - WebDriver for Chrome: ChromeDriver [ChromeDriver,

2013] version 2.19 was used to drive Chrome browser to run automated tests.

 SQL Server: Microsoft SQL Server [SQL Server, 2014] version 2014 was used

as a database to manage and store test data.

 DbUnit: DbUnit [DbUnit, 2002] version 2.5.1 was used to inject dependency

test data directly into the database. Using DbUnit saves time by directly injecting

dependency data.

 Serenity BDD: Automated web tests support is strongly provided by Serenity

[Serenity, 2011] using Selenium WebDriver. Serenity BDD was also used to

produce illustrated and narrative reports of automated test results.

 Jenkins: Jenkins [Jenkins, 2011] was used to run automated tests.

 Tortoise SVN: Tortoise SVN [Tortoise, 2002] was used for versioning of

software.

 45

Appendix E: Interview Guide

This interview is about calculating the time taken to do manual regression testing as part

of sprint testing of a web-based business application. This time was used to compare the

amount of time spent on doing manual testing and automated testing.

The interview was conducted with three participants who used to do manual

regression testing of the application in sprint cycles. The interview was held at the

company premises.

Interview Questions:

Q1: How much time (in hours) did you spend in a sprint cycle to do regression testing

manually before automated testing was introduced?

Q2: Did you have to repeat the manual regression tests? If yes, how often per sprint

cycle do you have to redo regression tests manually?

Q3: What were the reasons to repeat manual regression tests?

Answers by Interviewees:

Interviewee A (Senior Software Engineer)

Q1: How much time (in hours) did you spend in a sprint cycle to do regression testing

manually before automated testing was introduced?

A1: About 1 - 3 days (7 - 22.5 hour) per release depending on lately released new

features that have to be taken into account in next regression tests.

Q2: Did you have to repeat the manual regression tests? If yes, how often per sprint

cycle do you have to redo regression tests manually?

A2: Yes, quite often. 0 - 3 times depending on if previous new features that had to be

taken into account in regression tests or not.

Q3: What were the reasons to repeat manual regression tests?

A3: Changes / additions to existing test plans – regression tests didn’t include the latest

default features; then test plans needed to update first and then repeat the tests

after updating.

 46

Interviewee B (Senior Software Engineer)

Q1: How much time (in hours) did you spend in a sprint cycle to do regression testing

manually before automated testing was introduced?

A1: If I remember correctly it took about 3-4 hours per person per release.

Q2: Did you have to repeat the manual regression tests? If yes, how often per sprint

cycle do you have to redo regression tests manually?

A2: Sometimes, quite rarery. I can't remember exactly but I think most of the time

regression tests were done only once.

Q3: What were the reasons to repeat manual regression tests?

A3: Some serious bug that was found (by regression test or otherwise) and fixed.

Interviewee C (Project Manager)

Q1: How much time (in hours) did you spend in a sprint cycle to do regression testing

manually before automated testing was introduced?

A1: It's hard to tell an exact figure and it varies depending on release complexity and

the evolution of our release process. Before we had Jenkins for releasing to

production (4 years ago), we released changes every 3 months and we had around

5 testers, testing manually for about 5-6 hours the whole system + re-testing after

fixes if bugs were found. After Jenkins was introduced, release cycles were

shortened to every 3 weeks and we had around 3 testers doing testing for about 2-

3 hours.

Q2: Did you have to repeat the manual regression tests? If yes, how often per sprint

cycle do you have to redo regression tests manually?

A2: No, when bugs were detected, coders usually fixed it immediately and we only had

to repeat the area of the fix.

Q3: What were the reasons to repeat manual regression tests?

A3: Only when bug fixes or major fixes were introduced.

 47

Appendix F: Time taken to test Web-based ERP application

Before introducing automation testing – Year 2014

 Testing weeks Testing time in hours

Week 2 12.25

Week 5 11.75

Week 8 12.50

Week 10 11.25

Week 13 13

Week 15 11.75

Week 18 11.75

Week 20 12.75

Week 24 10.75

Week 26 11.25

Week 30 12.25

Week 32 13

Week 35 11.75

Week 37 12.50

Week 39 12.50

Week 42 11.75

Week 44 12

Week 46 12.25

Week 49 10.75

Week 52 11.75

Average testing time (round off) 11.98 (12 hours)

 48

After introducing automated testing – Year 2015

Testing weeks Testing time in hours

Week 3 1.17

Week 6 1.23

Week 8 1.22

Week 10 1.05

Week 12 1.17

Week 15 1.25

Week 18 1.22

Week 21 1.17

Week 23 1.12

Week 25 1.18

Week 28 1.13

Week 31 1.22

Week 33 1.15

Week 35 1.10

Week 37 1.17

Week 40 1.20

Week 42 1.12

Week 44 1.07

Week 46 1.17

Week 49 1.15

Week 51 1.25

Average testing time 1.16

 49

After introducing automated testing – Year 2016

Testing weeks Testing time in hours

Week 1 0.55

Week 3 0.62

Week 5 0.57

Week 7 0.58

Week 9 0.60

Week 11 0.55

Week 14 0.62

Week 16 0.53

Week 18 0.58

Week 21 0.57

Week 23 0.60

Week 26 0.55

Week 28 0.57

Week 30 0.60

Week 33 0.62

Week 35 0.55

Week 37 0.58

Week 40 0.53

Week 42 0.52

Week 45 0.60

Week 48 0.58

Week 50 0.53

Week 52 0.62

 50

Average testing time 0.57 hours

