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Abstract 

Ageing of the human immune system, or immunosenescence, is characterised by distinct changes in the 

proportion  of  the  various  cell  types,  e.g.,  increase  of  the  CD14+  monocytic  cells,  decrease  of  CD19+  B  

lymphocytes, and changes in T cell subpopulations, namely increase of CD4+ and CD8+ cells which have lost 

the costimulatory CD28 antigen. Currently, it is believed that the lifelong antigenic burden may be one of the 

inducers of immunosenescence.  Thus far, only one exogenous stimulus, cytomegalovirus infection, has 

shown to be a major factor in this respect. To find other possible candidates, we evaluated the role of the 

evolutionary youngest group of human endogenous retroviruses, namely HERV-K(HML-2), on 

immunosenescence. HERVs exist in the genome as proviruses, but their activation has been detected in 

several immunopathologic conditions. The expression of HERV-K(HML-2) env was observed to be lower in 

the peripheral blood mononuclear cells of nonagenarians (n = 61) than in those of young controls (n= 37). 

These  mRNA  levels  did  not  correlate  with  the  age-associated  differences  in  the  proportions  of  CD14+,  

CD4+CD28- and CD8+CD28- cells, but in the case of CD19+ B cells a strong positive correlation was observed 

in the nonagenarians. Thus, these data suggest that HERVs do not function as antigenic drivers of 

immunosenescence. On the contrary, expression of HERV-K(HML-2) env is associated with more youthful 

levels of B cells. 
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Introduction 

The ageing-associated changes in the immune system have been extensively characterised during the last 

few decades (reviewed in Lang et al. 2013, Goronzy et al. 2013). The hallmarks of immunosenescence are the 

decreased number of naïve T cells and accumulation of late-stage memory T cells. In the B cell compartment, 

this decline of naïve cells is also detectable. Ageing is also associated with low-level increase in inflammatory 

mediators, termed inflamm-aging (reviewed in Franceschi et al. 2014). At the cellular level, one important 

question has yet to be answered: is immunosenescence an intrinsic ageing process or an adaptive response 

to an individual pathogen exposure? Thus far, only one pathogen, human cytomegalovirus (CMV), seems to 

fulfill the criteria of an extrinsic antigen. CMV infection takes place usually in early childhood and the virus 

remains in a latent form in the body. In elderly individuals, the seropositivity rate is 70-100%. The associations 

between CMV seropositivity and the ageing-associated changes in the various cell types and functions of the 

immune system have been extensively demonstrated (reviewed in Söderberg-Naucler et al. 2016, 

Weltevrede et al. 2016). However, ageing is associated with changes in the function and composition of the 

immune system also in CMV seronegative individuals (Di Benedetto et al., 2015). In addition, with genome-

wide transcriptomic analysis we have identified ageing-associated changes in the immune system in both 

CMV seronegative and CMV seropositive individuals and have demonstrated that the identified changes 

differ between CMV seronegative and seropositive individuals (Kuparinen et al., 2013). These results suggest 

that CMV is only partially responsible for the induction of immunosenescence. 

In this study, we analyse the role of an additional virus group, i.e., the human endogenous retroviruses 

(HERVs) in immunosenescence. HERVs are remnants of ancient infections and have remained in the human 

genome as proviruses, comprising about 8% of the genome (Magiorkinis et al. 2013). Previous research show 

that these proviruses, including the evolutionary youngest ones, the HERV-K(HML-2) group members, can be 

expressed in several pathological conditions, e.g., in autoimmune diseases such as rheumatoid arthritis, 

multiple sclerosis and systemic lupus erythematosus (as reviewed in Magiorkinis et al. 2013). However, no 

direct causal mechanism has been demonstrated between HERVs and pathological conditions. For instance, 

no reports show that HERVs have retrotransposonal capacity, and the possible pathogenic effects are thought 

to be mediated via viral RNA and protein (reviewed in Suntsova et al., 2015). In addition, HERV sequences in 

the genome may function as regulatory elements and, thus, modify the expression of nearby genes 

(Magiorkinis et al. 2013, Volkman & Stetson 2014). In this study, we investigate whether the HERV-K(HML-2) 

RNA  could contribute to immunosenescence as shown in exogenous pathogens. 
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Materials and Methods 

The study population consist of 61 nonagenarians born in 1920 (21 males, 40 females) and 37 young controls 

(healthy laboratory personnel, aged 19-34 years, 12 males, 25 females), who participated in the Vitality 90+ 

study in 2014.  The Vitality 90+ study is an ongoing, prospective, population-based study that includes both 

home dwelling and institutionalized individuals who are 90 years of age or older, and who live in the city of 

Tampere, Finland. The recruitment and characterisation of the participants were performed as has been 

reported previously (Goebeler et al. 2003). The study subjects were all of Western European descent and had 

not had previous infections or received any vaccinations in the 30 days prior to the blood sample collection. 

The study participants provided their written and informed consent to participate in the study. This study 

was conducted according to the principles expressed in the declaration of Helsinki. The study protocol was 

approved by the ethics committee of the city of Tampere (1592/403/1996).  

Blood samples from nonagenarians were collected by a trained laboratory technician during a home visit and 

the samples from young controls were collected by a trained laboratory technician in the laboratory facilities. 

All blood samples were drawn between 8 am and 12 am and collected into EDTA containing tubes. Samples 

were directly subjected to leucocyte separation on a Ficoll-Paque density gradient (Ficoll-Paque™ Premium, 

cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The plasma layer was collected and 

stored at -70 °C. The PBMC layer was collected and cells used for RNA extraction were suspended in 150 µl 

of RNAlater solution (Ambion Inc., Austin, TX, USA). Cells used for FACS analysis were suspended in 1 ml of a 

freezing solution (5/8 FBS, 2/8 RPMI-160 medium, 1/8 DMSO) (FBS cat. no. F7524, Sigma-Aldrich, MO, USA; 

RPMI:  cat.  no.  R0883,  Sigma-Aldrich,  MO,  USA;  DMSO:  cat.  no.  1.02931.0500,  VWR,  Espoo,  Finland)  and  

stored in liquid nitrogen. 

The anti-CMV IgG titre was measured using a commercial enzyme-linked immunosorbent assay kit 

(Enzygnost® Anti-CMV/IgG, Siemens Healthcare Diagnostics Products GmbH, Marburg, Germany). 

Seropositivity for CMV was defined according to the manufacturer’s instructions as a plasma anti-CMV IgG 

titre 230 U/ml. The plasma C-reactive protein (CRP) concentration was measured using Human CRP 

Immunoassay (Quantikine ELISA, R&D Systems, Minneapolis, MN, USA). 

The proportions of different leukocyte subtypes were determined using fluorescence-activated cell sorting 

analysis (FACS; BD FACSCanto II). The results were analysed with FlowJo software (Tree Star Inc., Ashland, 

OR, USA). The antibodies used were FITC-CD14 (cat. no. 11-0149), PerCP-Cy5.5-CD3 (45-0037), APC-CD28 (17-

0289), PE-CD19 (12-0199) (eBioscience, San Diego, CA, USA), PE-Cy™7-CD4 (cat. no. 557852), and APC-Cy™7-

CD8 (557834) (BD Biosciences). Staining was performed in phosphate-buffered saline (PBS) containing 1% 

foetal bovine serum (FBS) after an incubation step with Fc Receptor Binding Inhibitor (cat. no 16-9161, 

eBioscience) to minimise non-specific staining of the cells. 
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RNA was purified using RNeasy mini kit (Qiagen, CA, USA) according to manufacturer’s protocol with on-

column DNA digestion (Qiagen). The concentration and quality of the RNA were assessed with a NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 300 ng of RNA was reverse 

transcribed to cDNA with High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, CA, USA). The 

qPCR  was  performed  with  PowerUp  SYBR  Green  Master  Mix  (Applied  Biosystems,  MA,  USA)  in  7900HT  

(Applied Biosystems). Primers (Invitrogen) were used in 500 nM concentration with 6 ng of template per 20 

l reaction. Primers used for HERV-K(HML-2) env; forward CTAACCATGTCCCAGTGATG and reverse 

GGAGACAGACTCATGAGCTTAGAA (Bhardwaj et al., 2014). GUSB was used as an endogenous control; primers 

forward TGCAGGTGATGGAAGAAGTG and reverse TTGCTCACAAAGGTCACAGG (Beer et al, 2015). The PCR 

reactions were run as 2’ in 50 °C, 2’ in 95 °C and 40 cycles of 15’’ in 95 °C, 15’’ in 57 °C, and 1’ in 72 °C. All 

samples were run in triplicate. Expression level is expressed as Ct value, calculated as Ct(env)-Ct(GUSB). As 

a higher Ct value indicates lower expression level, and the expression level of GUSB is higher than that of 

HERV-K(HML-2) env, Ct(env) is high for low expression levels and vice versa. 

 

Results 

The age-associated differences in the proportions of the various immune cells in our study population were 

similar to those reported previously in the literature. The proportion of CD14+ monocytic cells, CD4+CD28-, 

and  CD8+CD28-  T  cells  were  increased  and  the  proportion  of  CD19+  B  cells  were  decreased  in  the  

nonagenarians as compared to the young controls (Table 1). HERV-K(HML-2) activity was analysed using the 

expression of env. This expression was detectable in both nonagenarians and young controls, but the 

expression was slightly higher in the young controls (Table 1). To analyse the biological significance of HERV-

K(HML-2) env expression, the expression levels were correlated with the cell type proportions. In 

nonagenarians, the expression of HERV-K(HML-2) env was correlated with the proportion of CD19+ B cells, 

with higher expression level associated with higher proportion of B cells (Table 2). The proportions of other 

measured cell types were not associated with expression of HERV-K(HML-2) env in nonagenarians. In the 

young controls HERV-K(HML-2) env expression was not associated with the proportions of any measured cell 

type (Table 2). 

To analyse the role of HERV-K(HML-2) env in inflamm-aging, the expression level was correlated with the 

plasma level of CRP. However, no association was found in the nonagenarians (Spearman’s = -0.100, p= 

0.446) or in the young controls (Spearman’s = -0.129, p= 0.446).  The association of expression level of HERV-

K(HML-2) env and anti-CMV IgG titer was also analysed, but no association was found among the 

nonagenarians (Spearman’s = 0.012, p= 0.926) or in young controls (Spearman’s = -0.017, p= 0.918). 
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Discussion 

Our data reveal that the expression of HERV-K(HML-2) env is decreased in nonagenarians as compared to 

young controls. In addition, the expression of HERV-K(HML-2) env is not associated with classical cellular 

markers of immunosenescence. Thus, HERV-K(HML-2) env expression does not contribute to 

immunosensescence. However, HERV-K(HML-2) env expression correlated positively with the percentage of 

the CD19+ B cells in nonagenarians. 

To the best of our knowledge, age-associated differences in HERV-K(HML-2) expression have not been 

reported in the literature previously. However, Balestrieri et al. (2015) analysed the ageing-associated 

expression differences in the whole HERV-K group. Contrary to our results, they show that children aged 

under 12 years have lower expression levels of HERV-K, but in adulthood there are no significant changes in 

HERV-K expression. As HERV-K(HML-2) is only one of the ten HERV-K HML groups, it appears that different 

HML groups are expressed independently of each other. 

Changes in HERV expression have been reported in various diseases, including various cancers, rheumatoid 

arthritis, multiple sclerosis and in HIV infected patients. Contrary to ageing, these conditions are associated 

with  increased  expression  of  HERVs  (reviewed  in  Magiorkinis  et  al.,  2013).  Also,  the  difference  in  HERV-

K(HML-2) env expression between nonagenarians and young controls was modest compared to some of the 

reported differences in HERV expression between diseased individuals and healthy controls (Freimanis et al., 

2010; Morandi et al., 2017). 

The observed positive association between HERV-K(HML-2) env and B cells may be connected to the recent 

findings in Zeng et al. (2015). They observed that, in mice, B cell receptor crosslinking by T-cell independent 

antigens activates a signaling cascade, involving NF- B, that leads to transcription of retroviral RNA and 

further to B cell activation and differentiation. HERV-K(HML-2) transcription was also shown to be 

upregulated by B cell receptor signaling in human B cells in vitro (Zeng et al., 2015). Thus, it may be that this 

positive or immunostimulatory effect of HERV-K(HML-2) is related to increased survival or proliferation of B 

cells in elderly individuals. We have shown that both IgG and IgA serum levels are significantly increased in 

nonagenarians as compared to those of middle-aged controls (Hurme et al. 2005). It is also possible that 

HERV-K(HML-2) env is predominantly expressed in B cells or in some B cell subpopulation. 

Previous reports show an association between HERV expression and the inflammatory response, i.e., it is 

likely that increased production of HERV nucleic acids is able to activate inflammation (reviewed in Volkman 

& Stetson, 2014). Although increased inflammation, i.e., inflamm-aging (reviewed in Franceschi et al. 2014) 

is one of the hallmarks of ageing, our results suggest that HERV-K(HML-2) env expression does not contribute 

to this phenomenon, as env mRNA levels were not associated with percentage of CD14+ cells (Table 2) or 

levels of CRP. 
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Previous report shows that CMV is able to induce expression of HERVs, including HERV-K(HML-2), in cultured 

cancerous and normal cell lines as well as monocytes derived from healthy individuals (Assinger et al., 2013). 

However, we did not observe an association between anti-CMV IgG titer and HERV-K(HML-2) expression, 

suggesting that the reported effects of CMV on immunosenescence (reviewed in Söderberg-Naucler et al. 

2016, Weltevrede et al. 2016) are not mediated via HERV-K(HML-2) env expression. 

Expression of HERV-K(HML-2) env was used as an indicator of HERV-K(HML-2) activation. The primers used 

in this study amplify the env sequence of 30 HERV-K(HML-2) group members, yet there are over 90 HERV-

K(HML-2) proviruses in the human genome (Subramanian et al., 2011). Although the env sequences of some 

of these proviruses are degraded, we cannot exclude that there might be additional HERV-K(HML-2) env 

expression not detected in our study. It remains to be understood whether the different members of the 

HERV-K(HML-2) group could have different effects on the immune system, depending on the proviral 

sequence or the location of the provirus in the genome. In addition, it is still not well understood how the 

amount of HERV-K(HML-2) env mRNA corresponds to the amount of env protein. 
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Table 1.  Median and interquartile range of HERV-K(HML-2) env expression and cell type proportion of 

PBMCs from nonagenarians (n=61) and young controls (n=37). HERV-K(HML-2) env expression is presented 

as Ct value and cell type distributions are presented as percentages. 

 Nonagenarians Young controls 
Mann-Whitney U-

test p-value 
HERV-K(HML-2) env  2.88 (2.64 - 3.19) 2.39 (2.18 – 2.69) <0.001 
CD14+a 9.28 (2.51 - 14.85) 5.03 (1.82 – 10.50) 0.031 
CD19+a 2.36 (1.56 - 4.51) 6.18 (4.52 – 8.90) <0.001 
CD3+a 60.90 (50.75 - 67.70) 65.40 (58.10 – 69.10) 0.087 
CD4+b 53.50 (46.20 - 68.25) 57.60 (53.55 – 62.45) 0.695 
CD8+b 29.70 (21.45  - 43.65) 30.30 (26.75 – 35.45) 0.725 
CD4+CD28-c 17.20 (7.10– 33.20) 1.50 (0.95 – 4.25) <0.001 
CD8+CD28-d 75.00 (62.20 – 82.15) 32.00 (21.65 – 41.60) <0.001 

apercentage of live cells 
bpercentage of CD3+ cells 
cpercentage of all CD4+ cells 
dpercentage of all CD8+ cells 
 

Table 2.  Correlation between the HERV-K(HML-2) env expression and proportions of different immune 

system cell types. As a smaller Ct value represents higher expression level, the negative correlation 

between the proportion of CD19+ cells and HERV-K(HML-2) env expression indicates that higher proportion 

of CD19+ B cells is associated with higher level of HERV-K(HML-2) env expression. 

 Nonagenarians Young controls 

 Spearman's  p-value Spearman's  p-value 
CD14+a 0.156 0.229 0.067 0.692 
CD19+a -0.334 0.009 -0.188 0.264 
CD3+a 0.036 0.782 -0.265 0.113 
CD4+b -0.022 0.866 -0.079 0.642 
CD8+b -0.025 0.848 -0.085 0.618 
CD4+CD28-c 0.209 0.106 0.088 0.605 
CD8+CD28-d 0.072 0.581 0.188 0.265 

apercentage of live cells 
bpercentage of CD3+ cells 
cpercentage of all CD4+ cells 
dpercentage of all CD8+ cells 
 


