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SUMMARY

Global changes in chromatin accessibility may drive
cancer progression by reprogramming transcription
factor (TF) binding. In addition, histone acetylation
readers such as bromodomain-containing protein 4
(BRD4) have been shown to associate with these
TFs and contribute to aggressive cancers including
prostate cancer (PC). Here, we show that chromatin
Cel
This is an open access article under the CC BY-N
accessibility defines castration-resistant prostate
cancer (CRPC). We show that the deregulation of
androgen receptor (AR) expression is a driver of chro-
matin relaxationand thatAR/androgen-regulatedbro-
modomain-containing proteins (BRDs) mediate this
effect. We also report that BRDs are overexpressed
in CRPCs and that ATAD2 and BRD2 have prog-
nostic value. Finally, we developed gene stratification
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signature (BROMO-10) for bromodomain response
and PC prognostication, to inform current and future
trials with drugs targeting these processes. Our find-
ings provide a compelling rational for combination
therapy targeting bromodomains in selected patients
in which BRD-mediated TF binding is enhanced or
modified as cancer progresses.
INTRODUCTION

Prostate cancer (PC) is the most common male cancer in the

United States and Europe (Center et al., 2012). Androgen recep-

tor (AR) signaling is required for the development of the prostate

gland and is maintained in PC including at the stage of progres-

sion to castration-resistant prostate cancer (CRPC) (Zhang et al.,

2013).

CRPC is characterized by copy number gain at the AR locus

occurring in around 30% of advanced cases. Consequently AR

is overexpressed in these tumors. However, AR deregulation is

also a frequent feature (>90%) of advanced castrate-resistant

cases (Waltering et al., 2012), which persist after resistance to

antiandrogens such as enzalutamide and abiraterone (Buttigliero

et al., 2015). We have previously shown that AR deregulation

is associated with local chromatin landscape changes, which

are able to reinforce the binding of AR to chromatin even in

low androgen environments (Urbanucci et al., 2012a, 2012b).

This mimics the conditions occurring in CRPC (Xu et al., 2006).

Phenotypically, AR deregulation results in increased growth

rates even under conditions of androgen deprivation (Waltering

et al., 2009). Moreover, genome-wide AR recruitment to chro-

matin is detectable in such conditions (Andreu-Vieyra et al.,

2011), suggesting that the chromatin is open and in some way

primed by pre-docked AR even before the cells are treated

with hormones. Androgen treatment then enhances AR recruit-

ment (Urbanucci et al., 2012a). This suggests that nucleosome

positioning is predetermined in PC cells, a hypothesis that has

been confirmed by a recent study (Chen et al., 2015).

Clinical epigenetics, defined as functionally relevant changes

to the genome that do not involve a change in the nucleotide

sequence and impact on disease phenotypes, is becoming

extremely important for cancer detection and treatment. One

indirect assessment of epigenetic alteration is the accessibility

of DNA, determined by DNase hypersensitivity analysis or by

formaldehyde-assisted isolation of regulatory elements (FAIREs)

(Song et al., 2011).

Proof of a de-regulated epigenome in CRPC includes altered

patterns of DNA methylation, histone modifications (Perry

et al., 2010), and increased and altered AR binding to chromatin

(Pomerantz et al., 2015; Sharma et al., 2013).

In addition, epigenetic readers such as bromodomain-con-

taining protein 4 (BRD4) have been shown to associate with tran-

scription factors (TFs) such as AR (Asangani et al., 2014; Nagar-

ajan et al., 2014; Shi and Vakoc, 2014) and contribute to

aggressive cancers of many types (Delmore et al., 2011; Shi

and Vakoc, 2014) including PC (Asangani et al., 2014; Wyce

et al., 2013). Nevertheless, the underlying mechanisms of action

of bromodomain inhibitors have not yet been completely eluci-
2046 Cell Reports 19, 2045–2059, June 6, 2017
dated (Shi and Vakoc, 2014). Therefore, we set out to investigate

the underlying global changes in chromatin accessibility as a

driver of cancer progression (Lever and Sheer, 2010; Timp and

Feinberg, 2013).

Here, we report that DNA accessibility alone is able to

discriminate advanced prostate tumors from earlier disease

states and benign tissue. The chromatin of these tumors

is more accessible due to indirect mechanisms in which the

AR plays a role. We show that BRDs, such as BRD4 and

androgen-regulated BRD2 and ATAD2, are the mediators

of such increased accessibility and are prognostic tissue

markers overexpressed in CRPC. Finally we provide a ten-

gene signature, BROMO-10, that can be used to stratify patients

with poorer outcome and guide PC patient selection for combi-

natorial trials of bromodomain and extra-terminal (BET)-targeted

therapies with other agents.

RESULTS

Deregulation of the AR Enhances Bromodomain-
Mediated Chromatin Opening in Advanced Tumors
To understand whether progression to CRPC is associated with

global changes in chromatin accessibility, we assessed chro-

matin opening and DNA regions with regulatory activity in three

benign prostate hyperplasia (BPH), three primary untreated

PC, and three locally recurrent CRPC samples using FAIRE

sequencing (FAIRE-seq) (Giresi and Lieb, 2009).

One-third of the genome consisted of open regions of chro-

matin in two CRPC samples, whereas only about one-sixth of

the genome comprised open chromatin in the other samples

(Figure 1A and Table S1A). We validated open chromatin re-

gions via FAIRE-qPCR at prostate specific antigen (PSA) and

TMPRSS2 gene loci, showing enhanced chromatin opening in

CRPC (Figure 1B).

We built disease-stage-specific high-confidence consensus

open chromatin maps. On average, only 15% of the FAIRE-seq

sites overlapped between the samples (Table S1A) highlighting

epigenetic heterogeneity. We found that the majority of open

sites were unique to CRPC samples (Figure 1C) and were larger

than in PC or BPH (Figure S1A). To classify disease stage, we

used principal component analysis of the FAIRE-seq data

and found that in terms of chromatin state, CRPC chromatin

appeared more diverse when compared with BPH or PC (Fig-

ure 1D), indicating that extensive chromatin remodeling is a

late event in PC progression.

RNA sequencing (RNA-seq) of the same clinical samples

showed a positive correlation between upregulated genes and

an open chromatin state (Figure 1E) up to 250 kb upstream the

transcriptional start sites (TSSs) (Figure 1F). In agreement with

published studies (Cedar and Bergman, 2012), DNA methylation

profiles obtained for the same clinical samples showed a nega-

tive correlation with gene expression within 1 and 5 kb around

the genes’ TSS (Figure 1G). Importantly, such correlations

were independent of sample type, indicating conserved mecha-

nisms across all disease stages.

Next, to investigate the effect of the AR deregulation on

chromatin opening, we performed FAIRE-seq in CRPC cells

such as lymph node carcinoma of the prostrate (LNCaP) and
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vertebral-cancer of the prostate (VCaP) cultured in the presence

and absence of androgens. VCaP cells overexpress the AR

compared to LNCaP due to AR gene locus amplification (Urban-

ucci et al., 2013). More FAIRE-seq sites were found in VCaP than

in LNCaP cells (Figure 1H and Table S1A), and VCaP cells also

showed a greater increase in the number of FAIRE-seq sites in

the presence of androgens (Figure 1H).

One-third of the FAIRE-seq sites were present in both cell

lines (Figure 2A). Androgen treatment reprogrammed chromatin

accessibility affecting 20%–50% of sites (Figure 2B).

80% of common FAIRE-seq sites were conserved between

cell lines and tissue samples (Table S1B). Chromatin opening

measured via FAIRE-qPCR at PSA (Figure 1I) and TMPRSS2

(Figure 2C) loci or measured in silico genome-wide (Figures 1J

and 2D–2F) was greater in VCaP cells than in LNCaP cells. An

average of 21% of clinically relevant AR binding sites (ARBSs)

in CRPC tissue (Sharma et al., 2013) and 45% E26 transforma-

tion-specific or E-twenty-six family (ETS)-related gene (ERG)

binding sites (ERGBSs) in VCaP cells (from Yu et al., 2010) over-

lapped with FAIRE sites (Table S1B).

Androgens enhanced chromatin opening at FAIRE sites over-

lapping with CRPCs’ ARBSs and ERGBSs only in LNCaP cells

(Figures 2D and 2E), while they had no effect in VCaP cells. In

VCaP cells, androgens enhanced chromatin opening at matched

cell lines ARBSs (Figure 1K) and at ARBSs present in cell lines

and tumors (Figure 2F) but not at ERGBSs (Figure 2E).

To validate the role of AR in chromatin opening, we used an

LNCaP-based model expressing endogenous and increased

AR levels (Waltering et al., 2009) (Figure 2G) and confirmed

enhanced chromatin opening in AR-overexpressing cells at the

PSA and TMPRSS2 loci. These data suggest that both ARdereg-

ulation and androgens affect chromatin opening in CRPC cells at

ARBSs, but not at ERGBSs.

Distribution of FAIRE-seq sites in clinical samples and cell

lines showed increased opening at intronic/intergenic regions

(Figures S1B–S1I), which is in agreement with previous findings
Figure 1. Deregulation of AR Favors Bromodomain-Mediated Chroma

(A) Number of nucleotides located within open chromatin peaks identified via fo

(FAIRE-seq) in three benign prostate hyperplasia (BPH), three primary prostate

(CRPC) tissue specimens.

(B) FAIRE-qPCR validation of local chromatin opening at the PSA and TMPRSS2 l

control (closed region).

(C) Overlap of open chromatin regions commonly found in BPH, PC, or CRPC sa

(D) Principal component analysis of three benign and six cancer (three primary a

(E) Association between local chromatin opening, up to 1 kb upstream the gen

according to RNA-seq.

(F and G) Analysis of Kolmogorov-Smirnov statistical test values describing the

chromatin accessibility (F) or local DNA methylation (G) from a random set of ass

accessibility and DNA methylation were measured at the indicated intervals and

tissue (see Figure S4 for details).

(H) Number of open chromatin regions found by FAIRE-seq analysis of LNCaP a

(I) FAIRE-qPCR validation of local chromatin opening at the PSA locus in LNCaP

(J and K) Chromatin opening potency assessed by FAIRE-seq reads distribution

sites (ARBSs) (K) in LNCaP and VCaP cells treated as above.

(L–N) FAIRE-qPCR analysis of local chromatin opening at the PSA and TMPRSS2

FAIRE-qPCR in LNCaP-pcDNA3.1 and -ARhi cells following 4 days of hormone st

vehicle (DMSO) (�) (*p < 0.05 according to t test). (N) FAIRE-qPCR upon transfec

BRD4 (siBRD4) (two biological repeats with three technical replicates each).

Error bars represent SEM. See also Figure S1 and Tables S1A–S1D.
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showing increased AR chromatin binding at these regions

(Sharma et al., 2013; Urbanucci et al., 2012b).

Given that chromatin remodeling is not exclusively associated

with ARBSs, we tested whether enhanced chromatin opening

was associated with the presence of different motifs in CRPC

by performing motif analysis on FAIRE site maps of tissue

samples and cell lines (Table S1C). Consistent with its role in

maintaining chromatin compaction (Tark-Dame et al., 2014),

CCCTC-binding factor (CTCF)-like motifs were among the top

enriched motifs in both clinical specimens and cell lines, fol-

lowed by ETS-like motifs. CTCF and ETS motifs were enriched

in all clinical specimens, including common sites, while c-MYC

motifs were exclusively present in open regions found in CRPC

samples. Nuclear transcription factor Y subunit (NFY) and SP1

motifs were highly enriched in both treatment conditions in

both cell lines. Although they were not enriched at FAIRE

sites in tumors, NFY and SP1 have been shown to be involved

in chromatin regulation and to have a potential role in cancer

progression (Dolfini and Mantovani, 2013; Tewari et al., 2012).

Interestingly, forkhead box (FOX)-like motifs were significantly

enriched only in the LNCaP FAIRE sites (Table S1C). This sug-

gests that only a subset of FAIRE sites, those that may overlap

with ARBSs, are regulated by FOXA1, and other chromatin re-

modelers may play a role.

Therefore, we sought to understand whether enhanced chro-

matin opening in the context of AR deregulation favors chromatin

binding of different proteins such as nuclear transcription factor

Y subunit alpha (NFYA), the regulatory subunit of the NFY com-

plex (Dolfini and Mantovani, 2013), and c-Myc.

We retrieved publicly available consensus binding data from

ENCODE. Overlap of FAIRE-seq data with ENCODE data on

chromatin binding of CTCF, MYC, and NFYA showed that, on

average, 44% of the ENCODE NFYA sites, 18% of MYC sites,

and only 12% of CTCF sites lay within the open chromatin sites

(Table S1D). However, no significant increase or decrease of

overlapping sites was observed in CRPCs, which may be due
tin Opening in Castration-Resistant Prostate Cancer

rmaldehyde-assisted isolation of regulatory elements followed by sequencing

cancer (PC), and three locally recurrent castration-resistant prostate cancer

oci in the clinical samples. An H3K27me3 marked region was used as negative

mples according to the FAIRE-seq analysis.

nd three CRPC) prostate tissue samples according to chromatin shape.

es transcription start site, and gene expression in matched tissue samples,

deviation of correlative events between matched gene expression and local

ociative events of the same type, in all nine clinical samples. Local chromatin

correlated in a gene-wise manner to respective gene expression in the same

nd VCaP cells treated with 1 nM R1881 or vehicle.

and VCaP cells treated with 1 nM R1881 or vehicle.

around all FAIRE-seq sites (J) or around matched androgen receptor binding

loci in a LNCaP-based AR overexpression model (*p < 0.05 according to t test).

arvation (L) or without starvation (full serum) (M), treated with 125 nM JQ1 (+) or

tion with siRNA control or siRNA against ATAD2 (siATAD2), BRD2 (siBRD2), or



Figure 2. AR Overexpression in Castration-

Resistant PCCell Models Is Associatedwith

Increased Open Chromatin

(A and B) Multi-parametric comparison showing

open chromatin regions found by FAIRE-seq

analysis in LNCaP and VCaP cells treated with

1 nM R1881 or vehicle (etho, ethanol) (A). Three

pairwise comparisons of open chromatin re-

gions—LNCaP treated with R1881 or ethanol;

LNCaP treated with R1881 versus VCaP treated

with ethanol and VCaP treated with R1881 or

ethanol (B).

(C) FAIRE-qPCR validation of local chromatin

opening at the TMPRSS2 locus (Urbanucci et al.,

2012a) in two cell lines with and without hormone

or vehicle.

(D–F) Chromatin opening around (D) androgen

receptor binding sites (ARBS) in CRPC (Sharma

et al., 2013), (E) ERG binding sites (ERGBS) (Yu

et al., 2010), and (F) ARBS conserved between

CRPC tissue and cell lines (Sharma et al., 2013).

(G) FAIRE-qPCR validation of chromatin opening

at PSA and TMPRSS2 loci (Urbanucci et al.,

2012a) in a LNCaP-based AR overexpression

model (Waltering et al., 2009) treated with hor-

mone or vehicle.

Error bars represent SEM.
to cell specificity of the TF binding or due to tissue heterogeneity

(data not shown).

BRDs are druggable chromatin readers that recognize acety-

lated histones (Filippakopoulos et al., 2012) and modulate tran-

scription in cancer-associated genes (Filippakopoulos and

Knapp, 2014; Lovén et al., 2013). Since we showed that histone

acetylation is increased in AR-overexpressing cells (Urbanucci

et al., 2012a), we hypothesized that BRDs would mediate chro-

matin opening. To test our hypothesis, we used the pan-BET

bromodomain inhibitor JQ1 to assess the impact on chromatin

opening potency at selected loci.
Cell R
In hormone-starved cells, JQ1 treat-

ment induced chromatin closure in AR-

overexpressing cells, but had little or no

effect in parental cells (Figure 1L). In the

presence of androgens, JQ1 had a stron-

ger effect on parental than on AR-over-

expressing cells (Figure 1M), highlighting

the role of androgens in chromatin

opening. In addition to BRD2/4 as the

main targets of JQ1, we also evaluated

ATAD2, since it has been reported that

this BRD is a common coactivator of

AR and MYC.

RNAi knockdown of the BET proteins

BRD2 and BRD4 reduced PSA enhancer

and promoter opening in AR-overex-

pressing cells, but in parental cells

ATAD2 knockdown did not (Figure 1N).

Interestingly, at the TMPRSS2 enhancer

only BRD4 knockdown was effective in
reducing chromatin opening, suggesting that compensatory

events occur if a specific BRD is targeted.

Based on these data, we hypothesized that the expression of

some BRDs might be AR dependent. To test androgen regula-

tion of BRDs genes we validated proximal ARBSs (Data S1) iden-

tified in publicly available datasets. Chromatin immunoprecipita-

tion at ATAD2 and BRD2 proximal ARBSs showed stronger AR

binding than BRD4 proximal ARBS. The strongest ARBS to

BRD4 was located 200 kb from the TSS (Figure 3A). ATAD2

and BRD2 transcripts were induced by androgen (the latter

only modestly), while BRD4 transcript was not (Figure 3B). AR
eports 19, 2045–2059, June 6, 2017 2049



Figure 3. Androgens and AR Regulate BRDs Expression

(A) Androgen receptor binding sites (ARBSs) close to BRD4, BRD2, and ATAD2 genes according to publicly available datasets (see Data S1) were validated by

chromatin immunoprecipitation (ChIP)-qPCR analysis. PSA mid-region served as ARBS negative control.

(B) Indicated transcript levels measured by qRT-PCR after hormone treatment.

(C) ATAD2 gene expression measured by qRT-PCR in LNCaP-pcDNA3.1, -ARmo, and -ARhi treated with hormone. The mean and SEM of ATAD2 against TATA-

binding protein (TBP) values normalized measure with no treatment (0M).

(D) Western blot analysis of indicated proteins levels in cells treated with hormone.

See Figure S2.
overexpression sensitized ATAD2 transcription to lower concen-

trations of androgens (Figure 3C). In contrast to BRD4, ATAD2

and BRD2 protein levels were increased in AR-overexpressing

cells and further increased by androgen stimulation (Figures

3D and S2A). AR knockdown in LNCaP cells during a time course

of androgen treatment reduced ATAD2 transcript and protein

levels within 24 hr (Figures S2B and S2C). In contrast, BRD2

protein levels were downregulated only after 48 hr treatment

with AR-targeted small interfering RNA (siRNA) (Figure S2C).

BRDs Are Tissue Biomarkers Overexpressed in
Castration-Resistant PCs
To establish the predictive clinical value of BRD2/4 and ATAD2,

we performed qRT-PCR (Figures 4A–4D) and immunohisto-

chemical (IHC) analyses (Figures 4E–4H) using benign prostate

tissue and PC specimens and found that all transcripts were

overexpressed in cancer compared to BPH. The long form of

BRD4 (BRD4-L) (p > 0.05) andBRD2 (p < 0.0001) nuclear staining

was increased in CRPC (Figures 4I and 4J). BRD4 (Figure S3A)

and BRD2 (Figure 4K) protein levels determined by IHC were

not prognostic for biochemical recurrence, although BRD2 stain-

ing separated patients with poor prognosis and was significantly
2050 Cell Reports 19, 2045–2059, June 6, 2017
(p = 0.0154) associated with mortality (Figure 4L). Strong nuclear

(Figure 4M) and cytoplasmic (Figure S3B) staining for ATAD2

was significantly increased in CRPC cases (p < 0.0001). More-

over, strong nuclear (Figure 4N) but not cytoplasmic (Figure S3C)

staining was associated with poor outcome (Figure S3D). We

confirmed the significant (p < 0.001) prognostic relevance of

ATAD2 as a tissue biomarker for biochemical recurrence in an

independent cohort of 12,427 patients’ samples (Figures 4O

and S3). Positive staining for ATAD2 was associated with Ki67

staining, tumor stage, and AR protein expression (Figure S3).

Androgen-Receptor-Overexpressing Cells Are More
Sensitive to Bromodomain Inhibitors
BRD inhibitors have been reported to reduce the viability of PC

cells (Asangani et al., 2014). To determine whether these effects

are dependent on AR expression levels, we performed knock-

downs of BRDs in AR-overexpression cell models in the pres-

ence of androgens (Figures S4A and S4B). Silencing BRD4

decreased MYC levels in both LNCaP and VCaP cells, while up-

regulating slightly AR, and PSA only in VCaP cells (Figure S4B).

Knockdown of BRD4 decreased viability in all the AR-positive

cell lines tested (LNCaP-pcDNA3.1, LNCaP-ARhi, and VCaP),



Figure 4. BRDs Are Tissue Biomarkers Overexpressed in Castration-Resistant PC

(A–D) Expression of BRD4-long (BRD4-L) (A), BRD4-short (BRD4-S) transcript form (B), BRD2 (C), and ATAD2 (D) gene transcripts relative to TBP levels in BPH

(n = 15), primary untreated PC (n = 27), and CRPC (n = 15) specimens according to qRT-PCR. Kruskal-Wallis with Dunn post-test results are shown (***p < 0.0001;

**p < 0.001; *p = 0.01–0.05; ns, not significant).

(E and F) CRPC immunohistochemical (IHC) strong stainings (score = 3) for BRD4 long isoform (E) and BRD2 (F).

(G and H) CRPC IHC stainings showing examples of low (0%) (G) and high (<5%) (H) staining of nuclear ATAD2. Images are 83 magnification.

(I and J) Proportions of tumors according to BRD4 long isoform (I) and BRD2 (J) staining intensity in PC (n = 159 for BRD4 and n = 90 for BRD2) and CRPC (n = 128

for BRD4 long isoform and n = 34 for BRD2).

(K) Kaplan-Meier analysis of biochemical progression-free survival in 90 prostatectomy-treated patients according to BRD2 stainings (p = ns calculated with

Mantel-Cox test).

(L) Kaplan-Meier analysis showing shorter time to death in 37 men that died of PC out of the 90 patients for which material was stained for BRD2 (p = 0.015

calculated with Mantel-Cox test).

(M) Proportions of tumors according to percentage of ATAD2 positive nuclei in PC (n = 258) and CRPC (n = 121) specimens (p < 0.0001 according to X2 test).

(N) Kaplan-Meier analysis of biochemical progression-free survival in prostatectomy-treated patients according to the percentage of ATAD2 positive nuclei. Six

patients with high frequency of ATAD2-positive nuclei had very short progression-free time (p = 0.0354 calculated with Mantel-Cox test).

(O) Kaplan-Meier analysis of biochemical progression-free survival in a validation cohort of 8,541 prostatectomy-treated patients according to ATAD2 staining

(p < 0.001). 26% (n = 2,216) of the stainings were positive for ATAD2, of which strong ATAD2 staining accounted for 81% (n = 1,789).

Error bars represent SEM. See Figure S3.
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but knockdown of BRD2 or ATAD2 alone had no effect on

viability (Figure 5A). ATAD2 inhibition via a small molecular probe

was shown to have limited effect on viability of LNCaP cells

(Bamborough et al., 2016). Silencing ATAD2 upregulated AR

specifically in LNCaP and MYC in VCaP cells, while silencing

BRD2 slightly upregulated MYC in both LNCaP and VCaP cells

(Figure S4B). Therefore, our data suggest that compensatory

mechanisms such as enhanced AR/MYC signaling may take

place and promote cell survival when single BRDs are targeted.

In fact, co-targeting both ATAD2 and BRD2 in LNCaP cells via a

combinatorial knockdown had no additive effect on decreasing

cell viability compared to targeting BRD2 alone (Figure 5B) and

highlighted that BRD4 is important but not the only contributor

to cell viability.

To test whether AR deregulation enhances sensitivity to bro-

modomain inhibitors, we treated a panel of AR-positive PC cell

lines with JQ1 in the presence of androgens (Figures 5C, S4C,

and S4D). AR levels in 22RV1 and LNCaP cells are similar (Erzur-

umlu and Ballar, 2017), while LNCaP-ARhi and VCaP cells

overexpress AR compared to LNCaP (or LNCaP-pcDNA3.1)

with VCaP showing the highest levels of AR (Urbanucci et al.,

2012b; Waltering et al., 2009). VCaP cells were indeed the

most sensitive cells to JQ1 treatment. LNCaP-ARhi and parental

LNCaP cells were equally responsive to JQ1 treatment (Fig-

ure S4D). However, when such cells were grown in androgen

deprivation conditions (castrate conditions), AR-overexpressing

cells were more sensitive to JQ1 (Figure 5D). Also, combined

treatment with enzalutamide and JQ1 was more effective in

AR-overexpressing cells (Figures 5E and 5F), suggesting that

AR deregulation is implicated in response to BET inhibition.

Combined treatment with JQ1 and enzalutamide triggered

apoptosis in VCaP cells in full media (Figure 5G), but not in

LNCaP cells, even when deprived of androgens (Figures S4E

and S4F). This indicates that AR activity/level defines whether

this drug combination has a cytostatic (low-level AR activation)

or cytotoxic (high-level AR activation) effect.

When cells are treated with anti-androgens, resistance can

emerge in which AR activity is maintained (Buttigliero et al.,

2015). Using an enzalutamide-resistant LNCaP model (Kregel

et al., 2013), we found that the inhibitory effect of JQ1 was

retained (Figure 5H).

Gene Expression Analysis of Bromodomain Inhibitor-
Treated Cells and Six Independent PC Cohorts Reveal a
Ten-Gene Signature for Patient Stratification
To identify patients that could potentially benefit from BET-tar-

geted therapies, we sought to identify a gene signature able to

stratify CRPC responders. We performed a time-course treat-

ment with JQ1 in LNCaP (Figure S5A) and VCaP (Figure S5B)

cells to identify affected genes. Upregulated genes (Table S2A)

showed significant overrepresentation of histone genes (Figures

S5C and S5D) and overrepresentation of GO terms for chromatin

compaction (p < 10�6) (Table S3), corroborating the tendency for

chromatin closure upon JQ1 treatment, while downregulated

transcripts (Table S2B) included AR targets found in tissues of

CRPC patients (Sharma et al., 2013) (Figure 6A). We validated

decreased protein levels of the AR targets PSA and CAMKK2

upon JQ1 treatment (Figure S2A). CRPC-associated genes
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such as UBE2C, HOXB13, AURKA, and CAMKK2 (Data S1)

that were downregulated by JQ1 treatment (Figures S5E and

S5F) and affected by BRD4 knockdown (Figure S5G) also

showed bromodomain-dependent local chromatin opening (Fig-

ure S5H). AR deregulation affected chromatin opening especially

at ARBSs, when present (Figures S5I and S5J).

Finally, we used published clinical expression array data

(Taylor et al., 2010) and RNA-seq of clinical specimens (Ylipää

et al., 2015) to identify a clinical gene signature of overex-

pressed genes in CRPC (Tables S4A and S4B). We compared

lists of CRPC-overexpressed genes with those that displayed

increased proximal chromatin opening in CRPC (Figure 6B and

Table S5) and genes downregulated by JQ1 treatment in cell

lines and obtained a set of 15 genes (Figures 6C and 6D).

A generalized linear model with elastic net regularization (Erho

et al., 2013) was used on the Mayo Clinic I (MCI) PC cohort (Erho

et al., 2013) as the discovery dataset to assess the association of

the 15 genes to biochemical recurrence, PC specific mortality,

and metastatic recurrence. Ten of the 15 genes contributed

significantly to the model.

We called the resulting ten-gene signature ‘‘BROMO-10.’’

To evaluate the prognostic significance of BROMO-10, first we

used RNA-seq data from an independent cohort of PC from

the Fred Hutchinson Cancer Research Center (Kumar et al.,

2016; Roudier et al., 2016) (Figures 6E and 6F). Genes

comprising the signature were deregulated in this cohort with

seven out of ten genes being differentially expressed when

comparing CRPCs to primary PCs.

Next, we assessed the independent prognostic value of each

gene according to various endpoints in two additional validation

cohorts (Karnes et al., 2013; Ross et al., 2016) (Table S6).

According to univariable and multivariable analysis, BROMO-

10 contributed independent prognostic information over the clin-

icopathological variables. In the Johns Hopkins Medical Institu-

tions-Radical Prostatectomy (JHMI-RP) cohort of high-risk men

treated with radical prostatectomy without adjuvant or salvage

therapy prior to metastatic onset, BROMO-10 discriminated for

the biochemical recurrence endpoint (Figures 7A, S6A, and

S6B) and the PC-specific mortality endpoint in the MCII cohort

of high-risk men (Figures 7B, S6C, and S6D).

We further assessed the prognostic value of BROMO-10 in

predicting the onset of CRPC. Fifty-five patients that developed

metastasis after radical prostatectomy without any adjuvant or

salvage therapy (‘‘natural history cohort’’) treated at Johns Hop-

kins were evaluated using Kaplan-Meier analysis considering

time to CRPC from metastatic onset. Upon metastatic onset,

all patients received androgen deprivation therapy (ADT). Higher

BROMO-10 scores were associated with an increased rate of

CRPC after ADT (Figure 7C). The upper quartile of BROMO-10

signature scores had a median time to CRPC of 12 months

compared to the lower quartile of 84 months (p = 0.01).

Finally, to assess whether BROMO-10 is able to predict

responsiveness of PC to bromodomain inhibitors, we used

RNA-seq profiles of panels of PC cell lines and expression array

profiles of patient-derived xenografts (PDXs) (Nguyen et al.,

2017) to generate BROMO-10 scores (Figures 7D and 7E). We

then correlated these scores with publicly available IC50 data

for JQ1 (Asangani et al., 2016) (Figure 7F), ZEN-3694 (Attwell



Figure 5. Impact of Bromodomain Inhibition on PC Cell Viability Is Enhanced by AR Deregulation

(A) Viability of LNCaP-pcDNA3.1, LNCaP-ARhi, and VCaP cells 3 days after transfection with siControl (siCont), siBRD2, siATAD2, or siBRD4, relative to control

siRNA values.

(B) Viability of parental LNCaP cells 3 days after transfection with siRNA as indicated. *p < 0.05 according to t test versus the siCont column. n = 6 for each

replicate, for each condition. Each experiment was repeated three times.

(C) Relative viability of 22RV1, LNCaP-pcDNA3.1, LNCaP-ARhi, and VCaP cells cultured in full serum and treated with DMSO or JQ1(*p < 0.05 according to t test

between the indicated conditions).

(D) LNCaP-pcDNA3.1 and -ARhi cells were treated with 1 nM DHT as well as JQ1 or vehicle (DMSO).

(E and F) Solo or combinatorial treatment of LNCaP-pcDNA3.1 and LNCaP-ARhi cells (E) or VCaP cells (F) with MDV3100 and JQ1. Viability compared to DMSO

was assessed after 3 days treatment (*p < 0.05 according to t test versus JQ1 treatment alone).

(G) Caspase activation assay upon treatment of VCaP cells with JQ1, MDV3100, or a combination; hydroxyl-urea was used as a positive control.

(H) Viability of MDV3100-resistant LNCaP cells treated with JQ1(*p < 0.05 according to t test versus DMSO).

Refer also to Figure S4.
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Figure 6. Bromodomain Inhibition Targets Clinically Relevant Transcriptional Program Useful for Selecting Patients Responsive to

Bromodomain-Targeted Therapies

(A) GSEA of AR target gene signature (150 core genes identified in CRPC tissue) (Sharma et al., 2013) in expression analysis of VCaP cells treated with JQ1.

(B) Heatmap of genes displaying differential chromatin opening (varying distances upstream of TSSs) in CRPC versus primary PC.

(C) Overlaps between overexpressed genes in CRPC in two clinical microarray datasets (Tables S4A and S4B), the genes associated with open chromatin sites in

CRPC (Table S5) and the consensus genes downregulated by JQ1 treatment of two cell lines (Table S2B).

(D) 15 genes associated with open chromatin, overexpressed in CRPC and downregulated by JQ1 treatment.

(legend continued on next page)
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Figure 7. Prognostic and Predictive Value of the Ten Genes Signature BROMO-10

(A–C) Kaplan-Meier curves indicating the prognostic separation achieved by high and low BROMO-10 scores versus (A) biochemical recurrence in the JHMI-RP

validation cohort (Ross et al., 2016) (p = 0.008) (B) prostate cancer-specificmortality (PCSM)-free survival in theMayo Clinic validation cohort (Karnes et al., 2013)

(p = 0.0089) and (C) CRPC-free survival of patients post-ADT treatment of metastatic patients in the JHMI cohort as expression quartiles (n = 55, p value 0.01).

(D and E) Heatmaps of BROMO-10 score and individual gene expression in cell lines (D) and also in PDX models (E).

(F–I) Two-sample t test evaluation of the significance of growth inhibition or reduction in tumor volume with IC50 dose administration of BET bromodomain

inhibitors JQ1 (F), ZEN-3694 (G), and I-BET762 (H) to cell lines or of ZEN-3694 to PDX xenografts (I).

See Figure S6 and Table S6.
et al., 2016) (Figure 7G), I-BET762 (Figure 7H), and responsive-

ness to I-BET762 treatment measured as a significant reduction

in tumor volume (Wyce et al., 2013) (Figure 7I). A high BROMO-

10 score was significantly (p < 0.001) associated with respon-

siveness of PC cell lines to JQ1 and I-BET762 and reduction

of tumor volume upon treatment of PC PDX models with
(E and F) Underlined genes were also significant as assessed in Fred Hutchinson

(PrCa; Roudier et al., 2016) and castration-resistant PrCa (Kumar et al., 2016) (E

t test (F).

Refer also to Figure S5 and Tables S2, S3, S4, and S5.
I-BET762 (p < 0.01). However, the comparison between groups

was not significant for responsiveness to ZEN-364 because

PC3 cells, notably an AR negative PC cell line, had a low

BROMO-10 score and was nevertheless sensitive to ZEN-364.

Taken together, these data confirm the ability of BROMO-10 to

predict responsiveness to BET inhibitors.
Cancer Research Center (FHCRC) cohort comprising primary prostate cancers

) with indicated fold-change values and p values according to a two-sample
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DISCUSSION

Here, we show that chromatin accessibility increases during PC

cancer progression due tomechanisms that involve the AR over-

expression and the activity of BRDs. Importantly, we found that

the chromatin structure in CRPC is able to classify disease stage

demonstrating that genome-wide chromatin structure is reprog-

rammed as disease progresses, and it shows distinct features

compared to primary tumors or benign tissue. Increased chro-

matin accessibility in PC was inferred in a recent study, although

the low number of peaks found in the healthy tissue dominated

the results (Stelloo et al., 2015). For the present study, we

developed an advanced analysis pipeline to exclude possible

confounding factors such as variations in ploidy from sample

to sample (see Supplemental Information). This was essential

for improved analyses because copy number variation has pre-

viously been shown to be strongly associated with poor prog-

nosis in advance disease (Taylor et al., 2010).

Interestingly, androgens were able to enhance chromatin

opening especially at ARBSs. This suggests a positive feedback

loop in which the AR is able to bind more tightly to the genome

due to increased opening at ARBSs. These data are concordant

with our previous results showing stronger AR binding to chro-

matin in AR-overexpressing cells (Massie et al., 2011; Urbanucci

et al., 2012b) and to other reports showing that chromatin acces-

sibility is pre-docked prior AR binding at ARBSs (Andreu-Vieyra

et al., 2011; He et al., 2010).

BRDs have gained extensive attention due to their tissue-spe-

cific capacity to modulate key transcriptional events during can-

cer progression (Fu et al., 2015) also in CRPC where they are

therapeutically relevant (Asangani et al., 2014). We found that

selected key BRDs such as ATAD2, BRD2, and BRD4 have

a locus-specific effect on chromatin opening, suggesting that

compensatory mechanismsmay take place if BRDs are inhibited

with single agents. For instance, we show that upregulation of

the AR or MYC proteins occurs while inhibiting ATAD2 or

BRD2 and possibly explains the limited effect of their inhibition

on cell viability.

We also show that ATAD2 and BRD2 are androgen regulated.

ATAD2 was previously reported to be androgen regulated (Zou

et al., 2009). However, here we report that ATAD2 expression is

enhanced in AR-overexpressing cells at low concentrations of

androgens, and BRD4 long isoform, BRD2, and ATAD2 are all

overexpressed in CRPC tissues. These results support the pres-

ence of an AR deregulation-mediated positive feedback loop

that boosts the expression of BRDs in order to increase AR

chromatin accessibility. Moreover, ATAD2 had strong prog-

nostic value on a cohort of 10,000 patients. Our data also

suggest that, while ATAD2 is an optimal tissue biomarker in

identifying PC tissues where active transcription due to heavy

cell-cycle turnover is ongoing, it may not be a good target for

PC therapy, as also shown recently (Bamborough et al.,

2016), if not targeted in combination with other agents such

as antiandrogens.

The role of ATAD2 as a regulator of chromatin dynamics is well

known in yeast (Cattaneo et al., 2014). A recent study showed

that ATAD2 is highly expressed in replicating PC cells and

ATAD2 expression correlates with expression of cell-cycle and
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DNA replication genes that have overlapping function in meiosis

and tumor progression (Koo et al., 2016). Moreover, in highly

proliferating embryonic stem cells, ATAD2 was reported to sus-

tain specific gene expression programs via regulating chromatin

opening guided by histone acetylation (Morozumi et al., 2016),

which is in agreement with our data. These findings corroborate

our data and are supportive of ATAD2 being a possible contrib-

utor to increased transcription plasticity in CRPC.

Our study also suggests that theremight be a subpopulation of

tumors that are more dependent on BRDs activity than others.

Therefore, we built a ten-gene signature, BROMO-10, which

is able to discriminate patients with poorer outcome, which

takes into account chromatin structure and additionally incorpo-

rates key PC-specific downstream targets of BRDs. Interest-

ingly, these targets include FEN1, which we have previously

described to be important for PC progression and proposed as

a tissue biomarker for biochemical recurrence (Urbanucci

et al., 2012b), EEF1A2, which has been proposed as a marker

of prostate cell transformation (Scaggiante et al., 2012; Sun

et al., 2014), KAT2A, which encodes a histone acetyl-transferase

controlling the PI3/AKT pathwaywith therapeutic potential in leu-

kemia (Sun et al., 2015), andHSPH1, which enhances MYC tran-

scription and drives B cell non-Hodgkin lymphoma (Zappasodi

et al., 2015).

Mechanisms of resistance to BET inhibition have been re-

ported. Therefore, it is extremely important to define patients

that will respond to BET-inhibition therapies in combination

with standard therapies to avoid resistance. We show that

BROMO-10 is able to predict response to BET-inhibition thera-

pies, but the use of this signature should be limited to tumors

with intact AR signaling, and further studies are needed to refine

the signature for different compounds.

In conclusion, we propose AR deregulation-driven chromatin

structure as a key determinant of tumor progression. We

describe the effect of BET inhibition on chromatin accessibility

as an additional mechanism by which it is able to repress

cell growth in a cell-specific manner. Moreover, we propose

BROMO-10 signature to be used to select patients more likely

to benefit from BET-targeted therapies and avoid recurrence.

The selection of PC patients into future trials evaluating the effi-

cacy should be based on the assessment of AR status, key BRDs

expression, such as ATAD2, and the gene signature that reflects

the chromatin status of these tumors.

EXPERIMENTAL PROCEDURES

Clinical Samples

Allworkonclinical sampleshasbeencarriedout in compliancewith theHelsinki

Declaration and with the approval of ethics boards at collaborating institutions

as outlined below. The tissue microarray from the Department of Urology and

the Martini Clinics at the University Medical Centre Hamburg-Eppendorf

consisted of archived diagnostic leftover tissues. Manufacture and analysis

was approved by the local ethics committee (Ethics commission Hamburg,

WF-049/09 and PV3652). According to local laws (HmbKHG, x12,1), informed

consent was not required for this study. Patient records and information were

anonymized and de-identified prior to analysis.

Three BPH, six primary PC, and three CRPCs were used for FAIRE-seq as-

says and FAIRE-qPCR assays. RNA-seq data from transcriptomes of 12 BPH,

28 untreated PCs, and 13 CRPCs, including the samples used for FAIRE-seq,

were publicly available (Ylipää et al., 2015). These samples and the tissue



microarray described below were provided by Tampere University Hospital.

The use of these samples for FAIRE-seq and of the tissue microarray was

approved by the ethical committee of Tampere University Hospital and the Na-

tional Authority forMedicolegal Affairs. Written informed consent was obtained

from the subjects for sequencing the samples.

The Tampere patients’ cohort of tissue microarrays (TMAs) contained 258

formalin-fixed paraffin-embedded prostatectomy and 121 CRPC specimens.

A subset of the cohort was used to immunostain for ATAD2, BRD2, and

BRD4. The Hamburg patients’ TMA cohort contained 9,467 prostatectomy tis-

sue specimens. Radical prostatectomy specimens were available from 12,427

patients. PSA values were measured following surgery, and PSA recurrence

was defined as the time point when postoperative PSA was increasing from

at least 0.2 ng/mL.

FAIREs

Two replicates were processed for each cell line and condition for subsequent

sequencing analysis. Three to five replicates were processed for qPCR anal-

ysis. Four million cells were plated and hormone deprived for 4 days. Cells

were then treated with R1881 or DHT for 4 hr. To perform tissue FAIRE from

clinical material, 3 mL of PBS containing 2 3 protease inhibitor (Roche) was

added to 40 3 20-mm sections of freshly frozen tissue specimens. Down-

stream fixation and processing of both sample types are as described in the

Supplemental Information.

FAIRE-Seq Analysis

Peak detection for FAIRE-seq was performed using model-based analysis of

ChIP-seq (MACS) (Zhang et al., 2008) with default parameters using inputs

of each of the FAIRE samples as controls and with F-Seq (Boyle et al.,

2008). Refer to Supplemental Information for more detail.

Evaluation of the 15-Gene Signature Prognostic Value

Microarray data from the Decipher GRID were extracted for three radical

prostatectomy cohorts from previously described (Erho et al., 2013; Karnes

et al., 2013; Ross et al., 2016) validation studies. A classifier to distinguish

between metastatic versus non-metastatic cancers was developed. The

classifier was constructed from 15 genes (Figure 5C) using a generalized

linear model with elastic net regularization as previously described (Erho

et al., 2013). The model was generated using the MCI cohort (GSE46691)

as training data. In the final model, ten of the 15 genes contributed to the

model score with six positively associated and four negatively associated

genes as determined by the regularized coefficients (see also Table S6).

Scores were then generated for samples from the Mayo Clinic II (MCII) and

JHMI-RP validation cohorts, and performance in each cohort was assessed

using survival analysis.

BROMO-10 scores in cell lines and patients derived xenografts were calcu-

lated using GSVA Bioconductor package (https://www.bioconductor.org/

packages/release/bioc/html/GSVA.html).

Statistics

Statistical analyses were performed using GraphPad Prism, MATLAB, and

Microsoft Excel. All statistical tests were two-tailed with testing level thresh-

olds of a = 0.05.

ACCESSION NUMBERS

The accession number for the gene expression and FAIRE-seq data reported

in this paper is GEO: GSE73989. The data analysis script referred to in the

Supplementary Experimental Procedures has also been deposited and is

accessible at https://github.com/dvbcfo/depth_track_window.
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