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Abstract

Background: Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to
detect and characterise the mechanism of trajectory divergence between groups of participants that have
longitudinal responses with distinct developmental phases. These models are useful when participants in a
prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined
understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life
interventions. Previous techniques to determine between-group differences in risk factors at each age may result in
biased estimate of the age at divergence.

Methods: We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point
estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome
measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling
the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/
without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS).

Results: Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged
from healthy participants at age 16 years for males (95% credible interval (Cl):13.5-18 years) and 21 years for
females (95% Cl: 19.5-23 years). These data suggest that a critical window for weight management intervention in
preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation
showed that when using pairwise comparison of least-square means from categorical mixed models, smaller
sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is
not biased by sample size when using the proposed BHPR method.

Conclusions: BHPR is a powerful analytic tool to model long-term non-linear longitudinal outcomes, enabling the
identification of the age at which risk factor trajectories diverge between groups of participants. The method is
suitable for the analysis of unbalanced longitudinal data, with only a limited number of repeated measures per
participants and where the time-related outcome is typically marked by transitional changes or by distinct phases
of change over time.

Keywords: Piecewise model, Hierarchical regression, Non-linear trajectory model, Accelerated longitudinal design,
Cohort effect, Group divergence
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Background

Child- to-adult trajectories of health markers are likely
to have implications for the risk of chronic diseases in
later life, such as obesity, type 2 diabetes mellitus
(T2DM) and cardiovascular diseases; it is therefore im-
portant to understand their development throughout the
life-course [1-4].

Long-running observational studies that follow the
same subjects participants across the life-course are es-
pecially suited to studying adult onset disorders, such as
cardiometabolic disease, since they allow characterizing
the development of normal vs. pathological processes
overtime. A goal of such studies is often to determine
how a number of patient characteristics, modifiable risk
factors profiles [1, 5], their interactions and normal
aging may impact the onset and progression of disease
over time [6-8] in order to identify time periods of di-
vergence in these factors [9-11].

A key statistical issue in these studies is often to deter-
mine whether the risk factor levels vary over time be-
tween and within groups of participants, and whether
different groups are changing in a similar or different
fashion over time [12, 13]. Depending on the study, the
stratification of participants into groups can relate to
participants’ characteristics or exposure (i.e. smoking
status), intervention arm (i.e. control vs. medication), or
it could be a later health outcome (i.e. disease status in
mid-adulthood). When participants are grouped accord-
ing to a distal dichotomous health outcome, longitudinal
data provide the foundation to understand pathways to
deleterious risk factor profiles, which may help inform
the timing of interventions [8, 14, 15].

When it is established that groups of interest start
with similar initial outcome levels, but do not change
similarly overtime, it is often of interest to determine the
point in time or age at which they start diverging in their
trajectories [16—20]. Being able to determine how and
when the change manifests between groups of partici-
pants is important, since it can help pinpoint periods in
the life course that are critical in the development of ab-
normal risk factor profiles [21]. However, there is little
methodological guidance in the literature on statistical
techniques to achieve this, and several studies have
noted a lack of relevant methods to investigate trajectory
divergence between groups [20—22].

A common attempt is to fit a mixed model with time
(or age) treated as categorical variable (i.e. non time-
ordered/ordinated [23]) to retrieve linear predictions at
each age for each group of interest from this model (i.e.
means of least squares predictions, aka LS-means [24—26]),
and to test for a group difference in these predictions using
a number of contrasts (i.e. post-hoc pairwise comparisons).
In this case, the age at which the difference between-groups
emerge is often the age at which a significant between-
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group difference materializes in the LS-means [23, 27, 28].
Several studies have used this approach to determine at
“what times the groups means are different” (e.g. between-
subject effect or post-hoc pairwise group comparison, if
there are more than two groups) and/or ‘at what times the
means differ’ within each group (within-subject effect test-
ing) [27, 29, 30]. However, even when adjustments are ap-
plied for multiple tests [27, 31-33], many authors advise
against the unrestricted use of multiple comparisons among
marginal means due to well-documented multiple testing
issues, especially the increase in false positive rate as the
number of hypothesis tests increases [30, 34—37]. Mixed
models that assume an unstructured mean response by
treating age or time as categorical variables tend to be over
parameterized and may be inefficient at detecting main
effects [38]. Another crucial disadvantage of this approach,
is that it only tests for the difference in means between
groups at each time point and does not provide any informa-
tion on subject-specific response evolution in time [13, 39],
so that the age (or point in time) at which the group differ-
ence manifests is ultimately a question of sample size and
statistical power.

In contrast, continuous time models such as individual-
based trajectory modeling methods, including mixed effect
[12], hierarchical [40], multilevel [41] and the closely re-
lated structural equation and Latent Growth Curve
models [42], have become invaluable tools to understand
the natural history of health outcome as well as risk fac-
tor/determinant trajectories [14, 43-45]. They have
advantages over traditional approaches to repeated-
measure data analysis; their main feature being that they
allow summarizing each participant’s outcome trajectory
with a few trajectory parameters [39, 46]. In addition, they
permit the explicitly modeling of inter-individual differ-
ences in intra-individual change, permitting inference
regarding the average response trajectory over time and
how this evolution may vary with participant characteris-
tics (i.e. participant-level predictors) [47-50].

Despite their flexibility, these models are not often
used to analyse sparse long-term observational data
since accelerated longitudinal designs [14, 22, 51] and
non-linear response overtime [44, 52—54] both introduce
significant complexity into the growth curve modeling
approach [55-58]. Indeed, being able to represent non-
linear patterns with a relatively small number of meas-
urement occasions per participants (often <10 time
points) and be specific about where between-participant
heterogeneity appears in those patterns is a statistical
challenge.

Many applications often relied on higher order time
(or age) polynomials or latent basis coefficients [14, 20,
44, 59-61], which strengths and limitations have been
described elsewhere [9, 46, 62—65]. In the context of our
study the polynomial parameterisation of the growth
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model does not specifically yield an age or point in time
when the growth pattern is changing within-and
between-groups. Alternatively, piecewise models, also
known as linear splines or broken stick models, can be
used to break up a non-linear or curvilinear growth tra-
jectory into several separate linear components [66].
They are particularly useful to compare growth rates in
different periods over time if the functional form of the
response is characterised by different phases of develop-
ment, or if there is a shift in the outcome trajectory at
some point in the event window (i.e. an acceleration or a
deceleration in the response change rate from one point
in time (or age)) [67-73]. Piecewise linear trajectory
models have been used to model ‘multiphase’ develop-
mental processes primarily with ‘fixed’ transition points
in a variety of applications in the frequentist multilevel
[40, 45, 69, 74, 75] and structural equation modeling
framework [42, 76]. Bayesian applications of these pro-
cesses are often referred to as ‘random change point
model’ where the position of individual breakpoints is
also estimated, allowing for between-person variability in
the transition points [77-86].

Few studies have, however, investigated the inclusion
of categorical covariates or grouping variables as level 2
predictors of the variability in the change point, and the
random Bayesian change point model has not, to our
knowledge, been formulated to test specifically for the
existence of a ‘trajectory divergence’ between two (or
more) known groups of participants that have longitu-
dinal responses characterised by distinct developmental
phases. In this paper we illustrate the use of Bayesian
hierarchical piecewise regression modeling to detect tra-
jectory divergence between groups of participants using
longitudinal BMI data from the Cardiovascular Risk in
Young Finns (YFS) Study, a well phenotyped prospective
cohort with measures from multiple time-points. Previ-
ously published work on this data, based on categorical
mixed modeling, suggested that BMI levels became sta-
tistically different between those who develop T2DM in
adulthood and those who did not from the age of
15 years [87]. We re-analyse this data set to demonstrate
how the Bayesian method can be used to (1) model the
BMI profiles to better understand the natural history of
the BMI trajectories in those who do and do not develop
T2DM in adulthood while controlling for potential co-
hort effects, and (2) obtain a refined estimate and confi-
dence interval of the age at which the two groups start
diverging from one another, translating into significantly
different BMI from a certain age onwards. In addition,
we conduct a series of short simulations to illustrate the
difference in the estimates of age at divergence when
using the traditional approach (i.e. pairwise comparisons
of marginal means from a categorical mixed model) vs.
the proposed trajectory modeling approach.
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Methods
Statistical model
No-covariate model
To accommodate the curvilinear developmental pattern
in an individual continuous response over time while
providing an adequate representation of its developmen-
tal theory, we consider a linear-linear piecewise regres-
sion model as the functional form of change in the
trajectory model. The ‘change point’ (CP) represents the
age (or time) at which the transition to a different
growth rate occurs. We consider the following uncondi-
tional (no covariates) multilevel model:

Level 1 model:

Reponse;j = bo; + bl,age,','.(l—ucpi (ageij))
+boy; (ageij—CPi) Ucp, (agelj) + &

(1.1)
Level 2 model:
boi = Boo + voi b1 = Brg + Vi bai = Byy + vai (12)
CP; = CP + vep: '
v
voi 0 001 o2
Vl« 0 vl
Vzi‘ ~N 0o\l 2
002 0v12 02
Vcpi 0
oycp  Ovice  0y2CP U%
(1.3)

Where at age j for participant i, Response; is the re-
peated continuous outcome measures, and age; is the
corresponding time related variables centered around its
grand mean. ucp, (agei/) is a unit heavyside step function
where ucp, (age,j) =1 if age; > CP; and ucp, (agei,') =0 if
age;j< CP;. The random trajectory parameters bg;, by;
and b,; correspond to the individual intercept, slope be-
fore and slope after the person-specific change point
CP;, respectively. For each person i, by; controls the indi-
vidual baseline level (or initial status) for the response
and its interpretation depends on the centering of the
age variable (e.g. if age is centered around 25 years, by;
will be the expected participant-level response at 25 years
of age given they are in the first phase of growth by)).
by, by; and CP;, are the expected linear increase per year
of age in the first phase of growth, the expected linear
rate of increase after the change point, and age at which
the linear perturbation to the initial trend occurs, re-
spectively. ¢; is the level-1 residual (i.e. random within-
person error for person i at age j) and is independent
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and normally distributed (i.e. g; ~ iid N(0, 02)). Voi Vi Vai
and vp; are the level-2 random effects, multivariate nor-
mally distributed with zero mean and variances 02, 07y,
% and o%p respectively and full covariance matrix as
shown in 1.3 . Boo, S10, P20 and CP are the fixed effects
(i.e. population average of each trajectory parameter). In
this model, the level 1 residual variance o2 can be inter-
preted as the deviations around an individuals trajectory
and level-2 residuals as between-participant variability in
the overall intercept (6%), in the rate of change before
and after the change point CP; (02, and o> respectively),
and in the change point itself (0%p), respectively.

Model with group-effect

To explore heterogeneity in individual trajectories be-
tween groups of interests, the unconditional segmented
growth model can be expanded by including time-
varying covariates (TVCs) at level-1 and time invariant
covariates (TICs) at level 2, while simultaneously adjust-
ing for the effects of variables measured on participants
at all time points. Whereas TICs directly predict the
growth parameters, TVCs directly predict the repeated
measures while controlling for the influence of the
growth parameters [43, 88]. If the TIC variable is a bin-
ary dummy grouping factor (“GRP,”), identifying partici-
pants coming from two identified groups, the model can
be rewritten as follows:

Level 1 model:

Response;; = by; + byage;;. (1—ucp[. (agei,»))
+by; (age,»,v—CPi) UCP; (ageij)
+TVC;+¢g;
(2.1)

Level 2 model:

boi = Boo + Bogry GRP; + voi
b1 = B1g + Brgry GRP; + v1i
bai = Boy + Bogry GRP; + vai
CP; = CP + opGRP; + vep

(2.2)

Where o0, B10, B20 and CP are the expected trajectory
parameters for the reference group (at zero values for
other potential covariates); Bogy» Bigrpr Pagrp and Pcp are
the expected intergroup variations in these parameters
for participants in the second group (i.e. respectively, in
the mean response, in the linear age effect, in the devi-
ation from linear rate after the CP and in the CP tim-
ing); and vy, vi; vo; and vep; are the level-2 residuals
person i for intercept, slopes, and age at the change
point after controlling for group differences. To test for
a between-group difference in one trajectory parameter
only, ‘GRP’ can be included as a level-2 predictor for the
parameter of interest, and model all other growth
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parameters as random effects only (as in 1.2). For each
of the p+1 individual growth parameters, additional
participant-specific covariates (TICs) can be included in
a similar fashion to have multiple predictors at level 2 as
follows: by = B, + Zj:l/)’pqxqi + up;, with x,;, the q®
measured TIC; B,,the effect of the TIC x,; on the (p +
1)" trajectory parameter; and 1, the (p + 1)” random
effect. The set of p+ 1 random effects for person i as-
sumed to be multivariate normally distributed with co-
variance matrix of dimension (p+1)*(p + 1), although
simpler variance-covariance structures of the random
effects can be considered during model building (i.e.
mutual independence of the random effects). It is advis-
ory to standardize TVCs in order to stabilize the vari-
ance, improve normality of errors and linearity of the
mean [88]. The common assumption for the error struc-
ture is g; ~ iid N(O, 62) but it can be relaxed to include
time specific variances or residual error correlation such
as AR1 errors.

The same approach can be used to expand the hier-
archical piecewise trajectory model with grouping fac-
tors that have more than 2 levels. This is one of the
possible approaches to test for a cohort-effect on the de-
velopment of curvilinear responses over time when data
arises from multi-cohort or accelerated longitudinal de-
signs [89, 90]. If study participants belong to one of k
possible birth cohorts, k-1 binary dummy variables are
created to identify observations coming from people
born in the same calendar year, and as in 2.2, these new
k-1 grouping variables are introduced as level 2 predic-
tors of the different trajectory parameters in the model.
The binary dummy variables are introduced to sequen-
tially shift the conditional means of each of the different
trajectory parameters. The fixed effects will be the aver-
age trajectory parameters for the cohort chosen as the
reference cohort in the study sample, and each (B.opor)1..
«-1 coefficient will thus be interpreted as the variation
in growth parameters in the corresponding k-1th cohort
compared to the reference cohort.

Trajectory divergence mechanisms

The equation 2.2 above, allows for between-group differ-
ence in each of the 4 trajectory parameters of the piece-
wise model. (i.e. intercept, slope before and after the
change point (CP), and the change point itself). If the
focus is to determine and model the divergence in the
trajectories between group, then model 2.2 can be modi-
fied by forcing the intercept and slope before the CP to
be invariant across groups by setting fog,, and figy, to
zero at level 2 in equation 2.2. As illustrated in Fig. 1,
we identify 3 possible ways in which continuous out-
comes trajectories can diverge over time between
groups: (1) type 1: the two groups have different slope
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Type 1 : different post-CP slope

Type 2: different CP timing

Type 3: different CP timing & post-CP slope

Continuous response
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Fig. 1 Three hypothetical models of between-group divergence in curvilinear response trajectories over time. Red and black solid lines indicate
the average response curve of participants belonging to one or the other group; dashed lines show the position and age at change point(s) for
the two groups of participants, or the age at which trajectories diverge between the two groups. Graph obtained using simulated data
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after the CP, (2) Type 2: the two groups have different
change points, and (3) Type 3: the two groups have
different CP and post-CP slopes. To test for group-
difference at different stages of the outcome develop-
ment, our approach consists in fitting these 3 possible
conditional Bayesian hierarchical models to the data and
comparing model fit to determine which mechanisms
provides the best representation of the underlying devel-
opment of the outcome between groups of participants.

Bayesian estimation of the hierarchical piecewise model
We used a Bayesian approach to estimate and
summarize the parameters of interest in the conditional
multilevel piecewise model (formula 2.2) [86, 91]. In our
illustrative example, all models were fit in RJAGS and
R2JAGS in R.. In combined Bayesian notation, the tra-
jectory model with a binary grouping status ‘GRP’ as the
TIC covariate interacting with all 4 trajectory parameters
can be written as follows:

Response;i~Normal (mu;, 0?)
ity = Voi + By GRP; + (vis + By, GRP: ) agey
+( Vai +ﬁ2grpGRPi> (ﬂgeij_ (VCPi + CPgrpGRPi))+

To ensure that the effect of ‘group’ on each trajectory
parameter can be either positive or negative and that the
prior information does not dominate the likelihood, un-
informative priors for the fixed group effects o4, Bigrps
Pagrps CPgy, can be set as N ~ (0, 10%). In vector notation,
the random effects v; = (Voi, V1; » Va; 5 Vepi )T are assumed
to follow a multivariate normal distribution with mean S
and unstructured 4 x4 variance-covariance matrix ¢ as
in 1.3, where S = (Bo, 81, B2 CP)", the vector of popula-
tion means. Traditionally in Bayesian analysis for ran-
dom effects, InvWishart(X,k) is used as a conjugate prior

to the wunknown variance-covariance matrix of

multivariate normal distributions, where X is a positive
definite inverse scale matrix of degree of freedom k [93].
Inverse-Gamma (\;, \;) is often used as the conjugate
prior to the variance of univariate normal distribution
(i.e. for mutually independent random effects, and model
error variance ¢°). Alternative prior distributions may be
used for level 2 variances of independent random effects
or for the variance components of multivariate normal
distributions [41, 92, 93].

Significance of group-differences in trajectory parameters
Testing for group-differences in trajectory parameters is
equivalent to investigating the significance of the group-
ing covariates parameters at level 2 in the hierarchical
change point model. In the Bayesian context, this is
done by looking at the posterior probability density for
the "f,,” parameters in 2.2. (i.e. Bogys Pigp Pogrp-and
Bcp) of the estimated covariate parameters. For example,
the effect of ‘GRP’ on each trajectory parameter is sig-
nificant if the 95% Bayesian credible intervals (CI) of the
estimated regressors (i.e. each “B,,,") exclude zero, in
which case, the estimated “B,,,” can be interpreted as
the shifts in each trajectory parameter in one group
compared to the other group [77, 92, 94].

Model convergence, fit and adequacy

The choice of the best model among the suite of candi-
date (conditional) Bayesian hierarchical models can be
based on two criteria: (1) the deviance information
criterion DIC [95, 96], an index of quality of fit that is
commonly used for Bayesian model comparison [97],
and (2), the Bayesian posterior predictive p-value (PP p-
value), obtained through posterior predictive checking of
the likelihood of each potential model (the sum of resid-
uals was used as a as a discrepancy measure) [41].



Buscot et al. BMIC Medical Research Methodology (2017) 17:86

lllustrative data

We illustrate the application of the proposed Bayesian
piecewise modeling approach by using it to investigate the
divergence in child-to adult trajectories of BMI between
participants who do and do not develop adult T2DM in a
well-studied ongoing population-based prospective co-
hort, the Cardiovascular Risk in YFS [15]. Details on study
design and on the collection of cardiovascular risk factors
between 1980 and 2011 are published elsewhere [98] and
summarized in Additional file 1.

In a previously published work on the YES cohort, ele-
vated BMI in children between 9 and 18 years was asso-
ciated with an increased risk of developing T2DM in
adulthood [87]. Additionally, a sex- and insulin-adjusted
mixed model incorporating participants ages as a cat-
egorical variable, suggested that differences in average
BMI values between those who do and those who do not
develop adult T2DM tended to emerge during adoles-
cence, becoming marginally significant from the age of
15 years onwards. In this approach, the between-group
difference at each age groups was assessed by pairwise
comparisons of the predicted marginal means (i.e. LS-
means), and did not incorporate BMI trajectory informa-
tion at the individual or population level. In contrast,
the proposed hierarchical piecewise regression approach
considers and makes full use of individual trajectory in-
formation to test for group-differences at specific stages
of BMI development from childhood to adulthood.
Unlike categorical approaches, the proposed growth
model provides a clearer representation of the under-
lying pathological BMI development among those who
develop T2DM in adulthood.

In our illustration, we include 2540 YFS participants
(1401 females and 1139 males) followed-up a maximum
of six times between 1980 and 2011 (Additional file 2:
Table S1). Information on adult T2DM status was col-
lected on participants at their latest individual adult
follow-up (i.e. dichotomous outcome coded O for partici-
pants without T2DM, and 1 for those with T2DM in
2001, 2007, or 2011). Included participants had at least
one BMI measure available in childhood (i.e. in 1980,
1983 or 1986 between age 3 and 18 years). Participants
had on average 4.98 repeated measures of BMI over the
study period, with 90.7% of participants having 4 or
more BMI measures (Additional file 2: Figure S1). 88 in-
cluded participants (3.5%, 44 females and 44 males) had
T2DM in adulthood. We excluded BMI observations
made among those aged 3 years in 1980 so that the ages
of participants considered in the trajectory analysis
ranged from 6 to 49 years. 3 year olds were not included
in the analysis since only 3 participants in this birth co-
hort developed T2DM in adulthood. Furthermore, the
lack of BMI measures between 3 and 6 years, prevented
modeling the downwards slope from infancy peak, nor
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the age at adiposity rebound, which usually occurs be-
fore age 6 years in normal weight children [99, 100].
Using BMI data collected on participants aged 6 years
and over, we expect that most participants had reached
this important childhood milestone, and that a linear
trend was thus an appropriate functional form to ap-
proximate childhood BMI growth from that age
(Additional file 3: Figure S1).

Since sex differences in childhood growth and pubertal
timing have been demonstrated [101, 102], subsequent
BMI trajectory modeling between age 6 and 49 years
was conducted among males and females separately
[103]. BMI, especially in adulthood, is slightly right
skewed, but using logl0 transformed BMI in the model-
ing approach presented below did not alter our conclu-
sions. For ease of interpretation, we thus present results
using untransformed BMI only.

Visual inspection of the sex-specific smoothed BMI
trajectories confirms the presence of a divergence be-
tween the two groups in adolescence (Additional file 3:
Figure S2). Compared to participants who remain
healthy, those who develop T2DM seem to have greater
average BMI levels by the time they are young adults, al-
though it is unclear whether this divergence results from
a group-difference in the timing at which the transition
to a slower BMI growth rate happens (Type II diver-
gence) from a group-difference in rate itself after pu-
berty (Type I divergence), or from both (Type III
divergence).

Although the distal outcome of ‘adult T2DM’ is the
grouping factor of interest in our illustrative trajectory
divergence analyses, we also demonstrate how the same
modeling approach can be used to investigate potential
inter-cohort variation in childhood to adulthood BMI
trajectories by considering models with ‘year of birth’ as
a categorical level 2 predictor of each of the 4 trajectory
parameters. Individual age- and sex-specific BMI Z-
scores at the first clinic (in 1980) were also included as
level 2 predictors of each BMI trajectory parameters to
investigate if systematic deviation from participants of
comparable age and sex at baseline had any influence on
the development of BMI trajectories later in life. All
continuous covariates used in the analyses were stan-
dardized in order to stabilize the variance, improve nor-
mality of errors and linearity of the mean.

Specific values for the hyperparameters used in our il-
lustrative analyses are given in Additional file 4. While
in principle ¢ can be unstructured, in our application,
convergence for some parameters could not be reached
when considering an unrestricted covariance structure
between all four random effects in the unconditional
change point model (equations 1.1 and 1.2), probably due
to over parameterisation. Because initial analyses sug-
gested a correlation between the slopes before the change
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point (b;;) and the difference in slopes after the change
point (b,;), we constrained the model by including a non-
zero correlation between these two random effects but
setting independence for all other random effects, leading
to a block diagonal structure of ¢ (Additional file 4). Based
on DIC, this covariance structure was preferred over mu-
tually independent random effects for both males and fe-
males (Additional file 4), and used when expending the
trajectory models with level 2 predictors. In our applica-
tion, we investigated prior sensitivity by fitting the uncon-
ditional BMI trajectory model using three sets of priors
for the hyperparameters (Additional file 4). Because we
found that the choice of hyperparameters had a minor in-
fluence on the marginal posterior distributions, for subse-
quent (conditional) analyses, we chose to report posterior
estimates of parameters estimated from the set of priors
that yielded the lowest DIC in the sensitivity analyses
(Additional file 4). In this set the priors for the means of
the change points were based on the sex-specific estimates
that maximized the profile log likelihood for the fixed
(population-average) breakpoints in the unconditional
model (estimated at 16 years for females and 22 for males,
see estimation method in Additional file 5). Using these
priors for the change point means also kept computation
running times reasonable.

For the other participants varying variable included in the
analysis, sex- and age-specific BMI z-scores at the first visit
and birth cohort, priors were set to N ~ (0,0.001) for all cor-
responding parameters (i.e. all B,y priors and Biiiaisa -
2 score)- L0 remain consistent with previous analyses of this
data set [87], time-varying measures of fasting insulin were
log-transformed and standardized before being included as
a level-1 predictor in the Bayesian hierarchical models to
improve right skewedness and to linearize its relationship
with BMI About 17% of the insulin measures were not
available in the data. The missing data mechanism for ‘insu-
lin” was considered non-informative, as we have no reason
to believe that the probability of an individual insulin meas-
ure being missing depends on the true value of this missing
insulin observation (although it may be related to other ob-
served variables for that individual). We thus consider that
insulin is missing at random (MAR), and we specify a prior
for this covariate [104]. Since log (insulin) is approximately
normally distributed, we specify a N ~ (thiog(insutingy Tiog(insu-
iy ) likelihood for log(insulin); and place a vague prior on
its variance (i.e. Tiog(insutin)~ Gamma(o.001,0001) )- Under this
parametrization, the posterior predictive distribution for
Hiog(insutiny AN Tiog(insuiiny Will be informed by the observed
part of the data only. Although individual insulin measure-
ments change at each data collection point, by adding
log(insulin) as a level 1 covariate in the multilevel model,
the estimated relationship between insulin and BMI devel-
opment remains constant across time [45]. This is a reason-
able assumption in our application, since data exploration
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did not suggest any systematic patterns of change in insulin
levels at the intra-individual level as people age. That is, the
age smoother estimate obtained by fitting a generalized
additive mixed model had an estimated degree of freedom
(edf) close to 1 and was not significant (p-value >0.3),
which did not suggest a non-linear relationship between
log(insulin) and age [105].

Approximate posterior distributions of the parameters
of the models considered throughout the analyses are
obtained via MCMC simulations. Each model ran with 4
independent parallel chains of the Gibbs sampler (see
Appendix 3 for an example of code). For each model,
the first 50000 iterations were discarded in a burn-in
run, and the draws from the posterior were thinned by a
factor of 10 to reduce serial correlation of the chains.
The following 20000 iterations were used to obtain pos-
terior distributions of model parameters by mixing the 4
sequences. Model convergence was assessed through
MCMC iterations traceplots and Gelman-Rubin diag-
nostic [92], and residual errors were plotted to confirm
they approximately followed a normal distribution.

Results

Divergence of BMI profiles in T2DM and non-T2DM YFS
participants

Following the modeling approach presented in the
Methods and the priors and their corresponding hyper-
parameters (Additional file 4: Table S1) we fitted the fol-
lowing set of conditional Bayesian hierarchical piecewise
models for each sex: unconditional (Model A), adult
T2DM status adjusted intercept (Model B), adult T2DM
status adjusted childhood slope (Model C), adult T2DM
status adjusted adult slope (Model D), adult T2DM status
adjusted change point (CP) (Model E), adult T2DM status
adjusted CP and adult slope (Model F), adult T2DM status
adjusted change point, childhood and adult slopes (Model
G), adult T2DM status adjusted intercept, and change
point (Model G), and a model with all four parameters ad-
justed for adult T2DM status (Model H). As mentioned
above, previous research on this data set suggested BMI
levels were not significantly different between the two
groups in childhood [87]. Models C (i.e. group difference
in childhood slopes) and B (i.e. BMI response consistently
higher in one group across the life course) were thus fitted
to demonstrate our modeling approach. An annotated ex-
tract showing the RJAGS code syntax used to fit Model E
is available in Additional file 6.

For both sex, the lowest DIC was obtained when fit-
ting model E, which was also the best fitting model with
PP p-values close to 0.5 (Table 1). This supported the
type II divergence mechanism where a difference in BMI
levels emerged between the two groups due to a group
difference in the change point timing. BMI growth rate
in adulthood for both sexes was decreased by two-thirds
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Table 1 Analyses of the divergence in BMI trajectories between T2DM adults and non-T2DM adults: assessment of Bayesian model
complexity (effective number of parameters pD), and fit (deviance information criteria DIC) for each candidate model

Model Females PP p-val Males PP p-val
Unconditional A 26910 (2544) 047 19837 (2223) 0.55
T2DMgroup (int B¢) B 26670 (2366) 045 19741 (2270) 043
T2DMgroup (childhood slope B+) @ 26780 (2510) 06 19865 (2247) 0.58
T2DMgroup (Adulthood slope (3,) D 26701 (2401) 0.58 19828 (2242) 0.62
T2DMgroup (change point CP) E 26076 (2777) 0.52 19762 (2213) 0.51
T2DMgroup (CP + 3,) F 26504(2430) 06 19860 (2271) 0.54
T2DMgroup (CP + Bo) G 26436 (2751) 0.55 19896 (2242) 045
T2DMgroup (all 4 parameters, H 26532 (2978) 0.52 19920 (2435) 0.51

Reported for each model are DIC (pD), and posterior predictive p-values (PP p-val). Best fitting models are indicated in bold characters

compared to childhood (i.e. 0.67- vs. 0.18 -, and 0.61- vs.
0.15 kg/m? per year in childhood and adulthood for
females and males respectively), and participants who
developed T2DM had similar BMI yearly rates in adult-
hood compared to those who remained healthy (Bor2pm
effect not significant in model F for both sex Table 2).
However, females who developed T2DM reached their
developmental transition in BMI rate on average
12.37 years later (Table 2).

Similarly for males, estimated BMI growth rates were
not markedly different between the two T2DM groups
in childhood or in adulthood, and comparable to those
estimated in females (Table 2). But again, compared with
healthy adults, those who developed T2DM reached
their slower BMI growth rate on average 6.47 years later.

Table 2 Posterior mean parameter estimates for Bayesian
hierarchical Piecewise BMI trajectory for best fitting trajectory
divergence models in males and females (Models E)

Females Males

Model E Model E
Bo | 26.5 (0.20) 2746 (0.16)
B, ST 067 (0.012) 061 (0.01)
B, S2 —-0.49 (0.015) —0.46 (0.06)
cP cp 16.02 (0.29) 21.62 (042)
CP 120m CP 1237 (1.21) 647 (1.23)
Ogo 2.07 (0.05) 2.36 (0.07)
Opy 0.02 (0.005) 0.06 (0.004)
Op2 0.07 (0.006) 0.05 (0.004)
Op1p2 1(0.05) 0.14 (0.03)
Ocp 3.1 (0.26) 43(0.2)
o 1.33 (0.02) 1.21 (0.01)
Biog(insuliny 1.01 (0.04) 0.98 (0.03)

Posterior standard deviations (uncertainty in the parameters) are reported in
brackets. Reported B, coefficients are in kg/m? B, and B, are in kg/m? per
year, CP and CP 1,pu are in years. All o coefficients are standard deviations for
the corresponding growth parameters and the residual error. B insulin)
coefficients are in kg/m? for a 1 sd increase in log(insulin) level

The effect of the time-varying covariate of insulin at
level 1 was significant for both males and females, with a
1-sd increase in log(Insulin) resulting in a BMI observa-
tion increased by 2.6 and 2.8 kg/m? respectively (i.e.
exp(Blog(insulin))» Table 2). To assess potential differences
in the magnitude of the insulin effect as a function of
between-person characteristics, we expanded model E by
including an interaction between ‘adult T2DM status’
and log(insulin). For each sex, the estimated parameters
were not significant (95% CI included 0), suggesting that
the effect of insulin on BMI was homogenous between
the two groups and across genders.

The estimates of the variance-covariance parameters
of model E showed that the correlation between an indi-
vidual’s BMI growth rate in childhood and adulthood is
equal to 0.61 for females and 0.47 for males, suggesting
that children who have greater yearly BMI increase rates
also have greater adult rates of increase (correlation

1 . 0,
estimated as: 782/ N Table 2). The between-

participant variation around the change point ocp was
comparable between males and females (Table 2).

Figure 2 shows the estimated population-average
prototypical trajectories for each sex and T2DM group
obtained from the estimated parameters for Model E,
along with 100 trajectories predicted for each sex and
T2DM group from Model E by Monte Carlo simulation.
This illustrates a range of credible individual profiles
generated under this model (see Appendix for code). For
each sex and adult T2DM status group, Fig. 3. shows a
box and whiskers plot of the estimated individual BMI
slopes obtained from Model E after the average change
point in the healthy group and before the T2DM groups
reach their average CP (i.e. slopes between 16.02 and
28.4 years in females, and slopes between 21.62 and
28.09 years in males). Figure 3 illustrates that individual
rates of change after puberty provides better discrimin-
ation of participants who went on to develop T2DM
from those who did not, compared to punctual individual
BMI levels at age 15 or 18 for females, and ages 21 and 24
for males (Additional file 2: Figure S2). While the
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Fig. 2 Sex-specific population average prototypical BMI trajectories for healthy and T2DM adults in the YFS cohort (solid blue and solid red lines,
respectively) and prediction of 200 individual trajectories for each sex (100 per T2DM status group). The dashed trajectories were obtained by
MCMC simulation using sex-specific posterior estimates of mean and variance of growth parameters for the best fitting models (Model E). In these

predictions, time varying measures of log(insulin) were set to the average log(Insulin) observed in the cohort

distribution of BMI levels at age groups surrounding the
age at divergence overlaps considerably (Additional file 2:
Figure S2), individual slopes allow to differentiate partici-
pants who have switched to a rate consistent with a nor-
mal slowing down of BMI development after puberty,
from those who are still on the trajectory of increasing
BMI development consistent with the rate from
childhood.

Effect of age-and sex-specific childhood Z-score on BMI
trajectories

When including individual age-and sex-specific BMI z-
scores at the first clinic as continuous level 2 predictors
of each of the four growth parameters in sex-specific
Models E, the only significant effect observed was for

the childhood BMI slope, with a 1-sd increase in BMI
z-score associated with a 0.056 (sd = 0.012) and a 0.038
(sd =0.009) increase in childhood (in kg/m? per year) for
male, and females respectively. This suggests that in the
YES sample, higher age- and sex-adjusted BMI at first
visit in childhood were associated with faster BMI in-
crease in childhood, but not with the age at transition in
BMI development nor the change rate in adulthood.

Between cohort heterogeneity in BMI trajectories

To test whether ‘year of birth’ was associated with
between-participant heterogeneity in the development of
BMI from age 6 to 49 years, five binary dummy variables
identifying BMI observations of people born in different
years (i.e. 62, 65, 71, 74 and 77) were introduced as level 2
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Fig. 3 Box and whiskers plot of fitted individuals random slopes between 16.02 and 28.4 years for females (a) and between 21.62 and 28.09 years
for males (b). Individual random slopes are estimated from the Bayesian hierarchical random change point model E. Solid lines in the boxplot
indicate the group-specific median for the slopes (equivalent to the 50th percentiles of the posterior distribution)
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predictors of BMI growth parameters in sex-specific
models (with year 1971 as the reference level) (Table 3).
Increasing the complexity of the model did not improve
model fit for males, and the lowest DIC was obtained for
the unconditional model (Model A, Table 3) suggesting
that their life-course BMI trajectory is more stable across
cohorts. For females, model E marks a significant im-
provement in model fit, suggesting that the most signifi-
cant predictor of between-cohort variations resides in the
timing of the CP, although the best model was obtained
when adjusting for a cohort effect on both the adult BMI
growth rate and change point. For each sex, the posterior
mean parameter estimates of the best fitting model are
presented in Additional file 7. The results show that most
of the between cohort variation for females is due to slight
trajectory differences in two specific birth cohorts: those
born in 1968, who reached the transition to adult BMI
growth rate on average 2.89 years later than the cohort
(year of birth 1971), and those born in 1974, who had
adult BMI yearly rates increased by 0.06 (e.g. adult slopes
of 0.24 compared to 0.18 kg/m? per year on average for
the other 5 cohorts) (Additional file 7).

Simulations

A short series of simulations was conducted to compare
difference in estimates of the age at which the groups di-
verge when using the proposed Bayesian piecewise
growth modeling approach compared to a more trad-
itional approach based on pairwise comparison of LS-
means estimated from a categorical mixed model. We
simulated repeated measure data from a Type II diver-
gence model (i.e. group-difference in the change point
timing only), using the posterior estimates of mean
growth parameters for the model fitted for females
(average parameters are set to: o = 26.5, f; = 0.67, CP
=16.02, = BGroupcr =12.37, B> = -0.49, matching Model
E posterior estimates for females in Table 2), and both a
participant-level random effect (02,,,=2.77) and an
observation-level residual error (62,,, = 2.47). Under this
model, “CP” the change point for the first group to
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depart from the population-average childhood slope rep-
resents the age at which the two groups of participants
diverge in their outcome trajectories (ie. the second
group maintains this rate of change for 12.30 years lon-
ger). To resemble the YES BMI data, we randomly sam-
pled baseline ages from the YFS cohort subtracted by
25 years as ages at the first visit for each participant,
with 6 non-missing repeated measures 3, 6, 9, 21, 27 and
31 years later for each participant. We considered 3 sce-
narios of sample sizes for the number of participants in
each group (group 1/group 2): (1) 100/100, (2) 50/100,
and (3) 30/100. For each of the three scenarios, we simu-
lated 100 datasets and fitted both a mixed model with
age as a categorical variable and the Type II divergence
Bayesian Hierarchical piecewise model using the set of
priors defined in Additional file 4. For each piecewise
model, we recorded the posterior estimate for the “CP”
parameter, and for each fitted categorical mixed model,
we applied pairwise comparison of the least-square
means (LS-means) with Tukey adjustment for multipli-
city to retrieve: (1) the earliest age at which the group-
difference in means was found significant (p < 0.05), and
(2) the midway point between two consecutive ages that
had a minimum number of non-significant differences in
means before and significant differences in means after
the “midway point” method (2) is a potential alternative
definition of age at which the group-difference appears
in the LS means. Compared to the “earliest age with p-
val <0.05” method (1), the “midway” point definition
minimises the impact of simulations where some tests
show significance at a young age, even though tests for
the surrounding ages are not. For each scenario, esti-
mated ages at divergence using the 3 methods were aver-
aged across the 100 simulations. Figure 4 presents the
simulation results in term of the quartiles distribution
and means of these estimates of age at divergence across
the 100 simulations. When sample size decreases for
one group of participants, the pairwise LS mean com-
parison method will tend to overestimate the age at di-
vergence, with significant variability in the estimates

Table 3 Analyses of inter-cohort differences in BMI trajectories: assessment of Bayesian model complexity (effective number of
parameters pD), and fit (deviance information criteria DIC) for each candidate model

Model Females PP p-val Males PP p-val
Unconditional A 26910 (2544) 0.72 197837(2223) 0.52
Birth cohort (int 3¢) B 26811 (2455) 0.70 19872 (2232) 0.70
Birth cohort (childhood slope {3;) C 26759 (2489) 034 19849 (2175) 063
Birth cohort (Adulthood slope () D 26645 (2358) 0.67 19857 (2263) 0.68
Birth cohort (change point CP) = 26395 (2599) 0.60 19862 (2211) 063
Birth cohort (CP and f3,) F 26390 (2671) 0.49 19877 (2255) 043
Birth cohort (CP, 3, and $,) G 26783 (2775) 048 19945 (2342) 0.53

Reported are: DIC (pD), and posterior predictive p-values (PP p-val). Best fitting models for each sex indicated in bold characters. (Convergence was not reached
for the most complex model where all 4-trajectory parameters (i.e.3o, B1, B2, and CP) were adjusted for birth cohort effects)
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arising due to random variation, especially when age at
significance is determined using the first age at which a
p-value <0.05 occurs (Fig. 4.). In contrast, the hierarch-
ical Bayesian piecewise model was less sensitive to sam-
ple size, and the true age at divergence was consistently
within the estimated interquartile range of the produced
estimates, indicating that the Bayesian trajectory diver-
gence model outperforms the LS mean method in both
accuracy and precision, regardless of the way “age at di-
vergence” is defined from the model output.

Discussion

Using the repeated BMI data from the YFS study, we
demonstrated how Bayesian hierarchical piecewise re-
gression (BHPR) modeling may be used to investigate
between-group trajectory divergence in non-linear longi-
tudinal outcomes.

The non-linearity in BMI development across the life-
course is well documented in the literature, with changes
in BMI corresponding to a number of identified develop-
mental phases [101, 106, 107]. In particular, BMI rate de-
celerates after puberty once people reach their adult
height, translating to a leveling-off of the BMI trajectory
in adulthood [108, 109]. Although many recent applica-
tions have relied on such approaches [99, 102, 110-113],
traditional polynomial parameterizations of growth curve
models are not well suited to analyse BMI development
[114, 115], especially if the focus is to identify transitional
changes or determine divergence between groups.

In contrast, piecewise regression is particularly suited
to model BMI across different life-stages as its parame-
ters map onto what is known about the natural develop-
ment of BMI over time [116]. Since ‘change points’ (i.e.
milestones in the case of BMI) are model parameters in
the piecewise model, there is no need to use elaborate
techniques to retrieve these points of interest [59, 112,
117]. Piecewise models are also often preferable to more
general continuous non-linear models if the number of
repeated measurements per participant is small (i.e. 3 to
6 data points each as in [16, 109]) as is often the case in
long-running observational prospective studies [99, 112].
Moreover piecewise multi-level regression models may
be used to characterize the divergence mechanisms in
non-linear responses between groups by modeling
change points as random parameters and introducing
grouping factors as predictors of the between-person
heterogeneity in responses over time.

Although our main goal was to characterize how and
when the developmental patterns of BMI diverged be-
tween those who did and did not develop T2DM in the
YES, we also demonstrated the utility of the method to
investigate cohort effects in the outcome response. Pre-
vious analyses of the YFS BMI and T2DM data consid-
ered categorical mixed models and tested for differences
in the estimated BMI levels between the two T2DM
groups at different ages by pairwise comparisons of the
BMI predicted marginal means (i.e. Least-Square means)
averaged over sex while adjusting for multiple testing (i.e.
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Tukey adjustment). This approach suggested that from age
15 years, the T2DM group had significantly higher BMI
levels than those without T2DM. However, these analyses
ignored the potential confounding effect of birth cohorts,
and each existing “age” was treated as a non time-ordered
categorical variable so that no inference could be made on
individual or group-specific age-related BMI trajectories.
Some age groups comprised those from up to five separate
birth cohorts, while others only comprised those from a
unique birth cohort (i.e. those aged 3 and 27 years). Having
substantially fewer participants in one or both T2DM status
groups at some age points results in a decreased power to
detect a significant difference between groups (i.e. the ob-
served difference at age 27 years was not significant in ei-
ther sex-averaged or sex-adjusted LS-means, Additional file
8: Tables S1, S2 and Figure S1, S2). Because BMI develop-
ment is known to progress differently in males and females,
and the oldest and youngest cohorts in the YFS sample are
almost a generation apart (~15 years), not taking these con-
founders into account may result in biased inferences. In
fact, when estimating the LS-means separately for each sex,
the age at which the difference between T2DM groups be-
comes significant is not as clear since in males the differ-
ence is not significant at age 21 and 24 years, suggesting
the true divergence in BMI between T2DM groups for
males occurs more around those ages (Additional file 8:
Table S2 and Figure S2).

In contrast, the method we illustrate here is not sensi-
tive to sample size and uses developmental theory to in-
form a model that allows between-group differences in
within-person BMI trajectories at four possible levels for
males and females to be examined (i.e. the overall BMI
level, the childhood BMI growth rate, the adult BMI
growth rate, and the age at which the transition between
the two phases of change occurs).

Applied to the example data set, our method allowed us
to characterise group differences in the non-linear devel-
opment of BMI and to identify a critical age window at
which weight intervention programs might be best applied
to help reduce or delay the incidence of T2DM in adult-
hood. Our findings support the theory that girls who keep
on gaining weight at the same rate they did in childhood
past the age of 16 years are more likely to develop T2DM
in adulthood. Similarly, for males, the natural deceleration
in BMI velocity occurs, on average, at 21 years of age.
Those who stay on their childhood BMI trajectory past
that age may be at increased risk of developing T2DM.

Longitudinal studies often aim to make inferences on
differences among average population health marker tra-
jectories. Typically, this involves comparing change rates
(or slope differences) in healthy participants vs. those with
pathological development, specific treatment conditions,
or groups following certain lifestyle patterns [118-120].
Using our Bayesian hierarchical piecewise regression
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approach, serial measures of patient’s weight and height,
often routinely collected in paediatric, general practice,
and healthy or well child clinics, could be used to deter-
mine if an individual is on a path to an healthy adult
weight status, or if their BMI trajectory places them in a
category more susceptible to develop adult metabolic con-
ditions such as T2DM.

Conclusions

Studying within-person and between-person differences
in the development of continuous outcomes as a func-
tion of age in long-running multi-cohort observational
studies is crucial to better understand the natural history
of healthy vs. pathological risk factor profiles. Due to the
typically unbalanced data designs, loss to follow-up and
expected non-linear responses, it remains methodologic-
ally challenging to analyse such data. When the substan-
tial focus is on when and how two or more groups of
participants grouped according to a distal dichotomous
health outcome have diverged in their response trajec-
tories, traditional parameterisations of curvilinear
growth model do not allow to identify an age at which
the group that developed the condition moved onto a
different path compared to the group that remained
healthy. In contrast, the hierarchical piecewise multi-
level modeling enables the separation of multiple aspects
of change in complex developmental processes such as
individual and group differences in the rates of change
at different periods, and potential heterogeneity in the
timing at which individuals from identified groups enter
each developmental phase, providing a powerful tool to
help inform intervention The methodology we illustrate
here focuses on a response with only one developmental
change point, but it could easily be extended to more
complex non-linear responses with multiple transitions.
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fasting insulin information collection in the YFS subset used in the
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Additional file 2: Subset of the YFS cohort used for the BMI trajectory
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measures per YFS participants in the subset of the cohort used for the
BMI trajectory analysis (Figure S2.) and average BMI values in kg/m?” at
each age stratified by T2DM group (pink, no adult T2DM; blue, Adult
T2DM), with error bars representing the mean BMI + SD (standard
deviation) (Figure S3.) (DOCX 180 kb)

Additional file 3: Spaghetti plot of the individual trajectories of those
with T2DM in adulthood (N = 88) and those who did not develop T2DM
in adulthood (N = 2452). Red solid line: loess smoother curve indicating
the average longitudinal trend in each group (Figure S1.) and scatterplot
of the life-course BMI data (in kg/m?) stratified by sex. Solid lines and gray
bands: loess smoothed average trajectories and confidence intervals for
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Additional file 8: Results of mixed models with age as a categorical
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over- (Table S1.) or adjusted for the levels of sex (Table S2.) and pairwise
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