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ABSTRACT 
 
Introduction: Assessing central and peripheral nitric oxide (NO) dynamics of the lung provides information on 
the severity and anatomical site of pulmonary inflammation. Several mathematical methods to calculate 
alveolar and bronchial NO parameters have been introduced. Our aim was to compare these methods. 

Methods: The study included 69 healthy adults, 66 healthy children, 73 asbestos-exposed subjects and 72 
subjects with chronic obstructive pulmonary disease (COPD). Exhaled NO was measured at multiple flow rates 
and we used five mathematical methods (Tsoukias & George, Pietropaoli, Condorelli, Högman & Meriläinen, 
and Silkoff) to estimate alveolar and bronchial NO parameters. 

Results: H&M method was less frequently feasible compared to other methods but it had the highest degree of 
agreement with the measured data. The methods were most often feasible in healthy or asbestos-exposed 
adults but distinctly more infrequently in children and adults with COPD, suggesting difficulties in NO 
measurements in these groups. The linear methods (T&G, Pietropaoli) yielded higher alveolar NO 
concentration and lower bronchial NO flux than the two non-linear methods (H&M, Silkoff) and linear method 
with correction for axial back-diffusion of NO (Condorelli). 

Conclusion: In differentiating central and peripheral NO sources we recommend using the linear methods, as 
low flow rates are not needed and the feasibility of the methods is good. If bronchial wall NO concentration 
(CawNO) and diffusing capacity (DawNO) are of interest, non-linear methods are needed and we recommend 
using H&M method as only three flow rates are needed. However, the agreement between the model and 
measured data needs to be checked in real-time to ensure feasibility. If the subject has difficulties with the 
extremely low or high flow rates, we then recommend using the Silkoff method to improve feasibility, but more 
flow rates and measurements are then needed and the agreement between the model and the measured data 
may be poorer. 

 
  



1. Introduction 
 

Measurement of exhaled NO concentration (FENO) is a promising tool to determine inflammation in different 

lung diseases. Currently, we have the best knowledge of asthma. In particular groups, FENO can be used to 

predict treatment responsiveness. For instance, a high FENO in asthma has been found to predict a good 

response to inhaled corticosteroids [1-3]. However, using more than one flow rate in NO measurement permits 

calculating bronchial and alveolar NO independently. This provides more information on the site of 

inflammation. 

 

 The Two-compartment model 
Nikolaos M. Tsoukias and Steven C. George described the NO exchange dynamics of the lungs by the two-

compartment model in 1998 [4]. In the two-compartment model, lungs are divided into two regions: 

expansible alveolar and rigid bronchial regions (Figure 1). Alveolar and bronchial regions are different in gas 

exchange perspective, enabling to calculate the origin of NO using the two-compartment model. The two-

compartment model is capable of explain three experimentally observed features of the NO exchange 

dynamics: 1) holding breath prior to NO measurement creates a peak in FENO, 2) FENO is inversely proportional 

to flow rate, 3) NO elimination rate (VNO) from the lungs is directly proportional to flow rate [5]. 

 

 

 



 

Figure 1. Drawing of the two-compartment model. Exhaled NO concentration (FENO) is the sum of alveolar and 
bronchial contributions. The bronchial or airway region’s contribution depends on three flow-independent 
variables: maximum NO flux from the bronchial wall (J’awNO, pl/s), NO concentration of bronchial mucosa 
(CawNO, ppb) and diffusing capacity of NO from the bronchial wall (DawNO, pl/s/ppb). Alveolar contribution 
depends on steady state alveolar NO concentration (CANO, ppb). 
 

 The Trumpet model with axial back-diffusion (TMAD) 
The two-compartment model assumes the conducting airways as an even, cylinder shaped tube, neglecting the 

fact that the bronchial tree branches towards the more distal airways. Condorelli et al. introduced the trumpet 

model of the lungs with correction for axial back-diffusion of NO (TMAD), where the conducting airways are 

considered as trumpet shaped [6]. This takes account the increasing total cross-sectional area and the mucosal 

surface area of the airways as the bronchial tree branches into smaller bronchioles. As the total cross-sectional 

area of the airways increases, the velocity of airflow decreases, especially in the last generations of the 

bronchial tree. The significant decrease in airflow velocity allows axial back-diffusion of NO from the higher NO 

concentration of the conducting region into the respiratory region, according to the NO concentration gradient. 

It has been proposed that neglecting this axial back-diffusion of NO leads to over estimation of CANO and under 

estimation of JawNO. However, this model is recommended to be utilized only in subjects with no obstruction or 

it can lead to overcorrection [7,8]. Some studies have also reported that the TMAD-correction leads to negative 

CANO values [9-11]. 

 



 The flow-independent NO parameters 
The two-compartment model describes alveolar and bronchial regions’ NO exchange dynamics by flow-

independent NO parameters: CANO (steady state NO concentration in the alveolar region) describing the 

alveolar region, CawNO (NO concentration in bronchial mucosa) and DawNO (NO diffusing capacity of the 

bronchial wall) representing the bronchial region. Maximal bronchial NO flux can be calculated as J’awNO = 

DawNO * CawNO and bronchial NO flux as JawNO = DawNO (CawNO - CANO). Once flow-independent parameters are 

determined, the two-compartment model can be used to predict exhaled NO concentration (ppb) in certain 

exhalation flow rate (VE) by exponential function 

 

FENO = CawNO + (CANO – CawNO) * exp(-DawNO/VE)  [4,5,12,13]                  (1) 

 

When VE is large compared to DawNO (VE > ~ 5* DawNO), the exponential function approaches its first-order 

linear approximation (exp(-DawNO/Ve) = 1 – DawNO/VE) [5]. When this approximation is used in equation 1, the 

equation reduces to following 

 

FENO = CANO + (CawNO – CANO)DawNO*                                                                                           (2) 

 

Knowing the fact that JawNO = DawNO(CawNO - CANO), equation 2 can be reduced to 

 

FENO = CANO + JawNO*                                                                                                                         (3)  

 

When both sides of this equation 3 are multiplied by VE, linear equation of NO elimination rate is derived 

 

VNO = CANO * Ve + JawNO                 (4)

  

 Analytical methods             
There are several techniques to approximate the flow-independent NO parameters based on measurements of 

FENO at multiple flow rates. In this study, we used four different methods which will be introduced herein. 

Tsoukias et al. [14] used linear equation 4 above in assessing CANO and JawNO (Figure 2A). In this method, FENO 

is measured at several high ( 100 ml/s to verify that VE > ~ 5* DawNO) flow rates. VNO is calculated from 

measured FENO and the flow rates used. Then VNO is plotted against flow rate VE and a regression line is set 

between VNO and VE. CANO is obtained from the slope and JawNO from the intercept of the regression line. 



Pietropaoli et al. [12] utilized linear equation 3 to estimate CANO and JawNO (figure 2B). In this method, the 

measured value of FENO at several high ( 100 ml/s) flow rates are plotted against  and a regression line is set 

between FENO and . The intercept is used as an estimate for CANO whereas slope for JawNO. 

 

 

 

Condorelli et al. used the Tsoukias & George method to calculate CANO and JawNO with correction of the axial 

back-diffusion by applying correction factors a  and b  in the following equations [6]: 

CANOCondorelli = CANOT&G - * JawNOT&G                                                                                                    (5) 

JawNOCondorelli = JawNOT&G * b                                                                                                        (6) 

The values of correction factors a and b are dependent on flow rates used in measurements. 

Silkoff et al. [15] utilized a nonlinear regression analysis using equation 1 to determine all three flow-

independent parameters by measuring FENO at several high and low flows (figure 2C). Högman et al. [13,16] 

used a method that combines some of the methods described above (figure 2D). Three flow rates are needed: 

one low, one medium and one high. CANO is estimated as in Tsoukias & George method: a regression line is set 

between VNO and VE at medium and high flow rates, and the slope is used as an estimate of CANO. DawNO is 

obtained using low and medium flow rates with an iterative technique, whereas CawNO is estimated using 

DawNO and CANO obtained earlier. 

 

 

 

 

 

 

 

 

 



 

Figure 2. Schematics describing the mathematical methods used. Tsoukias & George A: VNO is plotted against 
flow rate VE and a regression line is set between VNO and VE. CANO is obtained from the slope and JawNO from 
the intercept of the regression line. In Condorelli method, parameters are calculated likewise before applying 
the flow rate dependent correction factors. Pietropaoli B: FENO is plotted against  and a regression line is set 

between FENO and . The intercept is used as an estimate for CANO whereas slope for JawNO. Silkoff C: FENO is 
plotted against VE using all measured flow rates. CawNO is the intercept of the plot. CANO is the limit of FENO 
when VE approaches infinity (FENO = CANO, when VE ). DawNO describes the steepness of the plot: small 
DawNO makes the plot steeper. The parameters are calculated by fitting the governing equation (Equation 1) to 
the observed data by regression analysis. Högman & Meriläinen D: CANO and JawNO are obtained by using high 
and medium flow rates as in Tsoukias & George method. DawNO is then calculated using JawNO and FENO at low 
and medium flow rates using an iterative technique. CawNO is then calculated by using all previously calculated 
parameters. 

 

 Aims of the study 
It is important to know whether there are significant differences between the existing methods in NO 

parameter estimation. Sometimes the original measurement data does not fit the mathematical equation used 

to estimate the flow-independent NO parameters and the iterative process does not converge or impossible 

results are obtained (i.e. the method is not feasible in that subject). There may also be differences in the 

model´s degree of agreement with the measured data (i.e. what is the difference between measured FENO and 

calculated FENO). Also, the magnitudes of calculated NO parameters may differ between methods and used 

flow rates. In spite of importance in the development of the methods, comparative studies are scarce. 



The aim of the present study was to compare different analytical methods (Tsoukias & George (T&G), 

Pietropaoli, Condorelli, Silkoff and Högman & Meriläinen (H&M)) to calculate NO parameters regarding 1) their 

feasibility (how often the mathematical analysis succeeded and provided results that were not considered as 

outliers or physically impossible), 2) their degree of agreement with measured data (difference between 

calculated and observed FENO value),  3) the magnitude of calculated NO parameters and 4) the effect of the 

used flow rates on the feasibility and calculated NO parameters. 

 

2. Methods 

 Subjects 
In the analysis, we included subjects from several of our previously published studies utilizing FENO 

measurements at multiple flow rates. The groups were 69 healthy adults, 66 healthy children, 72 adults with 

COPD and 73 adult subjects with previous asbestos exposure. The inclusion and exclusion criteria and clinical 

characteristics are previously published [17-19]. In short, subjects with COPD were newly diagnosed with no 

current anti-inflammatory treatment. They had symptoms compatible with COPD, post-bronchodilator 

FEV1/forced vital capacity (FVC) ratio < 0.7, smoking history of at least 20 pack-years, and emphysema on high-

resolution computed tomography (HRCT) of the lungs. The subjects with previous asbestos exposure were non-

smoking males with a history of moderate to severe occupational exposure to asbestos without other known 

respiratory diseases. 

As the sample size in the current study is predetermined by the original studies, we made a post hoc 

calculation of statistical power for the current analysis. We considered differences in NO parameters given by 

the 5 different calculation methods as main outcome. Using repeated measures ANOVA with -error of 5 %, a 

sample size of 31 subjects is needed to get statistical power of 95 % to detect a difference between the 

methods that is 0.25 times standard deviation (to keep the estimate conservative we estimated correlation 

among repeated measures to be 0.5 and used correction for nonsphericity as 1, G*Power 3.1.7 was used in 

calculations). As nonparametric tests are usually more conservative that parametric tests and as we used 

nonparametric Friedman’s test instead of parametric ANOVA in comparisons, we consider that we have 

sufficient statistical power in each comparison where the number of subjects with successful measurements is 

above forty. 

 

 



 NO measurement 
As previously described [17-19], exhaled NO was measured using Sievers NOA 280 chemiluminescent analyzer 

(Sievers Instruments, Boulder, Colorado, USA) at different flow rates. We outlaid the flow rates of 10, 50, 100, 

200 and 300 ml/s for the healthy children, whereas flow rates of 10, 20, 30, 50, 100, 200, 300 and 400 ml/s 

were used for the adult subjects. At least two successful NO measurements with coefficient of variation (CV) of 

maximum 3 % were performed at each flow rate. The desired flow rates were achieved by letting the subjects 

exhale through a mass flow meter connected to a computer-controlled, adjustable flow restrictor that kept the 

flow rate steady at the desired level. The linearity of VNO at flows  100 ml/s was evaluated later in the analysis 

phase and r < 0.95 was used as an exclusion criterion in the linear methods. 

 

 Calculation of NO parameters 
Before performing any calculations, we visually inspected every FENO versus flow rate plot. Plots were 

accommodated by omitting failed measurements (i.e. if FENO at 300 ml/s < FENO at 400 ml/s, flow rate of 400 

ml/s can be discarded as failed measurement) and using nearest successful measurement point if possible. In 

healthy adults, the flow rate of 400 ml/s was excluded 14 times and at least one of the flow rates between 10 

and 30 ml/s were excluded 4 times. The corresponding numbers for previous asbestos exposure group were 9 

and 3 and in the group of COPD patients 13 and 4. Only 2 300 ml/s flow rates were excluded in healthy 

children. If the plot was beyond accommodation, the subject was excluded from the analysis. A total of 15 plots 

were beyond accommodation in COPD patients and 2 in healthy children in linear methods (these were 

considered as visual drop-outs). The failed flow rates were almost exclusively 300 ml/s and 400 ml/s. Five 

different analytical methods were used (T&G, Pietropaoli, Condorelli, Silkoff and H&M) to calculate the NO 

parameters in every subject group (Figure 2). All calculations were performed by using Microsoft Excel 2007. 

 

2.3.1 Linear methods 

In T&G method, VNO was plotted against VE and we used Excel functions “slope” and “intercept” to calculate 

CANO and JawNO, respectively. Exhalation flow rates of 100, 200, 300 and 400 ml/s were used for adults, 

whereas 100, 200, 300 ml/s were used for children. Correlation coefficient between flow rate and VNO was 

calculated by using the correlation function in Excel. In Pietropaoli method, we used the same flow rates as in 

T&G method. FENO was plotted against  and CANO was calculated using the intercept function and JawNO 

with the slope. The correlation coefficient between and FENO was also calculated. 



In Condorelli method, NO parameter estimates of the T&G method were used. Correction for axial back-

diffusion was then achieved by using the correction factors (a= 1100 ml/s, b=1.6 with flow rates 100 – 400 ml/s 

and a= 840 ml/s, b=1.7 with flow rates 100 – 300 ml/s) as introduced earlier (Equations 5 and 6). Failed 

measurements were excluded from the calculations as previously described. In adult subjects, one failed flow 

rate was allowed to be excluded. In the case of more than one failed flow rate, we excluded the subject. 

2.3.2 Non-linear methods 

In H&M method, we used an Excel calculation sheet made by Pekka Meriläinen, one of the inventors of the 

method. We compared the results using different three flow rate combinations. The best combination of flow 

rates was found to be 10, 100 and 300 ml/s as it yielded relevant results with least outliers. Failed 

measurements were optimized by using the nearest possible flow rate in place of a failed one (e.g. replacing a 

failed 10 ml/s by 20 ml/s or failed 400 ml/s by 300 ml/s). 

In Silkoff method we compared Solver tool in Microsoft Excel 2007 and a commercial regression analysis 

software NLREG (nlreg.com). However, as both were found to function equally well in our purpose, we chose 

the Excel Solver to be used in the analysis. The Silkoff method is based on non-linear regression analysis in 

which observational data are modeled by a non-linear function. The calculated plot is attempted to fit the 

observational data by changing the model’s parameters. We performed the non-linear regression analysis by 

using the least squares algorithm. The sums of the squared residuals of the observed and calculated FENO 

values at different flow rates are minimized by changing the model’s parameters (DawNO, CawNO and CANO). 

This method requires initial starting value for the iteration process. We used the medians of the CANO, CawNO 

and DawNO calculated for healthy adults using the H&M method as an initial starting value. After the iterations, 

the calculated parameter values were set as the new starting values for a new iteration process. The iteration 

cycle was repeated three more times, setting each time the previously obtained parameter values as new 

starting values. The number of iterations within each cycle depended on how quickly the Excel Solver 

converged to a solution with all constrains satisfied (precision = 0.000001, tolerance 5% and convergence 

0.0001). We used all available successful flow rates in calculations. 

 

 Analysis 
2.4.1. Checking the feasibility and excluding outliers 

 After the calculation of the NO parameters with each of the methods, we evaluated the methods’ feasibility in 

parameter estimation and excluded the outliers using the following criteria CANO < 0, CANO > 10, CawNO < 0 or 

CawNO > 1000. The upper limits were set according to previous results [15,17,20-23] and histograms and lower 



limits are based on the fact that negative concentrations are not physically possible. Defining outlier criteria for 

DawNO was not considered necessary as excluding abnormal CANO and CawNO values excluded abnormal DawNO 

and JawNO values as well at the same. This is explained by the fact that CawNO and DawNO are mathematically 

coupled and in cases of extremely low CawNO, DawNO is extremely high, and vice versa. In the linear methods, 

correlation coefficient less than 0.95 was also used as an exclusion criterion. In H&M method there is an 

internal validity check also included. Negative, or otherwise impossible results as well as inferior correlation 

may conclude that the model of NO production of the respiratory system may be inadequate. It may also be 

due to problems in the measurement situation. A Cochran´s Q test was used to assess if the proportion of 

feasibility differed significantly between the methods. If the p-value with Cochran’s Q test was < 0.05, pairwise 

comparison was performed to check which methods differed significantly from one another. IBM SPSS 

Statistics 24 was used in the statistical analysis. 

 

2.4.2. Checking the method’s degree of agreement.  

We evaluated the methods’ degree of agreement with the observational data by calculating absolute values of 

the difference between observed and calculated values of FENO. A flow rate of 100 ml/s was used in the 

comparison of the measured and calculated FENO, since linear methods apply with higher flow rates only and 

this flow rate also did not produce difficulties for most of the subjects. The difference between the methods 

was compared using nonparametric Friedman’s repeated two-way ANOVA. 

 

2.4.3. Comparing the magnitude of NO parameters between the methods.  

After calculating all the NO parameters with all the methods, the distributions of the calculated parameters 

were compared between different methods using nonparametric Friedman’s repeated two-way ANOVA. The 

results are presented as median, inter-quartile range (IQR), minimum and maximum in the tables.  

 

2.4.4. The effect of the used flow rates on the feasibility and NO parameters. 

 We also assessed the effect of used flow rates in parameter estimates. We calculated the NO parameters for 

healthy adults with all flow rates successful (n = 56) using two different methods, linear T&G and non-linear 

H&M. Flow rates of 100, 200 and 300 ml/s; 200, 300 and 400 ml/s; and 100, 200, 300 and 400 ml/s were used 

in T&G method, whereas flow rates of 10, 100 and 400 ml/s; 10, 100 and 300 ml/s; 20, 100 and 400 ml/s; and 

20, 100 and 300 ml/s were used in H&M method, respectively. After calculating the parameters, outliers were 



excluded as previously described. The distributions of the calculated parameters were compared between 

different flow rates using nonparametric Friedman’s repeated two-way ANOVA. 

 

3. Results 
 

Basic demographics of the subjects are introduced in the Table 1. 

Table 1. Basic demographics of the subjects. 
 Healthy adults Healthy children Asbestos exposure COPD 

N 69 66 73 72 
Sex 61 / 8 32 / 34 All males 50 / 22 
Age 63 (63.5 ± 7.4) 9 (9.7 ± 1.6) 65 (64.9 ± 6.6) 58 (58.5 ± 7.6) 

Fev1 % pred. n.a. n.a. 89.0 ( 88.3 ± 14.0) 52.0 ( 53.8 ± 14.81) 
Sex is presented as (males / females) 
Age and Fev1 % pred. are presented as median (mean ± SD) 
 

 Feasibility of the methods 
The median correlation coefficients for linearity of VNO against flow at flow rates  100 ml/s were > 0.99 in all 

groups, indicating a good linearity of measurements. We discovered significant differences in the feasibility of 

different methods between subject groups and between the methods (Table 2). Of the different subject 

groups, the feasibility of all methods was best in healthy adults and in adults with asbestos exposure. In healthy 

children, the feasibility was poorer and it was poorest in subjects with COPD. 

When comparing the different methods in each subject group, linear methods tended to yield results slightly 

more often compared to the non-linear ones. In subject groups where the feasibility was lower (children and 

subjects with COPD), H&M method was feasible significantly less frequently than the other methods. 

 

 

 

 



Table 2. Comparison of the feasibility of the mathematical methods in the parameter estimation and reasons for 
excluding outliers. 

 T&G Pietropaoli Condorelli Silkoff H&M 

Healthy Adults      

Total number of subjects 69 69 69 69 69 

Visual estimation drop-out 0 0 0 0 0 

Outliers excluded, total 6 2 8 8 11 

     CANO < 0   2 4  

     CANO > 10      

     CawNO > 1000    4 9 

     r < 0.95 or H&M validity check 6 2 6  2 

Successful results 63* 67 61 61 58 
      

Healthy children      

Total number of subjects 66 66 66 66 66 

Visual estimation drop-out 2 2 2 1 1 

Outliers excluded, total 2 1 3 8 17 

     CANO < 0   1 1  

     CANO > 10      

     CawNO > 1000    7 16 

     r < 0.95 or H&M validity check 2 1 2  1 

Successful results 62H&M 63H&M 61H&M 57H&M 48 
      

Asbestos exposure      

Total number of subjects 73 73 73 73 73 

Visual estimation drop-out 0 0 0 0 0 

Outliers excluded, total 2 0 3 4 7 

     CANO < 0   1   

     CANO > 10      

     CawNO > 1000    4 7 

     r < 0.95 or H&M validity check 2  2   

Successful results 71** 73 70 69 66 
      

COPD      

Total number of subjects 72 72 72 72 72 

Visual estimation drop-out 15 15 15 0 0 

Outliers excluded, total 6 13 6 17 49 

     CANO < 0   1 3  

     CANO > 10 4 3 3   

     CawNO > 1000    14 37 

     r < 0.95 or H&M validity check 2 10 2  12 

Successful results 51H&M 44H&M 51H&M 55H&M 23 

* Overall p-value 0.097, **Overall p-value 0.067, H&M Significant difference against H&M method (p < 0.05) 

 



 Methods’ degree of agreement with measured data 
We evaluated the degree of agreement of the analytical methods with the measured data by calculating the 

absolute values of the differences between measured and calculated FENO values at flow rate 100 ml/s 

(Supplementary Table 1). Overall among the linear methods, Condorelli method tended to have a better 

degree of agreement with observational data than T&G from which it is derived as it yielded smaller residuals 

of observed and calculated FENO values. Pietropaoli method seemed to have a better agreement in every 

group except the healthy children than other linear methods. Condorelli method had the same degree of 

agreement as Silkoff in children and COPD patients, whereas Silkoff and T&G methods gave similar residuals to 

each other in every group. H&M and Pietropaoli seemed to have greater degree of agreement with the 

observational data in all groups except the healthy children. The non-linear methods differed from each other 

in every group. Overall, H&M method appeared to have the greatest agreement with observational data. 

 

 Comparing the magnitude of NO parameters between the methods 
We discovered statistically significant differences among the results of the compared analytical methods 

(Figures 3-6 and Supplementary tables 2-5). Generally, there were no significant differences between T&G and 

Pietropaoli. However as might be expected, Condorelli method with axial back-diffusion correction yielded 

lower estimates for CANO and higher estimates for JawNO. Interestingly, Silkoff and Condorelli methods 

produced similar CANO estimates with no significant differences in any group. The other linear methods tended 

to give higher estimates for CANO and lower estimates for JawNO as compared to non-linear methods, but the 

absolute difference was quite small and the differences were not all significant. H&M and Pietropaoli methods 

also yielded similar results occasionally. When comparing the non-linear methods to each other, Silkoff method 

gave higher estimates of DawNO and lower estimates of CawNO as compared to H&M. There were no consistent 

differences in CANO and JawNO between H&M and Silkoff methods. 

 



 

Figure 3. Box plot presentation of the NO parameters of healthy adults using different analytical methods. Only 
statistically significant differences are marked. 

  



 

Figure 4. Box plot presentation of the NO parameters of healthy children using different analytical methods. Only 
statistically significant differences are marked. 
  



 

Figure 5. Box plot presentation of the NO parameters of asbestos exposed subjects using different analytical 
methods. Only statistically significant differences are marked. 
 

  



 

Figure 6. Box plot presentation of the NO parameters of COPD patients using different analytical methods. Only 
statistically significant differences are marked. 
 

 Comparing the effect of using different flow rates on feasibility and NO 

parameters 
Different flow rates were compared in healthy adults using T&G and H&M (Figures 7 and 8) and statistically 

significant differences were observed in the parameters. In T&G, there were no differences in feasibility 

between flow rates, but difference was found between all flow rate combinations in both parameter values. 

Correlation coefficients had essentially no differences between different flow rate combinations, possibly due 

to exclusion of all failed measurements. 

In the H&M method flow rates of 20, 100, 300 ml/s and 20, 100, 400 ml/s differed among every parameter, 

whereas flow rates of 10, 100, 400 ml/s and 20, 100, 300 ml/s were the same among every parameter. 

Differences in feasibility were found between flow rates 10, 100, 400 ml/s and 20, 100, 400 ml/s (44 vs 33 



successful results, p = 0.008) and between flow rates 20, 100, 400 ml/s and 10, 100, 300 ml/s (33 vs 48 

successful results, p = 0.000). 

 

 

Figure 7. Box plots of the healthy adults’ NO parameters using different flow rates in T&G method. 
 

 

 

 

 



 

Figure 8. Box plots of the healthy adults’ NO parameters using different flow rates in H&M method. Only 
statistically significant differences are marked. 
   



4. Discussion 
 

The feasibility of the four methods to calculate NO parameters and their agreement with measured data varied 

between the methods and between the subject groups. Linear methods and Silkoff method were most 

frequently feasible, whereas H&M had the lowest level of feasibility. However, when feasible, H&M had the 

highest degree of agreement with the data followed by the linear methods (T&G, Pietropaoli and Condorelli). 

The methods were most often feasible in healthy or asbestos-exposed adults but distinctly more infrequently 

in children and adults with COPD. There were also differences in the calculated NO parameters between the 

four methods but the two linear methods (T&G, Pietropaoli) yielded quite similar results as did the two non-

linear methods (H&M, Silkoff). Condorelli method yielded smaller values for CANO and larger values for JawNO 

than other linear methods, as expected, and the CANO estimates were essentially the same between Silkoff and 

Condorlli methods. There is very little previous data comparing these mathematical methods in their feasibility 

and agreement with measured values. 

 

 Clinical relevancy and current standardization of multiple flow NO 

measurements 
FENO measurement at multiple flow rates has several promising clinical applications. For instance, it has been 

noticed to be able to detect inflammation in the smaller airways in asthma [24-26]. Peripheral NO production 

(CANO) may also be useful in detecting other inflammatory diseases such as alveolitis and cystic fibrosis 

[19,20,26-28]. Currently, the clinical relevancy of CawNO and DawNO is pending. Thus, the clinical importance of 

non-linear methods over the linear methods is unclear at the moment, although they provide interesting 

information for research purposes. Potential use for CawNO and DawNO might be for example to tell whether 

elevated FENO is due to inflammation in the airways or change in airway diffusivity of nitric oxide [29,30]. 

DawNO and CawNO might therefore be used in airway diseases as separate measures of tissue remodeling and 

inflammatory activity, respectively. Clinical relevancy of all the NO parameters is unknown especially in COPD 

patients, where different pathophysiological aspects of the disease, such as emphysema, may have opposing 

effects on NO parameters. Also, the parameters should be interpreted cautiously as the current models do not 

take account the possible effect of obstruction. It has been reported that obstruction may lead to over 

correction in Condorelli method (lower CANO and higher JawNO values are obtained) [7,8].  

Currently the predominant problem in FENO measurement at several flow rates is the lack of technical 

standardization. Different studies have used several different analyzers, setups, flow rates and mathematical 

methods, making the comparison of the NO parameters between studies challenging. NO parameters are 



known to vary with different used flow rates [31,32] and it is not known whether results obtained using 

different analyzers yield different estimates for NO-parameters as research has only been done on FENO values 

using single flow rates [33-39]. A recent ERS technical guideline [40] has now for first time given 

recommendations also on the multiple flow rate NO measurements, but many aspects are still not validated 

and not standardized. For instance, repeatability of NO parameters, possible circadian variation and differences 

between distinct NO analyzers require further research. 

 

 Feasibility of the methods and their agreement with measured data 
The linear methods were more often feasible (i.e. the mathematical analysis succeeded and provided results 

that were not considered as outliers) than the non-linear methods. This may be related to more simple 

mathematics and the avoidance of extremely low flow rates that are difficult to some subjects. The drawback 

of linear methods is that neither DawNO nor CawNO can be estimated. However, these parameters have a minor 

clinical significance at the moment but may prove to be important when more knowledge on their clinical 

meaning is gained. The difference between the linear methods was not consistent in feasibility but the 

Pietropaoli method had on average better agreement with the data. 

We found that among the non-linear methods Silkoff method was more often feasible than H&M method. 

H&M method’s strength is that only three flow rates are needed, but on the other hand, this makes the 

method also more vulnerable for measurement errors at any single flow rate. However, H&M method had the 

best agreement with our observational data, suggesting that when it is feasible then the quality of data is high 

and that the better feasibility of the Silkoff method comes with the price of lower agreement with measured 

data in addition to the need for more flow rates.  

Clearly the feasibility of all methods was the poorest in children and especially in subjects with COPD. This is 

probably related to the subjects’ ability to perform reliable FENO measurements at very low and very high flow 

rates that usually are the most difficult ones. Molshatski et al. found that high flow rates were most important 

for estimating CANO, while low flow rates were especially important for estimating DawNO [31]. This finding 

may explain the fact that in our study H&M method yielded most relevant results using 10 ml/s as the lowest 

flow rate, as recommended by Högman and colleagues [13,16]. The extreme flow rates appeared to be 

problematic especially in the group of COPD patients, explaining the inferior feasibility of linear methods and 

H&M method in that group. 

Checking for the agreement between the used model and measured data in real-time might help to ensure the 

quality of the measurements. If the subject was unable to perform very high or low flow rates, Silkoff method 

seemed to be the most feasible. 



Roy et al. [21] have also compared different mathematical methods and found that CANO results are 

significantly model-dependent and median error between calculated and observed data is considerably lower 

in non-linear methods than mixed methods. Eckel et al. compared nine different mathematical methods in 

parameter estimation [41]. They suggested using non-linear least squares model with natural log 

transformation on both sides in parameter estimation. This can be considered as Silkoff method with natural 

log transformation on both sides. In their study, Pietropaoli method yielded the least number of negative CANO 

estimates which is in line with our study where Pietropaoli method yielded least outliers. 

On average, the difference between measured and calculated FENO at 100 ml/s was very low. The difference 

would probably be higher at a lower flow of e.g. 50 ml/s where the relation between VNO and VE is more 

nonlinear and the absolute measured ppb values are higher. However, as the linear models do not apply at 

such low flow rates we decided to use the flow rate of 100 ml/s in assessing methods’ degree of agreement 

with measured data. 

 

 Differences in NO parameters between the methods 
There were some statistically significant differences in the NO parameters between the methods but the 

differences were usually quite small. This is in line with previous reports [21,41]. As there is no gold standard to 

assess the NO parameters it is difficult to say which of the methods yields best estimates. 

The linear methods were quite well in line with each other as were the non-linear methods. The linear methods 

gave higher estimates for CANO and lower estimates for JawNO as compared with non-linear methods, but the 

Condorelli method gave smaller estimates for CANO and higher for JawNO. This is likely explained by the fact 

that the linear methods neglect the axial back-diffusion of NO from the conducting region into the alveolar 

region and our findings support this statement. The fact that the linear approximation of the governing 

equation of the two-compartment model is only an approximation and the relation between VNO and VE in T&G 

method and the relation between FENO and 1/VE in Pietropaoli method is not perfectly linear, may also explain 

our results as this causes a minor overestimation of CANO and underestimation of JawNO [29]. In all subject 

groups Silkoff method gave similar results with the Condorelli method for CANO. Silkoff method yielded lower 

estimates for CawNO and higher estimates for DawNO as compared to H&M. This probably reflects the 

difference in the mathematical procedure how these parameters are solved in each of the methods. 



 Differences in NO parameters obtained using different flow rates 
We found differences in NO parameters obtained using different flow rates. This is in line with previous results 

that NO parameters vary with different used flow rates [31,32]. We found that the choice of flow rates had 

more impact on the results of the linear T&G method than of the non-linear H&M.  

 

 Strengths and limitations 
Our study has several strengths. We had a relatively large sample size, which provided us with statistical power. 

All measurements were performed by using the same NO analyzer within same research center, which possibly 

reduced variation. We had also four distinct subject groups, establishing the comparison of the feasibility of the 

methods in adults and children and healthy and diseased groups. 

However, our study also has weaknesses. Our study included only young children and older adults, lacking 

young adults. According to previous studies, the flow independent NO parameters vary with age and this may 

have affected our results [42]. Roy et al. [21]suggested standardizing the number of used flow rates as it 

significantly affects the NO parameter values. We decided not to standardize our used flow rates as our 

objective was more to determine whether the parameters can be calculated at all by accommodating the plots 

if measurement errors were encountered. However, this finding must be taken account as a possible source of 

error. Another limitation of our study is that we did not have a real-time validity check for the fit between 

measured NO data and the mathematical methods but only a check that repeatable FENO values are obtained 

at each flow rate. A real-time check of the agreement with mathematical models would probably improve the 

feasibility of H&M method especially as it uses only three flows (two flows at a time for each step of the 

mathematical process) and is vulnerable to measurement errors even at one flow. 

 

 Conclusion 
In conclusion, if the interest lies in differentiating central and peripheral NO sources and assessing JawNO and 

CANO, based on the current results we recommend using the linear methods, as low flow rates can be avoided 

and the feasibility of the methods is good. The difference between Tsoukias & George and Pietropaoli methods 

does not seem relevant. However, Condorelli method with correction for axial back-diffusion of NO differed 

from other linear methods and may not be applicable in subjects with obstruction. 

If CawNO and DawNO are of interest, we recommend using H&M method as only three flow rates are needed. 

However, due to its vulnerability, we recommend assessing the agreement between the model and measured 

data in real-time to ensure the quality of measurements, as the extreme flow rates are observed to be 



problematic to some subjects. If the subject has difficulties with the extremely low or high flow rates, we then 

recommend using the Silkoff method to improve feasibility. However, more flow rates and FENO 

measurements are then needed and the agreement between the model and the data may be poorer. 
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7. Supplementary tables 
Supplementary Table 1. Comparison of the methods' degree of agreement with measured data. 

 
Absolute values (ppb) of the difference between 

measured and calculated FENO-values at 100 ml/s 

 
p-values 

 T&G Pietropaoli Condorelli Silkoff H&M 
 Silkoff-

H&M 

Silkoff-

T&G 

Silkoff-

Pietropaoli 

H&M-

T&G 

H&M-

Pietropaoli 

T&G-

Pietropaoli 

      
 T&G-

Condorelli 

Pietropaoli-

Condorelli 

Silkoff-

Condorelli 

H&M-

Condorelli 
  

Healthy adults             

Median 0,42 0,08 0,17 0,49 0,03  0,000 1,000 0,000 0,000 0,164 0,000 

IQR 1. - 3. 0,14 - 0,58 0,03 - 0,13 0,07 - 0,28 0,26 - 1,04 0,01 - 0,05  0,063 0,133 0,000 0,000   

Min 0,00 0,00 0,00 0,02 0,00        

Max 2,02 1,39 1,21 3,52 0,75        

             

Healthy 
children 

            

Median 0,13 0,03 0,08 0,28 0,01  0,000 1,000 0,000 0,000 0,041 0,000 

IQR 1. - 3. 0,07 - 0,23 0,02 - 0,06 0,04 - 0,15 0,09 - 0,46 0,00 - 0,02  0,278 0,022 0,136 0,000   

Min 0,00 0,00 0,00 0,01 0,00        

Max 0,50 0,16 0,37 1,06 0,09        

             

Asbestos 
exposure 

            

Median 0,24 0,06 0,17 0,46 0,02  0,000 0,941 0,000 0,000 0,243 0,000 

IQR 1. - 3. 0,10 - 0,41 0,02 - 0,09 0,07 - 0,28 0,20 - 0,84 0,01 - 0,04  0,735 0,000 0,005 0,000   

Min 0,02 0,00 0,00 0,02 0,00        

Max 0,96 0,20 0,63 5,88 0,16        

             

COPD             

Median 0,18 0,03 0,44 0,37 0,00  0,000 0,219 0,000 0,044 1,000 0,336 

IQR 1. - 3. 0,08 - 0,37 0,01 - 0,08 0,17 - 0,84 0,17 - 0,82 0,01 - 0,02  0,162 0,000 1,000 0,000   

Min 0,00 0,00 0,01 0,03 0,00        

Max 2,25 0,44 6,81 8,36 0,06        



   

 

Supplementary Table 2. Comparison of central and peripheral nitric oxide parameters obtained by using four different mathematical methods in healthy adults. 

 

Healthy Adults Parameter values  p-values 
 T&G Pietropaoli Condorelli Silkoff H&M Silkoff-

H&M 
Silkoff-

T&G 
Silkoff-

Pietropaoli 
H&M-
T&G 

H&M-
Pietropaoli 

T&G-
Pietropaoli 

            

      T&G-
Condorelli 

Pietropaoli
-

Condorelli 

Silkoff-
Condorelli 

H&M-
Condorelli 

  

 
    

 
      

DawNO (pl/s/ppb)      0,000      

Median    8,31 7,27       

IQR 1. - 3.    5,41 - 12,29 4,01 - 9,03       

Min    0,98 0,51       

Max    28,85 29,44       

            

CawNO (ppb)      0,000      

Median    119,10 152,15       

IQR 1. - 3.    88,12 - 177,36 107,26 - 296,20       

Min    26,95 36,04       

Max    535,91 859,18       

            

CANO (ppb)      0,077 0,000 0,000 0,000 0,001 0,196 

Median 3,02 2,74 2,18 1,82 2,38 0,000 0,000 1,000 0,830   

IQR 1. - 3. 2,46 - 3,88 2,27 - 3,37 1,64 - 3,11 1,11 - 2,53 2,00 - 2,98       

Min 0,98 1,03 0,17 0,06 0,65       

Max 6,16 6,45 5,43 4,77 4,38       

            

JawNO (pl/s)      1,000 0,000 0,000 0,000 0,001 0,532 

Median 806,67 859,08 1270,22 919,37 926,68 0,000 0,000 0,001 0,000   

IQR 1. - 3. 515,00 - 1010,00 583,28 - 1123,69 817,33 - 1602,67 764,97 - 1315,98 726,52 - 1312,12       

Min 155,56 150,00 248,89 240,63 272,85       

Max 3656,67 3517,74 3813,33 4262,83 3850,70       



   

 

Supplementary Table 3.  Comparison of central and peripheral nitric oxide parameters obtained by using four different mathematical methods in healthy children.  

 

  

Healthy children Parameter values  p-values 
 T&G Pietropaoli Condorelli Silkoff H&M Silkoff-

H&M 
Silkoff-
T&G 

Silkoff-
Pietropaoli 

H&M-
T&G 

H&M-
Pietropaoli 

T&G-
Pietropaoli  

           
 

     T&G-
Condorelli 

Pietropaoli-
Condorelli 

Silkoff-
Condorelli 

H&M-
Condorelli 

  
 

           

DawNO ( pl/s/ppb)      0,000      

Median    8,56 6,49       

IQR 1. - 3.    4,75 - 14,42 3,48 - 11,67       

Min    0,28 0,86       

Max    35,47 27,14        
           

CawNO (ppb)      0,000      

Median    53,60 57,28       

IQR 1. - 3.    34,53 - 103,43 40,83 - 131,78       

Min    15,01 17,91       

Max    596,29 727,88        
           

CANO (ppb)      0,000 0,000 0,000 0,007 1,000 0,002 

Median 2,18 2,16 1,85 1,70 2,13 0,000 0,000 1,000 0,000   

IQR 1. - 3. 1,90 - 2,89 1,84 - 2,66 1,56 - 2,53 1,30 - 2,28 1,79 - 2,50       

Min 0,90 0,96 0,80 0,58 0,41       

Max 4,45 4,74 3,53 3,59 4,36        
           

JawNO (pl/s)      0,034 0,000 0,000 0,000 0,532 0,278 

Median 336,67 378,46 533,33 445,66 449,84 0,000 0,000 0,014 0,000   

IQR 1. - 3. 246,67 - 580,00 275,77 - 602,31 394,67 - 928,00 326,98 - 682,70 301,48 - 651,88       

Min 80,00 71,54 128,00 164,52 122,38       

Max 1386,67 1375,38 1610,67 1227,00 1597,65       



   

 

Supplementary Table 4. Comparison of central and peripheral nitric oxide parameters obtained by using four different methods in subjects with a previous asbestos exposure. 

 

 

 

Asbestos exposure Parameter values  p-values 
 T&G Pietropaoli Condorelli Silkoff H&M Silkoff-

H&M 
Silkoff-

T&G 
Silkoff-

Pietropaoli 
H&M-
T&G 

H&M-
Pietropaoli 

T&G-
Pietropaoli  

            
     T&G-

Condorelli 
Pietropaoli-
Condorelli 

Silkoff-
Condorelli 

H&M-
Condorelli 

  
     

 
      

DawNO ( pl/s/ppb)      0,000      

Median    9,87 7,88       

IQR 1. - 3.    6,36 - 14,58 4,37 - 12,88       

Min    0,85 1,05       

Max    69,47 57,25        
           

CawNO (ppb)      0,000      

Median    88,66 101,21       

IQR 1. - 3.    54,05 - 155,00 62,85 - 178,45       

Min    18,71 17,41       

Max    392,88 773,61        
           

CANO (ppb)      0,130 0,000 0,000 0,000 0,032 0,047 

Median 2,71 2,57 2,15 1,77 2,25 0,000 0,000 1,000 0,003   

IQR 1. - 3. 2,06 - 3,47 1,91 - 3,09 1,46 - 2,85 1,17 - 2,59 1,64 - 2,92       

Min 0,73 0,76 0,37 0,26 0,57       

Max 5,84 5,67 5,17 6,57 6,24        
           

JawNO (pl/s)      1,000 0,000 0,000 0,000 0,000 0,209 

Median 623,33 675,08 997,33 823,93 766,53 0,000 0,000 0,000 0,000   

IQR 1. - 3. 418,89 - 890,56 455,38 - 903,08 697,56 - 1464,00 601,31 - 1104,46 602,97 - 1085,62       

Min 186,67 229,74 298,67 283,53 250,63       

Max 1936,67 1955,90 3098,67 2729,35 2317,39       



   

 

 

Supplementary Table 5. Comparison of central and peripheral nitric oxide parameters obtained by using four different methods in subjects with COPD. 

 

 

COPD Parameter values  p-values 
 T&G Pietropaoli Condorelli Silkoff H&M Silkoff-

H&M 
Silkoff-
T&G 

Silkoff-
Pietropaoli 

H&M-
T&G 

H&M-
Pietropaoli 

T&G-
Pietropaoli 

            

      T&G-
Condorelli 

Pietropaoli-
Condorelli 

Silkoff-
Condorelli 

H&M-
Condorelli 

  

     
 

      

DawNO ( pl/s/ppb)      0,011      

Median    5,41 3,09       

IQR 1. - 3.    3,02 - 10,77 1,70 - 13,16       

Min    0,62 0,47       

Max    41,88 58,59       

            

CawNO (ppb)      0,011      

Median    64,68 101,82       

IQR 1. - 3.    32,22 - 194,33 34,47 - 314,42       

Min    6,36 5,95       

Max    858,49 931,30       

            

CANO (ppb)      1,000 0,000 0,003 0,000 0,006 1,000 

Median 3,04 3,20 2,85 1,85 2,23 0,162 1,000 0,139 0,253   

IQR 1. - 3. 2,39 - 4,01 2,22 - 4,00 2,21 - 4,02 1,31 - 2,51 1,48 - 2,71       

Min 1,40 1,50 1,08 0,18 0,70       

Max 8,32 8,73 9,53 7,83 6,46       

            

JawNO (pl/s)      0,442 0,000 0,002 0,062 0,831 1,000 

Median 333,33 368,46 396,67 386,21 400,42 0,000 0,000 1,000 0,139   

IQR 1. - 3. 145,56 - 416,11 266,85 - 480,92 181,50 - 656,00 222,54 - 612,14 224,03 - 629,95       

Min -100,00 46,15 -170,00 76,83 81,98       

Max 2113,33 2220,72 3381,33 4218,63 2462,62       
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