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Abstract

Background: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of
immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control
is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based
cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up.

Results: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity,
viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex
patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids,
small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules
with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module
enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function
show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their
constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in
ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus.

Conclusions: This study provides a detailed map of natural variation at the blood immunometabolic interface and its
genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.

Background
Over the past decade increasing evidence has implicated
inflammation as a probable causal factor in metabolic and
cardiovascular diseases. Consequently, research has begun
to focus on the interplay between immunity and metabol-
ism, or immunometabolism. While it is involved in diverse
pathophysiologies, immunometabolism is particularly
relevant to diseases of immense global health burden, such
as type 2 diabetes (T2D) and atherosclerosis.

For T2D, immune overactivation in adipose tissue has
been implicated as a key driver [1, 2]. Studies have
shown that macrophage infiltration and subsequent
overexpression of proinflammatory cytokines, such as
TNF-α, in adipose tissues is associated with insulin re-
sistance [1, 2]. Moreover, evidence for metabolic inflam-
mation has been shown in other tissues where, in blood,
elevated glucose and free fatty acid levels potentiate IL-
1β-mediated destruction of pancreatic ß cells and subse-
quent T2D progression [3–5]. While circulating metabo-
lites are known to be associated with cardiovascular
disease [6], inflammation is an increasingly recognized
factor in pathogenesis. In atherosclerosis, lipid-induced
inflammatory response mechanisms have also been
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implicated in progression to myocardial infarction [7]. In
atherogenic lesions, oxidized phospholipids are known
to lead to a new macrophage phenotype [8], and choles-
terol loading in macrophages promotes proinflammatory
cytokine secretion [9].
Perhaps surprisingly, few large-scale studies have sys-

tematically assessed interactions between the human im-
mune system and metabolites. Recent studies have
investigated matched blood transcriptomic and metabo-
lomic profiles to understand their interplay [10–16].
However, these studies had modest sample sizes and
thus have not had the power to focus on the diverse
range of immune processes that interact with circulating
metabolites. Furthermore, even fewer have assessed ef-
fects of expression quantitative trait loci (eQTLs) on
immune gene networks. A robust integrated map of
immunometabolic relationships and their genetic regula-
tion would provide a foundation for investigating the dif-
ferential cardiometabolic disease susceptibility amongst
individuals while also identifying key target interactions
for mechanistic in vivo and in vitro follow-up.
In this study, we present an integrated immunometa-

bolic map using matched blood metabolomic and tran-
scriptomic profiles from 2168 individuals from two
population-based cohorts. We perform gene coexpres-
sion network discovery and cross-cohort replication to
identify robust gene modules which encode immune-
related functions. Using a high-throughput quantitative
NMR metabolomics platform that can separate lipids
and lipoprotein sub-fractions as well as quantify a panel
of polar metabolites, we identify significant interactions
between immune gene modules and circulating metabol-
ite measures. Genome-wide scans for QTLs affecting im-
mune gene modules identify many cis and trans loci
affecting module expression. Finally, we test the long-
term stability of gene modules, their interactions with
metabolite measures, and genetic control using a 7-year
follow-up sampling of 333 individuals.

Results and discussion
Summary of cohorts and data
We analyzed genome-wide genotype, whole blood tran-
scriptomic, and serum metabolomics data from two
population-based cohorts (“Methods” and Fig. 1). In
DILGOM07, 240 males and 278 females aged 25–74
years were recruited (total N = 518). Data were available
for a subset of 333 participants from DILGOM07 who
were followed up after 7 years (DILGOM14). In YFS,
relevant data were available for 755 males and 895 fe-
males aged 34–49 years (total N = 1650).
DILGOM and YFS genotyping was performed using

Illumina Human 610 and 670 arrays, respectively, with
subsequent genotype imputation performed using IM-
PUTE2 [17] and the 1000 Genomes Phase I version 3

reference panel. For both cohorts, whole blood tran-
scriptome profiling was performed using Illumina HT-12
arrays and serum metabolomics profiling was carried
out using the same serum NMR metabolomics platform
(Brainshake Ltd) [18]. Individuals on lipid-lowering
medication and pregnant women were excluded from
the metabolome analyses (“Methods”). Of the 159 me-
tabolite measures analyzed, 148 were directly quantified
and 11 derived (Additional file 1: Table S1). After filter-
ing, matched transcriptome and metabolome data were
available for 440 individuals in DILGOM07 and 216 of
these individuals (DILGOM14) who were profiled at 7-
year follow-up. In YFS, 1575 individuals were available
with similar data (see “Methods” for details).

Robust immune gene coexpression networks from blood
We first identified networks of tightly coexpressing
genes in DILGOM07 and then used a permutation ap-
proach, NetRep [19], to statistically test replication pat-
terns of density and connectivity for these networks in
YFS. For module detection, we applied weighted gene
coexpression network analysis (WGCNA) to all 35,422
probes in the DILGOM07 data, identifying a total of 40
modules of coexpressed genes (“Methods”). For each
module, we used NetRep to calculate seven preservation
statistics in the YFS, generate empirical null distributions
for each of these test statistics, and calculate their corre-
sponding P values [19, 20]. A module was considered
strongly preserved if the P value was <0.001 for all seven
preservation statistics (Bonferroni correction for 40
modules). Of the 40 DILGOM07 modules, 20 were
strongly preserved in YFS (Additional file 2: Table S2).
For each of the 20 replicated modules, we defined core
gene probes, those which are most tightly coexpressed
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and thus robust to clustering parameters, using a
permutation test of module membership (“Methods”;
Additional file 3: Table S3).
To identify modules of putative immune function, we

carried out Gene Ontology (GO) biological process en-
richment analysis using GOrilla for the core genes of
each replicated module [21]. Significant GO terms (false
discovery rate (FDR) <0.05) were then summarized into
representative terms based on semantic similarity using
REVIGO [22] (Additional file 4: Figure S1). A module
was considered immune-related if it was significantly
enriched for GO terms “immune system processes”
(GO:0002376) and/or “regulation of immune system
processes” (GO:0002682) in the REVIGO output. Six out
of 20 modules were enriched for at least one of these
terms (Additional file 5: Table S4). We also identified
two additional modules which were not enriched for any
GO terms but have been previously linked to immune
functions related to mast cell and basophil function [13]
and platelet aggregation activity [23]. The eight modules
encoded diverse immune functions, including cytotoxic,
viral response, B cell, platelet, neutrophil, mast cell/baso-
phil, and general immune-related functions. Each

immune module’s gene content and putative biological
function is summarized in Table 1.

Immune module association analysis for eQTLs and
metabolite measures
For each gene module, we performed a genome-wide
scan to identify module QTLs (mQTLs) that regulate ex-
pression. In DILGOM07 and YFS, the module eigengene
was regressed on each SNP, then mQTL test statistics
were combined in a meta-analysis (“Methods”). Signifi-
cant mQTLs were further examined at individual gene
expression levels. A genome-wide significance level (P
value <5 × 10−8) was used to identify mQTLs and signifi-
cant trans effects on individual gene expression (Fig. 2
and Table 2). Leukocyte and platelet counts were avail-
able for YFS and were used to test the robustness of
module associations with mQTLs and metabolite mea-
sures. Six modules showed statistically significant associ-
ation with platelet or leukocyte counts (P value <0.05)
(Additional file 6: Table S5); however, adjustment for
leukocyte counts did not affect mQTL nor module-
metabolite measure associations, with the exception of
the platelet module (PM) and cytotoxic cell-like module

Table 1 Immune module gene content and putative biological function based on GO terms (top three shown) and literature

Module Size GO terms Literature-based immune-related function of genes

Cytotoxic cell-like
module (CCLM)

130
(115)

Immune system process
Defense response
Immune response

Cytotoxic effectors (GZMA, GZMB, GZMM, CTSW, PRF1 [66]); surface receptors
(IL2RB, SLAMF6, CD8A, CD8B, CD2, CD247, KLRD1, KLRG1 [66–68]); T and NK cell
differentiation (ID2 and EOMES [69, 70]), activation (ZAP70 and CBLB [71, 72]),
and recruitment (CX3CR1, CCL5, CCL4L2 [73])

Viral response
module (VRM)

95
(88)

Response to virus
Type I interferon signaling pathway
Response to biotic stimulus

Type I interferon-induced antiviral activity (IFITM1, IFIT1, IFIT2, IFIT3, IFIT5, IFI44,
IFI44L, IFI6, MX1, ISG15, ISG20, HERC5 [74, 75]); viral RNA degradation (OAS1,
OAS2, OAS3, OASL, DDX60 [30]); type 1 interferon-signaling pathway (IRF9,
STAT1, STAT2 [76, 77])

B-cell activity module
(BCM)

54
(49)

Immune system process
Immune response
B cell activation

B cell surface markers (CD79A, CD79B, CD22 [33, 78]); B cell activation (BANK1,
BTLA, CD40, TNFRSF13B, TNFRSF13C [79]), development (POU2AF1, BCL11A,
RASGRP3 [80]), migration (CXCR5, CCR6 [80, 81]), and their regulation (CD83,
FCER2, FCRL5 [82]); antigen presentation (HLA-DOA, HLA-DOB [83])

Platelet module

(PM)a

114
(106)

Coagulation
Blood coagulation
Cell activation

Platelet receptor signaling, activation, and coagulation (GP6, GP9, ITGA2B,
ITGB3, ITGB5, MGLL, MPL, MMRN1, PTK2, VCL, THBS1, F13A1, VWF, [84]);
regulating platelet activity (SEPT5, TSPAN9 [85, 86])

Neutrophil module
(NM)a

26
(26)

Killing of cells of other organism
Cell killing
Response to fungus

Anti-microbial, -fungal, and -viral activity (DEFA1, DEFA1B, DEFA3, DEFA4,
ELANE, BPI, RNASE2, RNASE3 [87–90]); neutrophil-mediated activity (AZU1,
LCN2, MPO, CEACAM6, CEACAM8, OLFM4 [90, 91]) and its regulation (LCN2,
CAMP, OLR1 [49, 92, 93])

Lipid-leukocyte
module (LLM)a

13
(13)

Mast cell and basophil functionb Mast cell and basophil related immune response and allergic inflammation
(FCER1A, HDC, GATA2, SLC45A3, CPA3, MS4A3 [13, 94, 95])

General immune
module A (GIMA)

509
(482)

Immune system process
Defense response
Regulation of response to stimulus

These modules contain genes involved in a broad range of immune
processes and their regulation such as signaling; cell death; defense response
to stress, inflammation, and external stimuli; leukocyte activation, migration,
and adhesion

General immune
module B (GIMB)

74
(69)

Immune response-activating signal
transduction
Positive regulation of immune response
Activation of immune response

Size refers to the number of core genes in each module and the subset of these core genes with GO term annotations are listed in parentheses. Functions were
assigned to each of these modules based on GO enrichments and literature-based searches for genes in the modules.
a Modules previously reported to have immune related function
b The LLM was not significantly enriched for any GO term
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(CCLM) discussed below (Additional file 7: Table S6).
Since we did not have cell counts available for DIL-
GOM07, all the associations between immune modules
and metabolite measures discussed below, unless other-
wise noted, have not been adjusted for cell counts.

Cytotoxic cell-like module
CCLM was associated with 24 metabolite measures,
mainly consisting of fatty acids, intermediate density
lipoproteins, and C-reactive protein (CRP; Fig. 3;
Additional file 8: Table S7). Of these, the average degree

Fig. 2 Module and expression QTL analysis. a Manhattan plot of meta-analyzed P values from the DILGOM/YFS module QTL analysis. The lead
SNP and its closest genes are noted. Each significant mQTL locus is colored by module. The horizontal dashed line represents genome-wide (meta-
P value <5 × 10−8) significance. b–d Circular plots summarizing the individual gene associations (meta-P value <5 × 10−8) for the lead module
QTLs in the VRM, PM, and NM. Lead SNPs and cis genes are labeled outside the ring. PM platelet module, VRM viral response module, CCLM
cytotoxic cell-like module, NM neutrophil module, BCM B-cell activity module

Table 2 QTLs for immune gene modules

Module Top SNP Chr Hg19 pos.
(Mb)

Allele
(minor/major)

MAF
(avg)

P value
DILGOM07
(effect size)

P value
YFS
(effect size)

Meta
P value

VRM rs182710579 4 19768086 G/T 0.012 2.01 × 10–4 (0.05) 8.10 × 10–6 (0.02) 9.23 × 10–9

rs151234502 7 148950168 T/C 0.012 2.59 × 10–1 (0.01) 5.31 × 10–9 (0.03) 2.46 × 10–8

rs147742798 11 70947761 T/C 0.016 1.51 × 10–3 (0.04) 1.66 × 10–6 (0.02) 9.43 × 10–9

BCM rs2523489 6 31348878 T/C 0.186 1.42 × 10–1 (0.005) 5.29 × 10–8 (0.006) 6.27 × 10–8

PM rs1354034 3 56849749 T/C 0.284 7.11 × 10–14 (-0.02) 1.51 × 10–16 (-0.008) 7.35 × 10–28

rs28367734 6 3128657 A/G 0.108 5.40 × 10–4 (0.02) 2.02 × 10–5 (0.006) 5.44 × 10–8

NM rs2485364 6 159512260 C/T 0.466 1.78 × 10–3 (0.009) 6.05 × 10–7 (0.004) 3.93 × 10–9

rs13297295 9 131659724 C/T 0.085 4.26 × 10–2 (0.009) 8.39 × 10–11 (0.01) 3.93 × 10–11

rs140929198 20 38555870 A/G 0.031 2.98 × 10–2 (0.03) 8.47 × 10–9 (0.01) 1.41 × 10–9

GIMA rs2185366 8 131342722 T/C 0.421 2.0 × 10–2 (0.007) 1.52 × 10–6 (0.004) 1.05 × 10–7

Modules: VRM viral response module, BCM B-cell activity module, PM platelet module, NM neutrophil module, GIMA general immune module A. MAFminor allele frequency
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of unsaturation in fatty acids was the most significant
association (meta-P value = 7.23 × 10–7). The immuno-
modulatory effects of polyunsaturated fatty acids are
well characterized; for example, omega-3 fatty acids
have been shown to induce cytotoxicity in in vitro can-
cer cell lines as well as animal models of tumor inci-
dence and growth [24, 25]. Adjustment of the
associations between CCLM and metabolite measures
for leukocyte counts resulted in the gain of 38 add-
itional associations and loss of four (creatinine, ratio of
polyunsaturated fatty acids to total fatty acids, very low

density lipoprotein (VLDL) particle size, and CRP)
existing associations (Additional file 7: Table S6). Vary-
ing proportions of leukocyte counts can be correlated
with transcription-level variation in human blood [26]
but not act to confound the latter's association with
phenotypes. If this is the case, then adjusting for
leukocyte count in the linear regression analysis can re-
duce noise and thus boost statistical power to detect an
association, which may explain the additional associa-
tions noted with the CCLM module. CCLM had no sig-
nificant mQTLs.
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Viral response module
Three genome-wide significant mQTLs were identified
for the viral response module (VRM; Fig. 2a; Table 2).
The strongest mQTL, rs182710579 (meta-P value =
9.22 × 10–9), is within a known lincRNA locus (RP11-
608O21.1) (Additional file 4: Figure S2a). Rs182710579
was a trans eQTL for three genes in the VRM (Fig. 2b;
Additional file 9: Table S8). The strongest association
was seen with CCL2 (meta-P value = 6.78 × 10–12), a pro-
inflammatory chemokine involved in leukocyte recruit-
ment during viral infection [27, 28]. Also, adipocyte-
derived CCL2 is known to play an important role in
obesity-associated adipose tissue inflammation and
insulin resistance [29]. The next strongest mQTL,
rs151234502, resides within intron 4 of the relatively un-
studied ZNF212, part of a zinc finger gene cluster at
7q36 (Additional file 4: Figure S2b). Rs151234502 modu-
lated expression of 11 VRM genes in trans (Fig. 2b;
Additional file 9: Table S8). The strongest association
was with OAS2 (meta-P value = 8.98 × 10–10), an
interferon-induced gene encoding an enzyme promoting
RNase L-mediated cleavage of viral and cellular RNA
[30]. The third mQTL, rs147742798, was an intergenic
SNP located between SHANK2 and DHCR7 at 11q13.4
(Additional file 4: Figure S2c). Rs147742798 was a trans
eQTL for two genes in the VRM, BST2 and PARP9
(Fig. 2b; Additional file 9: Table S8). BST2 encodes a
trans-membrane protein with interferon-inducible anti-
viral function [31]. Studies have previously shown induc-
tion of fatty acid biosynthesis by a range of viruses [32].
VRM was associated with eight metabolite measures, in-
cluding amino acids (alanine, phenylalanine), fatty acids
(omega-6 fatty acids, polyunsaturated fatty acids, satu-
rated fatty acids, and total fatty acids), and cholesterol
esters in medium VLDL (Fig. 3; Additional file 8: Table
S7). Consistent with its putative role in viral response,
VRM was strongly associated with CRP (meta P value =
2.38 × 10–10).

B-cell activity module
The B-cell activity module (BCM) was associated with
14 metabolite measures including CRP, histidine, lactate,
apolipoprotiens, and mainly the medium high-density
lipoprotein (HDL) subclass of lipoproteins (Fig. 3;
Additional file 8: Table S7). The strongest association
was seen with CRP (meta-P value = 2.65 × 10–8). Histi-
dine was the second strongest association. This is inter-
esting given that histidine is a substrate for histamine,
and both histamine release and B-cell activity are central
parts of an allergic reaction. While no mQTLs for BCM
reached genome-wide significance, there was some evi-
dence in the YFS for the MHC class I locus (Fig. 2a and
Table 2). The top signal was located between HLA-B/C
and MICA (rs2523489, meta-P value = 6.27 × 10–8;

Additional file 4: Figure S3). The HLA class I region is well
known to be associated with autoimmune diseases, where
the role of B cells is well recognized. Rs2523489 was a
trans eQTL for CD79B (meta-P value = 1.16 × 10–9), a sub-
unit of the antigen-binding B-cell receptor complex [33].

Platelet module
PM had the strongest mQTL of any gene module, an in-
tronic SNP of the ARHGEF3 gene at 3p14.3 (rs1354034;
meta-P value = 7.35 × 10–28, Fig. 2a; Table 2; Additional
file 4: Figure S4a). ARHGEF3 encodes a Rho guanine nu-
cleotide exchange factor, a catalyst of Rho GTPase con-
version from inactive GDP-bound to active GTP-bound
form. Rs1354034 was an eQTL for the majority of genes
in the PM, all of which were in trans. An intergenic
SNP, rs2836773 (meta-P value = 5.4 × 10–8), at the HLA
locus was also identified as an mQTL for PM (Add-
itional file 4: Figure S4b). The ARHGEF3 mQTL
(rs1354034) exhibited a strong trans-regulatory effect
and was associated with 61 PM genes (65 unique probes)
(Fig. 2c; Additional file 9: Table S8). The top trans eQTL
was ITGB3 (meta-P value = 5.09 × 10–42), a gene encod-
ing the β3 subunit of the heterodimeric integrin receptor
(integrin αIIbβ3). This integrin receptor is most highly
expressed on activated platelets and plays a key role in
mediating platelet adhesion and aggregation upon bind-
ing to fibrinogen and Willebrand factor [34, 35]. Our
data are consistent with previous observations of the di-
verse trans eQTL effects of rs1354034 [23], including
the putative splice-QTL effects of rs1354034 on TPM4,
a significant eGene in the PM.
ARHGEF3 itself is of intense interest to platelet biol-

ogy. It has previously been shown that silencing of ARH-
GEF3 in zebrafish prevents thrombocyte formation [36].
To test whether ARHGEF3 expression had an effect on
PM genes, we regressed out ARHGEF3 levels and re-ran
the eQTL analysis. Adjusting for ARHGEF3 did not at-
tenuate the trans-associations of rs1354034, suggesting
either independence of downstream function for ARH-
GEF3 and rs1354034 or post-transcriptional modifica-
tion of ARHGEF3. Previous GWAS studies have shown
rs1354034 is associated with platelet count and mean
platelet volume [36]; however, perhaps due to power, we
found no significant relationship between platelet counts
and rs1354034 in YFS. While platelet counts were posi-
tively associated with the PM (β = 0.29; P value = 8.23 ×
10–30; Additional file 6: Table S5), the association be-
tween rs1354034 and the PM was still highly significant
when conditioning on platelet counts (β = −0.33; P value
= 1.40 × 10–17).
PM displayed diverse metabolic interactions and was

associated with 55 metabolite measures, largely compris-
ing of lipoprotein subclasses and fatty acids, as well as
CRP (Fig. 3; Additional file 8: Table S7). Cholesterol
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esters in small HDL particles were most strongly associ-
ated with the PM (meta-P value = 9.45 × 10–20). HDL has
been shown to exhibit antithrombotic properties by
modulating platelet activation and aggregation and the
coagulation pathway [37]. Also, various LDL subclasses
of lipoproteins were associated with the PM, which is
consistent with our understanding that LDL influences
platelet activity. For example, LDL has been shown to
influence platelet activity either by enhancing platelet re-
sponsiveness to aggregating stimuli or by inducing ag-
gregation [38, 39]. Moreover, LDL-specific binding sites
on platelets have also been reported [40, 41]. As noted
above, the PM was associated with platelet counts, and
adjustment for platelet counts in the YFS resulted in at-
tenuation of approximately half of the weakest associa-
tions between PM and metabolite measures; however,
the strongest were maintained (Additional file 7: Table
S6). Association with VLDL particle size and three
others were gained following the adjustment (Additional
file 7: Table S6).

Neutrophil module
Three loci were identified as mQTLs for the neutrophil
module (NM; Fig. 2a and Table 2). The top mQTL was
intronic to LRRC8A at 9q34.11 (rs13297295; meta-P
value = 3.93 × 10–11; Additional file 4: Figure S5a).
LRRC8A encodes a trans-membrane protein shown to
play a role in B- and T-cell development and T cell func-
tion [42, 43]. Two additional intergenic mQTLs were lo-
cated at the TAGAP locus at 6q25.3 (rs2485364; meta-P
value = 3.93 × 10–9) and at 20q12 (rs140929198; meta-P
value = 1.41 × 10–9) (Additional file 4: Figure S5b, c).
Rs13297295 was a strong trans regulator of NM and was
an eQTL for eight NM genes (ten unique probes), in
particular the major alpha defensins (DEFA1-DEFA4),
the genes of highest centrality in the module (Fig. 2d;
Additional file 9: Table S8). Rs13297295 was a cis-eQTL
for another core NM gene, LCN2 (permuted meta-P
value = 1 × 10–4) (Fig. 2d; Additional file 9: Table S8).
LCN2 is expressed in neutrophils and inducible by TLR
activation, acting as an antimicrobial agent via seques-
tration of bacterial siderophores to prevent iron uptake
[44–46]. LCN2’s role in acute phase response appears to
be related to cardiovascular diseases, such as heart fail-
ure [47]. At the TAGAP locus, rs2485364 was a trans-
eQTL for eight NM genes (ten probes) and was also a
strong driver of LCN2 (meta-P value = 9.11 × 10–17)
(Fig. 2d and Additional file 9: Table S8). Consistent with
our findings, neutrophils from LCN2-deficient mice have
been shown to have impaired chemotaxis and phagocytic
capability and increased susceptibility to bacterial and
yeast infections compared to wild type [48, 49]. This
suggests a possible functional role of TAGAP variants in
regulating neutrophil migration through LCN2.

NM was associated with 121 circulating metabolite
measures (~76% of all metabolite measures analyzed) as
well as CRP (Fig. 3; Additional file 8: Table S7). The
strongest is the previously reported association with in-
flammatory biomarker GlycA (meta-P value = 2.68 × 10–
25) [10]; however, NM’s association with various lipopro-
tein subclasses, particle sizes of lipoproteins, fatty acids,
cholesterol, apolipoproteins, glycerides and phospho-
lipids, amino acids, and other small molecules indicates
it has a potentially major role in linking neutrophil func-
tion to metabolism.

Lipid-leukocyte module
Together with NM, the lipid-leukocyte module (LLM)
showed extensive metabolic associations. Overall, 123
metabolite measures and CRP were associated with
LLM, with the strongest being the ratio of triglycerides
to phosphoglycerides (meta-P value = 5.16 × 10–138; Fig. 3;
Additional file 8: Table S7). With the inclusion of the
YFS, these findings strongly replicate previous associa-
tions between LLM and metabolite measures [14] as well
as detecting additional associations. We also confirm the
previous strong negative association between CRP and
LLM (meta-P value = 8.16 × 10–20). Consistent with pre-
vious studies, no mQTLs were detected for LLM.

General immune modules A and B
No mQTLs were associated with general immune mod-
ules A and B (GIMA and GIMB); however, these modules
were associated with 97 and 82 metabolite measures, re-
spectively (Fig. 3; Additional file 8: Table S7). Cholesterol
esters in small HDL and the mean diameter for VLDL
particles exhibited the strongest associations with GIMA
(meta-P value = 1.56 × 10–30) and GIMB (meta-P value =
1.83 × 10–15), respectively. The GIMA was also associated
with omega-3 fatty acid levels (meta-P value = 4.1 × 10–8)
and CRP (meta-P value = 5.7 × 10–5) while GIMB was not,
perhaps due to the subtly difference pathway enrichments
for each module (Table 1). Other metabolite measures as-
sociated with these two modules include mainly the VLDL
and HDL subclass of lipoproteins and fatty acids; due to
their large size and heterogeneous composition, however,
interpretation of metabolic relationships of GIMA and
GIMB is limited.

Long-term stability of interactions between metabolite
measures, immune gene modules, and mQTLs
The 216 individuals in both the DILGOM 2007 and
2014 follow-up allowed investigation of the long-term
stability of immunometabolic and mQTL relationships.
Across this seven-year period, the eight immune gene
coexpression networks were strongly preserved (all
preservation statistics’ permutation P values <0.001;
Additional file 10: Table S9). The metabolite–
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metabolite correlation structure was also largely con-
sistent between DIGOM07 and DILGOM14 (Additional
file 4: Figure S6).
Next, we examined how metabolite interactions with

immune gene modules changed over the 7-year time
period (“Methods”). The LLM–metabolite measure asso-
ciations were the most consistent over time with 90 and
79 metabolite measures reaching significance in DIL-
GOM07 and DILGOM14, respectively, of which 74 were
significant at both time points (Fig. 4a; Additional file
11: Table S10). The direction and effect size of LLM–
metabolite measure associations were largely maintained
(Fig. 4b). For the neutrophil module, the pyruvate asso-
ciation was significantly maintained over time; however,
there was some evidence that other expected associa-
tions with NM were stable over time, including GlycA
(Additional file 11: Table S10). While no associations
with metabolite measures were significantly maintained
for the platelet module, rs1354034 was a temporally
stable mQTL of PM (mQTL P value = 4.87 × 10–7). No
other mQTLs reached significance for temporal stability.
While we were powered to topologically replicate im-

mune modules between time-points, power to detect
module–metabolite associations and mQTLs was still
limited, with only the strongest associations reaching
significance. For the latter, the effect sizes for module as-
sociations were generally consistent between the time
points (Additional file 4: Figure S7), with the exception

of GIMB. With the particularly strong consistency of as-
sociations for the LLM and NM, it may be that smaller
modules, which capture more defined transcriptional
programs, are the most temporally stable in terms of
their phenotype associations. However, given the robust-
ness of these associations between independent cohorts,
we anticipate that, as long-term omics follow-up of
population-based cohorts increase in sample size, more
of these discovered associations will become statistically
significant over time.

Conclusions
This study has utilized over 2000 individuals to map the
immuno-metabolic crosstalk operating in circulation.
We have identified and characterized eight robust im-
mune gene modules, their genetic control, and interac-
tions with diverse metabolite measures, including many
of clinical significance (e.g., triglycerides, HDL, LDL,
branched-chain amino acids). Also, several significant
metabolite measures identified here, particularly
branched chain amino acids and fatty acids, have been
previously shown to be predictive of cardiovascular
events and the development of T2D [6, 50]. Further-
more, our findings are consistent with and build upon
those of previous studies. In addition to five newly iden-
tified gene modules, their mQTLs and metabolite inter-
actions, we have replicated the previously characterized
LL module and confirm its association with lipoprotein
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subclasses, lipids, fatty acids, and amino acids [13, 14].
Associations between the core genes in the LL module
and isoleucine, leucine, and various lipids were also
identified independently in the KORA cohort [12]. Im-
portantly, we have shown the long-term stability of LL
and neutrophil module coexpression and interactions
with metabolite measures, and we have greatly expanded
the number of known biomarkers associated with the
NM from one (GlycA) to 123 [10]. Our study has also
expanded the widespread trans eQTL effects at the
ARHGEF3 locus [23], shows them to be strongly main-
tained within individuals over time, and further identifies
extensive interactions with lipoprotein measures that
may be a consequence of these trans effects.
Taken together, our analyses illustrate the rapidly

growing body of evidence intimately linking the immu-
noinflammatory response to the blood metabolome.
With finer-resolution maps of these interactions, new
biomarkers of chronic and acute inflammatory states are
likely to emerge. With in vivo and interventional studies,
modulation of these metabolite–immune interactions
through existing lipid-lowering medications, gut microbe
effects, or dietary changes may provide new ways the
immune system itself can be utilized to lessen the bur-
den of cardiometabolic disease.

Methods
Study populations
This study used data from two population-based co-
horts, the Dietary, Lifestyle, and Genetic determinant of
Obesity and Metabolic syndrome (DILGOM; N = 518)
and the Cardiovascular Risk in Young Finns Study (YFS;
N = 1650), which have been described in detail elsewhere
[13, 51]. All subjects enrolled in these studies gave writ-
ten informed consent.
The DILGOM study is a subsample of the FINRISK

2007 cross-sectional population-based survey, which re-
cruited a random sample of 10,000 individuals between
25 and 74 years of age, stratified by sex and 10-year age
groups, from five study areas in Finland. All 6258 indi-
viduals who participated in the FINRISK 2007 baseline
health examination were invited to attend the DILGOM
study (N = 5024), 630 of whom underwent at least one
of the genotyping, transcriptomics, or metabolomics
profiling considered here. In 2014, a follow-up study was
conducted, for which 3735 individuals from the original
study re-participated. Samples collected in 2007 and
2014 are referred to as DILGOM07 and DILGOM14,
respectively.
The YFS is a longitudinal prospective cohort study that

started in 1980, with follow-up studies carried out every
3 years, to monitor cardiovascular disease risk factors in
children and adolescents from five major regions of
Finland (Helsinki, Kuopio, Turku, Oulu, and Tampere).

A total of 3596 children and adolescents in age groups
3, 6, 9, 12, 15, and 18 years participated in the baseline
study; these children were randomly selected from the
national public register and their details are described in
[51]. In this current study, data collected from the 2011
follow-up study (participants aged 34, 37, 40, 43, 46, and
49 years) were analyzed.

Sample collection
Venous blood was collected following an overnight fast
in all three studies. Samples were centrifuged and the
resulting plasma and serum samples were aliquoted into
separate tubes and stored at −70 °C for analyses. Proto-
cols for the blood sampling, physiological measure-
ments, and clinical survey questions were similar across
the YFS and DILGOM studies and are described exten-
sively in [13, 52].

Genotyping and imputation
Whole blood genomic DNA obtained from both cohorts
was genotyped using the Illumina 610-Quad SNP array
for DILGOM07 (N = 555) [13] and a custom generated
670 K Illumina BeadChip array for YFS (N = 2443) [53].
The 670 K array shares 562,643 SNPs with the 610-quad
array. The 670 K array removes poorly performing SNPs
from the 610-quad array and improves copy number
variation coverage [53]. Genotype calling was performed
with the Illuminus clustering algorithm [54]. Quality
control was as previously described in [13] and [53] for
DILGOM and YFS, respectively. Genotypes were im-
puted to the 1000 Genomes Phase 1 version 3 reference
panel using IMPUTE2 in both DILGOM and YFS [17].
Poorly imputed SNPs based on low call-rate (<0.90 for
DILGOM, <0.95 for YFS), low-information score (<0.4),
minor allele frequency <1%, and deviation from Hardy–
Weinberg equilibrium (P < 5 × 10–6) were then removed.
A total of 7,263,701 SNPs in DILGOM and 6,721,082 in
YFS passed quality control, with 6,485,973 common be-
tween the two. A total of N = 518 samples in DILGOM
and N = 2443 samples in YFS individuals passed quality
control filters.

Metabolomics profiling
Metabolite concentrations for DILGOM07 (N = 4816),
DILGOM14 (N = 1273), and YFS (N = 2046) were quanti-
fied from serum samples utilizing a high-throughput
NMR metabolomics platform (Brainshake Ltd, Helsinki,
Finland) [18, 55]. Details of the experimental protocol, in-
cluding sample preparation, NMR spectroscopy, and me-
tabolite identification, have been previously described in
[13, 18]. A total of 159 metabolite measures were assessed,
of which 148 were directly measured and 11 were derived
(Additional file 1: Table S1). The 148 measures include
the constituents of 14 lipoprotein subclasses (98
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measurements total), sizes of three lipoprotein particles,
two apolipoproteins, eight fatty acids, eight glycerides and
phospholipids, nine cholesterols, nine amino acids, one in-
flammatory marker, and ten small molecules (involved in
glycolysis, citric acid cycle, and urea cycle). The lipopro-
tein subclasses are classified according to size as follows:
chylomicrons and extremely large VLDL particles (average
particle diameter at least 75 nm); five VLDL subclas-
ses—very large VLDL (average particle diameter of 64.0
nm), large VLDL (53.6 nm), medium VLDL (44.5 nm),
small VLDL (36.8 nm), and very small VLDL (31.3 nm);
intermediate-density lipoprotein (IDL; 28.6 nm); three
LDL subclasses—large LDL (25.5 nm), medium LDL (23.0
nm), and small LDL (18.7 nm); and four HDL subclas-
ses—very large HDL (14.3 nm), large HDL (12.1 nm),
medium HDL (10.9 nm), and small HDL (8.7 nm). Mea-
surements with very low concentration, set as zero by the
NMR pipeline, were set to the minimum value of that par-
ticular metabolite measure. Measurements rejected by
automatic quality control or with detected irregularities
were treated as missing. Undefined derived ratios arising
from measurements with very low concentration (i.e.,
zero) were also treated as missing. Measurements were
log2 transformed to approximate a normal distribution.
CRP, an inflammatory marker, was quantified from

serum using a high sensitivity latex turbidimetric im-
munoassay kit (CRP-UL assay, Wako Chemicals, Neuss,
Germany) and an automated analyser (Olympus AU400)
in DILGOM07 (N = 5000), DILGOM14 (N = 1308), and
YFS (N = 2046). CRP levels were log2 transformed.

Gene expression, processing, and normalization
Transcriptome-wide gene expression levels were quanti-
fied by microarrays from peripheral whole blood using
similar protocols in all three cohorts, and have been pre-
viously described for DILGOM07 [13] and YFS [56]. Sta-
bilized total RNA was obtained from whole blood using
a PAXgene Blood RNA System and the protocols recom-
mended by the manufacturer. In DILGOM07, RNA in-
tegrity and quantity were evaluated using an Agilent
2100 Bioanalyzer. In YFS, RNA integrity and quantity
were evaluated spectrophotometrically using an Eppen-
dorf BioPhotomer and the RNA isolation process was
validated using an Agilent RNA 6000 Nano Chip Kit.
RNA was hybridized to Illumina HT-12 version 3 Bead-
Chip arrays in DILGOM07 and to Illumina HT-12 ver-
sion 4 BeadChip arrays in DILGOM14 and YFS.
For DILGOM07, data were preprocessed as described

in Inouye et al. [13]. Briefly, for each array the back-
ground corrected probes were subjected to quantile
normalization at the strip-level. Technical replicates
were combined by bead count weighted average and rep-
licates with Pearson correlation coefficient <0.94 or
Spearman’s rank correlation coefficient <0.60 were

removed. Expression values for each probe were then
log2 transformed. For YFS, background corrected probes
were subjected to quantile normalization followed by
log2 transformation. For DILGOM14, probes matching
to the erythrocyte globin components (N = 4) and those
that hybridized to multiple locations spanning more
than 10 kb (N = 507) were removed. Probes with average
bead intensity of 0 were treated as missing. The average
bead intensity was then log2 transformed and quantile
normalized. A total of 35,425 (for DILGOM07), 36,640
(for DILGOM14), and 37,115 (for YFS) probes passed
quality control.

Gene co-expression network analysis and replication
Gene co-expression network modules were identified in
DILGOM07 (N = 518 individuals with gene expression
data) as previously described [10] using WGCNA ver-
sion 1.47 [57, 58] on all probes passing quality control.
Briefly, probe co-expression was calculated as the Spear-
man correlation coefficient between each pair of probes,
adjusted for age and sex. The weighted interaction net-
work was calculated as the element-wise absolute co-
expression exponentiated to the power 5. This power
was selected through the scale-free topology criterion
[57], which acts as a penalization procedure to enhance
differentiation of signal from noise. Probes were subse-
quently clustered hierarchically (average linkage method)
by topological overlap dissimilarity [57] and modules
were detected through dynamic tree cut of the resulting
dendrogram with default parameters and a minimum
module size of ten probes [59]. Similar modules were
merged together in an iterative process in which mod-
ules whose eigengenes clustered together below a height
of 0.2 were joined. Module eigengenes, representative
summary expression profiles, were calculated as the first
eigenvector from a principal components analysis of
each module’s expression data.
Module reproducibility and longitudinal stability were

assessed in YFS (N = 1650 with gene expression data)
and DILGOM14 (N = 333 with gene expression data), re-
spectively, using the NetRep R package version 0.30.1
[19]. Briefly, a permutation test (20,000 permutations) of
seven module preservation statistics was performed for
each module in YFS and DILGOM14 separately. These
statistics test the distinguishability and similarity of net-
work features (density and connectivity) for each module
in a second dataset [20]. Modules were considered re-
producible where permutation P values for all seven
statistics were <0.001 (Bonferroni correcting for 40 mod-
ules) in YFS, and modules were considered longitudin-
ally stable where P values were <0.001 for all seven
statistics in DILGOM14. Probe co-expression in YFS
was calculated as the Spearman correlation coefficient
between age- and sex-adjusted expression levels and the
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weighted interaction network was calculated as the
element-wise absolute co-expression exponentiated to
the power 4 as previously described [10]. Probe co-
expression in DILGOM14 was calculated as the Spear-
man correlation coefficient between each pair of probes,
and the weighted interaction network defined as the
element-wise absolute co-expression exponentiated to
the power 5.
To filter out genes spuriously clustered into each mod-

ule by WGCNA, we performed a two-sided permutation
test on module membership (Pearson correlation between
probe expression and the module eigengene) for each re-
producible module in DILGOM07 and YFS. Here, the null
hypothesis was, for each module, that its probes did not
truly coexpress with the module. The null distribution of
module membership for each module was empirically
generated by calculating the membership between all non-
module genes and the module’s eigengene. P values for
each probe were then calculated using the following per-
mutation test P value estimator [60]:

p ¼ bþ 1
v þ 1

−
Z
0

0:5=vt þ 1
F b; v; vtð Þdvt

where b is taken as the number of non-module genes
with a membership smaller or greater than the test
gene’s module membership, whichever number is
smaller; v, the number of permutations calculated, and
vt, the total number of possible permutations, are both
the number of non-module genes. The resulting P value
was multiplied by 2 because the test was two-sided. To
adjust for multiple testing, FDR correction was applied
to the P values separately for each module using the
Benjamini and Hochberg method [61]. We rejected the
null hypothesis at FDR adjusted P value <0.05 in both
DILGOM07 and YFS, deriving a subset of core probes
for each module.

Functional annotation of immune modules
Immune modules were identified through over-
representation analysis of Gene Ontology (GO) terms in
the core gene set for each of the 20 reproducible mod-
ules using the web-based tool GOrilla [21] with default
parameters (performed March 2016). GOrilla was run
on two unranked gene lists where core module genes
were given as the target list and the background list was
given as the 25,233 human RefSeq genes corresponding
to any probe(s) passing quality control in both DIL-
GOM07 and YFS. A hypergeometric test was calculated
to test whether each module was significantly enriched
for genes annotated for each GO term in the “biological
process” ontology. A GO term was considered signifi-
cantly over-represented in a module where its FDR cor-
rected P value was <0.05. FDR correction was applied in

each module separately. Significant GO terms for each
module were further summarized into a subset of repre-
sentative GO terms with REVIGO [22] using the
RELSIM semantic similarity measure and a similarity
cut-off value C = 0.5 on genes from Homo sapiens. A
module was considered to be immune-linked where the
representative GO term list contained the parent GO
term GO:0002376 (immune system process) and/or
GO:0002682 (regulation of immune system processes).
We further performed a literature-based search for
genes in the respective modules. Module names, which
were assigned based on both GO enrichments and
literature-based searches, indicate the likely immune-
related processes the modules might be involved in;
there’s no implication of exclusivity or that this is the
only set of genes involved in that particular process.

Statistical analyses
Reproducible associations between modules and metabol-
ite measures were identified through linear regression of
each immune module eigengene on each of the 159 metab-
olite measures and CRP in both DILGOM07 and YFS.
Prior to analysis, metabolite data were first subsetted to in-
dividuals with matching gene expression profiles, followed
by removal of subjects on cholesterol lowering drugs, for
YFS (N= 62) and DILGOM07 (N = 74). Pregnant women
in YFS (N = 10) and DILGOM (N= 2) were further re-
moved from the analysis. A total of 440 individuals in DIL-
GOM07 and 1575 individuals in YFS had matched gene
expression and metabolite data, excluding pregnant
women and those individuals taking lipid-lowering medica-
tion. Models were adjusted for age, sex, and use of com-
bined oral contraceptive pills. Module eigengenes and
metabolite measures were scaled to standard deviation
units. To maximize statistical power, a meta-analysis was
performed on the DILGOM07 and YFS associations using
the fixed-effects inverse variance method implemented in
the “meta” R package (https://cran.r-project.org/web/pack-
ages/meta/index.html). The meta-P values for the 160 me-
tabolite measure associations (including CRP) within each
module were FDR corrected using the widely used Benja-
mini–Hochberg procedure [61]. An association was con-
sidered significant at FDR adjusted P value <6.25 × 10–3

(0.05/8 modules). This Bonferroni-adjusted threshold was
chosen to further adjust for the multiple modules being
tested. To assess the potential confounding effects of blood
cell type abundance on module metabolite measure associ-
ation, the model was rerun in YFS adjusting for leukocyte
(for CCLM, VRM, BCM, NM, LLM, GIMA, GIMB) and
platelet (for PM) counts available for this cohort. The beta
values and P values generated with and without adjusting
for cell count were then compared. Additionally, to assess
the possible effect of cell counts on expression profiles, cell
counts were associated with module eigengenes.
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Associations between modules and metabolite mea-
sures were tested for longitudinal stability in DIL-
GOM14 using a linear regression model of each
immune module eigengene on each of the 159 metabol-
ite measures and CRP. A total of 216 individuals in DIL-
GOM had matched gene expression and metabolite data
in both 2007 and 2014, after removing pregnant women
and individuals on lipid lowering medication at either
time point (N = 70). Models were adjusted for age and
sex. Information on use of oral contraceptives was not
available for this cohort. It is worth noting that >60% of
women were more than 50 years old; hence, we would
expect that rates of contraceptive use would be low and
therefore not a significant confounder. Module eigen-
genes and metabolite measures were scaled to standard
deviation units. An association was considered longitu-
dinally stable where the association was significant (FDR
adjusted P value <6.25 × 10–3) in both DILGOM14 and
DILGOM07. For sensitivity analysis, the model in DIL-
GOM07 was run without adjusting for oral contraceptive
use and this did not affect the significant associations
maintained over the two time-points.
Module quantitative trait loci (mQTLs) were identified

through genome-wide association scans with each im-
mune module eigengene using the PLINK2 version 1.90
software (https://www.cog-genomics.org/plink2) [62] in
DILGOM07 and YFS. A total of 518 individuals had
matched gene expression and genotype data in DIL-
GOM07 and 1400 individuals had matched gene expres-
sion and genotype data in YFS. Associations were tested
using a linear regression model of each eigengene on the
minor allele dosage (additive model) of each SNP.
Models were adjusted for age, sex, and the first ten gen-
etic principal components (PCs). Genetic PCs were gen-
erated from a linkage-disequilibrium (LD) pruned set of
approximately 200,000 SNPs using flashpca [63]. P
values for each association in DILGOM07 and YFS were
combined in a meta-analysis using the METAL software
[64], which implements a sample size weighted Z-score
method. A SNP was considered an mQTL if meta-
analysis P value (meta-P value) was <5 × 10–8. Blood cell
count data available for YFS were utilized to test the ro-
bustness of module associations with mQTLs, where the
same model was run with and without adjusting for
leukocyte and platelet cell counts.
Significant mQTLs were subsequently tested as ex-

pression quantitative trait loci (eQTLs) for genes within
their respective modules using Matrix eQTL in both
DILGOM07 and YFS [65]. Both cis (mQTL within 1 Mb
of a given probe) and trans (mQTL greater than 5 Mb
from a given probe or on a different chromosome) asso-
ciations were tested. Associations were tested using a
linear regression model of probe expression on minor al-
lele dosage (additive model) of the mQTL. Models were

adjusted for age, sex, and the first ten genetic PCs. For
trans-eQTL associations P values in DILGOM07 and
YFS were combined in a meta-analysis using the
weighted Z-score method and considered significant
where the meta-P value <5 × 10–8. For cis-eQTL associa-
tions, permutation tests were performed in which gene
expression sample labels were shuffled 10,000 times to
compute an empirical P value. The permuted model P
values and nominal P value were combined across DIL-
GOM and YFS07 in meta-analyses using the weighted
Z-score method when computing the permutation test P
value. An mQTL was considered a cis-eQTL where the
permutation test P value <0.05.
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