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Tiivistelmä

Uniformi, yksiulotteinen fragmentti U1 on hiljan esitelty kahden muuttujan
logiikan FO2 ekstensio. Logiikka U1 mahdollistaa mitä tahansa ariteettia
olevien relaatiosymbolien käytön ja näin ollen laajentaa FO2:n sovellusalaa.
Tässä tutkielmassa me osoitamme, että logiikan U1 toteutuvuus- ja äärellinen
toteutuvuusongelma lineaarisesti järjestettyjen mallien suhteen ovat NExp-
Time-täydellisiä. Kahden muuttujan logiikan vastaavat toteutuvuusongel-
mat ovat niin ikään NExpTime-täydellisiä, joten siirtymä logiikasta FO2

logiikkaan U1 järjestettyjen mallien tapauksessa ei kasvata kompleksisuutta.
Vastakohtana edellä mainituille ratkeavuustuloksille osoitamme myös, että
U1 kahdella epäuniformilla sisäänrakennetulla lineaarijärjestyksellä on ratkea-
maton.
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Abstract

The uniform one-dimensional fragment U1 is a recently introduced extension
of the two-variable fragment FO2. The logic U1 enables the use of relation
symbols of all arities and thereby extends the scope of applications of FO2. In
this thesis we show that the satisfiability and finite satisfiability problems of
U1 over linearly ordered models are NExpTime-complete. The correspond-
ing problems for FO2 are likewise NExpTime-complete, so the transition
from FO2 to U1 in the ordered realm causes no increase in complexity. To
contrast our results, we also establish that U1 with an unrestricted use of
two built-in linear orders is undecidable.



Preface

As this thesis manifests a rather small part of the work done in my personal
journey towards mathematical maturity, I feel somewhat obliged to say a few
words of how I ended up doing what this thesis represents.

I think it all began when I read Alan Turing’s paper with the title “On
Computable Numbers, with an Application to the Entscheidungsproblem” in
my senior year of high school. I cannot say that I understood much about the
paper, but it somehow initiated an idea — I want to be able to “program”
mathematics. I shall not explain what I mean by “being able to program
mathematics,” as I never fully explained it to myself. The idea was and still
is more or less intuitive, and those, such as my thesis advisor, for whom it
says something, do not need an explanation anyway.

After high school I did various jobs in the IT field before I started com-
puter science studies in the University of Tampere. I must say that I have
never been an “orthodox” student. My formal education is everything else
than a textbook example; I have always studied what I want rather than
what I am told to. Having obtained some experience in the IT field, I be-
gan to demand a more fundamental understanding of things I was dealing
with. In the university I realized — after studying one year and working
as a research assistant for four years — that standard contemporary com-
puter science would not provide the required fundamental understanding I
was looking for. This realization is partially due to the fact that every time I
wanted to know something thoroughly, I found myself reading mathematics
instead of reading standard computer science textbooks. (Personally, I re-
gard theoretical computer science as part of mathematics.) Thus I finished
my computer science studies as a B.Sc and pursued a master’s degree in
mathematics.

Since my formal education was what it was, especially in relation to
mathematics, I basically started my master’s degree studies in mathematics
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from the starting level comparable to first-year university students. I knew
I could somehow catch up with other students, and the situation improved
radically when Antti Kuusisto became my master’s thesis advisor. Regarding
the amount of time and effort Kuusisto has given me, I think it is fair to
say that he pretty much took me from the ground level to the advanced
level I (sometimes stubbornly) required. It must not have been an easy
task. At the time I asked Kuusisto to be my thesis advisor, he was no
longer a staff member in the University of Tampere. For this reason, most
of the advising was done online. In addition to the online advising, I visited
two universities where Kuusisto was working at the time: one week in the
university of Stockholm and one week in the university of Bremen. Kuusisto
also occasionally visited Tampere for short periods of time.

All in all, this thesis is the result of the process not necessarily so typical
for master’s theses. While I did not know what the word Entscheidungsprob-
lem (decision problem) meant when I tried to pronounce it for the first time,
this thesis now deals with several decision problems in relation to fragments
of first-order logic. (As elementary concepts will mostly not be covered,
the reader is assumed to possess at least an elementary knowledge of both
mathematical logic and computational complexity theory.)

This thesis indeed addresses several decision problems. However, there is
still one personal problem that will remain undecidable, namely, how do I
thank my thesis advisor Antti Kuusisto. As currently I could not find any
sufficient way to thank him, I decided (being logical :) not to thank him at
all. He will surely appreciate this kind of a move. However, I hope I will find
a concrete way to thank him in the future.

Professor Lauri Hella deserves thanks for being supportive of the research
process and reading the thesis under a very tight schedule. In addition, as
a special group, I want to thank the following people: Miikka Ojala, John
Miller, and Brian Carroll.

Finally, I thank my family for all support.
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Chapter 1

Introduction

Many questions regarding the foundations of mathematics were addressed in
the early the 20th century. One of the questions, which will be of particular
interest to us, is the decision problem or the Entscheidungsproblem as posed
by David Hilbert in his famous program (Hilbert’s program) [27]. Unfortu-
nately, in this introduction, we shall not dive into the history of mathematics,
as intriguing it is, but we shall merely give a rather informal definition of
this particular problem — the decision problem.

The decision problem can be defined as follows. For a given first-order for-
mula, decide whether the formula is satisfiable. Alternatively, decide whether
the formula is valid. Here the first-order formula belongs to the language of
first-order (FO) logic, the definition of which we shall not give here. The
formula is satisfiable if it has a model and valid if every model where the
formula is defined satisfies it. See any standard textbook on logic for the
definition of first-order logic.

To try to decide the satisfiability of a first-order formula, we could use
an algorithm designed and implemented to solve the satisfiability of FO-
formulae. (Note that in this thesis, the notion of algorithm is assumed known
by the reader. Furthermore, the reader is assumed to have at least an ele-
mentary knowledge of computational complexity theory.) That is to say, an
algorithm solving the satisfiability of FO-formulae, would be a solution to
the decision problem. Therefore, the question is now whether there exists
such an algorithm. Before revealing the existence or non-existence of such an
algorithm, let us suppose that we have, indeed, an algorithm called the de-
cision algorithm that takes as input an FO-formula and determines whether
it is satisfiable.
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First, intuitively speaking, assume that we could express all mathemati-
cal problems as FO-formulae. Now what one would need to do, in order to
solve any mathematical problem, is to formulate an FO-formula expressing
the problem and input it to the decision algorithm which, in turn, would
determine the satisfiability or validity of the formula. Regardless of the com-
plexity of translating mathematical problems into FO-formulae, which is not
necessarily a trivial task, we may say that the existence of the decision al-
gorithm would take care of a great part of mathematical inquiry, at least
the mechanical aspect of it. In this regard, there must have been a concern
among some mathematicians in the early the 20th century.1 One could also
say, however, that this concern only emphasized the importance of the deci-
sion problem, and there were mathematicians such as Hilbert, Ackermann,
Herbrand, and Ramsey, among others, who found the decision problem the
main problem of mathematical logic [10].

Now to increase the level of formality, yet keeping things somewhat infor-
mal, let us rephrase what we just said above. Let T be a theory consisting
of a finite number of FO-sentences. Recall that an FO-formula is called a
sentence, if it does not contain free variables. Let ϕ be the conjunction of
the sentences (also called axioms) in T and ψ some FO-sentence. Now, if we
want to know whether ψ is implied by the theory T , i.e., if ψ is a theorem
of T , we set χ to be the implication ϕ → ψ and input χ to the decision
algorithm. If the decision algorithm determines χ to be valid, then ψ is a
theorem of T , otherwise not.

Having given an idea of what we could do with the decision algorithm,
it is now time to reveal what the reader may have already anticipated. The
negative answer to the decision problem was independently established by
Alonzo Church [12] and Alan Turing [55] in 1936. In other words, there is no
decision algorithm for first-order logic. Despite the negative answer, research
around first-order logic had already provided many results regarding certain
sublogics of first-order logic, which we shall introduce next.

1This is author’s interpretation, and admittedly it is somewhat provocative. In the
words of G. H. Hardy: “There is of course no such theorem, and this is very fortunate, since
if there were we should have a mechanical set of rules for the solution of all mathematical
problems, and our activities as mathematicians would come to an end.”
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1.1 Prefix-vocabulary classes

A class X of formulae of first-order logic denoted X ⊆ FO is called a fragment
of first-order logic. Prior to the negative answer to the decision problem,
many fragments of first-order logic were shown to be either decidable, i.e.,
they have a decision algorithm, or as hard as the decision problem itself.
In order for a fragment X of FO to be as hard as the problem itself, there
must exist some algorithm A that maps every FO-formula ϕ to some formula
in X such that ϕ is satisfiable if and only if A(ϕ) is. In other words, the
satisfiability of FO-formulae is reduced to satisfiability of formulae inX. Such
fragments are called reduction classes for satisfiability. Note that if one had a
decision algorithm for a reduction class, then this decision algorithm could be
used to solve the decision problem. As the decision problem is undecidable,
the existence of a decision algorithm of any reduction class would lead to a
contradiction. Consequently, every reduction class is undecidable.

The first fragments, which were shown to be either decidable or reduc-
tion classes (before Church’s and Turing’s results) are called prefix-vocabulary
classes. Informally, prefix-vocabulary classes can be defined as follows. Let
X be a class of sentences such that every sentence in X is of the follow-
ing form: a sentence starts with a quantifier block (prefix) generated by a
regular expression such as ∀∃∃ or ∀∃∀∗, where ∗ means that any number
of ∀-symbols may follow the ∃-symbol. After the quantifier block, there is
a quantifier-free FO-formula of a certain vocabulary. The vocabulary may
contain function and relation symbols (but no constant symbols, i.e., nullary
function symbols). Furthermore, sentences may contain identity symbols
(=). In other words, each prefix-vocabulary class is associated with a prefix,
vocabulary, and information whether sentences may contain identity sym-
bols. To exemplify the above informal definition, let us give an example. The
prefix-vocabulary class X denoted by [∀∗∃∗, (0, 2), (1)]= consists of sentences
starting with any number of universal quantifiers followed by any number of
existential quantifiers. In the notation [∀∗∃∗, (0, 2), (1)]=, (0, 2) means that
exactly two fixed binary relation symbols may occur in the sentences in X.
No other relation symbols may occur. The part (1) in the notation means
that exactly one unary function symbol is allowed to occur in the sentences
in X. Furthermore, the presence of the identity symbol in the notation in-
dicates that identity symbols may occur. Let R and S be binary relation
symbols and f an unary function symbol. The quantifier-free part of the
sentences in the class X may contain identity, R, S and f symbols, but no
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other non-logical symbols. For example ∀x∀y∀z( (Rxy ∧ Rxz) → y = z )
and ∀x∃y(Sxfx ∧Rfxy ) are in X, but ∃x∀y(Tx ∧ Uxyg(y)x ) is not.

We shall now mention two prefix-vocabulary classes, one of which is de-
cidable and another which is a reduction class. The Löwenheim class is the
class [all, (ω), (0)]=, where all denotes that any kind of quantifier prefixes
may be used and ω denotes that any number of unary relation symbols may
be used. This class is also known as monadic first-order logic (or monadic
predicate calculus). It was in 1915 that Löwenheim [45] provided a deci-
sion algorithm for monadic first-order logic. He also showed that allowing
the use of binary relation symbols (without unary relation symbols), would
result in a prefix-vocabulary class [all, (0, ω), (0)] that is a reduction class.
These results were sharpened many times later. For example, by extend-
ing the equality-free Löwenheim class [all, (ω), (0)] to the Löb-Gurevich class
[all, (ω), (ω)] or to Rabin class [all, (ω), (1)]=, we get classes which preserve
decidability. On the other hand, the Kalmár-Surányi class [∀∗∃, (0, 1), (0)] or
the Denton class [∀∃∀∗, (0, 1), (0)] are reduction classes which are contained
in [all, (0, ω), (0)]. In addition to the classes mentioned above, there are many
other prefix-vocabulary classes shown to be either decidable or undecidable.
These results concerning prefix-vocabulary classes are due to a great research
effort made during several decades, and thus the amount of related material
is immense. We can only scratch the surface of all material available, but for
readers who are interested in these rather historical fragments of first-order
logic, we recommend the book The Classical Decision Problem [10].

As final words concerning prefix-vocabulary classes, we ask, why prefix-
vocabulary classes and why were they studied for so many decades. We justify
these questions by noting that not only is there an uncountable number of
fragments of first-order logic2 from where to choose, but also a relative lack
of applications (at least currently) in fields other than mathematical logic
can be seen as unattractive. Obviously, one reason could simply be histori-
cal. At the advent of first-order logic, there were not that many “real life”
applications motivating research in the field of mathematical logic. Another
reason could be the simple syntactic form of the prefix-vocabulary classes
that simplifies their classification, and also the hopes that a full classification
is obtainable. In the next three sections, we will introduce more modern
fragments of first-order logic that have various applications in, e.g., database

2Most of these obviously have a non-recursive syntax, as the number of algorithms is
countable.
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theory and beyond.

1.2 The two-variable fragment

One way, and surely a simple way, to restrict first-order logic is to restrict the
number of variables which may occur in formulae. Fragments with a fixed
number of variables are called variable-bounded (finite-variable) fragments
of first-order logic. Henkin is considered one of the first who did a sys-
tematic study on them [26]. Let us denote by FOk the k-variable-bounded
fragment of first-order logic meaning that the formulae of FOk may only con-
tain the variables x1, . . . , xk. In addition to the variable restriction, formulae
of variable bounded fragments are relational, that is, they may only contain
relation symbols, but not function or constant symbols. In contrast to prefix-
vocabulary classes, formulae of variable-bounded fragments do not need to
be in prenex normal form, allowing the reuse (“recycling”) of variables in
nested subformulae in formulae. (An FO-formula is in prenex normal form,
if all quantifiers occurring in it appear at the beginning of the formula (prefix
part) followed by quantifier free part (matrix part).)

Variable-bounded fragments have many applications in various fields such
as finite model theory, database theory, knowledge representation (AI), and
model checking [10].

In the case of variable-bounded fragments, the undecidability of FOk for
k ≥ 3 follows directly from the undecidability of the conservative reduction
class [∀∃∀, (ω, 1), (0)], as it is properly contained in FOk for every k ≥ 3.
Note that this holds even without the identity symbol.

It was Mortimer who first showed that FO2, i.e., the two-variable fragment
of first-order logic, is decidable [47]. The result was established by showing
that FO2 has the finite model property, that is, every FO2-formula has a
model if and only if it has a finite model. Note that in addition to the variable
restriction, FO2 is a relational fragment of FO, meaning that no function
symbols may occur in the formulae of FO2.3 Adding just one function symbol
would result in a fragment that contains e.g. the Gurevich class [∀2, (0, 1), (1)]
that is a conservative reduction class.

Note indeed that while we have only two distinct variables, say x and
y, that can be used in FO2-formulae, we can reuse them e.g. as follows:

3Adding constant symbols would not change the decidability of FO2, see [10]
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∃x∃y(Exy∧∃x(Eyx∧∃y(Exy))). This FO2-sentence, where E is a binary re-
lation representing edges in a directed graph, says that there is a directed path
of length 3. Another example of variable reuse is the standard translation,
which is a method for translating formulae of modal logic into FO-formulae:
formulae of modal logic containing only unary modal diamond-operators can
be translated into FO2-formulae, see e.g. Chapter 2 in [7]. Consequently, for
example standard propositional modal logic can be seen as a fragment of FO2

due to the standard translation,
As a historical side-note, Scott [54] showed, before Mortimer, that FO2

without equality is decidable. Scott essentially showed that FO2-formulae
without identity can be transformed into formulae in the Gödel class

[∃∗∀2∃∗, (all), (0)].

At the time (1962) when Scott’s result was published, it was thought that
the Gödel class even with the identity would be decidable. The reason why
it was thought to be the case was due to Gödel’s claim [19]. Gödel claimed
(without proof) that his decidability proof could be extended to deal with
identity symbols, and thus the Gödel class with identity symbols would be
decidable. However, due to Goldfarb, the class [∀2∃∗, (ω, 1), (0)]= was shown
to be undecidable [13]. Since the Goldfarb class is contained in the Gödel
class with identity, the latter cannot also be decidable.

Complexity analysis of Mortimer’s FO2 decidability proof results in a
2NExpTime upper bound for the satisfiability problem of FO2. This result
was later sharpened to NExpTime-completeness in [15], along with a simpler
proof for the finite model property.

Research concerning FO2 has been, and still is, active. There are many
extensions of FO2 proved to be decidable or undecidable. For instance, the
two-variable logic with counting quantifiers, FOC2, was proved decidable in
[16, 49] and its satisfiability problem was shown NExpTime-complete in [50].
As FOC2 extends FO2 by introducing new quantifiers, counting quantifiers,
and thus extends the syntax of FO2, we call FOC2 a syntactic extension
of FO2. There of course are also undecidable syntactic extensions of FO2,
for instance two-variable transitive closure logic, TC2. This extension along
with many others were shown undecidable in [17]. In contrast to syntactic
extensions, there are many decidable and undecidable extensions of FO2 [48,
29, 46, 53, 34] which deal with certain restricted classes of structures rather
than extending the syntax of FO2. It is also worth pointing out some recent
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studies on the two-variable logic FO2 such as [5, 4, 8, 33, 9] among others.
Recent research on two-variable logic includes even investigations in non-
classical frameworks (e.g., [41, 35, 36]).

1.3 The guarded fragment

Another fragment (or type of fragment) of first-order logic worth mentioning
is the guarded fragment (GF) of first-order logic. This fragment was intro-
duced in [1], and like FO2, GF is also a relational fragment. All relational,
quantifier-free FO-formulae are GF-formulae, and GF-formulae with quan-
tifiers are of the following form. Let x̄ = x1, . . . , xk and ȳ = y1, . . . , yl be
sequences of variables, ϕ(x̄, ȳ) a GF-formula and α(x̄, ȳ) an atomic formula.
Now ∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) and ∀ȳ(α(x̄, ȳ) → ϕ(x̄, ȳ)) are GF-formulae; here
the atomic formula α is called a guard, and it contains all free variables of
ϕ. In other words, quantifiers in GF-formulae must be relativized by atomic
formulae. Note also that the inspiration for the “guarded” quantification
seems to come from the standard translation of modal logic.

The satisfiability problem for GF was shown to be 2ExpTime-complete in
[14]. In the same paper, the satisfiability problem for fragments of GF, which
have a bounded number of variables or only relation symbols of bounded arity,
was shown to be ExpTime-complete.

The guarded fragment has been extended many times since its introduc-
tion. There is, for example, the guarded negation fragment of first-order logic,
GNFO, introduced and shown to be 2NExpTime-complete in [3], and many
other variants, see [18, 28].

Andréka et al. proved in [1] that variable bounded fragments, includ-
ing FO2, do not have all the “nice” model-theoretic properties possessed by
modal logics. What are these nice properties (model-theoretic or modal be-
havior) are intentionally left somewhat vague, as we shall not analyze these
properties much here. For the readers interested in this, we suggested to
begin with the article [1]. Here we only aim to give a minimal background
on modern fragments of first-order logic in order to motivate the reader for
the work below. Moreover, the reason why FO2 and GF in particular were
introduced here is that current research regarding first-order fragments seems
to be very active on these two fragments in particular.

One of the reasons FO2 and GF in particular are important is their direct
relation to modal logic. Modal logic has well-known applications in several
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fields, including specification and verification, knowledge representation, and
even distributed computing. For the most recent research direction in the
intersection of modal logic and distributed computing, see [51, 21, 38, 39].
Modal logic has also important applications in more theoretical frameworks.
For example provability logic and intuitionist logics are very closely related
to modal logic. Also concerning theoretical work, both FO2 and GF have
often proved directly useful when developing the theory of modal-logic-based
systems. Typical examples of this include for example the direct extraction of
upper bounds (for satisfiability problems of modal logics). See, e.g., [11, 25]
for examples of this.

1.4 The uniform one-dimensional fragment

The equality-free uniform one-dimensional fragment, denoted U1(wo =), of
first-order logic was introduced in [23]. This relational fragment allows the
use of relation symbols of arbitrary arity with certain restrictions. These
restrictions are the uniformity and one-dimensionality conditions which can
be described as follows. The one-dimensionality condition restricts quantifi-
cation to blocks of existential (universal) quantifiers such that at most one
variable may remain free in the quantified formula. The uniformity condi-
tion restricts the use of atomic formulae such that if k > 1 and l > 1, then
Boolean combinations of atoms Rx1 . . . xk and Sy1 . . . yl are allowed only
if the sets {x1, . . . , xk} and {y1, . . . , yl} of variables are equal. Moreover,
U1(wo =)-formulae do not contain identity symbols (without =). However,
Boolean combinations of formulae with at most one free variable can be
formed freely.

In [23], the authors proved decidability of U1(wo =) by a direct reduc-
tion to monadic first-order logic. The argument was based on extending
the approach developed in [22, 24] and Chapter 2 of [37]. In [23], it was
also shown that relaxing either the one-dimensionality or uniformity condi-
tion would result in undecidable extensions of U1(wo =). More precisely,
the general one-dimensional fragment GF1, where uniformity is relaxed, and
strongly uniform two-dimensional fragment SUF2, where the dimensionality
condition now concerns two free variables instead of one, were shown to be
undecidable in [23]. In addition to the above results, U1(wo =) was shown to
be incomparable in expressivity with both FOC2 and GNFO in [23], meaning
that there are properties expressible in U1(wo =) but not it in FOC2 (GNFO)
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and vice versa.
It is also worth noting that uniformity, along with one-dimensionality,

seems to be quite a crucial condition in terms of the decidability of U1(wo =).
If just one binary relation is allowed to be used in a non-uniform way, the
resulting extension is undecidable. This result follows directly due to the
class [∀∃ ∧ ∀3, (ω, 1)], which is a conservative reduction class [10]. This class
consists of conjunctions ψ ∧ ϕ such that ψ ∈ [∀∃, (ω, 1)] and ϕ ∈ [∀3, (ω, 1)].

The uniform one-dimensional fragment of first-order logic, U1, was stud-
ied in [30]. This fragment extends U1(wo =) by allowing the non-uniform use
of identity symbols. In [30] a finite model property for U1 was established
and the satisfiability problem for U1 was shown to be NExpTime-complete.
The attempt to extend U1 even further by adding counting quantifiers re-
sults in a fragment called uniform one-dimensional fragment with counting
quantifiers, UC1, which was shown undecidable in [30]. In addition to the
above results, it was shown in [30] that FO2 < U1 < FOC2 when signatures
contain only unary and binary relation symbols. In other words, the expres-
sivity of U1 over structures containing only unary or binary relations lies
strictly between FO2 and FOC2. Furthermore, in [43] it was shown that the
fully uniform one-dimensional fragment of first-order logic, FU1, and FO2

are equi-expressive, when signatures contain only unary or binary relation
symbols. The logic FU1 is a fragment of U1, and full uniformity means that
equality is also subject to the uniformity condition, just like all binary re-
lations are. Due to the properties listed above, we may say that U1, and
especially FU1, is a canonical, decidable extension of FO2.

The paper [43] also works as a survey of the research on U1. In addition
to the survey nature of the paper [43], it presents some new results, inter alia
showing that GNFO and U1 are incomparable in expressivity. Furthermore,
it also introduces a novel description logic DLFU1 that is shown to be expres-
sively equivalent to FU1 and also argued to be a natural generalization of the
description logic ALBOid [52] to higher arity contexts. Description logics are
a family of knowledge representation languages with various applications in
database theory as well as the theory of knowledge bases. Most description
logics can be seen as fragments of first-order logic [2], and in particular, frag-
ments of decidable fragments of FO such as two-variable logic and guarded
fragments. As U1 is a decidable extension of FO2, it can also be seen as a
potential formalism for description logic studies [43]. Those readers inter-
ested in description logics see [2] for an introduction on the subject. In any
case, one of the main motivations for studying U1 is the fact that U1 extends
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the scope of (the very active) research program on FO2 to the context with
higher arity relations, and this, in turn, can be seen as crucial especially from
the point of view of database theory.

Extensions of U1, in addition to the one with counting quantifiers, have
also been studied. In [32], uniform one-dimensional fragment with one equiv-
alence relation, U1[∼], was shown to be decidable, and its satisfiability prob-
lem was shown to be 2NExpTime-complete. The binary equivalence symbol
∼ in U1[∼] is a so-called non-uniform built-in relation, meaning that it can
be used in U1[∼]-formulae in the same way as the identity symbol can be
used in U1, that is in a non-uniform way. The extension U1[∼1,∼2] with
two built-in equivalence relations increases expressive power such that it no
longer preserves decidability [32]. In addition to the above results, the au-
thors of [32] also studied some natural fragments of U1 and proved that a
certain restriction of U1 that still contains FO2, is only NExpTime-complete
in the presence of a single non-uniform built-in equivalence. Also, U1 with
one built-in transitive relation was shown undecidable.

In this thesis, we continue research on extensions of U1 started in [32].
We show that U1 over ordered structures, denoted U1(<), is decidable and its
satisfiability problem is NExpTime-complete. Here the built-in linear order
relation < is like any other binary symbol in the sense that it is used only
uniformly. Despite this, many interesting properties concerning the interplay
of < with even ternary and higher arity relations, are expressible in U1(<).
The syntax of U1 is not extended, but we in fact deal with a collection of
classes of structures, namely, finite linearly ordered, well-ordered, and linearly
ordered classes of structures. In addition to the order relation <, structures
may of course contain an arbitrary number of other relation symbols of any
arity.

In contrast to the case of U1(<), we also show that uniform one-dimension-
al fragment with two non-uniform built-in order relations, U1[<1, <2], is un-
decidable. Note indeed that here the binary relation symbols <1 and <2 may
be freely (non-uniformly) used. We point out, as suggested future work, that
decidability of U1(<1, <2) over ordered domains, with two built-in linear or-
der relations <1 and <2 that are used uniformly, as well as U1[<], where <
is a non-uniform built-in linear order relation, remain unsolved.

We have now introduced the three modern, decidable fragments FO2,
GF, and U1 of first-order logic, where U1 is the most recent one. They all
have their place in research and potential for applications, and there is no
reason to put them in any clear order of preference. This is partially justified
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already by the fact that FO2 and U1 are incomparable with GF (and even
with GNFO) in expressivity. Furthermore, while FO2 is properly contained
in U1, its extension FOC2 is incomparable with U1.

1.5 The structure of the thesis

The structure of the thesis is the following. In Chapter 2, we properly define
some of the notions mentioned above. Moreover, more definitions and nota-
tions are introduced, and thus very little background information is needed
to understand this thesis. Chapters 3 and 4 together present the main re-
sults of the thesis, namely the fact that U1 is decidable over different kinds of
classes of linearly ordered structures. Following the decidability results, the
complexity of the related satisfiability problems for U1 over ordered domains
is given in Chapter 5. As a final result, Chapter 6 presents the undecidability
result of U1 with two non-uniform built-in linear orders. Note that all results
in this theses are novel and not published yet anywhere. The argument lead-
ing to the main result of this work uses new methods in addition to methods
introduced in [48] and [30]. The research results presented in this work are
joint work with Antti Kuusisto. Chapter 7 is the last chapter concluding the
thesis.
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Chapter 2

Preliminaries

We let Z+ denote the set of positive integers. If f is a function with a domain
S, we define

img(f) := { f(s) | s ∈ S }.

An ordered set is a structure (A,<) where A is a set and < a linear order
on A. We call a subset I of A an interval if for all a, c ∈ I and all b ∈ A, it
holds that if a < b < c, then b ∈ I. A permutation of a tuple (u1, ... , uk) is a
tuple (uf(1), ... , uf(k)) for some bijection f : {1, ... , k} → {1, ... , k}. A trivial
tuple is a tuple (u1, ... , uk) such that ui = uj for all i, j ∈ {1, ... , k}.

We let VAR denote the set {v1, v2, . . .} of first-order variable symbols.
We mostly use metavariables x, y, z, x1, y1, z1, etc., to denote the variables in
VAR. Note that for example the metavariables x and y may denote the same
variable symbol vi, while vi and vj for i 6= j are always different symbols.
Let R be a k-ary relation symbol. An atomic formula Rx1...xk is called an
X-atom if X = {x1, ... , xk}. For example, if x, y, z are distinct variables,
then Syx and Rxyxxy are {x, y}-atoms while Px and Txzy are not. Txyz
and Syyxz are {x, y, z}-atoms. For technical reasons, atoms x = y with an
equality symbol are not {x, y}-atoms.

Let τ be a relational vocabulary. A k-ary τ -atom is an atomic τ -formula
that mentions exactly k variables: for example, if x, y, z are distinct variables
and R, T ∈ τ relation symbols with arities 5 and 3, respectively, then the
atoms Txxy and x = y are binary τ -atoms and Rxxyzx and Txyz ternary
τ -atoms. If P, S ∈ τ are relation symbols of arities 1 and 2, respectively,
then Px and x = x are unary τ -atoms and Sxy a binary τ -atom.
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Let τm denote a countably infinite relational vocabulary in which every
relation symbol is of the arity m. Let V be a complete relational vocabulary,
that is V =

⋃
m∈Z+

τm. In this thesis we consider models and logics with
relation symbols only; function and constant symbols will not be considered.
(The identity symbol is considered a logical constant and is therefore not
a relation symbol.) We denote models by A, B etcetera. The domain of
these models is then denoted by A and B, respectively. If τ is a vocabulary,
then a τ -model interprets all the relation symbols in τ and no other relation
symbols. A τ -formula is a formula whose relation symbols are contained in
τ . If A is a τ -model and B a τ ′-model such that τ ⊆ τ ′ and A = B � τ ,
then B is an expansion of A and A is the τ -reduct of B. The notion of
a substructure is defined in the usual way, and if A is a substructure of B
(written: A ⊆ B), then B is an extension of A.

Consider a vocabulary τ ⊆ V . The set of τ -formulae of the equality-free
uniform one-dimensional fragment U1(wo=) is the smallest set F such that
the following conditions hold.

1. Every unary τ -atom is in F .

2. If ϕ ∈ F , then ¬ϕ ∈ F .

3. If ϕ, ψ ∈ F , then (ϕ ∧ ψ) ∈ F .

4. Let X ′ := {x0, ..., xk} ⊆ VAR and X ⊆ X ′. Let ϕ be a Boolean
combination of X-atoms and formulae in F whose free variables (if
any) are in the set X ′. Then the formulae ∃x1...∃xkϕ and ∃x0...∃xkϕ
are in F .

In addition to the logical symbols ¬ and ∧, we use the following abbreviations:
ϕ∨ψ := ¬(¬ϕ∧¬ψ), ϕ→ ψ := ¬ϕ∨ψ, ϕ↔ ψ := ¬(ϕ∨ψ)∨¬(¬ψ∨¬ϕ), and
∀xϕ := ¬∃x¬ϕ. We usually omit the parentheses around (ϕ ∧ ψ) and write
ϕ ∧ ψ, if there is no risk that omitting parentheses would cause confusion.
For example, ∃x∃y∃z(¬Rxyzxy ∧ ¬Tyxz ∧ Px ∨ Qy) and ∃x∀y∀z(¬Sxy →
∃u∃vTuvz) are formulae of U1(wo=). If ψ(y) is a formula of U1(wo=), then
∃y∃z(Txyz∧Rzxyzz∧ψ(y)) is as well. However, the formula ∃x∃y∃z(Sxy∨
Sxz) is not a formula of U1(wo =) because {x, y} 6= {x, z}. The formula is
said to violate the uniformity condition, i.e., the syntactic restriction that
the relational atoms of higher arity bind the same set of variables. The
formula ∀y(Py ∧ ∃xTxyz) is not a formula of U1(wo =) because it violates

13



one-dimensionality, as ∃xTxyz has two free variables. Perhaps the simplest
formula of U1(wo=) that can be expressed in neither two-variable logic with
counting quantifiers FOC2 nor in the guarded negation fragment GNFO is
the formula ∃x∃y∃z¬Txyz.

The set of formulae of the fully uniform one-dimensional fragment FU1 is
obtained from the set of formulae of U1(wo=) by allowing the substitution of
any binary relation symbols in a formula of U1(wo=) by the equality symbol
=. If restricted to vocabularies with at most binary symbols, FU1 is exactly
as expressive as FO2 [43].

The set of τ -formulae of the uniform one-dimensional fragment U1 is
the smallest set F obtained by adding to the four above clauses that define
U1(wo=) the following additional clause:

5. Every equality atom x = y is in F .

For example ∃y∃z(Txyz ∧ Qy ∧ x 6= y) as well as the formula ∃x∃y∃z(x 6=
y ∧ y 6= z ∧ z 6= x) are U1-formulae. The latter formula is an example of a
(counting) condition that is well known to be undefinable in FO2. A more
interesting example of a condition not expressible in FO2 (cf. [43]) is defined
by the U1-formula ∃x∀y∀z(Syz → (x = y ∨ x = z)), which expresses that
some element is part of every tuple of S. For more examples and background
intuitions, see the survey [43].

Let x̄ be a tuple of variables. Let ∃x̄ϕ be a U1-formula which is formed
by applying the rule 4 of the syntax above. Recall the set X used in the
formulation. If ϕ does not contain any relational atom (other than equality)
with at least two distinct variables, we define Lϕ := ∅, and otherwise we
define Lϕ := X. We call the set Lϕ the set of live variables of ϕ. For
example, in ∃y∃z∃u(Txyz ∧Rxxyyz ∧ x = u∧Q(u)) the set of live variables
is {x, y, z}.

A quantifier-free subformula of a U1-formula is called a U1-matrix. Let
ψ(x1, ... , xk) be a U1-matrix with exactly the distinct variables x1, ... , xk.
Let A be a model with domain A, and let a1, ... , ak ∈ A be (not necessarily
distinct) elements. Let T be the smallest subset of {a1, ..., ak} such that for
every xi ∈ Lψ, we have ai ∈ T , that is T = {ai | xi ∈ Lψ}. We denote T by
live

(
ψ(x1, ..., xk)[a1, ..., ak]

)
. Let us have an example of this notation.

Example 1.

If ψ(v1, v2, v3, v4) := (Rv2v3v2 ∧ Pv4 ∧ v1 = v2),

then live
(
ψ(v1, v2, v3, v4)[a, b, c, b]

)
= {b, c}.
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We shall shorten the notation live
(
ψ(x1, ..., xk)[a1, . . . , ak]

)
to live

(
ψ[a1, ..., ak]

)
when there is no possibility of confusion.

2.1 Generalized Scott normal form

A U1-formula ϕ is in generalized Scott normal form, if

ϕ =
∧

1≤i≤m∃

∀x∃y1 . . . ∃ykiϕ∃i (x, y1, . . . , yki) ∧
∧

1≤i≤m∀

∀x1 . . . ∀xliϕ∀i (x1, . . . , xli),

where the formulae ϕ∃i and ϕ∀i are quantifier-free U1-matrices. Henceforth by
a normal form we always mean generalized Scott normal form. The formulae
∀x∃y1...∃ykiϕ∃i (x, y1, ..., yki) are called existential conjuncts and the formu-
lae ∀x1...∀xliϕ∀i (x1, ..., xli) universal conjuncts of ϕ. Let n be the maximum
number of the set {ki + 1}1≤i≤m∃ ∪ {li}1≤i≤m∀ . We call n the width of the
sentence ϕ. The quantifier-free part of an existential (universal) conjunct
is called an existential (universal) matrix. We often do not properly differ-
entiate between existential conjuncts and existential matrices when there is
no risk of confusion. The same holds for universal matrices and universal
conjuncts.

Proposition 2 ([30]). Every U1-formula ϕ can be translated in polynomial
time to a U1-formula ϕ′ in generalized Scott normal form that is equisat-
isfiable with ϕ in the following sense. If A |= ϕ, then A∗ |= ϕ′ for some
expansion A∗ of A, and vice versa, if B |= ϕ′, then B′ |= ϕ for some reduct
B′ of B. The vocabulary of ϕ′ expands the vocabulary of ϕ with fresh unary
relation symbols only.

Let A be a model satisfying a normal form sentence ϕ of U1. Let a, a1, ... , aki
∈ A, and let ∀x∃y1...∃ykiϕ∃i (x, y1, ..., yki) be an existential conjunct of ϕ such
that A |= ϕ∃i (a, a1, ..., aki). Then we define

Aa,ϕ∃i
:= A � {a, a1, . . . , aki}

and we call Aa,ϕ∃i
a witness structure for the pair (a, ϕ∃i ). The elements of

the witness structure are called witnesses. In addition, we define

Āa,ϕ∃i
:= Aa,ϕ∃i

� live(ϕ∃i [a, a1, . . . , aik ])
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and we call it the live part of Aa,ϕ∃i
. If the live part Āa,ϕ∃i

does not contain

a, then it is called free. The remaining part Aa,ϕ∃i
� (Aa,ϕ∃i \ Āa,ϕ∃i ) of Aa,ϕ∃i

is called the dead part of the witness structure. In other words, the witness
structure consists of the two parts: the live part and the dead part.

2.2 Structure classes

Fix a binary relation <. Throughout the thesis, we let O denote the class
of all structures A such that A is a τ -structure for some τ ⊆ V with < ∈ τ ,
and the symbol < is interpreted as a linear order over A. (Note that the
vocabulary is not required to be the same for all models in O.) The class
WO is defined similarly, but this time < is interpreted as a well-ordering of
A, i.e., a linear order over A such that each nonempty subset of A has a least
element w.r.t. <. Similarly, Ofin is the subclass of O where every model is
finite.

Consider a class K ∈ {O,WO,Ofin}. The satisfiability problem of U1

over K asks, given a formula of U1, whether ϕ has a model in K. The set of
relation symbols in the input formula ϕ is not limited in any way.

If R1 and R2 are binary relation symbols, we let U1[R1, R2] be the exten-
sion of U1 such that ϕ is a formula of U1[R1, R2] iff it can be obtained from
some formula of U1 by replacing any number of equality symbols with R1 or
R2.

Example 3. The sentence ∀x∀y∀z((R1xy∧R1yz)→ R1xz) is obtained from
the U1-formula ∀x∀y∀z((x = y∧y = z)→ x = z) in the way described above.

Such extensions of U1 are said to allow non-uniform use of R1 and R2 in
formulae. At the end of this thesis we investigate U1[<1, <2] over structures
where <1 and <2 both denote linear orders.

2.3 Types and tables

Let τ be a finite relational vocabulary. A 1-type (over τ) is a maximally
consistent set of τ -atoms and negated τ -atoms in the single variable v1. We
denote 1-types by α and the set of all 1-types over τ by ατ . If there is no
risk of confusion, we may write α instead of ατ . The size of ατ is clearly
bounded by 2|τ |. We often identify a 1-type α with the conjunction of its
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elements, thereby considering α(x) as simply a formula in the single variable
x. (Note that here we used x instead of the official variable v1 with which
the 1-type α was defined.)

Let A be a τ -model and α a 1-type over τ . The type α is said to be
realized in A if there is some a ∈ A such that A |= α(a). We say that the
point a realizes the 1-type α in A and write tpA(a) = α. Note that every
element of A realizes exactly one 1-type over τ . We let αA denote the set of
all 1-types over τ that are realized in A. It is worth noting that 1-types do
not only involve unary relations: for example an atom Rxxx can be part of
a 1-type.

Let k ≥ 2 be an integer. A k-table over τ is a maximally consistent set of
{v1, ... , vk}-atoms and negated {v1, ... , vk}-atoms over τ . Moreover, 2-tables
do not contain identity atoms or negated identity atoms.

Example 4. Using the meta-variables x, y instead of v1, v2, the set

{Rxxy,Rxyx,¬Ryxx,Ryyx,¬Ryxy,Rxyy, x < y,¬ y < x}

is a 2-table over {R,<, P}, where R is a ternary, < binary and P a unary
symbol.

We denote k-tables by β. Similarly to what we did with 1-types, a
k-table β can be identified with the conjunction of its elements, denoted
by β(x1, ... , xk). If a1, ... , ak ∈ A are distinct elements such that A |=
β(a1, . . . , ak), we say that (a1, ... , ak) realizes the table β and write

tbA(a1, ... , ak) = β.

Every tuple of k distinct elements in the τ -structure A realizes exactly one
k-table β over τ .

Let α be a 1-type. We define the formulae

minα(x) := α(x) ∧ ∀y
(
(α(y) ∧ x 6= y)→ x < y

)
and

maxα(x) := α(x) ∧ ∀y
(
(α(y) ∧ x 6= y)→ y < x

)
for later use. An element a ∈ A is called a minimal (resp., maximal) realiza-
tion of α in A iff A |= minα(a) (resp., A |= maxα(a)). This definition holds
even if A interprets < as a binary relation that is not a linear order; at a
certain very clearly marked stage of the investigations below, the symbol <
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is used over a model B where it is not necessarily interpreted as an order
but is instead simply a binary relation.

Let ϕ be a normal form sentence of U1 over τ and let A be a τ -model.
Let n be the width of ϕ. A 1-type α over τ is called royal (in A and w.r.t.
ϕ) if there are at most n− 1 elements in A realizing α. Elements in A that
realize a royal 1-type are called kings (w.r.t. ϕ). Other elements in A are
pawns (w.r.t. ϕ). If KA denotes the set of kings in A, then KA is bounded
by

(n− 1)|α| = (n− 1)2|τ |,

where α is the set of all 1-types over τ .
Now recall the notion of a witness structure Aa,ϕ∃i

in a model A for a pair

(a, ϕ∃i ), where a ∈ A is an element and ϕ∃i an existential conjunct of a normal
form formula. Let α be a 1-type. By a witness structure of (α, ϕ∃i ) we mean
a witness structure Aa′,ϕ∃i

for some pair (a′, ϕ∃i ) such that a′ ∈ A realizes α.
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Chapter 3

Analysing ordered structures

Let ϕ be a normal form sentence of U1 and τ the set of relation symbols in ϕ.
Assume that the symbol < occurs in ϕ. Let r be the highest arity occurring
in the symbols in τ , and let n be the width of ϕ. Denote min{r, n} by m.
Let A ∈ O be a τ -model that satisfies ϕ. Let P ⊆ A be the set of all pawns
(w.r.t. ϕ) of A. Thus, for every p ∈ P , there are at least n elements in A
realizing the 1-type of p. Let c ≥ 3 be an integer. The c-cloning extension
of A with respect to ϕ is a linearly ordered extension A′ of A defined by the
following process.

1. Defining an ordered domain for A′: For each p ∈ P , let Cl(p) be a
set {p0} ∪ {p2, ... , pc−1} of fresh elements. The domain of A′ is the set

A′ = A ∪
⋃
p∈P

Cl(p).

For each p ∈ P , the elements {p2, ... , pc−1} are placed immediately after p
while the element p0 is inserted immediately before p, so

{p0} ∪ {p} ∪ {p2, . . . , pc−1}

becomes an interval with c elements such that

p0 < p < p2 < . . . < pc−1.

The reason why we place the element p0 before p and the other elements
after it will become clear later on.
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2. Cloning stage: For every p ∈ P , every p′ ∈ Cl(p), and every subset
S ⊆ A \ {p} such that 1 ≤ |S| ≤ m− 1, we define

tpA′(p
′) := tpA(p)

and
tbA′(p

′, s̄) := tbA(p, s̄),

where s̄ is an |S|-tuple that enumerates the elements of S.

3. Completion stage: For each p ∈ P , let Ip denote the interval

{p0} ∪ {p} ∪ {p2, . . . , pc−1}.

We call the intervals Ip clone intervals and define

I :=
⋃
p∈P

Ip.

Now define P2 to be the set of all pairs (α1, α2) of 1-types such that we have

A′ |= α1(u) ∧ α2(u′) ∧ u < u′

for some elements u, u′ ∈ A′. (Note that α1 and α2 are allowed to be the same
type.) Then define a function t2 : P2 → A2 that maps every pair (α1, α2) in
P2 to some pair (w,w′) ∈ A2 such that

tpA(w) = α1, tpA(w′) = α2, and w <A w′.

We then do the following.
Assume u, u′ ∈ I such that u <A′ u′. Let α1 and α2 denote the 1-types of

u and u′, respectively, and assume no table has been defined over (u, u′) or
(u′, u) in the cloning stage. Then we define

tbA′(u, u
′) := tbA(t2(α1, α2)).

Now recall m = min{n, r}. Assume k ∈ {3, ... ,m}, and let Pk be the set
of tuples (α1, ... , αk) of 1-types (repetitions of types allowed) such that

A′ |= α1(u1) ∧ ... ∧ αk(uk)
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for some elements u1, ... , uk ∈ A′ such that

u1 <
A′ u2 <

A′ . . . <A′ uk.

Define a function tk : Pk → Ak that maps every tuple (α1, ... , αk) in Pk to
some tuple (w1, ... , wk) ∈ Ak of distinct elements such that

tpA(wj) = αj

for each j ∈ {1, ... , k}. Note that the order of the elements w1, ... , wk in
A does not matter, and note also that it is indeed always possible to find k
suitable elements because each pawn in A has at least n ≥ m ≥ k occurrences
in A. Now consider every tuple (u1, ... , uk) ∈ A′k of elements such that

u1 <
A′ u2 <

A′ . . . <A′ uk

and such that we have not defined any table in the cloning stage over
(u1, ... , uk) or over any permutation of (u1, . . . , , uk), and define

tbA′(u1, . . . , , uk) := tbA(tk(α1, ... , αk)),

where αj denotes the type of uj for each j. Do this procedure for each
k ∈ {3, ... ,m}. Finally, over tuples with more than m distinct elements, we
define arbitrarily the interpretations (in A′) of relation symbols of arities
greater than m. This completes the definition of A′.

Lemma 1. Let A ∈ O be a model and A′ its c-cloning extension w.r.t. ϕ.
Now, if A |= ϕ, then A′ |= ϕ.

Proof. It is easy to show that the existential conjuncts are dealt with in the
cloning stage of the construction of A′, so we only need to argue that for all
universal conjuncts χ of ϕ, if A |= χ, then A′ |= χ. To see that A′ satisfies the
universal conjuncts, consider such a conjunct ∀x1...∀xkψ(x1, ... , xk), where
ψ(x1, ... , xk) is quantifier free, and let (a1, ... , ak) be a tuple of elements from
A′, with possible repetitions. We must show that

A′ |= ψ(a1, ... , ak).

Let
{u1, ... , uk′} := live(ψ(x1, ... , xk)[a1, ... , ak])
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and call V := {a1, ... , ak}. The table tbA′(u1, ... , uk′) has been defined either
in the cloning stage or the completion stage to be tbA(b1, ... , bk′) for some
distinct elements b1, ... , bk′ ∈ A. Furthermore, since A′ and A have exactly
the same number of realizations of each royal 1-typep and since both models
have at least n ≥ k realizations of each pawn, it is easy to define an injection
f from V into A that preserves 1-types and such that f(ui) = bi for each
i ∈ {1, ... , k′}. Therefore

A′ |= ψ(a1, . . . , ak) iff A |= ψ(f(a1), . . . , f(ak)).

Since A |= ϕ, we have A |= ψ(f(a1), ... , f(ak)) and therefore A′ |= ψ(a1, ... , ak).

We now fix a sentence ϕ of U1 with the set τ (with < ∈ τ) of relation
symbols occurring in it. We also fix a τ -model A ∈ O. We assume A |= ϕ
and fix a 3-cloning extension A′ of A w.r.t. ϕ. We let n be the width of ϕ
and m∃ the number of existential conjuncts in ϕ. The models A and A′ as
well as the sentence ϕ will remain fixed in the next two sections (3.1 and
3.2). In the two sections we will study these two models and the sentence ϕ
and isolate some constructions and concepts that will be used later on.

3.1 Identification of a court

Let K denote the set of kings of A′ (w.r.t. ϕ). Thus K is also the set of kings
of A. We next identify a finite substructure C of A called a court of A with
respect to ϕ. We note that a court of A w.r.t. ϕ can in general be chosen in
several ways.

Before defining C, we construct a certain set D ⊆ A. Consider a pair
(α, ϕ∃i ), where α is a 1-type (over τ) and ϕ∃i an existential conjunct of ϕ. If
there exists a free witness structure in A for ϕ∃i and some element a ∈ A
realizing 1-type α, then pick exactly one such free witness structure Aa,ϕ∃i
and define

D(α, ϕ∃i ) := Āa,ϕ∃i ,

i.e., the set D(α, ϕ∃i ) is the domain of the live part Āa,ϕ∃i
of Aa,ϕ∃i

. Otherwise

define D(α, ϕ∃i ) = ∅. Define D to be the union of the sets D(α, ϕ∃i ) for each
1-type α (over τ) and each existential conjunct ϕ∃i of ϕ. The size of D is
bounded by m∃|α|n.
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Now, for each a ∈ (K ∪D) ⊆ A and each ϕ∃i , let Ca,ϕ∃i be some witness

structure for the pair (a, ϕ∃i ) in A. Define the domain C of C as follows:

C :=
⋃

a∈K∪D, 1≤i≤m∃

Ca,ϕ∃i .

Note that K and D are both subsets of C. We define C to be the substructure
of A induced by C, i.e., C := A � C. Thus C is also a substructure of A′. An
upper bound for the size of C is obtained as follows, where α denotes ατ .

|C| ≤ |D ∪K|nm∃
≤ (nm∃|α|+ n|α|)nm∃
≤ (|ϕ|2|α|+ |ϕ||α|)|ϕ|2

≤ (|ϕ|4 + |ϕ|3)|α|

≤ 2|ϕ|4|α|.

We call C the court of A (w.r.t. ϕ). Note that we could have chosen the
court C in many ways from A. Here we choose a single court C for A and fix
it for Section 3.2.

3.2 Partitioning cloning extensions into in-

tervals

In this section we partition the 3-cloning extension A′ of the ordered struc-
ture A into a finite number of non-overlapping intervals. Roughly speaking,
the elements of the court C of A will all create a singleton interval and the
remaining interval bounds will indicate the least upper bounds and greatest
lower bounds of occurrences of 1-types in A′. We next define the partition for-
mally; we call the resulting family of intervals Is ⊆ A′ the canonical partition
of A′ with respect to C.

We begin with some auxiliary definitions. Recall that αA denotes the set
of 1-types realized in A, and thus αA = αA′ . For each non-royal 1-type α in
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αA, define the sets

A′α = {a ∈ A′ | tpA′(a) = α},

D−α =
⋃
a∈A′α

{b ∈ A′ | a ≤ b}, and

D+
α =

⋃
a∈A′α

{b ∈ A′ | b ≤ a}.

In an ordered set (L,<), an interval bound is defined to be a nonempty set
S ( L that is downwards closed (u′ < u ∈ S ⇒ u′ ∈ S). A finite number of
interval bounds define a partition of an ordered set into a finite number of
intervals in a natural way. We define the following finite collection of interval
bounds for A′.

• Every c ∈ C defines two interval bounds, {u ∈ A′ | u < c} and {u ∈
A′ |u ≤ c}. Thereby each c ∈ C forms a singleton interval {c}.

• Each non-royal 1-type α creates two interval bounds: the sets A′ \ D−α
and D+

α .

This creates a finite family of intervals (Is)1≤s≤N that partitions A′. Here N is
the finite total number of intervals in the family. The intervals Is in the family
are enumerated in the natural way, so if s < s′ for some s, s′ ∈ {1, ... , N},
then u < u′ for all u ∈ Is and u′ ∈ Is′ .

We obtain an upper bound for N as follows. Observe that the number
of interval bounds is bounded from above by 2(|C|+ |α|), where α denotes
the set ατ of all 1-types over τ . Thus the number of intervals is definitely
bounded from above by 2(|C| + |α|) + 1. Since we know from the previous
section that |C| ≤ 2|ϕ|4|α|, we obtain that

N ≤ 2(2|ϕ|4|α|+ |α|) + 1

= (4|ϕ|4 + 2)|α|+ 1

≤ 6|ϕ|4|α|.

3.3 Defining admissibility tuples

Let χ be a normal form sentence of U1 with the set σ of relation symbols.
Assume <∈ σ. We now define the notion of an admissibility tuple for χ. At
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this stage we only give a formal definition of admissibility tuples. The point
is to capture enough information of ordered models of χ to the admissibility
tuples for χ so that satisfiability of U1 over ordered structures can be reduced
to satisfiability of U1 over general structures in Section 4. In particular, our
objective is to facilitate Lemma 5. Once we have given the formal definition of
an admissibility tuple, we provide an example how a concrete linearly ordered
model of a U1-sentence can be canonically associated with an admissibility
tuple for that sentence, thereby providing background intuition related to
admissibility tuples. Indeed, the reader may find it helpful to refer to that
part while internalising the formal definitions.

Consider a tuple Γχ := (C∗, (ασ,s)1≤s≤N∗ ,αK
σ ,α

⊥
σ ,α

>
σ , δ, F ) such that

the following conditions hold.

• C∗ is a linearly ordered σ-structure, and the size of the domain C∗ of
C∗ is bounded by 2|χ|4|ασ|. Compare this to the bound 2|ϕ|4|ατ | for
the size of C from Section 3.1. We call C∗ the court structure of Γχ.

• N∗ ∈ Z+ is an integer such that |C∗| ≤ N∗ ≤ 6|χ|4|ασ|, and (ασ,s)1≤s≤N∗

is a family of sets ασ,s ⊆ ασ of 1-types such that we have ασ,s ⊆ {α ∈
ασ | ¬(v1 < v1) ∈ α} for each s ∈ {1, ... , N∗}; recall here that v1 is the
variable with which we formally speaking specify 1-types, and recall
also that in addition to ordered models, we will ultimately also con-
sider model classes where < is simply a binary symbol not necessarily
interpreted as an order. Compare the bound 6|χ|4|ασ| to the bound
6|ϕ|4|ατ | for N from Section 3.2. We call N∗ the index of Γχ.

• αK
σ ⊆ ασ and also α⊥σ ⊆ ασ and α>σ ⊆ ασ

• δ is an injective mapping from C∗ to N∗ (i.e. from C∗ to {1, . . . , N∗}).

• F is a subset of the set ασ × Φ∃, where Φ∃ is the set of all existential
conjuncts of χ.

Note that we could have chosen the tuple Γχ above in multiple ways. We

denote the set of all tuples Γχ that satisfy the above conditions by Γ̂χ. The

tuples in Γ̂χ are called admissibility tuples for χ.

Lemma 2. The (binary) description of Γχ is bounded exponentially in |χ|.
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Proof. Let χ be a sentence and σ the set of relation symbols in χ with < ∈ σ.
Consider an arbitrary tuple

Γχ = (C∗, (ασ,s)1≤s≤N∗ ,α
K
σ ,α

⊥
σ ,α

>
σ , δ, F )

such that Γχ ∈ Γ̂χ. To prove Lemma 2, we show that each of the seven ele-
ments in Γχ has a binary description whose length is exponentially bounded
in |χ|. This clearly suffices to prove the lemma.

For describing the model C∗, we use the straightforward convention from
Chapter 6 of [44] according to which the unique description of C∗ with some
ordering of σ is of the length

|C∗|+ 1 +

|σ|∑
i=1

|C∗|ar(Ri),

where ar(Ri) is the arity of Ri ∈ σ. Since we have

|C∗| ≤ 2|χ|4|ασ|

by definition of the tuples in Γ̂χ, and since we clearly have

|ασ| ≤ 2|χ|,

we observe that |C∗| is exponentially bounded in |χ|. Since ar(Ri) ≤ |χ|,
each term |C∗|ar(Ri) is likewise exponentially bounded in |χ|. Furthermore,
as |σ| ≤ |χ|, we conclude that the description of C∗ is exponentially bounded
by |χ|.

As
|ασ| ≤ 2|χ|,

and as each 1-type α ∈ ασ can clearly be encoded by a string whose length is
polynomial in |χ|, we can describeασ with a description that is exponentially
bounded in |χ|, and asαK

σ ,α⊥σ , andα>σ are subsets ofασ, their descriptions
are also exponentially bounded in |χ|. Moreover, the same upper bound
bounds each member ασ,s of the family (ασ,s)1≤s≤N∗ . Therefore, as we have

N∗ ≤ 6|χ|4|ασ|

by the definition of tuples in Γ̂χ, we observe that

N∗ ≤ 6|χ|4 · 2|χ|,
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and therefore the length of the description of (ασ,s)1≤s≤N∗ is also exponen-
tially bounded in |χ|.

Due to the bounds for |C∗| and |N∗| identified above, the function δ :
C∗ → N∗ can clearly be encoded by a description bounded exponentially in
|χ|.

Let m∃ denote the number of existential conjuncts in χ. Thus we have

|F | ≤ m∃|ασ| ≤ |χ| · 2|χ|,

so the description of F can clearly be bounded exponentially in |χ|.

For each s ∈ {1, ... , N∗}, let α−σ,s and α+
σ,s be the subsets of ασ,s defined

as follows.

α−σ,s := ασ,s \
⋃
i<s

ασ,i andα+
σ,s := ασ,s \

⋃
i>s

ασ,i.

The following definition provides an important classification of admissibility
tuples.

Definition 5. Consider the set Γ̂χ of admissibility tuples for χ. We define
the following six conditions, called admissibility conditions for χ, in order to
classify the set Γ̂χ into different sets of admissibility tuples.

i. The sets αK
σ , α>σ and α⊥σ are subsets of

⋃
1≤s≤N∗ασ,s.

ii. Ifασ,s∩αK
σ 6= ∅, then s = δ(c) for some c ∈ C∗. Also, for every c ∈ C∗,

it holds that ασ,δ(c) = {tpC∗(c)}, and furthermore, tpC∗(c) ∈ αK
σ or

α−σ,δ(c) = ∅ = α+
σ,δ(c).

iii. |α−σ,s| ≤ 1 for all s ∈ {1, ... , N∗}

iv. α⊥σ =
⋃

1≤s≤N∗ασ,s

v. |α+
σ,s| ≤ 1 for all s ∈ {1, ... , N∗}

vi. α>σ =
⋃

1≤i≤N∗ασ,s

Definition 6. An admissibility tuple Γχ is admissible for O if the conditions
i and ii in Definition 5 are satisfied. It is admissible for WO if the four
conditions i-iv in Definition 5 are satisfied. Finally, it is admissible for Ofin
if all the six conditions i-vi in Definition 5 are satisfied. We call admissibility
for O the lowest degree of admissibility and admissibility for Ofin the highest.
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Let ϕ be a U1-sentence containing < and A |= ϕ a model. Let C be a
court of A w.r.t. ϕ and A′ a 3-cloning extension of A w.r.t. ϕ. Let (Is)1≤s≤N
be the canonical partition of A′ w.r.t. C. We will next specify a tuple

ΓC,A,A′

ϕ := (C, (αA′,s)1≤s≤N ,α
K
A′ ,α

⊥
A′ ,α

>
A′ , δ, F )

which we call a canonical admissibility tuple of A′ w.r.t (C,A, ϕ) (cf. Lemma
3 below).

We now specify the elements of the tuple ΓC,A,A′
ϕ above; note that C has

already been specified to be a court of A. Recall that (Is)1≤s≤N is the canon-
ical partition of A′ w.r.t. C and define the family (αA′,s)1≤s≤N such that
αA′,s := {tpA′(a) | a ∈ Is} for all s ∈ {1, ... , N}. Let αK

A′ ⊆ αA′ be the
set of the royal 1-types realized in A′, and define α⊥A′ ⊆ αA′ (respectively,
α>A′ ⊆ αA′) to be the set of 1-types that have a minimal (resp., maximal)
realization in A′. Note that if A′ is in WO, we have α⊥A′ = αA′ , and if A′ is
also in Ofin, then α⊥A′ = α>A′ = αA′ . For every c in the domain C of C, we
define δ(c) := j ∈ {1, ... , N} such that Ij = {c}. We let F be the set of those
pairs (α, ϕ∃i ) that have a witness structure in A′ whose live part is free.

Lemma 3. Let A ∈ K ∈ {O,WO,Ofin} and suppose ΓC,A,A′
ϕ is a canonical

admissibility tuple for A′ w.r.t (C,A, ϕ). Then ΓC,A,A′
ϕ ∈ Γ̂ϕ and ΓC,A,A′

ϕ is
admissible for K.

Proof. Note that by definition, since ΓC,A,A′
ϕ is canonical admissibility tuple

for A′ w.r.t. (C,A, ϕ), the structure C is a court of A w.r.t. ϕ and we have
A |= ϕ, and furthermore, the set of relation symbols in ϕ (to be denoted by
τ) contains <. We let N denote the index of ΓC,A,A′

ϕ . We note that N is the
number of intervals in the canonical partition of A′ w.r.t. C.

By the discussion in Section 3.1, C is an ordered structure whose size is
bounded by 2|ϕ|4|α| where α is the set of all 1-types over τ . By Section
3.2, we have

|C| ≤ N ≤ 6|ϕ|4|α|.
Thus the admissibility condition ii from Definition 5 is the only non-trivial
remaining condition to show in order to conclude that ΓC,A,A′

ϕ is an admissi-

bility tuple in Γ̂ϕ admissible for each K ∈ {O,WO,Ofin} such that A ∈ K.
We next argue that this condition indeed holds.

First assume that αA′,s ∩αK
A′ 6= ∅. Thus α ∈ αA′,s for some royal 1-type

α realized in A′. Therefore the interval Is ⊆ A′ contains a king c of A′ that
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realizes α. Since kings of A′ are in singleton intervals of the family (It)1≤t≤N ,
we have Is = {c}. Furthermore, since kings of A′ are all in C, we have c
in the domain of δ, and thus, by the definition of δ, we have Iδ(c) = {c}.
Thus we have Is = {c} = Iδ(c), whence s = δ(c). Thus the first part of
admissibility condition ii is satisfied. To prove the second condition, assume
c ∈ C. Therefore the set {c} was appointed, as described in Section 3.2, to
be a singleton interval Iδ(c) in the family (Is)1≤s≤N . Thus αA′,δ(c) = {tpC(c)}.
To show that, furthermore, we have tpC(c) ∈ αK

A′ or α−A′,δ(c) = ∅ = α+
A′,δ(c),

we consider two cases, the case where c is a king and the case where it is
a pawn. If c is a king, then tpC(c) ∈ αK

A′ by the definition of αK
A′ . On the

other hand, if c ∈ C is a pawn, we argue as follows. Now, as C ⊆ A ⊆ A′,
we know that c has two elements u, u′ ∈ A′ of the same 1-type (as c itself)
immediately before and after c that were introduced when constructing the
3-cloning extension A′ of A (see the beginning of Chapter 3). Therefore every
1-type has neither its first nor last realization in A′ in the interval Iδ(c) = {c},
and hence α−A′,δ(c) = ∅ = α+

A′,δ(c), as required.

3.4 Pseudo-ordering axioms

Let χ be a normal form sentence of U1 with the set σ of relation symbols. We
assume that the symbol < occurs in χ. Let r be the highest arity occurring
in the symbols in σ, and let n be the width of χ. Let m∃ be the number of
existential conjuncts in χ. Assume

Γχ = (C, (ασ,s)1≤s≤N ,α
K
σ ,α

⊥
σ ,α

>
σ , δ, F )

is some admissibility tuple in Γ̂χ. In this section we construct a certain large
sentence Ax (Γχ) that axiomatizes structures with properties given by Γχ.
The ultimate use of the sentence Ax (Γχ) will be revealed by the statement
of Lemma 5, which is one or our main technical results. Note that in that
lemma, satisfiability of Ax (Γχ) is considered in relation to classes of models
where the symbol < is not necessarily interpreted as a linear order.

Let K, D, P⊥, P>, and Us for each s ∈ {1, ... , N} be fresh unary relation
symbols, where N is the size of the family (ασ,s)1≤s≤N in Γχ. Intuitively, the
relation symbols K and D correspond to a set of kings and a set of domains
of free witness structures, respectively, as we shall see. The symbols Us, for
1 ≤ s ≤ N , correspond to intervals, but this intuition is not precise as we
shall interpret the predicates Us over models where < is not assumed to be
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a linear order. The predicates P⊥ and P> will be axiomatized to contain the
minimal and the maximal realization of each 1-type belonging to α⊥σ and
α>σ , respectively.

Let σ′ be the vocabulary

σ ∪ {K,D, P⊥, P>} ∪ {Us | 1 ≤ s ≤ N}.

We define the pseudo-ordering axioms for Γχ (over σ′) as follows. For most
axioms we also give an informal description of its meaning (when interpreted
together with the other pseudo-ordering axioms). Each of the 16 axioms is
a U1-sentence in normal form.

1. χ

2. The predicates Us (1 ≤ s ≤ N) partition the universe:∧
s

∃xUsx ∧ ∀x
( ∨

s

(Usx ∧
∧
t6=s
¬Utx)

)
3. For all s ∈ {1, ... , N}, the elements in Us realize exactly the 1-types

(over σ) in ασ,s:∧
1≤s≤N

∀x(Usx ↔
∨
α∈ασ,s

α(x) )

Note indeed that the 1-types α in ασ,s are with respect to the vocabu-
lary σ, and thus are definitely not 1-types with respect to the extended
vocabulary σ′.

4. Each predicate Uδ(c), where c is an element in the domain C of C, is a
singleton set containing an element that realizes α = tpC(c) :∧
c∈C,α=tpC(c)

(
∃y(Uδ(c)y ∧ α(y) ) ∧ ∀x∀y( (Uδ(c)x ∧ Uδ(c)y )→ x = y )

)
5. Each α ∈ (

⋃
ασ,s \αK

σ ) is realized at least n times (recall that n is the
width of χ):∧
α∈(

⋃
ασ,s\αK

σ )

∃x1...∃xn(
∧
i 6=j

(xi 6= xj) ∧
∧
i

α(xi) )

6. Each α ∈ αK
σ is realized at least once but at most n− 1 times:∧

α∈αK
σ

∃y α(y) ∧ ∀x1...∀xn
(

(
∧
i

α(xi) )→
∨
j 6=k

xj = xk
)

7. K is the set of realizations of types in αK
σ :

∀x
(

(
∨

α∈αK
σ

α(x) )↔ Kx
)
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8. In order to define the next axiom, we begin with an auxiliary defi-
nition. For each existential matrix χ∃i (x, y1, ... , yki) in χ, let the set
{z1, ... , zli} ⊆ {x, y1, ... , yki} be the set of live variables of χ∃i (x, y1, ... , yki).
We then define the following axiom which asserts that the set F is the
set of all pairs (α, χ∃i ) that have a witness structure whose live part is
free, and furthermore, the set D contains, for each pair (α, χ∃i ) ∈ F ,
the live part of at least one free witness structure for (α, χ∃i ).∧
(α,χ∃i )∈F

∃x∃y1...∃yki
(
α(x) ∧ χ∃i (x, y1, ..., yki ) ∧

∧
1≤j≤li

( zj 6= x ∧Dzj )
)

∧
∧

(α,χ∃i )6∈F
∀x∀y1...∀yki

(
¬ (α(x) ∧ χ∃i (x, y1, ..., yki ) ∧

∧
1≤j≤li

zj 6= x )
)

9. Axioms 6 and 7 define the set K, and D is described by the previous
axiom. The next axiom says that every element c ∈ (K ∪ D) is in⋃
c∈C Uδ(c):
∀x( (Kx ∨Dx )→

∨
c∈C

Uδ(c)x )

10. There is a witness structure for every c ∈ (K ∪ D) such that each
element of the witness structure is in

⋃
c∈C Uδ(c):∧

1≤i≤m∃
∀x∃y1...∃yki

(
(Kx ∨Dx) →

( (
∧

1≤j≤ki

∨
c∈C

Uδ(c)yj ) ∧ χ∃i (x, y1, ... , yki) )
)

11. The next axiom ensures that there exists an isomorphic copy of C in the
model considered. Let m = min{n, r}, where r is the maximum arity
of relation symbols that occur in χ. For each k ∈ {1, ... ,m}, let Ck de-
note the set of all subsets of size k of the domain C of C. Let C̄k denote
the set obtained from Ck by replacing each set Ck ∈ Ck by exactly one
tuple (c1, ... , ck) that enumerates the elements of Ck in some arbitrarily
chosen order. (Thus |Ck| = |C̄k|.) For each tuple (c1, ... , ck) ∈ C̄k, let
β[(c1,...,ck)] denote the table tbC(c1, ... , ck). We define the required axiom
as follows:∧
1≤k≤m

∧
(c1,...,ck)∈ C̄k

∀x1...∀xk
(

(
∧

j∈{1,...,k}
Uδ(cj)xj ) → β[(c1,...,ck)](x1, ... , xk)

)
Note that strictly speaking the axiom ignores sets of size greater thanm.

12. The relation symbol < is interpreted to be a tournament:
∀x∀y(x < y ∨ y < x ∨ x = y ) ∧ ∀x∀y ¬(x < y ∧ y < x )
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13. Together with the previous axiom, the first three big conjunctions of
the next axiom imply that for all α ∈ α⊥σ there exists a point in P⊥
that realizes α, and furthermore, P⊥ is true at a point u iff there exists
a 1-type α such that α ∈ α⊥σ and u is the unique minimal realization
of that 1-type. The last big conjunction of the axiom implies that if
α ∈ α−σ,s ∩ α⊥σ for some s ∈ {1, ... , N}, then there exists a point u′

which is the minimal realization of α and satisfies Us:∧
α∈ασ\α⊥σ

∀x¬ (α(x) ∧ P⊥(x) )

∧
∧

α∈α⊥σ

(
∃x(α(x) ∧ P⊥x )

)
∧

∧
α∈α⊥σ

∀x∀y
(

(P⊥x ∧ α(x) ∧ α(y) ∧ y 6= x )→ x < y
)

∧
∧

α∈α−σ,s∩α⊥σ
∃x(P⊥x ∧ α(x) ∧ Usx )

14. The next axiom is analogous to the previous one:∧
α∈ασ\α>σ

∀x¬ (α(x) ∧ P>(x) )

∧
∧

α∈α>σ

(
∃x(α(x) ∧ P>x )

)
∧

∧
α∈α>σ

∀x∀y
(

(P>x ∧ α(x) ∧ α(y) ∧ y 6= x )→ x > y
)

∧
∧

α∈α+
σ,s∩α>σ

∃x(P>x ∧ α(x) ∧ Usx)

The last two axioms below are technical assertions about the predicates Us,
the relation < and 1-types. The significance of these axioms becomes clarified
in the related proofs.

15.
∧

1≤s<t≤N
∀x∀y

(
(Usx ∧ Uty ) → x < y

)
16.

∧
s∈{1,...,N}\img(δ)

∧
α∈α+

σ,s

∧
α′ ∈ασ,s

∃x∃y
(
α(x) ∧ α′(y) ∧ Usx ∧ Usy ∧ y < x

)
We denote the conjunction of the above 16 pseudo-ordering axioms over σ′

for the admissibility tuple Γχ by Ax (Γχ). We note that Ax (Γχ) is a normal
form sentence of U1 over the vocabulary σ′ which expands the vocabulary σ
of χ. The formulae Ax (Γχ) play a central role in the reduction of ordered
satisfiability to standard satisfiability based on Lemma 5.
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Lemma 4. Let ϕ be a U1 formula with the set τ of relation symbols, < ∈ τ .
Let A |= ϕ be a τ -model. Let C be a court of A w.r.t. ϕ and A′ a 3-cloning
extension of A w.r.t. ϕ. Let ΓC,A,A′

ϕ be a canonical admissibility tuple for

A′ w.r.t. (C,A, ϕ) and N the index of ΓC,A,A′
ϕ . Then the τ -model A′ has an

expansion A′′ to the vocabulary τ ∪ {K,D, P⊥, P⊥} ∪ {Us | 1 ≤ s ≤ N} such
that A′′ |= Ax (ΓC,A,A′

ϕ ).

Proof. Recall the τ -formula ϕ and the τ -model A |= ϕ fixed in the first
section of Chapter 3. Recall also the 3-cloning extension A′ of A w.r.t. ϕ
and the court C of A w.r.t. ϕ fixed in the first section of Chapter 3. Let
ΓC,A,A′
ϕ be the canonical admissibility tuple of A′ w.r.t. (C,A, ϕ). Note that

by Lemma 3, we have ΓC,A,A′
ϕ ∈ Γ̂ϕ, and furthermore, ΓC,A,A′

ϕ is admissible
for each K ∈ {O,WO,Ofin} such that A ∈ K. We will show that A′ has
an expansion A′′ such that A′′ |= Ax (ΓC,A,A′

ϕ ). As ϕ, A, A′ and C were fixed
arbitrarily, this proves the current lemma ( Lemma 4 ).

Let N be the index of ΓC,A,A′
ϕ , in other words, N is the size of the family

(Is)1≤s≤N of intervals fixed in Section 3.2. Thus we now must prove that A′

has an expansion A′′ to the vocabulary τ ∪{K,D, P⊥, P⊥}∪{Us | 1 ≤ s ≤ N}
such that A′′ |= Ax (ΓC,A,A′

ϕ ). We let A′′ be the expansion of A′ obtained by
interpreting the extra predicates {K,D, P⊥, P>} ∪ {Us | 1 ≤ s ≤ N} as
follows.

1. KA′′ and DA′′ are defined as K and D in the Section 3.1, respectively.
Thus KA′′ ⊆ A is the set of kings in A′ (and A) and DA′′ ⊆ A is a set
that contains, for every pair (α, ϕ∃i ) that has a free witness structure in
A, the free part of at least one such witness structure (cf. Section 3.1).

2. PA′′

⊥ is defined to satisfy the pseudo-ordering axiom 13; we let PA′′

⊥ be
true at a point u iff there is some 1-type α such that u is the minimal
realization of α. PA′′

> is defined analogously to satisfy axiom 14.

3. Each predicate UA′′
s is defined to be the interval Is ⊆ A′ identified in

Section 3.2.

Next we show that A′′ |= Ax (ΓC,A,A′
ϕ ). As it is easy to see that A′′ satisfies

axioms 1-7 and 9-16, it suffices to show that A′′ satisfies axiom 8. Recalling
the definition of DA′′ , this can clearly be done by proving the following claim.
(Recall (cf. Section 3.3) that F is the set of those pairs (α, ϕ∃i ) that have a
free witness structure in A′.)
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Claim: A has a free witness structure for a pair (α, ϕ∃i ) iff (α, ϕ∃i ) ∈ F .
As A′ is a 3-cloning extension of A, it is clear that A′ has a free witness

structure for a pair (α, ϕ∃i ) if A has. Suppose now that for some a ∈ A′, A′
has a free witness structure A′

a,ϕ∃i
for some (α, ϕ∃i ) ∈ F and A does not have

a free witness structure for this pair. Let A′
a,ϕ∃i
|= ϕ∃i (a, a1, ... , aki) for some

points a1, ... , aki ∈ A′, which are not necessarily distinct. Let u1, ... , ul ∈
(A′

a,ϕ∃i
\{a}) be the distinct points forming the live part of A′

a,ϕ∃i
. Thus some

points a1, ... , ak′ ∈ (A′
a,ϕ∃i
\ {u1, ... , ul}) together with a form the dead part

of A′
a,ϕ∃i

.

The table tbA′(u1, ... , ul) has been defined either in the cloning stage or the
completion stage to be tbA(b1, ... , bl) for some distinct elements b1, ... , bl ∈ A.
Furthermore, since A′ and A have exactly the same number of realizations of
each royal 1-type and since both models have at least n ≥ ki+1 realizations of
each pawn, it is easy to define an injection f from A′

a,ϕ∃i
into A that preserves

1-types and such that f(ui) = bi for each i ∈ {1, ... , l}. Therefore

A′ |= ϕ∃i (a, a1, ... , aki) iff A |= ϕ∃i (f(a), f(a1), ... , f(aki)),

whence we have A |= ϕ∃i (f(a), f(a1), ... , f(aki)). Therefore, as f is injective,
we see that A has a free witness structure for (α, ϕ∃i ). This contradicts
the assumption that A does not have a free witness structure for the pair
(α, ϕ∃i ).
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Chapter 4

Reducing ordered satisfiability
to standard satisfiability

In this section we establish decidability of the satisfiability problems of U1

over O, WO and Ofin. The next lemma (Lemma 5) is the main technical
result needed for the decision procedure. Note that satisfiability in the case
(b) of the lemma is with respect to general rather than ordered models. In
the lemma we assume w.l.o.g. that ϕ contains <.

Lemma 5. Let ϕ be a U1-sentence containing the symbol <. Let K ∈
{O,WO,Ofin}. The following conditions are equivalent:

(a) ϕ ∈ satK(U1).

(b) Ax (Γϕ) ∈ sat(U1) for some admissibility tuple Γϕ ∈ Γ̂ϕ that is admis-
sible for K.

Proof. In order to prove the implication from (a) to (b), suppose that ϕ ∈
satK(U1). Thus there is a structure A ∈ K such that A |= ϕ. As A |= ϕ,
there exists a court C of A w.r.t. ϕ. Now let A′ be a 3-cloning extension of
A w.r.t. ϕ, and let ΓC,A,A′

ϕ be the canonical admissibility tuple of A′ w.r.t.

(C,A, ϕ). By Lemma 3, the canonical tuple is in Γ̂ϕ and admissible for K.
By Lemma 4, A′ has an expansion A′′ such that A′′ |= Ax (ΓC,A,A′

ϕ ). The proof
for the direction from (b) to (a) is given next.

Please note that the proof for the direction from (b) to (a) of Lemma 5
below spans all of the current chapter, ending at the end of Chapter 4. We
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deal with the three cases K ∈ {O,WO,Ofin} in parallel. We let τ denote
the set of relation symbols in ϕ.

To prove the implication from (b) to (a), assume that B |= Ax (Γϕ) for
some τ ′-model B and some admissibility tuple

Γϕ = (C, (ατ,s)1≤s≤N ,α
K
τ ,α

⊥
τ ,α

>
τ , δ, F ) ∈ Γ̂ϕ

that is admissible for the class K. Here

τ ′ = τ ∪ {K,D, P⊥, P>} ∪ {Us | s ∈ {1, . . . , N}}.

Note that while B interprets the symbol <, it is not assumed to be an ordered
model. Based on B and Γϕ, we will construct an ordered τ -model A ∈ K
such that A |= ϕ. The construction of A consists of the following (informally
described) four steps; each step is described in full detail in its own subsection
below.

1 ) We first construct the domain A of A and define a linear order < over
it. We also label the elements of A with 1-types in ατ . After this stage the
relations of A (other than <) contain no tuples other than trivial tuples, i.e.,
tuples (u, ... , u) with u repeated.

2 ) We then copy a certain substructure C of B into A; the structure C is the
set of points in B that satisfy some predicate Us with s ∈ img(δ). This step
introduces fresh non-trivial tuples into the relations of A.

3 ) We then define a witness structure for each element a ∈ A and each
existential conjunct ϕ∃i of ϕ. As the above step, this step introduces non-
trivial tuples into the relations of A.

4 ) Finally, we complete the construction of A by making sure that A also
satisfies all universal conjuncts ϕ∀i of ϕ. Also this step involves introducing
non-trivial tuples.

1) Constructing an ordered and labelled domain for A Before defin-
ing an ordered domain (A,<) for A, we construct an ordered set (Is, <) for
each s ∈ {1, ... , N} based on the set ατ,s ∈ (ατ,s)1≤s≤N of Γϕ. Once we
have the ordered sets defined, the ordered domain (A,<) is defined to be the
ordered sum

(A,<) = Σ1≤s≤N(Is, <),

i.e., the ordered sets (Is, <) are simply concatenated so that the elements
of It are before the elements of It′ iff t < t′. Thus the ordered sets (Is, <)
become intervals in (A,<).
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However, we will not only construct an ordered domain (A,<) in the
current subsection 1) (Constructing an ordered and labelled domain for A),
we will also label the elements of A by 1-types over τ . Thus, by the end of
the current subsection, the structure A will be a linearly ordered structure
with the 1-types over τ defined. Each interval Is will be labelled such that
exactly all the 1-types in the setατ,s given in Γϕ are satisfied by the elements
of Is.

Let s ∈ {1, ... , N}. We now make use of the admissibility tuple Γϕ as
follows. If ατ,s ∩αK

τ 6= ∅, then by the admissibility condition ii from Def-
inition 5, we have s = δ(c) for some c ∈ C where C is the domain of the
structure C from Γϕ. Furthermore, we infer, using the admissibility condi-
tion ii, that ατ,δ(c) must in fact be a singleton {αs} such αs = tpC(c). We
define Is to be a singleton set, and we label the unique element u in Is by
the type αs by defining lab(u) = αs where lab denotes a labelling function
lab : A → ατ whose definition will become fully fixed once we have dealt
with all the intervals (Is, <).

Having discussed the case where ατ,s ∩αK
τ 6= ∅, we assume that ατ,s ∩

αK
τ = ∅. We divide the analysis of this case into three subcases (see below)

depending on the degree of admissibility of Γϕ (cf. Definition 6). Before
dealing with the cases, we define some auxiliary ordered sets that will function
as building blocks when we construct the intervals (Is, <).

Fix n to be the width of ϕ and m∃ the number of existential conjuncts
in ϕ. By a 3(m∃ + n)-block we mean a finite ordered set that consists of
3(m∃ + n) elements. A 3(m∃ + n)-block divides into into three disjoint sets
that we call the E-part, F -part and G-part. Each of the parts contains m∃+n
consecutive elements in the block such that the sets E, F and G appear in
the given order. We will define the remaining intervals (Is, <) below using
3(m∃ + n)-blocks. For each 3(m∃ + n)-block (U,<) we use, the elements in
U will be labelled with a single 1-type, i.e., we will define lab(u) = lab(u′)
for all u, u′ ∈ U . Therefore we in fact (somewhat informally) talk about
3(m∃+ n)-blocks (U,<) of 1-type α. This means that while (U,<) is strictly
speaking only an (unlabelled) ordered set with 3(m∃ + n) elements, we will
ultimately set lab(u) = α for all u ∈ U .

Let (J,<) be a finite, ordered set consisting of several 3(m∃ + n)-blocks
such that there is one 3(m∃+n)-block for each 1-type α ∈ ατ,s and no other
blocks; the order in which the blocks (U,<) for different 1-types appear in
(J,<) is chosen arbitrarily. Similarly, let (J−, <) contain a 3(m∃ + n)-block
for each α ∈ α−τ,s in some order and no other blocks. Let (J+, <) contain

37



a block for each α ∈ α+
τ,s in some order and no other blocks. Note that J−

and J+ may be empty. We define the ordered interval (Is, <) as follows:

1. Assume Γϕ is admissible for O but not forWO. We define (Is, <) to be
the ordered set consisting of three parts (Is, <)1, (Is, <)2 and (Is, <)3

in the given order and defined as follows.

(a) (Is, <)1 consists of a countably infinite number of copies of (J−, <)
such that the different copies are ordered as the negative integers,
i.e., (Is, <)1 can be obtained by ordering Zneg × J− lexicograph-
ically, where Zneg denotes the negative integers; schematically,
(Is, <)1 := ... · (J−, <) · (J−, <) · (J−, <) where “ · ” denotes
concatenation.

(b) (Is, <)2 := (J,<).

(c) (Is, <)3 consists of a countably infinite number of copies of (J+, <)
such that the different copies are ordered as the positive integers.

Schematically, (Is, <) is therefore the structure

. . . · (J−, <) · (J−, <) · (J,<) · (J+, <) · (J+, <) · . . .

2. Assume Γϕ is admissible for WO but not for Ofin . Again the interval
(Is, <) is the concatenation of three parts (Is, <)1, (Is, <)2, (Is, <)3 in
that order, but while (Is, <)2 and (Is, <)3 are the same as above, now
(Is, <)1 := (J−, <). Thus, (Is, <) is the structure

(J−, <) · (J,<) · (J+, <) · (J+, <) · . . .

3. Assume Γϕ is admissible for Ofin. In this case we define (Is, <) to be
the structure

(J−, <) · (J,<) · (J+, <).

Note that since we already associated each 3(m∃ + n)-block in each of the
structures (J,<), (J−, <), (J+, <) with a labelling with 1-types, we have now
also defined the 1-types over the interval (Is, <). Therefore we have now
shown how to construct an ordered domain (A,<) for A and also defined a
labelling of A with 1-types.
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2) Copying C into A Due to axiom 11, the structure B contains an
isomorphic copy CB of the structure C from Γϕ, that is, B has a substructure
C′B such that C′B � τ is isomorphic to C and CB := C′B � τ . The domain CB

of CB is the union of the sets UB
δ(c) for all c ∈ C; recall that by axiom 4, each

UB
δ(c), for c ∈ C, is a singleton.

Let g be the isomorphism from CB to C. (The isomorphism is unique
since C is an ordered set.) We shall create an isomorphic copy of C into A by
introducing tuples to the relations of A; no new points will be added to A.
We first define an injective mapping h from CB to A as follows. Let b ∈ CB,
and denote δ(g(b)) by s. Now, if b realizes a 1-type α ∈ ατ,s ∩αK , then we
recall from the subsection 1) that Is ⊆ A is a singleton interval that realizes
the type α. We let h map b to the element in Is ⊆ A. Otherwise b realizes
a 1-type α ∈ ατ,s such that α 6∈ αK . Then, by admissibility condition ii,
(see Definition 5), α−τ,s and α+

τ,s are empty. Therefore, using the notation
from the subsection 1), we have (Is, <) = (J,<) as J− and J+ are empty.
Therefore, and since ατ,s is a singleton (by admissibility condition ii), we
observe that (Is, <) consists of a single 3(m∃+n)-block of elements realizing
α. We let h map b to the first element in Is ⊆ A.

Denote the set img(h) by CA. Hence h is a bijection from CB onto CA

that preserves 1-types over τ . Due to the construction of the order <A and
axiom 15, it is easy to see that h also preserves order, i.e., we have

b < b′ iff h(b) < h(b′)

for all b, b′ ∈ CB.
Now let r′ denote the highest arity of the relation symbols in ϕ. Let

{b1, . . . , bj} ⊆ CB be a set with j ∈ {2, ... , r′} elements. We define

tbA(h(b1), ... , h(bj)) := tbB�τ (b1, ... , bj)

and repeat this for each subset of CA of size from 2 up to r′. By construction,
h is an isomorphism from CB � τ to CA.

3) Finding witness structures Recalling the function h from the previ-
ous section, we define

KA := {h(k) | k ∈ KB} and DA := {h(d) | d ∈ DB}.

By axiom 9 and due to the definition of the domain CB (cf. subsection
above), we have

(KB ∪DB) ⊆ CB ⊆ B.
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Moreover, by axiom 10 and how CB was defined, there is a witness structure
in CB for every b ∈ (KB ∪ DB) ⊆ CB and every existential conjunct ϕ∃i of
ϕ. As CA is isomorphic to CB, there is a witness structure in CA for every
a ∈ (KA∪DA) ⊆ CA and every conjunct ϕ∃i of ϕ. In this section we show how
to define, for each element a ∈ A \ (KA ∪DA) and each existential conjunct
ϕ∃i of ϕ, a witness structure in A. This consists of the following steps, to be
described in detail later on.

1. We first choose, for each a ∈ A \ (KA ∪ DA), a pattern element ba of
the same 1-type (over τ) from B.

2. We then locate, for each pattern element ba and each existential con-
junct ϕ∃i , a witness structure Bba,ϕ∃i

in B.

3. We then find, for each element b′ of the live part B̄ba,ϕ∃i
of Bba,ϕ∃i

, a
corresponding 3(m∃ + n)-block of elements from A. The elements of
the block satisfy the same 1-type as b′. We denote the block by bl(b′).

4. After this, we locate from each block bl(b′) an element corresponding
to b′. We then construct from these elements a live part Āa,ϕ∃i

of a

witness structure for a and ϕ∃i .

5. These live parts are then, at the very end of our procedure, completed
to full witness structures by locating suitable dead parts from A.

Let a ∈ A \ (KA ∪ DA) and let sa ∈ {1, ... , N} denote the index of the
interval Isa such that a ∈ Isa . Let α ∈ ατ,sa \αK be the 1-type of a over τ .
We next show how to select a pattern element ba for a. The pattern element
ba will be selected from the set UB

sa ⊆ B.

1. Firstly, if a ∈ CA, then we let ba := h−1(a) ∈ CB, where h is the
bijection from CB to CA. Otherwise we consider the following cases
2-4.

2. Assume Γϕ is admissible for O but not for WO (and thus not for Ofin
either). Then we let ba be an arbitrary realization of α in UB

sa .

3. Assume that Γϕ is admissible for WO but not for Ofin. Then, if α 6∈
α−τ,sa , we let ba be an arbitrary realization of α in UB

sa . If α ∈ α−τ,sa ,
we let ba be the element in UB

sa that satisfies minα(x); this is possible
due to admissibility condition iv and axiom 13.
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4. Assume Γϕ is admissible forOfin. Now, if we have α 6∈ α−τ,sa∪α
+
τ,sa , we

let ba be an arbitrary realization of α in UB
sa . If α ∈ α−τ,sa \α

+
τ,sa , then

we let ba be the element in UB
sa that satisfies minα(x), which is possible

due to the admissibility condition iv and axiom 13. If α ∈ α+
τ,sa \α

−
τ,sa ,

then we let ba be the element in UB
sa that satisfies maxα(x), which is

possible due to the admissibility condition vi and axiom 14. Finally, if
α ∈ α−τ,sa ∩α

+
τ,sa , then there are the following two cases: If a is not

in the last 3(m∃ + n)-block in Isa , then we choose ba as in the case
α ∈ α−τ,sa \α

+
τ,sa . If a is in the last 3(m∃ + n)-block in Isa , then we

choose ba as in the case α ∈ α+
τ,sa \α

−
τ,sa .

We have now a pattern element ba for each a in A \ (KA ∪ DA). Let a
denote an arbitrary element in A \ (KA ∪ DA) and let ϕ∃i be an arbitrary
existential conjunct of ϕ. By axiom 1, we have B |= ϕ, and thus we find
a witness structure Bba,ϕ∃i

in B for the pair (ba, ϕ
∃
i ). Next we consider a

number of cases based on what the live part B̄ba,ϕ∃i
of the witness structure

Bba,ϕ∃i
is like and how the live part is oriented in relation to Bba,ϕ∃i

. In each

case, we ultimately define a live part Āa,ϕ∃i
for some witness structure Aa,ϕ∃i

.
The dead part of the witness structure Aa,ϕ∃i

will be found at a later stage
of our construction. In many of the cases, the identification of the live part
Āa,ϕ∃i

requires that we first identify suitable 3(m∃ + n)-blocks bl(b′) for the

elements b′ of B̄ba,ϕ∃i
, and only after finding the blocks, we identify suitable

elements from the blocks in order to construct Āa,ϕ∃i
.

Case ‘empty live part ’: If the live part B̄ba,ϕ∃i
of the witness structure

Bba,ϕ∃i
is empty, we let the live part Āa,ϕ∃i

of a witness structure for (a, ϕ∃i ),
whose dead part will be constructed later, be empty.

Case ‘free live part ’: Assume that ba does not belong to the (non-
empty) live part B̄ba,ϕ∃i

of the witness structure Bba,ϕ∃i
. By axiom 8, there is a

witness structure for (α, ϕ∃i ) in B whose live part is in the set DB ⊆ CB ⊆ B.
Let d1, ... , dk ∈ DB be the elements of B̄ba,ϕ∃i

(so B̄ba,ϕ∃i
contains exactly

k ≥ 1 elements). According to axiom 8, as CB and CA are isomorphic (via
the bijection h), it is clear that

tbA(h(d1), ... , h(dk)) = tbB�τ (d1, ... , dk).
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Therefore we let {h(d1), ... , h(dk)} be the domain of the live part Āa,ϕ∃i
of a

witness structure for (a, ϕ∃i ), whose dead part will be constructed later; we
note that a 6∈ DA due to our assumption that a 6∈ KA ∪DA, so Āa,ϕ∃i

is free

w.r.t. a, i.e., a 6∈ Āa,ϕ∃i .

Case ‘local singleton live part ’: Assume that ba is alone in the live
part B̄ba,ϕ∃i

of the witness structure Bba,ϕ∃i
, i.e., |B̄ba,ϕ∃i

| = 1. We recall that

tbA(a) = tbB�τ (ba), and we let {a} be the domain of the live part Āa,ϕ∃i
of a

witness structure for (a, ϕ∃i ), whose dead elements will be identified later.

Case ‘local doubleton live part ’: Assume that ba and some other
element b′ 6= ba in B form the live part B̄ba,ϕ∃i

of the witness structure Bba,ϕ∃i
.

Thus |B̄ba,ϕ∃i
| = 2. Let tb′ ∈ {1, ... , N} be the index such that b′ ∈ UB

tb′
⊆ B.

Next we consider several subcases of the case local doubleton live part.
In the following subcases 1 and 2, we assume that tb′ 6= sa; recall that

ba ∈ UB
sa and b′ ∈ UB

tb′
. We first note that if tb′ < sa (respectively, if sa < tb′),

then by axiom 15, we have B |= b′ < ba (resp., B |= ba < b′).

1. If b′ ∈ CB, then we define

tbA(a, h(b′)) := tbB�τ (ba, b
′).

We note that in the special case where a ∈ CA, as we have b′ ∈ CB,
both elements a and h(b′) are in CA, and therefore we have actually
already defined the table tbA(a, h(b′)) when CB was copied into A.

2. If b′ 6∈ CB, then we select some 3(m∃ + n)-block bl(b′) of elements in
Itb′ ⊆ A realizing the 1-type tpB�τ (b

′); this is possible as for all s ∈
{1, ... , N}, the interval Is ⊆ A has been constructed so that it realizes
exactly the same 1-types over τ as the set UB

s , and furthermore, for the
following reason: Since b′ 6∈ CB, we have b′ 6∈ KB, and thus (by axiom
7) we have tpB�τ (b

′) 6∈ αK
τ , whence it follows from the construction of

the domain A that the interval Itb′ contains at least one 3(m∃+n)-block
of each 1-type realized in the interval. With the block bl(b′) chosen, we
will later on show how to choose an element a′ ∈ bl(b′) ⊆ A in order to
construct a full live part of a witness structure for (a, ϕ∃i ). After that we
will identify related dead elements in order to ultimately complete the
live part into a full witness structure. (Strictly speaking, rather than
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seeking full definitions of witness structures, we will always define only
a table for the live part of a witness structure in addition to making
sure that suitable elements for the dead part can be found.)

In the following subcases 3 and 4 of the case local doubleton free-part, we
assume that tb′ = sa, i.e., ba, b

′ ∈ UB
sa . It follows from axiom 12 that either

B |= ba < b′ or B |= b′ < ba but not both. In both subcases 3 and 4, we locate
only a 3(m∃+n)-block bl(b′) ⊆ A of elements of 1-type tpB�τ (b

′). Once again
we will only later find elements from the block bl(b′) in order to identify a live
part of a witness structure for (a, ϕ∃i ), and after that we ultimately complete
the live part to a full witness structure by finding suitable dead elements.

Note that since ba and b′ 6= ba are both in UB
sa , the set UB

sa is not a singleton
and thus UB

sa ∩CB = ∅. Therefore, b′ 6∈ KB and by axiom 7, tpB�τ (b
′) 6∈ αK

τ .
Now it follows from the construction of the domain A that the interval Isa
contains at least one 3(m∃ + n)-block of 1-type tpB�τ (b

′).

3. Assume that B |= b′ < ba. Let α′ denote the 1-type tpB�τ (b
′) of b′. If

α′ 6∈ α−τ,sa , then we must have α′ ∈ ατ,t for some t < sa. Thus, and
as tpB�τ (b

′) 6∈ αK
τ , It ⊆ A contains at least one block bl(b′) of elements

realizing the 1-type α′. We choose the block bl(b′) to be the desired
block to be used later. If, on the other hand, we have α′ ∈ α−τ,sa , we
proceed as follows.

a) Assume Γϕ is admissible only for O and not for WO (and thus
not for Ofin either). Then, due to the way we have defined the
interval Isa ⊆ A and labelled its elements by 1-types, there exists
a 3(m∃ + n)-block bl(b′) ⊆ Isa of elements of type α′ such that
bl(b′) precedes the block in Isa that contains a. We appoint bl(b′)
to be the desired block to be used later.

b) Assume Γϕ is admissible for WO and not for Ofin. Assume first
that α 6∈ α−τ,sa (where we recall that α is the 1-type of a and ba over
τ). Since α′ ∈ α−τ,sa and α 6∈ α−τ,sa , we observe that the interval
Isa ⊆ A has been defined such that there exists a 3(m∃+n)-block
bl(b′) ⊆ Isa of elements of type α′ such that bl(b′) precedes the
block in Isa that contains a. We appoint bl(b′) to be the block to
be used later.

Assume then that α ∈ α−τ,sa . In this case, we have chosen the
pattern element ba to be the minimal realization of α in B. Since
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B |= b′ < ba, we must have tpB�τ (b
′) 6= tpB�τ (ba). Thus we

must have α′ = tpB�τ (b
′) 6∈ α−τ,sa by the admissibility condition iii

(which states that |α−τ,sa| ≤ 1). This contradicts the assumption
that α′ ∈ α−τ,sa , so this case is in fact impossible and can thus be
ignored.

c.1) Assume Γϕ is admissible for Ofin. Furthermore, assume that one
of the following conditions holds.

c.1.1) α 6∈ α−τ,sa (but α may be in α+
τ,sa).

c.1.2) α ∈ α−τ,sa ∩α
+
τ,sa and a is in the last block in Isa .

Now, since α′ ∈ α−τ,sa we observe that the interval Isa ⊆ A has
been defined such that there is a 3(m∃ + n)-block bl(b′) ⊆ Isa of
elements of type α′ such that bl(b′) precedes the block in Isa that
contains a. We appoint bl(b′) to be the block to be used later.

c.2) Now assume Γϕ is admissible for Ofin, and furthermore, assume
that one of the following conditions holds.

c.2.1) α ∈ α−τ,sa \α
+
τ,sa .

c.2.2) α ∈ α−τ,sa ∩α
+
τ,sa and a is not in the last block in Isa .

In these cases we have chosen the pattern element ba to be the
minimal realization of α in B. Since B |= b′ < ba, we must have
tpB�τ (b

′) 6= tpB�τ (ba). Thus we must have α′ = tpB�τ (b
′) 6∈ α−τ,sa

by the admissibility condition iii (which states that |α−τ,sa | ≤ 1).
This contradicts the assumption that α′ ∈ α−τ,sa , so this case is in
fact impossible and can thus be ignored.

4. Assume that B |= ba < b′. Again we let α′ denote tpB�τ (b
′). If α′ 6∈

α+
τ,sa , then we have α′ ∈ ατ,t for some t > sa. We choose bl(b′) to be

some block of elements realizing the 1-type α′ from the interval It ⊆ A.
If α′ ∈ α+

τ,sa , we proceed as follows.

a) Assume that Γϕ is not admissible for Ofin but is admissible for O
or even forWO. Then, due to the way we defined 1-types over the
interval Isa , there exists a block bl(b′) ⊆ Isa of type α′ following
the block that contains a in Isa . We appoint the block bl(b′) to be
used later.

b.1) Assume that Γϕ is admissible for Ofin. Furthermore, recall that α
is the 1-type of a and assume that one of the following conditions
holds.
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b.1.1) α 6∈ α−τ,sa ∪α
+
τ,sa

b.1.2) α ∈ α−τ,sa \α
+
τ,sa

b.1.3) α ∈ α−τ,sa ∩α
+
τ,sa and a is not in the last block in Isa .

Now, since α′ ∈ α+
τ,sa and due to admissibility condition v and

the way we defined 1-types over the interval Isa , the last block in
Isa is of 1-type α′. Clearly this last block comes after the block
that contains a in Isa . We call this last block bl(b′) and appoint it
for later use.

b.2) Assume Γϕ is admissible for Ofin and that one of the following
cases holds.

b.2.1) α ∈ α+
τ,sa \α

−
τ,sa

b.2.2) α ∈ α−τ,sa ∩α
+
τ,sa and a is in the last block in Isa .

Then we have chosen the pattern element ba to be the maximal
realization of α in B, i.e., it satisfies maxα(x). As admissibility
for Ofin implies that |α+

τ,sa| ≤ 1, we have α = α′. As we have
assumed that B |= ba < b′, we observe that this case is in fact
impossible and can thus be ignored.

Now recall that when constructing the domain A of A using 3(m∃ + n)-
blocks, we defined the E-part of a 3(m∃+n)-block to be the set that contains
the first (m∃ + n) elements of the block. Similarly, we defined the F -part
to be the set with the subsequent (m∃ + n) elements immediately after the
E-part, and the G-part was defined to be the set with the last (m∃ + n)
elements. Below, we let E ⊆ A denote the union of the E-parts of all the
3(m∃ + n)-blocks used in the construction of A. Similarly, we let F and G
denote the unions of the F -parts and G-parts, respectively.

Now, in the subcases 2-4 of the case doubleton live part, we located a
3(m∃ + n)-block bl(b′) ⊆ A of elements of type α′ = tpB�τ (b

′). Let t ∈
{1, ... , N} be the index of the interval It ⊆ A where the block bl(b′) is. Next
we will select an element a′ from bl(b′) ⊆ It in order to define the domain of
a live part of a witness structure for (a, ϕ∃i ) in A; note that in the subcase
1, such an element was already chosen. Now, if a ∈ E, we let a′ be the i-th
element (where i is the index of ϕ∃i ) realizing α′ in F ∩ bl(b′). Similarly, if
a ∈ F (respectively, if a ∈ G∪ (CA \ (KA ∪DA))), we choose a′ to be the i-th
element in G ∩ bl(b′) (resp., in E ∩ bl(b′)). Then we define

tbA(a, a′) := tbB�τ (b, b
′),
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thereby possibly creating new tuples into the relations of A. Now {a, a′}
is the domain of the live part of a witness structure for (a, ϕ∃i ). Assigning
2-tables in this cyclic way prevents conflicts, as each pair (a, a′) ∈ A2 is
considered at most once.

We then proceed to considering the case where ba and at least two other
elements in B form the live part B̄ba,ϕ∃i

of the witness structure Bba,ϕ∃i
. The

sets E,F,G ⊆ A defined above will play a role here as well.

Case ‘local large live part ’: Assume indeed that the live part B̄ba,ϕ∃i

has at least three elements, i.e., |B̄ba,ϕ∃i
| ≥ 3. Let r1, ... , rk (possibly k = 0) be

the elements in B̄ba,ϕ∃i
that belong also to KB, and let ba, b1, ... , bl (possibly

l = 0) be the remaining elements of B̄ba,ϕ∃i
. As |B̄ba,ϕ∃i

| ≥ 3, we have k+l ≥ 2.
Now let j ∈ {1, ... , l} and identify, in an arbitrary way, a 3(m∃ + n)-block
bl(bj) ⊆ A of elements that realize the same 1-type as bj does. We let αj be
the 1-type of bj, i.e., αj = tpB�τ (bj), and we also let tbj ∈ {1, ... , N} denote
the index of the interval where bl(bj) is. Then, with the blocks bl(bj) chosen
for each j, we move on to considering the following subcases of the case local
large live part in order to define a live part of a witness structure for (a, ϕ∃i )
in A.

1. Assume l = 0 and a ∈ CA (whence k ≥ 2). We let {a, h(r1), ... , h(rk)}
(where h is the bijection from CB to CA we defined above) be the
domain of the desired live part. We note that tbA(a, h(r1), ... , h(rk))
has already been defined when CB was copied into A.

2. Assume l = 0 and a 6∈ CA (whence k ≥ 2). Let {a, h(r1), ... , h(rk)} be
the domain of the desired live part and define

tbA(a, h(r1), ... , h(rk)) := tbB�τ (ba, r1, ... , rk).

Note here that the mapping h is injective and a 6∈ img(h) = CA.

3. Assume l > 0 and a ∈ E. We will next define elements a1, ... , al ∈ A
corresponding to b1, ... , bl. We first let a1 be the i-th (where i ≤ m∃
is the index of ϕ∃i ) element in bl(b1) ∩ F . Then, if l > 1, we define
the elements a2, ... , al to be distinct elements such that aj is, for an
arbitrary p ∈ {m∃+1, ... ,m∃+n}, the p-th element in bl(bj)∩F . Note
that l < n, so it is easy to ensure the elements a2, ... , al are distinct
even if chosen from a single block. We let {a, h(r1), ... , h(rk), a1, ... , al}
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be the domain of the desired live part of a witness structure, and we
define

tbA(a, h(r1), ... , h(rk), a1, ... , al) := tbB�τ (ba, r1, ... , rk, b1, ... , bl),

thereby possibly creating new tuples to the relations of A.

4. Assume l > 0 and a ∈ F . Then we proceed as in the previous case,
but we take the elements a1, ... , al from G. Similarly, if l > 0 and
a ∈ G ∪ (CA \ (KA ∪DA)), we take the elements a1, ... , al from E. As
before, we let {a, h(r1), ... , h(rk), a1, ... , al} be the domain of the desired
live part of a witness structure, and we then define

tbA(a, h(r1), ... , h(rk), a1, ... , al) := tbB�τ (ba, r1, ... , rk, b1, ... , bl),

thus again possibly creating new tuples to relations.

We have now considered several cases and defined the live part Āa,ϕ∃i
of a

witness structure Aa,ϕ∃i
in each case (or rather a table over the elements of the

live part). We next show how to complete the definition of Aa,ϕ∃i
by finding

a suitable dead part for it. We have defined Āa,ϕ∃i
in each case so that there

is a bijection from B̄ba,ϕ∃i
∪ {ba} onto Āa,ϕ∃i ∪ {a}; note that ba (respectively,

a) may or may not be part of the live part B̄ba,ϕ∃i
(resp., Āa,ϕ∃i

) depending on

whether the live part is free, and it holds that ba ∈ B̄ba,ϕ∃i
⇔ a ∈ Āa,ϕ∃i . The

task is now to extend this bijection to a map that maps injectively from Bba,ϕ∃i
into A and preserves 1-types over τ . This will complete the construction of
Aa,ϕ∃i

. This is very easy to do: Note first that since n is the width of ϕ, we
have |Bba,ϕ∃i

| ≤ n. Now recall that in A, each pawn is part of some 3(m∃+n)-
block of elements of the same 1-type, so there are at least 3(m∃+n) elements
of that type in A. Furthermore, the elements of B with a 1-type (over τ)
that is royal in A are all in KB ⊆ CB, and A contains the copy CA of CB as
a substructure. Thus it is easy to extend the bijection in the required way.

4) Completion procedure Let r be the highest arity occurring in the
symbols in τ and n the width of ϕ. Define m := min{r, n} and k ∈ {2, ... ,m}.
Let S ⊆ A be a set with k-elements. Assume that tbA(s) has not been defined
for any k-tuple s enumerating the elements of S when copying C into A and
when finding witness structures in A; thus we still need to define some k-table
for some tuple s that enumerates the points in S. We do this next.
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Assume first that k = 2. Assume S = {a1, a2} such that a1 < a2 and
such that tpA(a1) = α1 and tpA(a2) = α2. Let s, t ∈ {1, ... , N} be the indices
such that a1 ∈ Is and a2 ∈ It. Due to the way we constructed the intervals of
A in the subsection 1), we know that α1 ∈ ατ,s and α2 ∈ ατ,t. Furthermore,
as a1 < a2, we know that either Is is an interval preceding the interval It and
thus s < t, or Is and It are the same interval and thus s = t.

If s < t, then by axioms 3 and 15, we find from B a point b1 ∈ UB
s

realizing α1 and a point b2 ∈ UB
t realizing α2 such that b1 <

B b2. We set

tbA(a1, a2) := tbB�τ (b1, b2).

Now assume that s = t. We consider the two cases where α2 6∈ α+
τ,s and

α2 ∈ α+
τ,s. If α2 6∈ α+

τ,s, then there is some t′ ∈ {1, ... , N} such that s < t′

and α2 ∈ ατ,t′ . Thus, again by axioms 3 and 15, we find from B a point
b1 ∈ UB

s realizing α1 and a point b2 ∈ UB
t′ realizing α2 such that b1 <

B b2.
We set

tbA(a1, a2) := tbB�τ (b1, b2).

Assume then that α2 ∈ α+
τ,s. We consider the two subcases where s 6∈ img(δ)

and s ∈ img(δ); recall the definition of δ from Section 3.3. If s 6∈ img(δ),
then by axioms 3 and 16, there is in B a point b1 ∈ UB

s realizing α1 and a
point b2 ∈ UB

s realizing α2 such that b1 <
B b2. Once again we set

tbA(a1, a2) := tbB�τ (b1, b2).

If s ∈ img(δ), then, by admissibility condition ii, either Is is a singleton with
an element with a royal type or α−τ,s = ∅ = α+

τ,s. If Is is a singleton, then
the assumption a1 < a2 fails, so we must have α−τ,s = ∅ = α+

τ,s. Thus the
assumption α2 ∈ α+

τ,s fails, and thus this case is in fact impossible and can
thus be ignored.

Assume then that k > 2. We select distinct elements b1, ... , bk in B such
that tpA(ai) = tpB�τ (bi) for each i ∈ {1, ... , k}; this is possible because every
king of A is in CA and thus there exists a corresponding point in CB, and
furthermore, by axiom 5, for each pawn u of A, there exist at least n ≥ k
points of the 1-type (over τ) of u in B. Now we set

tbA(a1, ... , ak) := tbB�τ (b1, ... , bk).

Finally, if the maximum arity r of relations in τ is greater than n, then
the tables of A over sets with more than n elements are defined arbitrarily.
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The model A is now fully defined. To finish the proof of Lemma 5, we argue
that A |= ϕ. The fact that A satisfies all the existential conjuncts of ϕ was
established in the subsection 3). To see that A satisfies also the universal
conjuncts, consider such a conjunct ∀x1...∀xkψ(x1, ... , xk), and let (a1, ... , ak)
be a tuple of elements from A, with possible repetitions. We must show that
A |= ψ(a1, ... , ak). Let

{u1, ... , uk′} := live(ψ(x1, ... , xk)[a1, ... , ak]),

and let
V := {a1, ... , ak} \ {u1, ... , uk′}.

The table tbA(u1, ... , uk′) has been defined either when finding witness struc-
tures or in the above completion construction based on some table tbB�τ (b1, ... , bk′)
of distinct elements. We now observe the following.

1. All the kings of A are in CA and thereby have corresponding elements
in CB that satisfy the same 1-type over τ .

2. For each pawn u of A, there exist at least n elements of the same 1-type
over τ as u in B (by axiom 5).

3. The set V ∪ {u1, ... , uk′} = {a1, ... , ak} has at most n elements.

Based on the above, it is easy to see that we can define an injection f from
{u1, ... , uk′}∪V into B that preserves 1-types (over τ) and satisfies f(ui) = bi
for each i ∈ {1, ... , k′}. Therefore

A |= ψ(a1, ... , ak) iff B |= ψ(f(a1), ... , f(ak)).

Since B |= ϕ, we have B |= ψ(f(a1), ... , f(ak)) and therefore A |= ψ(a1, ... , ak).

The following gives a brief description of the decision process which is
also outlined in Algorithm 1. A complete and rigorous treatment of related
details is given in Chapter 5 which is devoted to the proof of Theorem 7.

1. An input to the problem is a sentence ψ′ of U1, which is immediately
converted into a normal form sentence ψ of U1 (cf. Proposition 2).
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2. Based on ψ, an admissibility tuple Γψ ∈ Γ̂ψ is guessed non-deterministically.
The size of the tuple is exponential in |ψ| (cf. Lemma 2). It is then
checked whether the tuple is admissible for the classK ∈ {O,WO,Ofin}
whose decision problem we are considering.

3. Based on Γψ, the sentence Ax (Γψ) is produced. The length of Ax (Γψ)
is exponential in |ψ| (cf. Lemma 6).

4. Then a model B, whose description is exponential in |ψ| (cf. Lemma
8), is guessed. It is then checked whether B |= Ax (Γψ), which can be
done in exponential time in |ψ|.

Theorem 7. Let K ∈ {O,WO,Ofin}. The satisfiability problem for U1 over
K is NExpTime-complete.

Proof. The lower bound (for each of the three decision problems) follows
immediately from [48]. The remaining part of the proof is given in the next
chapter.
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Algorithm 1 Solving satisfiability of U1 over K ∈ {O,WO,Ofin}.
The symbol . indicates comment.

1: procedure Satisfiability(ψ′) over K.
. The U1-sentence ψ′ is an input to the algorithm. Here K ∈
{O,WO,Ofin}, so we are outlining three procedures in parallel.

2: Construct a normal form sentence ψ of U1 from ψ′. Let τ be the
vocabulary consisting of all the relation symbols occurring in ψ. . By
Proposition 2, it holds that ψ is satisfiable iff ψ′ is satisfiable.

3: Guess Γψ ∈ Γ̂ψ and check that Γψ is an admissibility tuple admissible
for K.

4: Let τ ′ := τ ∪ {Us | s ∈ {1, ... , N}} ∪ {K,D, P⊥, P>}. Formulate the
pseudo-ordering axioms for Γψ over τ ′ and let Ax (Γψ) be the conjunction
of these axioms. . Note that Ax (Γψ) is in normal form.

5: Guess a potential model B of Ax (Γψ) whose size is exponentially
bounded in |ψ|. . In the next lines it is checked whether B |= Ax (Γψ).
Note that by Lemma 5, if B |= Ax (Γψ), then ψ ∈ satK(ψ).

6: for all b ∈ B do
7: for all existential conjuncts χ := ∀x∃y1...∃yl β(x, y1, ..., yl) of

Ax (Γψ) do
8: Guess elements b′1, ... , b

′
l in B to form a witness structure Bb,χ

and
9: check whether B |= β(b, b′1, ... , b

′
l).

10: end for
11: end for
12: for all universal conjuncts ∀x1...∀xl′β′(x1, ... xl′) of Ax (Γψ) do
13: for all tuples (b1, ... , bl′) of elements of B, do
14: Check whether B |= β′(b1, . . . , bl′).
15: end for
16: end for
17: end procedure
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Chapter 5

Complexity

In this chapter we study the complexity of the algorithm outlined in Algo-
rithm 1 and establish that it runs in NExpTime in all casesK ∈ {O,WO,Ofin}.
We now fix some K ∈ {O,WO,Ofin} and study only the algorithm for the
class K; below we call the algorithm Algorithm 1.

Let ψ′ be a U1-sentence given as an input to Algorithm 1. It follows
from Proposition 2 that ψ′ can be translated in polynomial time in |ψ′| to
a normal form sentence ψ such that ψ′ is satisfiable in some model M ∈ K
iff ψ is satisfiable in some expansion M∗ ∈ K of M. The formula ψ is the
normal form sentence of U1 constructed at line 2 of Algorithm 1. Let τ be
the vocabulary consisting of the relation symbols in ψ. We assume w.l.o.g.
that < ∈ τ .

At line 3 we guess some Γψ ∈ Γ̂ψ and check that Γψ is indeed an admis-
sibility tuple admissible for K. The length of Γψ is bounded exponentially
in |ψ| by Lemma 2, and checking admissibility of Γψ for K can be done in
polynomial time in |Γψ|.

At line 4 we let τ ′ be the vocabulary

τ ∪ {Us | s ∈ {1, . . . , N}} ∪ {K,D, P⊥, P>}

and formulate the conjunction Ax (Γψ) of the pseudo-ordering axioms for Γψ
over τ ′.

Lemma 6. Consider a normal form sentence χ of U1 and a related admis-
sibility tuple. The size of the sentence Ax (Γχ) is exponentially bounded in
|χ|.
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Proof. Let N be the index of Γχ and C the domain of the court structure
of Γχ. Let σ be the vocabulary of χ. Now let β be some axiom from the
list of 16 axioms that make Ax (Γχ), see Section 3.4. The sentence β is a
normal form sentence with some number m∃,β of existential conjuncts and
some number m∀,β of universal conjuncts. Now, by inspection of the pseudo-
ordering axioms, the sum m∃,β+m∀,β is bounded above by the very generous1

bound
const · |χ| ·N2 · |ασ|2 · |C||χ| + const

for some constant const. Recalling from Section 3.3 that

|C| ≤ 2|χ|4|ασ| and N ≤ 6|χ|4|ασ|,

we get that m∃,β +m∀,β is bounded by

const · |χ| · (6|χ|4|ασ|)2 · |ασ|2 · (2|χ|4|ατ |)|χ| + const .

Since |ασ| ≤ 2|χ|, it is therefore easy to see that this bound is exponential
in |χ|. Therefore, to conclude our proof, it suffices to find some bound B
exponential in |χ| such that the length of each existential conjunct as well as
the length of each universal conjunct in Ax (Γχ) is bounded above by B.

To find such a bound B, we first investigate axiom 11. We note that each
formula β[c1,... ,ck](x1, ... , xk) in axiom 11 is a k-table and therefore consists of
a conjunction over a set such as—to give a possible example—the one given
in Example 4. The number of conjuncts in β[c1,... ,ck](x1, ... , xk) is therefore
definitely bounded above by the bound |χ| · |χ||χ|. Thus it is easy to see
that there exists a term B(11) exponential in |χ| such that the length of each
universal conjunct of axiom 11 is bounded above by B(11). To cover the
existential and universal conjuncts in the other axioms, we investigate each
axiom individually and easily conclude that there exists a term B(i) for each
axiom i ∈ {1, ... , 16} such that the length of each existential and universal
conjunct in the axiom (i) is bounded above by Bi, and furthermore, Bi is
exponential in |χ|. By taking the product of the terms B(i), we find a uniform
exponential bound for the length of all existential and universal conjuncts in
Ax (Γχ).

1We shall not seek minimal or in any sense canonical bounds. Instead we settle with
”clearly sufficient” bounds. This applies here as well as later on.
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At line 5 of Algorithm 1 we guess a τ ′-model B whose domain size is
exponential in |ψ| (rather than exponential in |Ax (Γψ)|); a sufficient bound
is established below (Lemma 8), and furthermore, it is shown that not only
the domain size but even the full description of B can be bounded exponential
in |ψ|. (Recall that B does not have to interpret the binary relation symbol
< as and order.) We now begin the process of finding an exponential upper
bound (in |ψ|) for the size of B and show that this bound is indeed sufficient.
We also establish that, indeed, the full description of B likewise has a bound
exponential in |ψ|. To achieve these goals, we first analyze below the proof
of Theorem 8; this theorem is Theorem 2 in the article [30] (and Theorem
3.4 in [31] due to different numbering). The original proof is given in detail
in Section 3 of both [30] and [31]. We state the theorem exactly as in [30]
and [31], and thus note that UF=

1 denotes U1 in the theorem. (Note that
obviously the theorem concerns general U1 as opposed to U1 over ordered
structures.)

Theorem 8 ([30]). UF=
1 has the finite model property. Moreover, every

satisfiable UF=
1 -formula ϕ has a model whose size is bounded exponentially

in |ϕ|.

It follows from Theorem 8 that Ax (Γψ) has a model M whose size is
exponential in |Ax (Γψ)|, but since |Ax (Γψ)| is exponential in |ψ|, the size
of the model M is double exponential in |ψ|. This is not the desired result.
To lower the bound to exponential, we now analyze the proof of Theorem 8
given in Section 3 of [30] and [31]. This will result in the following lemma
which follows directly and very easily from [30, 31] but is implicit there, i.e.,
not stated as an explicit lemma. Recall here that αA denotes the 1-types
realized in A.

Lemma 7. Let ϕ be a normal form sentence of U1. Let m∃ > 0 be the
number of existential conjuncts in ϕ. Let n ≥ 2 be the width of ϕ and σ the
vocabulary of ϕ. If ϕ is satisfiable, then it is satisfiable in some model M
such that |M | ≤ 8m2

∃n
2αM where αM ⊆ ασ.

Proof. Let ϕ, n ≥ 2, σ and m∃ 6= 0 be as specified above. Assume ϕ is
satisfiable. The claim of the current lemma follows directly by inspection of
the relatively short argument in Section 3 of [30, 31], but we shall anyway
outline here why there exists a model M with the given limit 8m2

∃n
2αM on

domain size.
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Assume A is a σ-model such that A |= ϕ. The original proof constructs
from the σ-model2 A of ϕ a new σ-model A′ whose domain A′ consists of the
union of four sets C,E, F,G, where the set C is constructed with the help of
two sets K and D. Now, while it is stated in [30] that

|K| ≤ (n− 1)|ασ| and |D| ≤ (n− 1)m∃|ασ|,

it is straightforward to observe that in fact

|K| ≤ (n− 1)|αA| and |D| ≤ (n− 1)m∃|αA|.

(Note that we use αA instead of αA′ here.) It is also easily seen that |C| ≤
n|K ∪D|m∃, and thus we can calculate, using the above bounds for K and
D, that

C ≤n|K ∪D|m∃
≤n((n− 1)|αA|+ (n− 1)m∃|αA|)m∃
≤ (n2|αA|+ n2m∃|αA|)m∃
≤ 2n2m2

∃|αA|.

We then consider the sets E,F,G. The article [30] gives a bound (n+m∃)|ασ|
for each of these sets, but it is immediate that in fact (n+m∃)|αA| suffices.

Putting all the above together, we calculate

|C ∪ E ∪ F ∪ E| ≤ 2n2m2
∃|αA|+ 3(n+m∃)|αA|

≤ 3n2m2
∃|αA|+ 3(n2m2

∃)|αA|

≤ 8n2m2
∃|αA|.

It is also immediate that αA′ ⊆ αA, so the domain of A′, i.e., the set
C ∪ E ∪ F ∪ E, is bounded above by 8n2m2

∃|αA′ |.

Lemma 8. Let Γϕ ∈ Γ̂ϕ be some tuple admissible for K ∈ {O,WO,Ofin}
such that Ax (Γϕ) is satisfiable. Then Ax (Γϕ) has a model A whose size is
bounded exponentially in |ϕ|. Moreover, even the length of the description of
A is bounded exponentially in |ϕ|.

2The vocabulary used in the original proof is denoted by τ instead of σ. We use σ here
because τ is in ’global’ use by Algorithm 1.
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Proof. Let σ be the vocabulary of ϕ. Let n be the width of ϕ and m∃ the
number of existential conjuncts in ϕ. Let N be the index of Γϕ and

σ′ := σ ∪ {Us | 1 ≤ s ≤ N} ∪ {K,D, P⊥, P>}

the vocabulary of Ax (Γϕ). Let C be the domain of the court structure in Γϕ.
Assume M |= Ax (Γϕ). Recalling from Section 3.3 that N ≤ 2|ϕ|4|ασ| and
thus clearly N ≤ 2|ϕ|4 · 2|ϕ|, we have

|σ′| = |σ|+ |{Us | 1 ≤ s ≤ N}|+ |{K,D, P⊥, P>}|
= |σ|+N + 4

≤ |ϕ|+ 2|ϕ|4 · 2|ϕ| + 4

Thus |ασ′ | is bounded by 2|ϕ|+2|ϕ|4·2|ϕ|+4. This is double exponential in |ϕ|.
However, the upper bound for |αM| (i.e., the number of 1-types over σ′

realized in M) is exponentially bounded in |ϕ| for the following reason.
Since the predicates Us, where s ∈ {1, ... , N}, partition the domain M ,

each element in M satisfies exactly one of the predicates Us. Therefore,
letting

σ′′ := σ′ \ {Us | 1 ≤ s ≤ N},

we have
|αM| ≤ N |ασ′′ |.

On the other hand,
|ασ′′ | ≤ 2|σ|+4 ≤ 2|ϕ|+4.

Combining these, we obtain that |αM| ≤ N · 2|ϕ|+4. Recalling (from a few
lines above) that N ≤ 2|ϕ|4 · 2|ϕ|, we get

|αM| ≤ 2|ϕ|4 · 2|ϕ| · 2|ϕ|+4 = 2|ϕ|4 · 22|ϕ|+4.

This is exponential in |ϕ|.
As Ax (Γϕ) is satisfiable, it follows from Lemma 7 that A |= Ax (Γϕ) for

some σ′-structure A whose size is bounded by 8m̂∃n̂
2|αA|, where m̂∃ is the

number of existential conjuncts in Ax (Γϕ) and n̂ is the width of Ax (Γϕ). On
the other hand, by the result from the previous paragraph, we have

|αA| ≤ 2|ϕ|4 · 22|ϕ|+4.
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Therefore, to show that the domain of A is bounded exponentially in |ϕ|, it
suffices to show that m̂∃ and n̂ are exponentially bounded in |ϕ|. This follows
immediately by Lemma 6.

We then show that even the length of the description of A is, likewise,
exponentially bounded in |ϕ|. For describing models, we use the straight-
forward convention from Chapter 6 of [44], according to which the unique
description of A with some ordering of σ′ is of the length

|A|+ 1 +

|σ′|∑
i=1

|A|ar(Ri),

where ar(Ri) is the arity of Ri ∈ σ′. Since |A| is exponential in |ϕ| and
ar(Ri) ≤ |ϕ|, each term |A|ar(Ri) is likewise exponentially bounded in |ϕ|.
Furthermore, at the beginning of the current proof we calculated that

|σ′| ≤ |ϕ|+ 2|ϕ|4 · 2|ϕ| + 4.

Thus we conclude that the description of A exponentially bounded in |ϕ|.

Once we have guessed the exponentially bounded model B at line 5 of
Algorithm 1, the remaining part of the algorithm is devoted for checking that
B |= Ax (Γψ). At lines 6-11 we scan each b ∈ B and each existential conjunct
of Ax (Γψ). Then at lines 12-16 we check the universal conjuncts by checking
all tuples of length at most n′ in B, where n′ is the width of Ax (Γψ). Noting
that n′ ≤ n + 1, where n is the width of ψ, the procedure at lines 5-16 can
be carried out in exponential time in |ψ|.

We have now proved the following theorem, which is a restatement of
Theorem 7. (Recall that the lower bound is obtained because FO2 is NEx-
pTime-complete for all the classes K ∈ {O,WO,Ofin} [48].)

Theorem 9. (Restatement of Theorem 7): Let K ∈ {O,WO,Ofin}. The
satisfiability problem for U1 over K is NExpTime-complete.
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Chapter 6

Undecidable extensions

The satisfiability problem for FO2(<1, <2, <3) over structures with three lin-
ear orders is undecidable [29]. In addition, the finite satifiability problem for
FO2(<1,+11, <2,+12) over the structures with two linear orders and their
induced successors is undecidable [46]. On the other hand, while the finite
satisfiability problem for FO2 over structures with two linear orders is decid-
able and in 2NExpTime [57], the general satisfiability problem for FO2 with
two linear orders (and otherwise unrestricted vocabulary) is open. These re-
sults raise the question whether the satisfiability problem for the extension
U1[<1, <2] of U1 (see Section 2.2) over structures with two linear orders is
decidable. We use tiling arguments to answer this question in the negative.

We note that U1[∼1,∼2], where ∼1 and ∼2 denote non-uniform built-in
equivalence relations, is undecidable [32].

6.1 Two linear orders

Theorem 10. The satisfiability problem for U1[<1, <2] is undecidable.

Before giving the proof, we introduce some definitions and lemmas used
in the proof.

A domino system D is a structure (D,Hdo, Vdo), where D is a finite set
(of dominoes) and Hdo, Vdo ⊆ D×D. We say that a mapping τ : N×N→ D
is a D-tiling of N× N, if for every i, j ∈ N, it holds that

(τ(i, j), τ(i+ 1, j)) ∈ Hdo
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and
(τ(i, j), τ(i, j + 1)) ∈ Vdo.

The tiling problem asks, given a domino system D as an input, whether there
exists a D-tiling of N× N. Due to [6] the tiling problem is undecidable.

Let GN = (N× N, H, V ) be the standard grid, where H = {
(
(i, j), (i +

1, j)
)
| i, j ∈ N} and V = {

(
(i, j), (i, j + 1)

)
| i, j ∈ N} are binary relations.

Let A = (A,H, V ) and B = (B,H, V ) be {H,V }-structures, where H
and V are binary relations. The structure A is homomorphically embeddable
into B, if there is a homomorphism h : A→ B defined in the usual way.

Definition 11. A structure G = (G,H, V ) is called grid-like, if there exists
a homomorphism from GN to G, i.e., GN is homomorphically embeddable
into G.

Let G be a {H,V }-structure with two binary relations H and V . We say
that H is complete over V , if G satisfies the formula ∀xyzt( (Hxy ∧ V xt ∧
V yz )→ Htz ).

The following lemma is from [48]. Note that FO2 is contained in U1.

Lemma 9 ([48]). Let G = (G,H, V ) be a structure satisfying the FO2-axiom
∀x(∃yHxy ∧ ∃yV xy ). If H is complete over V, then G is grid-like.

Let D be a domino system, and let (Pd)d∈D be a set of unary relation
symbols. Assume that there is a D-tiling of N×N. The correctness of the D-
tiling can be expressed by the FO2-sentence ϕD := ∀x(

∨
d Pdx∧

∧
d6=d′ ¬(Pdx∧

Pd′x) )∧∀xy(Hxy →
∨

(d,d′)∈Hdo(Pdx∧Pd′y ) )∧∀xy(V xy →
∨

(d,d′)∈Vdo(Pdx∧
Pd′y ) ).

Lemma 10. Let D be a domino system, and let G be a class of grid-like
structures such that GN ∈ G. Then there exists a D-tiling of N × N iff
there exists G ∈ G that can be expanded to G′ = (G,H, V, (Pd)d∈D) such that
G′ |= ϕD.

Proof. Assume first that there exists a D-tiling of N×N. Then, as GN ∈ G,
we expand GN to G′N = (N × N, H, V, (Pd)d∈D) in the obvious way, whence
G′N |= ϕD.

Assume then that there exists G ∈ G that can be expanded to G′ =
(G,H, V, (Pd)d∈D) such that G′ |= ϕD. As G is grid-like, it follows from
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Definition 11 that there is a homomorphism h : GN → G. We define
τ : N× N→ D such that

τ(i, j) = d, if h(i, j) ∈ Pd

for some d ∈ D. Now the mapping τ is a D-tiling of N× N.

Proof of Theorem 10. Let τ = {H,V }. Recall that the standard grid GN is a
τ -structure. Let τ ′ = τ ∪ {<1, <2, N}, where <1 and <2 are binary symbols
and N is a 4-ary symbol. Let us first informally outline the proof. First
the standard grid GN is expanded to τ ′-structure G′N. Expanding GN to G′N
amounts to describing how the new symbols <1, <2, and N are interpreted in
G′N. A fragment of the intended structure can be seen in Figure 6.1. Then
we axiomatize some important properties of G′N such that the structures
that interpret <1 and <2 as linear orders and satisfy the axioms, resemble
G′N closely enough. Now, let G be the class of τ -reducts of τ ′-structures that
interpret <1 and <2 as linear orders and satisfy the axioms. In particular, GN
is in G. We show that every structure in G satisfies the local criterion that H
is complete over V . It will then follow from Lemma 9 that every structure in
G is grid-like. Then the undecidability of the general satisfiability problem
for U1[<1, <2] follows from Lemma 10.

We now go to the details of the proof. We define the τ ′-expansion G′N of
GN as follows. The linear order <1 follows a lexicographical order such that
for all (i, j), (i′, j′) ∈ N2, we have (i, j) <1 (i′, j′) if and only if j < j′ or
(j = j′ and i < i′). In the linear order <2, the roles of i and j are swapped,
i.e., for all (i, j), (i′, j′) ∈ N2, we have (i, j) <2 (i′, j′) if and only if i < i′ or
(i = i′ and j < j′).

The relation N is defined as follows. For all points a, b, c, d in N2, we have
Nabdc if and only if Hab, Hcd, V ac, and V bd; see Figure 6.1.

Next we define a few auxiliary formulae. For i ∈ {1, 2}, let

x ≤i y := x = y ∨ x <i y.

Define also
σi(x, y, z) := x <i y ∧ (z ≤i x ∨ y ≤i z).

We are now ready to give the desired axioms defining a class of τ ′-structures.
Let η be the conjunction of the following sentences.
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ηG = ∀x(∃yHxy ∧ ∃yV xy ).

ηH = ∀xyz
(
Hxy → σ1(x, y, z)

)
. Together with the previous axiom, this

axiom forces H to be a kind of an ”induced successor relation” of the
linear order <1. It is worth noting that H is subject to the uniformity
condition of U1, i.e., H cannot be used freely in quantifier-free
U1[<1, <2]-formulae, but the order symbols <1, <2 can.

ηV = ∀xyz
(
V xy → σ2(x, y, z)

)
. This is analogous to ηH .

ηN∃ = ∀x∃yzt(Nxyzt ). This axiom states that each point is a first coordi-
nate in some 4-tuple in N . We call the 4-tuples in N quasi-squares.

ηN∀ = ∀xyztu
(
Nxyzt→ (σ1(x, y, u) ∧ σ2(x, t, u) ∧ σ2(y, z, u) ∧ σ1(t, z, u))

)
.

The points of the quasi-squares are connected via the induced succes-
sors of <1 and <2; see the dash-dotted curves representing tuples in N ,
Figure 6.1.

Thus we have η := ηG ∧ ηH ∧ ηV ∧ ηN∃ ∧ ηN∀ . It is readily checked that
the expansion G′N of the standard grid GN satisfies the sentence η. Let

G = {G′ � τ | G′ is τ ′-model s.t. <G′

1 and <G′

2 are linear orders and G′ |= η}.

Next we need to show that every structure G ∈ G is grid-like. This can be
done by applying Lemma 9: as every structure G ∈ G satisfies ηG, it suffices
to show that for every structure G ∈ G, H is complete over V .

a b

c d

Figure 6.1: A finite fragment of the intended structure. The dashed arrows repre-
sent the H-relations and the solid arrows the V-relations. The dash-dotted curves
represent the N -relations, e.g. Nabdc.
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To show that H is complete over V in every structure in G, let G′ be
a τ ′-structure interpreting <1 and <2 as linear orders and satisfying η. For
convenience, for i ∈ {1, 2}, let

βi(x, y) := ∀z (σi(x, y, z)).

Let a ∈ G′. From ηG, we get points b, c, d ∈ G′ such that

Hab ∧ V ac ∧ V bd.

As Hab ∧ V ac ∧ V bd, we conclude that

β1(a, b) ∧ β2(a, c) ∧ β2(b, d)

from ηH and ηV . From ηN∃, we get Nab′d′c′ for some b′, c′, d′ ∈ G′. As
Nab′d′c′, we conclude that

β1(a, b′) ∧ β2(a, c′) ∧ β2(b′, d′) ∧ β1(c′, d′)

from ηN∀. The following claim is clear.

Claim. If β1(a, b) ∧ β1(a, b′), then b = b′.

As β1(a, b) ∧ β1(a, b′), it follows from the claim that b = b′. We then
conclude similarly that c = c′ and d = d′ (recalling that b = b′). From ηG,
we get a point d′′ ∈ G′ such that Hcd′′ and then conclude that β1(c, d′′) from
ηH . Furthermore, as β1(c′, d′), c = c′ and d = d′, we have β1(c, d) ∧ β1(c, d′′).
Now, analogously to the claim, we have d = d′′ (See Figure 6.2). Therefore,
as Hcd′′, we have Hcd.

a

c
d′′

b

d

a

c

b

d = d′′

Figure 6.2: H is complete over V

Let G := G′ � τ . Thus for G ∈ G, it holds that H is complete over V .
Now it follows from Lemma 9 that G is grid-like.

62



As G′N |= η, the standard grid GN is also in G. It now follows from Lemma
10 that the (general) satisfiability problem for U1[<1, <2] over structures with
linear orders <1 and <2 is undecidable.

Theorem 12. The finite satisfiability problem for U1[<1, <2] is undecidable.

Proof. This follows from the fact that (finite case) FO2(<1,+11, <2,+12) is
undecidable and the fact that U1[<1, <2] can express the successors of <1

and <2 as shown in the general case.
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Chapter 7

Conclusion

We have shown that U1 is NExpTime-complete over ordered, well-ordered
and finite ordered structures. To contrast these results, we have established
that U1[<1, <2] is undecidable. The results here are the first results con-
cerning U1 with built-in linear orders. Several open problems remain, e.g.,
investigating U1 with combinations of equivalence relations and linear or-
ders. Such results would contribute in a natural way to the active research
program concerning FO2 with built-in relations and push the field towards
investigating frameworks with relation symbols of arbitrary arity.

While various interesting research directions remain in the field of first-
order fragments, it would also make sense—as suggested in [40, 42]—to ex-
pand the related studies into fragments of the Turing complete logic of [40].
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