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Abstract

Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial strep-

tavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoeffi-

ciens. We have previously reported the crystal structure of the full-length, wild-type (wt)

bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”)

act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent

subunit within the same tetramer) and has potential as an affinity tag for biotechnological

purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues

Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at

1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-

like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhi-

zobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover,

core-bradavidin V1, an engineered variant of the original core-bradavidin, was also

expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of

core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–

Brad-tag pair for biotechnological assays and chemical biology applications, and provide

deeper insight into the biotin-binding mode of bradavidin.

Introduction

Avidins (Avds) are proteins produced in oviducts of birds, reptiles and amphibians, and in sev-

eral different bacteria [1,2]. In nature, Avds are most stable in their tetrameric [1,3–5] and

dimeric [6] forms. They have a high affinity for D-biotin (Kd = ~10−15 M for chicken Avd)

[1,4,7], which makes them attractive proteins for numerous biotechnological applications [7–

10]. The best studied Avds to date are the eukaryotic chicken Avd [1–3,11] and the bacterial

streptavidin from Streptomyces avidinii [5,12,13]. As a secreted protein, chicken Avd is post-

translationally modified by cleavage of the 24 amino acid N-terminal signal peptide and by gly-

cosylation at Asn17; the resulting mature protein has 128 amino acids [1,14]. The 159 amino

acid gene product of the full-length streptavidin, in turn, is naturally trimmed at both the N
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and C termini: the most studied form has 127 amino acids, only containing residues 13–139 of

the full-length, and is referred to as core-streptavidin [5]. This naturally occurring truncated

form of streptavidin has been shown to have low aggregate formation and high solubility,

while retaining high affinity for biotin [15]. Moreover, the crystal structure of full-length strep-

tavidin revealed that the 20-residue C-terminal extension (residues 139–159) binds on the sur-

face of the protein and that residues 150–153 occupy the ligand-binding site of the same

subunit—acting as an intrasubunit intrinsic ligand [16].

In addition to chicken Avd and streptavidin, other Avds have been characterized. They

include the natural eukaryotic Avds from, for example, zebrafish (Danio rario) [17], frog

(Xenopus tropicalis) [18], and mushroom (Pleurotus cornucopiae) [19], and the bacterial Avds,

such as the dimeric rhizavidin (Rhizobium etli) [6], shwanavidin (Shewanella denitrificans)
[20] and hoefavidin (Hoeflea phototrophica) [21]; the thermostable tetrameric burkavidin (Bur-
kholderia pseudomallei) [22]; as well as bradavidin II (Bradyrhizobium diazoefficiens), which

has a highly dynamic oligomeric structure [23]. Apart from the naturally occurring Avds, a

number of genetically engineered Avds [7] have been produced, too. These include the dual-

chain Avd (dcAvd) [24] and single-chain Avd (scAvd) [25], respectively with two and four

simultaneously modifiable ligand-binding sites, the monomeric streptavidin [26–28], the ste-

roid-binding Avd (sbAvd) [29,30] and an extremely thermostable and protease resistant chi-

meric Avd [31].

Bradavidin is a tetrameric Avd from a nitrogen-fixing bacterium (B. diazoefficiens) found in

root nodules of soy beans [32]. Wild-type (wt) bradavidin, after cleavage of the 25-residue sig-

nal peptide, has 138 amino acid residues, of which the last ten C-terminal residues are known

as the Brad-tag [33]. The Brad-tag (129GSEKLSNTKK) binds to the ligand-binding site of a

neighboring subunit and hence serves as an intrinsic, intersubunit ligand, dissimilar both in

mode of interaction and sequence to the C-terminal sequence found in full-length streptavidin

[16] that acts as an intrinsic intrasubunit ligand. The key residues of Brad-tag interacting with

the ligand-binding site are Glu131, Lys132 and Leu133, whereas in full-length streptavidin the

key residues are Asn150, Gly151, Asn152, and Pro153. In the case of streptavidin, several pep-

tide tags have been developed, including strep-tag I [34], strep-tag II [34,35], Nano-tag [36]

and SBP-tag [37]; all of which have a different binding mode in comparison to the Brad-tag.

Here, we report the tetrameric X-ray structure of core-bradavidin in complex with biotin at

1.60 Å resolution [PDB:4BBO]. In comparison to the X-ray structure of wt bradavidin (tetra-

mer; 138 amino acids/14 kDa per subunit), core-bradavidin is artificially truncated at the C-

terminus containing only residues 1–118 (12 kDa per subunit) and hence missing the Brad-tag

[32]. In addition to these bradavidin structures, three structures of bradavidin II (each 115

amino acids/13 kDa per subunit) are known: two different crystalline forms of the apo protein,

the monomeric Form-A [PDB:4GGR] and the dimeric Form-B [PDB:4GGT], as well as a tetra-

meric structure in complex with biotin [PDB:4GGZ] [23]. All the known X-ray structures of

bradavidin and bradavidin II are from the same bacterium (B. diazoefficiens sp. nov; this strain

was earlier known as the strain USDA 110 of Bradyrhizobium japonicum [38]). The core-bra-

davidin structure not only gives insight into the detailed biotin-binding mode of bradavidin

but also helps us to further engineer core-bradavidin as a receptor with tighter binding towards

ligands such as the Brad-tag itself. We also report homology models for the avidin-like proteins

from Rhodopseudomonas palustris (rhodavidin [39]) and Bradyrhizobium sp. Ai1a-2 (referred

to here as bradavidin A2); both of these proteins have the Brad-tag sequence at their C-termi-

nus. Our better understanding about bradavidin binding to different ligands may aid in the

development of novel constructs providing additional, improved tools for biotechnological

purposes.

Core-bradavidin
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Results

Overall structure of core-bradavidin

The 3D structure of core-bradavidin in complex with biotin was solved at 1.60 Å resolution.

This structure represents an artificially truncated form of bradavidin and lacks the C-terminal

residues Gly114-Lys138 (residues Gly129-Lys138 correspond to Brad-tag) [32]. The sequence

of the solved structure shares 35% identity with chicken Avd [PDB:1AVD] [3], and the overall

tetrameric structure and the folds of the individual subunits I-IV (numbering according to

[4]) of core-bradavidin are typical for Avds, including the wt bradavidin structure reported in

[33] (Fig 1). We have also tried to crystallize wt bradavidin in complex with biotin without suc-

cess, which may have been due to the presence of the biotin-competing C-terminal Brad-tag

sequence in the wt bradavidin. It is also possible that reconfiguration of the C-terminus of wt

bradavidin occurred due to biotin binding and that this may have altered crystal contacts and

affected crystal formation.

Biotin-binding mode of core-bradavidin—Conserved features

Despite the low sequence identity between core-bradavidin and chicken Avd, the deeply bur-

ied residues involved in biotin binding and the mode of binding are highly conserved (Fig 2).

Like in chicken Avd [PDB:1AVD], the core-bradavidin–biotin interaction is stabilized by sev-

eral hydrogen bonds (H-bonds) (Fig 2). In more detail, 1) Asn9 Nδ (Asn12 in Avd), Ser13 Oγ
(Ser16) and Tyr31 Oη (Tyr33) all form H-bonds with the 2´ oxygen atom of the ureido ring of

biotin; 2) Asp107 Oδ (Asn118) forms a H-bond interaction with the 1´ nitrogen atom of the

ureido ring; 3) Asn33 Oδ (Thr35) forms a H-bond to the 3´ N atom of the ureido ring; 4)

Thr77 Oγ (Thr77) has polar interactions with the sulfur atom of the tetrahydrothiophene ring;

and 5) Ser75 Oγ (Ser75) forms a H-bond to one oxygen atom of the carboxylate group of the

valeric acid moiety (bradavidin numbering according to [40]). Three structural water mole-

cules (HOH73, HOH145 and HOH189) are also located close to the carboxylate end of biotin.

Moreover, several conserved hydrophobic interactions typical for Avds are also seen in core-

bradavidin and include the interaction of biotin with Trp89 (Trp97 in Avd) and Trp99

(Trp110; from another subunit); these residues are respectively 3.7 Å and 4.3 Å distant from

biotin.

Biotin-binding mode of core-bradavidin—Unique features

Asp107 and Asn33 of core-bradavidin are equivalent to Asn118 and Thr35 in Avd [PDB:

1AVD]. The side-chain oxygen atom of each of these residues interacts with the 1´ and 2´ N

atoms of biotin but the overall H-bonding network of the side chains of these residues with the

surrounding residues varies between core-bradavidin and Avd (Fig 3). Asp107 in core-brada-

vidin is within H-bonding distance of a structural water molecule (HOH2014), Asn9, Gln10,

Trp75 (equivalent to Phe79 in Avd), Trp89 and Ala106, whereas in Avd only Asn12, Asp13,

Trp97 and Ile117 are sufficiently close to the corresponding residue Asn118. Both sets of resi-

dues make hydrophobic interactions with the ureido ring moiety of biotin in core-bradavidin

and in Avd.

In bradavidin Tyr11 may be of special importance for ligand binding, since in the structure

of the biotin complex of core-bradavidin it has moved significantly in comparison to the loca-

tion in the wt bradavidin structure (see below). This residue is also poorly conserved and, to

our knowledge, a tyrosine residue at the equivalent position is only found in a few bacterial

Avds, which includes the only other reported Brad-tag containing Avd, rhodavidin from Rho-
dopseudomonas palustris [39], and the novel Avd-like sequences that we have identified in the

Core-bradavidin
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genera Bradyrhozibium, Mesorhizobium, Burkholderia (Pseudomonas), Catenulispora and Acti-
nocatenispora (data not shown).

The Nδ atom of Asn33 in core-bradavidin is H-bonded to Ser38 Oγ and Cys39 O (Fig 4),

whereas in chicken Avd the equivalent H-bonds are missing. Out of the known crystal struc-

tures of other Avds, similar H-bond interactions are only seen in rhizavidin [PDB:3EW2] and

hoefavidin [PDB:4Z28]. In both structures, an asparagine residue equivalent to Asn33 of core-

bradavidin is stabilized by H-bonds to the side-chain oxygen atom of a threonine residue

(Ser38 Oγ in core-bradavidin) and to the main-chain oxygen atom of a glycine residue (Cys39

Fig 1. Superimposition of the Cα traces of subunit I of core-bradavidin (orange) [PDB:4BBO], wt

bradavidin (magenta) [PDB:2Y32] and chicken Avd (cyan) [PDB:1AVD]. For clarity, only the biotin bound

to core-bradavidin is shown (stick model). The loop regions L1,2 to L7,8, and the N and C termini, are labelled.

https://doi.org/10.1371/journal.pone.0176086.g001

Core-bradavidin
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O in core-bradavidin). In wt bradavidin, Asn33 is not connected to these residues but instead

H-bonds to Asn33 Nδ and Asp40 Oδ, the orientation of the Asp40 side chain being flipped in

the opposite direction in comparison to core-bradavidin due to a rearrangement of the L3,4

loop. Moreover, in core-bradavidin, the side chain of Asp40 is H-bonded to Leu67 N and

Fig 2. Comparison (stereo view) of the biotin-binding residues (sticks) of core-bradavidin (orange;

bold labels) [PDB:4BBO] and chicken Avd (cyan; labels in brackets) [PDB:1AVD]. The Cα traces were

superimposed. Trp99 (Trp110 in Avd) is shown from subunit III; other residues are from subunit I. The bound

biotin ligands are drawn as thick sticks. Nitrogen atoms are shown in blue, oxygen atoms in red and sulfur

atoms in yellow. Water molecules are drawn as red spheres and H-bonds for core-bradavidin as grey dashed

lines (distances in Ångströms; * = 2.8 Å).

https://doi.org/10.1371/journal.pone.0176086.g002

Fig 3. Interactions of Asp107 of core-bradavidin (orange; bold labels) and the equivalent Asn118 of chicken Avd (cyan; labels in brackets).

Seven H-bonds stabilize the side chain of Asp107 in core-bradavidin (a), whereas only five H-bonds stabilize the equivalent Asn118 in chicken Avd (b).

Non-carbon atom colouring as in Fig 2. H-bonds are drawn as grey dashed lines for core-bradavidin (a) and blue dashed lines for chicken Avd (b);

distances in Ångströms.

https://doi.org/10.1371/journal.pone.0176086.g003

Core-bradavidin
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Gly68 N of the L5,6 loop, to Lys43 Nz of the L3,4 loop, and to Cys69 S (L5,6 loop) that forms

the disulfide bridge with Cys39 (Fig 5). The side-chain orientation of Glu41 is also flipped to

the opposite direction in the core-bradavidin structure (closed L3,4 loop) versus the wt brada-

vidin structure (open L3,4 loop), and stabilized by different interactions (Fig 6). Hence, Asp40

Fig 4. Interactions of Asn33 of core-bradavidin (orange; bold labels) and the equivalent Thr35 of chicken Avd

(cyan; labels in brackets). Asn33 of core-bradavidin is H-bonded (grey dashed lines) to Ser38 and Cys39, whereas in

chicken Avd the equivalent H-bonds cannot be formed. Biotin molecules for both proteins are shown as thin sticks. Non-

carbon atoms are coloured as in Fig 2. Distances are shown in Ångströms.

https://doi.org/10.1371/journal.pone.0176086.g004

Fig 5. Comparison of Asp40 in core- (orange; bold labels) [PDB:4BBO] and wt bradavidin (magenta; labels in brackets) [PDB:2Y32]. In core-

bradavidin (a), the side chain of Asp40 is flipped to an opposite direction as compared to wt bradavidin (b). Biotin (a) and residues K132 and L133 (b)

occupying the same space as biotin in core-bradavidin (see a) are shown as spheres. Non-carbon atoms are coloured as in Fig 2. H-bonds are shown

as dashed lines; distances in Ångströms. The weighted 2Fo-Fc electron density map around Asp40 (a, b) is shown as a blue mesh (contour level of 1.0

σ).

https://doi.org/10.1371/journal.pone.0176086.g005

Core-bradavidin

PLOS ONE | https://doi.org/10.1371/journal.pone.0176086 April 20, 2017 6 / 21

https://doi.org/10.1371/journal.pone.0176086.g004
https://doi.org/10.1371/journal.pone.0176086.g005
https://doi.org/10.1371/journal.pone.0176086


and Glu41 may have a vital role for ligand binding and in stabilizing the unique L3,4 loop con-

formations of wt bradavidin (Brad-tag as ligand) and core-bradavidin (biotin as ligand), two

variations of the same protein with quite different bound ligands.

In comparison with Trp99 in wt bradavidin, in core-bradavidin the tryptophan residue

moves by 2 Å, enabling the residue to better seal the ligand-binding pocket containing biotin

(see below). An Ångström-scale shift in atomic position is also seen for Ser38 of core-bradavi-

din [PDB:4BBO] in comparison to wt bradavidin [PDB:2Y32]. The movement of Ser38 mim-

ics the “pinching effect” reported for the equivalent threonine residue in hoefavidin [21]

[PDB:4Z6J, 4Z28] and rhizavidin [41] [PDB: 3EW1, 3EW2]; both Thr55 of hoefavidin and

Thr48 of rhizavidin of the L3,4-loop respectively more closely approach Leu113 and Leu104

(located on the β7-strand; Leu91 in bradavidin) as a result of biotin binding (a similar “pinch-

ing effect” can also be seen in shwanavidin [20] [PDB:3SZH, 3SZJ] and bradavidin II [23]

[PDB:4GGT, 4GGZ]). In each of these structures, the leucine side chains occupy the same rela-

tive locations, suggesting that the pinching effect might not be restricted only to dimeric Avds

and, in general, might reflect an adaptation of the L3,4-loop for ligand binding.

The aromatic residues Trp70 and Phe79 of chicken Avd are respectively replaced by Phe66

and Trp75 in bradavidin. Even subtle differences such as these may have an effect on the flexi-

bility of the L5,6 loop and the biotin-binding properties of core-bradavidin: in Avd, Trp70 Nη
is H-bonded to Thr77 Oγ; whereas, in bradavidin, an equivalent H-bonding interaction is

missing. To our knowledge, all of the bacterial Avds identified so far—including both dimeric

and tetrameric proteins—have a tryptophan residue at the position equivalent to Trp75 of bra-

davidin, whereas all of the characterized eukaryotic Avds have a phenylalanine residue at this

position.

The disulfide bridge of bradavidin—Unusual configuration

The L3,4 loop of tetrameric core-bradavidin and of wt bradavidin is stabilized by a disulfide

bridge between residues Cys39 (L3,4 loop) and Cys69 (L5,6 loop), similarly to dimeric rhizavi-

din [PDB:3EW2] [41], shwanavidin [PDB:3SZJ] [20] and hoefavidin [PDB:4Z28] [21], as well

as bradavidin II [PDB:4GGZ] with its highly dynamic oligomeric structure [23]. In bradavidin,

Fig 6. Comparison (stereo view) of Glu41 in core-bradavidin (orange; bold labels) [PDB:4BBO] and wt

bradavidin (magenta; labels in brackets) [PDB:2Y32]. In core-bradavidin, the side chain of Glu41 is H-

bonded (grey dashed lines) to several neighboring residues and is oriented in the opposite direction as

compared to wt bradavidin, where the side chain of Glu41 is facing the solvent and H-bonded (blue dashed

line) only to Lys137. A part of the acyl moiety of the bound biotin (BTN) of the core-bradavidin structure is

shown as light grey sticks. Non-carbon atom colouring as in Fig 2. Water molecules are drawn as small red

spheres. Distances are shown in Ångströms.

https://doi.org/10.1371/journal.pone.0176086.g006
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however, cysteine Cys39 of the L3,4 loop is located one residue earlier in the sequence, as

reported recently by Avraham et al. (2015) for hoefavidin [21]. Thus, Cys39 is not exactly

structurally equivalent to Cys50 in rhizavidin, Cys45 in shwanavidin, Cys57 in hoefavidin and

Cyss44 in bradavidin II, whereas the other cysteine of the disulfide bond within the L5,6 loop,

Cys69 in bradavidin, is conserved despite the fact that the conformation of the L5,6 loop varies

within these proteins. Moreover, in the case of the biotin-complex structure of core-bradavi-

din, the earlier position of the cysteine residue does not seem to clearly affect the conformation

of the L3,4 loop, which is in a similar conformation in all of the biotin complex structures listed

above. In comparison to the wt bradavidin structure, which lacks biotin but has the Brad-tag

sequence within the ligand-binding pocket, the configuration of the disulfide bridge of core-

bradavidin is, however, altered and directly related to the position and conformation of Cys39

(Fig 7). As described above, the residue adjacent to Cys39 in bradavidin, Asp40, may have a

special importance here, too, because the side chain is flipped in the opposite direction in

core-bradavidin versus wt bradavidin. It is not yet known how the Brad-tag itself affects the

conformation of the L3,4 loop when and if biotin were bound in the intact wt structure, since

we have not been not able to crystallize wt bradavidin in complex with biotin. All in all, the

configuration of the disulfide bond in both forms of bradavidin, core- with biotin and wt sans
biotin, are unique, and likely do represent the unique structural features needed to enable the

presence and recognition of two different ligands by the bradavidin structure.

Fig 7. Superimposition of the residues 35–41 (L3,4 loop) of core-bradavidin (orange; bold labels)

[PDB:4BBO] and wt bradavidin (magenta; labels in brackets) [PDB:2Y32].

https://doi.org/10.1371/journal.pone.0176086.g007
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Subunit interfaces

Avds are stabile over a wide range of conditions, including temperature and pH. The core-bra-

davidin–biotin complex with Tm = 97.9±0.2˚C is less stable than chicken Avd (Tm with bound

biotin� 118˚C), streptavidin (Tm with bound biotin� 112˚C), [32] and even wt bradavidin

(Tm without biotin = 96.2±0.1˚C, and 101.7±0.1˚C with biotin) [33]. The key interactions

responsible for stability are found at the subunit interfaces, which can be divided into three

major categories: the interface between subunits I and II (IF1,2), between subunits I and III

(IF1,3) and between subunits I and IV (IF1,4 interface); in the dimeric Avds, only the IF1,4

interface is present.

All of the subunit-subunit interfaces of core-bradavidin and wt bradavidin are structurally

highly similar. A key interfacial residue—Tyr90 from each of the four subunits—is located at

the center of the tetramer in both forms of bradavidin, whereas in chicken Avd [PDB:1AVD]

and streptavidin [PDB: 3YR2] the residues equivalent to Tyr90 are respectively Leu98 and

Leu109. Since we have recently published the detailed analysis of the subunit interface of wt

bradavidin [33], we will focus here only on regions unique to core-bradavidin as compared to

wt bradavidin. At the IF1,2 interface of core-bradavidin, the position of Trp99 (subunit II;

equivalent to Trp110 of chicken Avd) at the tip of the L7,8 loop and the spatial arrangement of

Trp99 with respect to Tyr11 (subunit I) differ by over an Ångström in comparison to wt brada-

vidin (S1 Fig). These differences, together with the conformational adaptation of the L3,4 loop,

are the major differences that help these bradavidin structures recognize two very different

ligands, biotin and the Brad-tag. The C-terminal Brad-tag sequence enters the ligand-binding

pocket of wt bradavidin between Tyr11 and Trp99, and Tyr11 Oη (subunit I) forms a H-bond-

ing interaction with Ser130 N (3.4 Å; subunit III) of the Brad-tag sequence and with one struc-

tural water molecule (HOH2027). In core-bradavidin, Tyr11 Oη H-bonds to three water

molecules (HOH2014, HOH2015 and HOH2017).

The core- of the IF1,3 interface in the core- and wt bradavidin structures is formed by resi-

dues Gln86, Leu88, Tyr90, Ala104 and Ala106, and is structurally highly similar. The IF1,4

interface is also very similar in both structures: it is clearly the largest interface in terms of con-

tact area and the number of residues involved—47 in wt bradavidin [33]—and both the core-

and wt bradavidin structures are stabilized by various non-covalent interactions as listed in

[33]. The L7,8 loops, however, have different conformations since the residues Gly57-Tyr63

are in contact with and adapt to the binding of biotin to core-bradavidin and the Brad-tag to

wt bradavidin.

Effect of the C-terminal Brad-tag sequence for the fold of bradavidin

In wt bradavidin, the open conformation of the L3,4 loop accommodates the amino acids of

the Brad-tag sequence [42], whereas in the biotin-complex structure of core-bradavidin the

L3,4 loop adopts a closed conformation (Fig 7). The most dramatic differences are found in

the coordinates of residues Ala35-Glu41 of the L3,4 loop and the conformation of the side

chain of Tyr31 is also different in these structures. As mentioned above, the conformation of

Cys39, and the position of its Cα atom, varies also between these two bradavidin structures

even though Cys69, which pairs with Cys39, has the same conformation in both structures.

The importance of the equivalent disulfide bridge for biotin binding to shwanavidin and rhiza-

vidin has been recently demonstrated using mutagenesis analysis [20]. This disulfide bridge

has also been suggested to be important for biotin binding in hoefavidin and, in general, for all

dimeric Avds [21], where the disulfide bridge is considered to maintain the L3,4-loop in the

closed conformation. Interestingly, several different crystal structures of hoefavidin were

recently determined by Avraham et al. (2015), including intact hoefavidin with its C-terminal,

Core-bradavidin
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intrinsic peptide at the ligand-binding site [PDB:4Z6J]; the short hoefavidin structures trun-

cated at the C-terminus (missing 10 residues) with a bound peptide derived from the 12 C-ter-

minal residues of the intact protein [PDB 4Z2P, 4Z2V, 4Z2O]; and the short hoefavidin

structures with [PDB:4Z28] and without [PDB:4Z27] a bound biotin molecule. In each of

these structures, the L3,4-loop is in the closed conformation and only subtle differences were

seen in the conformation of the L3,4-loop among the hoefavidin structures [21]. In bradavidin,

however, the closed conformation of the L3,4-loop is only seen in the biotin-complex structure

with core-bradavidin; whereas, the L3,4-loop in the wt bradavidin structure is in open confor-

mation, which is clearly different to what is seen in the hoefavidin structures, the biotin-com-

plex structure of rhizavidin [PDB:3EW2] and the shwanavidin structure [PDB:3SZJ]. Thus,

the disulfide bridge of bradavidin has unique features, not least because it is the only example

stabilizing the L3,4-loop in a tetrameric Avd but also because of its apparent ability to enable

the binding of ligands in both the closed and open conformation of the L3,4-loop, depending

on ligand type.

The superimposition of the core- and wt bradavidin structures confirmed that the side

chains of Lys132 and Leu133 in wt bradavidin occupy the space equivalent to that occupied by

biotin in the core-bradavidin structure: Leu133 spatially matches the carboxylate end of the

biotin, whereas Lys132 occupies the same coordinate space as the bicyclic ring moiety of biotin

(Fig 5), well in line with what was predicted recently by [33]; the binding mode of Brad-tag is

discussed in detail in [33].

Core-bradavidin V1 and CC mutant

Core-bradavidin is missing residues 114–138 of wt bradavidin. Of these residues, 114–127 fold

onto the surface of the same subunit where they originated, residues 130–138 (Brad tag) inter-

act with the ligand-binding site of another subunit (e.g., subunit I interacts with subunit III

and vice versa) and Ala128-Gly129 form a linker that connects subunits I and III in wt bradavi-

din. In core-bradavidin, several hydrophobic residues, such as, Leu51, Leu79 and Phe111,

become, at least partially, exposed to solvent as a result of the deletion of residues 114–138 of

wt bradavidin (Fig 8). In wt bradavidin, the hydrophobic residues Leu51, Leu79 and Phe111

form a complementary fit with the side chain of Leu119. Whereas, in the core-bradavidin

structure reported here, a glycerol molecule (subunit I), an acetate ion (subunits II, IV) and

two water molecules (HOH2014, 2056) that are unusually close to each other (2.1 Å), are built

into the position equivalent to Leu119 of wt bradavidin. These molecules/ions probably mask

the hydrophobic surface that is exposed because of the lack of the C-terminal end of wt brada-

vidin in core-bradavidin. Therefore, a modified core-bradavidin form (core-bradavidin V1),

having residues 1–127 but missing only residues 128–138 of wt bradavidin, was prepared here

and expressed in E. coli with good yield (>10 mg/L). We were also interested to examine the

role of the disulphide bridge in the vicinity of the ligand-binding site for the function of the

protein. Therefore, a core-bradavidin mutant lacking the disulphide bridge (CC mutant) was

produced by mutating Cys39 and Cys69 to alanine residues; unfortunately, the CC mutant was

expressed with poor yield (~ 1 mg/L). The ligand-binding characteristics of core-bradavidin

V1 and the CC mutant were then examined using fluorescently labelled biotin: the dissociation

rate of the fluorescently labelled biotin was highly similar between core-bradavidin (kdiss =

1.0 ± 0.1 x 10−4 s-1 at 50˚C), core-bradavidin V1 (kdiss = 1.2 ± 0.2 x 10−4 s-1 at 50˚C) and the

CC mutant (kdiss = 1.5 ± 0.4 x 10−4 s-1 at 50˚C). This indicates that the disulphide bridge is not

important for the binding of fluorescently conjugated biotin. Moreover, a similar thermal sta-

bility was observed: the Tm-values with and without biotin being 73.2±0.3˚C and 97.9±0.2˚C,

respectively, for core-bradavidin, and 73.5±0.5˚C and 96.3±0.1˚C for core-bradavidin V1.

Core-bradavidin
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Core-bradavidin V1 (Kd = 2.2 ± 0.2 x 10−5 M) shows similar exothermic binding to brad-tag as

core-bradavidin (Kd = 2.6 ± 0.3 x 10−5 M) [33] at 40˚C, measured using isothermal titration

calorimetry (ITC) as described in [33].

Homology models of rhodavidin and an avidin from Bradyrhizobium sp.

Ai1a-2

Rhodavidin is an avidin-like protein from Rhodopseudomonas palustris, a photosynthetic bac-

terium found mostly in swine waste lagoons [39]. Based on sequence analysis, rhodavidin

(Uniprot: Q218I6; GenBank: WP_011472104.1) and an avidin-like protein from Bradyrhizo-

bium sp. Ai1a-2 (bradavidin A2; Genbank: WP_051334960.1 has replaced GenBank record

WP_027584113.1 that was removed from the GenBank database during the course of this

study) also have Brad-tag sequences at their C-termini. In order to better understand whether

the Brad-tag-binding mode is conserved in bradavidin, rhodavidin and bradavidin A2, and

since no X-ray structures of rhodavidin and bradavidin A2 were available, we used homology

modeling to construct the 3D structures of rhodavidin and bradavidin A2 (S2 Fig).

As expected based on the high similarity between the amino acid sequences of wt bradavi-

din and rhodavidin (75% identity), and between wt bradavidin and bradavidin A2 (74% iden-

tity), the homology models of rhodavidin and bradavidin A2 are very similar to the X-ray

structure of wt bradavidin. The major differences are found at the residues just before the

Brad-tag sequence. In the model of rhodavidin these residues—Lys128-Thr132 –extend the

linker region located before the Brad-tag sequence and are not likely to directly affect the bind-

ing of the Brad-tag. However, the side chain of a tyrosine residue from the neighboring subunit

Fig 8. Illustration of the hydrophobic residues Leu51, Leu79 and Phe111 of wt bradavidin (magenta sticks, grey Cα trace;

labels in brackets) [PDB:2Y32] that are exposed to solvent in the original core-bradavidin structure (orange sticks; bold

labels) [PDB:4BBO] because of the lack of the C-terminal residues 114–127 (green/blue cartoon) of wt bradavidin. The core-

bradavidin V1 construct extends to residues 115–127 (green) and lacks only residues 128–138 (blue), which enter into and occupy the

ligand-binding pocket of a neighbouring subunit in the wt bradavidin structure. Arrows indicate the direction of the polypeptide chains:

going to a neighbouring subunit (from subunit I to subunit III:!) and coming from a neighbouring subunit (from subunit III to subunit I:

 ). Non-carbon atom coloring as in Fig 2.

https://doi.org/10.1371/journal.pone.0176086.g008

Core-bradavidin

PLOS ONE | https://doi.org/10.1371/journal.pone.0176086 April 20, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0176086.g008
https://doi.org/10.1371/journal.pone.0176086


(equivalent to Tyr11 of subunit I in wt bradavidin) moves slightly to accommodate Thr132

and Gly133 (the first residue of Brad-tag in wt bradavidin, subunit III). Similarly to the rhoda-

vidin model structure, Ala127-Gly130 also extend the linker located just before the Brad-tag

matching residues in bradavidin A2. However, in bradavidin A2 the first two residues, Ala131

(Gly129 in wt bradavidin) and Gly132 (Ser130), of the Brad-tag differ and may have an influ-

ence on the ligand binding affinity. Moreover, even though the subunit interfaces of both rho-

davidin and bradavidin A2 seem to have a similar architecture to wt bradavidin, both

rhodavidin and bradavidin A2 have a leucine instead of a tyrosine residue (Tyr90 in wt brada-

vidin) at the interface of the four subunits. Since the extremely tight biotin binders and high

stability Avds, chicken Avd and streptavidin, also have a leucine residue at the subunit inter-

face, rhodavidin and bradavidin A2 may exhibit higher stability than wt bradavidin. For refer-

ence, bradavidin II, showing dynamic oligomeric state, bears threonine in this position [43].

Discussion

Chicken Avd [1] and streptavidin [5] have been extensively studied and used for various appli-

cations, including affinity purification and molecular labeling, because of their tight binding to

biotin or its analogs [1]. However, certain Avds, such as bradavidin [32] and streptavidin [16],

and the recently discovered hoefavidin [21], are known to bind ligands other than biotin, i.e.
intrinsic peptide ligands. Our interest is to study and explore the possibility of utilizing core-

bradavidin–Brad-tag pair in biotechnology.

Here, we reported the X-ray structure of core-bradavidin—biotin complex at 1.60 Å resolu-

tion and compared it to the known structures of Avds, including, e.g., the tetrameric chicken

Avd, as well as the dimeric rhizavidin and shwanavidin. In particular, we were interested in

analyzing the differences between the structures of wt bradavidin with its intrinsic Brad-tag

ligand and core-bradavidin with the bound biotin ligand. Since the mechanism through which

biotin replaces the Brad-tag in wt bradavidin and the subsequent conformation of the replaced

Brad-tag–tail in solution is still not known, we also tried to crystallize wt bradavidin in com-

plex with biotin, but did not obtain any crystals. Recently, Avraham et al. (2015) [21] were also

unable to co-crystallize biotin and intact hoefavidin, another recently reported, intrinsic pep-

tide-ligand containing bacterial Avd.

Interestingly, core-bradavidin and wt bradavidin have a disulphide bridge between Cys39

of the L3,4 loop and Cys69 of the L5,6 loop, a bridge that typically stabilizes the “open-to-sol-

vent” ligand-binding site of dimeric Avds. However, in tetrameric Avds, a tryptophan residue

(Trp110 in chicken Avd) of the L7,8 loop from the adjacent subunit “seals” the ligand-binding

pocket during biotin binding, whereas in dimeric Avds no such residue exists and, hence, the

ligand-binding pocket is much more open to solvent in dimeric Avds in comparison to tetra-

meric Avds. Moreover, the geometry of the ligand-associated disulphide bridge is identical in

all dimeric Avds, whereas a unique conformation is observed in bradavidin, the only tetra-

meric Avd with such feature; the conformation of Cys39 varies even between the core-bradavi-

din and wt bradavidin structures. Therefore, it is tempting to suggest that the disulphide

bridge between Cys39 and Cys69 has a special purpose for wt bradavidin, perhaps to enable or

facilitate the adaptation of the L3,4 loop for binding of two very different ligands, Brad-tag and

biotin. However, binding analyses of the CC mutant with fluorescently labeled biotin revealed

a similar dissociation rate to that observed for core-bradavidin. It is also possible that the disul-

phide bridge is important for protein folding, which could also explain the poor protein yield

in the case of the CC mutant.

Apart from the disulphide bridge, its neighboring residues—Asp40 and Glu41—are also

involved in the stabilization of the L3,4 loop region in core-bradavidin; in core-bradavidin the
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side chains of Asp40 and Glu41 flip in the opposite direction from that seen in wt bradavidin

and form unique interactions, indicating that significant changes in the conformations of

these residues have to take place in order to accommodate biotin versus a peptide ligand.

Changes in the conformation and the spatial location of Trp99, Tyr11 and Leu91 (core- versus
wt bradavidin) also indicate the protein’s adjustments required to adapt to two ligands with

immensely different sizes and shapes. What conformations these residues would have in a wt

bradavidin-biotin complex structure, is still an open question.

In a competitive binding assay the affinity of the Brad-tag for core-bradavidin is much less

in comparison to the affinity of biotin [33]. In the current study, we tried to increase the bind-

ing affinity of Brad-tag to core-bradavidin through rational mutagenesis of the original Brad-

tag peptide, but none of the mutant peptides led to increased affinity for core-bradavidin

based on the DSC (differential scanning calorimetry) measurements (data not shown). To

increase the affinity of the original Brad-tag, or variants of it, mutagenesis of core-bradavidin

may be needed. Moreover, the homology models of rhodavidin and bradavidin A2 suggest

that the very first residues of the Brad-tag sequence may affect Brad-tag binding; mutagenesis

analysis of these residues may give ideas on how to further increase the affinity of Brad-tag to

core-bradavidin.

From an evolutionary point-of-view, it would be interesting to know what is the exact func-

tion of the C-terminal Brad-tag sequence for bacterial Avds and what is the added value for the

host organisms to have Brad-tag–containing Avds. Biotin is a cofactor needed by several car-

boxylases in enzymatic reactions important for the synthesis of fatty acids and the amino acids

valine and isoleucine; biotin is needed also for gluconeogenesis [44]. It could be that, for exam-

ple in B. diazoefficiens, bradavidin controls the availability of biotin through a regulating mech-

anism of its C-terminal Brad-tag extension. Interestingly, the soybean-Bradyrhizobium
symbiosis is utilized for growing soybean in tropics because the symbiosis can be highly effi-

cient in fixing nitrogen [45]. Could bradavidin have a role here? Further experiments are

needed to address these questions.

Materials and methods

Crystallization and data collection

Core-bradavidin (approximately 1 mg/ml; 50 mM sodium acetate, 100 mM sodium chloride,

pH 4) was crystallized using the vapour diffusion method. Sitting drops (1 μl of protein-biotin

solution + 1 μl of well solution) were manually prepared. The protein-biotin solution was

mixed using a ratio of 25 μL protein solution and 1 μL of biotin solution (1 mg/ml; 5 mM Tris

pH 8.8 and 8 mM CHES pH 9.5), and incubated at +37˚C for 3.5 hours before crystallization.

The well solution used was derived from the commercial crystallization screen (Crystal Screen

I; Hampton Research) and had 0.1 M HEPES pH 7.4, 0.8 M K/Na tartrate. For data collection,

0.7 μL of cryoprotectant (100% glycerol) was added to the crystallization drop just prior to

freezing in liquid nitrogen. Data were collected at MAX-LAB beam line I711, Lund (Table 1).

Data were processed using XDS [46].

X-ray structure determination

Initial phase estimates for the structure factors were obtained using the molecular replacement

program Phaser [47] within the CCP4i GUI [48,49]. For molecular replacement, a tetramer of

wt bradavidin [PDB:2Y32] (residues 2–119 of each chain A-D) was used as the search model.

The space group of the structure was confirmed to be P212121 after the replacement. The initial

X-ray structure of the core-bradavidin was refined with Refmac5 [50] yielding an Rfactor of

0.305, Rfree of 0.332 and FOM (Figure of merit) = 0.755 and then manually edited/rebuilt using
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Coot [51], including the addition of water and biotin molecules. Solvent atoms and other het-

eroatoms were also added using ARP/wARP [52–55]. A few cycles of refinement in the middle

of the structure building process were done with the software suite Phenix [56–58].

The final structure was validated by using the inbuilt tools of Coot [51] and MolProbity

[59] of the Phenix suite [56–58]. PyMOL [60,61] and Bodil [62] were used to check the final

structure, too. The final structure coordinates and structure factors were deposited into Pro-

tein Data Bank [63,64] with the PDB code 4BBO. The data collection and structure determina-

tion statistics are provided in Table 1.

Search for sequences homologous to wt bradavidin

The NCBI sequence database (http://www.ncbi.nlm.nih.gov/) and the UniProt database

(http://www.uniprot.org/) [65] were searched for Brad-tag–containing novel Avds using the

program BLAST [66] and the sequence of wt bradavidin [PDB:2Y32] [33]. The sequence of rho-

davidin from Rhodopseudomonass palustris (strain BisB18) was obtained from the Uniprot data-

base (UNIPROT ID: Q218I6) [65] and was already described earlier in [33]. In addition to

rhodavidin, a number of bradavidin-like sequences containing the Brad-tag sequence at their

C-terminus and belonging to the Bradyrhizobium genus were found from the NCBI database.

These included Bradyrhizobium sp. WSM1253 (Genbank: WP_007602433.1), Bradyrhizobium
sp. Cp5.3 (Genbank: WP_051311274.1), Bradyrhizobium sp. th.b2 (Genbank: WP_035978291.1),

Bradyrhizobium sp. Ai1a-2 (Genbank: WP_051334960.1), Bradyrhizobium sp. WSM2254 (Gen-

bank: WP_049823387.1), Bradyrhizobium sp. WSM3983 (Genbank: WP_027532948.1) and Bra-
dyrhizobium sp. Tv2a-2 (Genbank: WP_024521026.1).

Table 1. Structure determination statistics for core-bradavidin [PDB:4BBO].

DATA PROCESSINGa

Space group P212121

Unit cell:

a, b, c, (Å) 49.9, 78.6, 100.1

α, β, γ (˚) 90, 90, 90

Wavelength (Å) 1.063

Beamline MAX-LAB 1711, LUND

Resolution (Å)b 24.23–1.60 (1.70–1.60)

Observed reflectionsb 507744 (82930)

Unique reflectionsb 52798 (8651)

I/sigmab 17.8 (4.4)

Rfactor (%)b 9.2 (55.3)

Completenessb 99.9 (100)

REFINEMENT

Rwork (%)c 14.4%

Rfree (%)c 17.8%

Monomers per asymmetric unit 4

R.m.s.d:

Bond lengths (Å) 0.015

Bond angles (˚) 1.58

aThe numbers in parenthesis refer to the highest resolution bin;
bData from XDS;
cData from Refmac 5.

https://doi.org/10.1371/journal.pone.0176086.t001
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Homology modeling

The tetrameric 3D homology models were calculated using the crystal structure of wt bradavidin

[PDB: 2Y32] as the template structure and using a structure-based sequence alignment (S3 Fig),

which was done using the program Malign [67] within Bodil [62]. The alignment was used as an

input for model building, which was done using Modeller 9.14 [68] with default parameters.

A total of 10 homology models were created and arranged based on their Modeller objective

function (molpdf) score in ascending order. All the models were next validated for stereo-

chemical and geometrical parameters using MolProbity [59]. The rhodavidin model selected

for further analysis had 97.7% of the residues (547/560) in the most favoured regions and an

additional 1.8% of residues (10/560) in allowed regions in Ramachandran plot; 0.5% (Ala127,

chain A; Ser130, chain B; and Ile129, chain C) of the residues were outliers. The Cα atoms of

the rhodavidin model superimposed to the wt bradavidin structure (chain A) with a root mean

square deviation (RMSD) value of 2.2 Å.

Similarly, 10 homology models were created for bradavidin A2, and were tested and vali-

dated using MolProbity [59]. The bradavidin A2 model selected for further analysis had 97.7%

of the residues (547/560) in the most favoured regions and an additional 2.3% (13/560) in

additionally allowed regions in Ramachandran plot, with no outliers. After superimposing the

wt bradavidin and bradavidin A2 structures, the RMSD value for the Cα atoms was 3.4Å.

Production of core-bradavidin V1 and CC mutant

The DNA sequences coding for core-bradavidin V1 and the CC mutant with N-terminal

6xHis (HHHHHH) and 3xFLAG tag (DYKDHDGDYKDHDIDYKDDDDK) inserted

between the N-terminal signal peptide (MRHFNGMLLAMIASTSLIGPLPAYA; predicted to

fully be cleaved off) and the mature proteins (core-bradavidin V1; QSV. . .DLK, CC mutant;

QSV. . .C39A,C69A. . .KAL) were ordered as synthetic genes (Thermo Fisher Scientific, Gen-

eArt) and subcloned into pET101/D-TOPO1 vector (Thermo Fisher Scientific) according to

the manufacturer’s instructions. Sequences were confirmed (ABI PRISM 3100 Genetic Ana-

lyzer, Applied Biosystems), and clones were transformed with heat shock to E. coli BL21-AI

cells (Thermo Fisher Scientific), which are suitable for production of toxic proteins due to the

tight regulation of protein expression. Core-bradavidin V1 and CC variants were produced

within the periplasmic space of E. coli BL21-AI cells in an active form, as previously described

in detail [69]. Individual colonies were first cultured overnight in 5 ml volume of Lysogeny

broth (LB) medium supplemented with 100 μg/ml ampicillin, 5 μg/ml tetracyclin and 0.1% (w/

v) glucose, before the cells were diluted to 500 ml of LB with the same supplements. The

growth of bacteria was followed by measuring the optical density (OD, absorbance at 600 nm

wavelength) and, when the value of OD reached 0.4, induction was performed by adding 1

mM IPTG and 0.2% (w/v) L-arabinose. After overnight incubation at 28˚C and horizontal

shaking (200 rpm), the bacterial cells were harvested by centrifugation (10 minutes, 5000 g).

Proteins were purified in a single step using 2-iminobiotin affinity chromatography as

described earlier in [33] for core-bradavidin. The isolated E. coli cells were suspended in bind-

ing buffer (50 mM Na-carbonate, 1 M NaCl, pH 11) after which the cell suspension was

homogenized twice using an EmulsiFlex C3 homogenizator (Avestin Inc., Ottawa, Canada)

and clarified by centrifugation (15 000 g, 30 min, 4˚C). The pH of the crude protein mixture

was adjusted to 10.5 using 10 M NaOH before it was applied to 2-iminobiotin agarose equili-

brated with the binding buffer. The crude protein–agarose mixture was incubated for one

hour on a rolling shaker at 4˚C and the agarose was collected using centrifugation (3000 g, 10

min, RT). The agarose was then washed twice with the binding buffer and transferred to a col-

umn, where the protein was eluted in 1 ml fractions with 0.5 M acetic acid (pH 3). The purity
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of the proteins were analyzed using SDS-PAGE (15%) in reducing conditions. In addition, the

protein concentration was determined with a UV/Vis spectrophotometer (NanoDrop 1000

Spectrophotometer, Thermo Scientific, Wilmington, DE, USA) by measuring the absorbance

at 280 nm and using an extinction coefficient of 43555 M–1cm–1 and 43430 for core-bradavidin

V1 and CC mutant, accordingly.

Biophysical analysis of core-bradavidin V1 & CC mutant

The unfolding temperature of core-bradavidin V1 was analyzed using the VP-Capillary DSC

instrument (GE Healthcare, MicroCal, Northampton, MA, USA) in 50 mM sodium phosphate

buffer (150 mM NaCl, pH 7.2) with protein concentration of 0.2 mg/ml. Solutions were

degassed prior to measurements. Samples were heated from 20˚C to 130˚C at a scanning rate

of 2˚C/min. Feedback mode was set to ‘low’ and the filter period was 5 s. The temperature

transition midpoint (Tm) was obtained from the midpoint of the curve that was fitted to the

data after first subtracting the baseline from the measurement data and then using the Leven-

berg-Marquardt non-linear least-squares method to fit the curve using the MicroCal Origin

7.0 software (MicroCal, Malvern Instrument Ltd). Similar analysis was not possible with the

CC mutant due to lack of protein for proper analysis.

The dissociation rate constant (kdiss) of fluorescently labelled biotin was determined by

fluorescence spectrometry using the biotin-labelled fluorescent probe ArcDia™ BF560 as

described in [69]. In practice, 50 nM dye in a buffer containing 50 mM sodium phosphate, 650

mM NaCl and 0.1 mg/ml BSA (pH 7) was mixed with 100 nM core-bradavidin V1 (or CC

mutant) and the change in fluorescence intensity was measured over time. A 100-fold molar

excess of free biotin (D-biotin, Sigma-Aldrich Co. LLC., St. Louis, MO, USA) was used to

monitor the dissociation of this complex. The assay was performed at 50˚C using a Quanta-

Master™ Spectrofluorometer (Photon Technology International, Inc., Lawrenceville, NJ, USA).

Biotinylated BF560 was excited at 560 nm, and emission was measured at 578 nm.

The affinity of core-bradavidin V1 towards Brad-tag (peptide SEKLSNTK; GenScript, Pis-

cataway, NJ, USA) was measured by ITC. The purified core-bradavidin V1 was dialyzed against

50 mM sodium phosphate (pH 7.0) buffer containing 100 mM NaCl, Brad-tag was dissolved in

the same buffer and the samples were degassed using MicroCal™ ThermoVac. The analysis was

performed at 40˚C using an isothermal titration calorimetry VP-ITC MicroCalorimeter (GE

Healthcare, MicroCal, Northampton, MA, USA) with 10 μl titration aliquots of Brad-tag in 30

repeated additions at intervals of 200 s using constant stirring speed of 440 rpm. The data were

analyzed with Microcal Origin 7.0 (MicroCal LLC, Northampton, MA, USA) software. The

observed reaction heats were corrected by subtracting the heat of dilution caused by the titra-

tion of the ligand alone into buffer. Ka, ΔH and n (stoichiometry per subunit) were obtained

through non-linear least-squares fit of the corrected reaction heats for each titration step.

Miscellaneous methods

PyMOL [60,61] and Bodil [62] were used for analyzing structures, visualization and for creat-

ing figures. The structure-based sequence alignment was done by Malign [67] of the Bodil soft-

ware package for biomolecular visualization and modeling [62]. A cut-off distance of� 3.5 Å
between non-hydrogen atoms was used for hydrogen bonds. Subunit one was used to create

all figures unless not otherwise specified in the figure legends.

Supporting information

S1 Fig. Comparison of the subunit IF1,2 interface residues Trp99, Leu91 and Tyr11 of

core-bradavidin (orange; bold labels) [PDB:4BBO] and wt bradavidin (magenta; labels in
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brackets) [PDB:2Y32] based on superimposition of the Cα traces of the proteins. The bio-

tin molecule (BTN) of the core-bradavidin structure and the side chains of Trp99, Leu91 and

Tyr11 are shown as sticks. Nitrogen atoms are coloured blue, oxygen atoms red and sulphur

atoms yellow.

(TIF)

S2 Fig. Comparison of the tertiary structure of wt bradavidin [PDB:2Y32] to the homology

models of rhodavidin (Uniprot: Q218I6; Genbank: WP_011472104.1) and bradavidin A2

(Genbank: WP_051334960.1). Superimposition of the Cα traces of subunit I and subunit III

of wt bradavidin (magenta), rhodavidin (blue) and bradavidin A2 (grey) are shown. The loop

regions L1,2 to L7,8, and the N and C termini, are labelled.

(TIF)

S3 Fig. Structure-based sequence alignment of core-bradavidin, chicken Avd, rhizavidin,

shwanavidin, bradavidin II, hoefavidin, wt bradavidin, rhodavidin and bradavidin A2. The

biotin-binding residues (top six structures) are marked with black squared boxes; the blue

squared boxes indicate cysteine residues forming disulphide bridges in non-tetrameric Avds;

the green ‘1’ indicates the cysteine residues forming disulphide bridges in bradavidins and rho-

davidin; the black triangle indicates the tryptophan residue in equivalent position to Trp99 of

the core-bradavidin structure that is present only in tetrameric Avds; and the ‘Brad-tag’ resi-

dues are highlighted with yellow background. The beta-strands 1–8 of core-bradavidin are

labeled and indicated by arrows. The conserved residues are coloured by the default scheme of

the ESPript 3 program (http://espript.ibcp.fr/ESPript/ESPript/).

(TIF)

S1 Table. Yields of core-bradavidin, core-bradavidin V1 and CC mutant produced in E.

coli BL21-AI.
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