
A content-based music recommender system

Juuso Kaitila

University of Tampere

Faculty of Natural Sciences

Computer Science

Master’s thesis

Supervisor: Martti Juhola

18.5.2017





University of Tampere

Faculty of Natural Sciences

Juuso Kaitila: A content-based music recommender system

Master’s thesis, 65 pages

May 2017

Abstract

Music recommender have become increasingly relevant due to increased accessibil-

ity provided by various music streaming services. Some of these streaming services,

such as Spotify, include a recommender system of their own. Despite many advances

in recommendation techniques, recommender systems still often do not provide ac-

curate recommendations.

This thesis provides an overview of the history and developments of music in-

formation retrieval from a more content-based perspective. Furthermore, this thesis

describes recommendation as a problem and the methods used for music recommen-

dation with special focus on content-based recommendation by providing detailed

descriptions on the audio content features and content-based similarity measures

used in content-based music recommender systems. Some of the presented features

are used in our own content-based music recommender.

Both objective and subjective evaluation of the implemented recommender sys-

tem further confirm the findings of many researchers that music recommendation

based solely on audio content does not provide very accurate recommendations.

Keywords: music recommendation, recommender system, music information re-

trieval, content-based recommendation, music similarity



Contents

1 Introduction 1

2 Recommendation as a problem 3

2.1 Factors that affect recommendations . . . . . . . . . . . . . . . . . . 3

2.2 Music recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Related work 9

4 Music recommendation methods 18

4.1 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Context-based filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Content-based filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Audio content features 29

5.1 Low-level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Mel frequency cepstral coefficients . . . . . . . . . . . . . . . . 29

5.1.2 Spectral features . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Rhythmic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Tonal features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Audio-based similarity measures 40

6.1 K-means clustering with Earth Mover’s Distance . . . . . . . . . . . . 40

6.2 Gaussian Mixture Models with Monte Carlo sampling . . . . . . . . . 41

6.3 Average feature vectors with Euclidean distance . . . . . . . . . . . . 43

6.4 Single Gaussian with Kullback-Leibler divergence . . . . . . . . . . . 43

6.5 Euclidean distance based on Principal Component

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Content-based music recommender 46

7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3.1 Objective evaluation . . . . . . . . . . . . . . . . . . . . . . . 49



i

7.3.2 Subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . 50

8 Conclusions 53

References 55





1

1 Introduction

Music recommender systems have become increasingly relevant with the advent of

music streaming services such as Spotify and Tidal, which have made music more

accessible. The recommender systems help users discover new music by providing

recommendations, for example, in the form of automatically generated playlists

containing songs the recommender system thinks the user might like.

Current state-of-the-art music recommender systems use user-generated meta-

data, such as previous purchases and listening history, as the basis for the recom-

mendations. However, such metadata-based systems cannot recommend artists or

songs for which there is no data available (i.e., new songs or artists). This ”cold

start” problem has made researchers focus on improving content-based recommender

systems, which use audio features extracted automatically from the audio content

as the basis for recommendations. McFee, Barrington and Lanckriet (2012) state

that the construction of features and the definition of similarity in such systems are

frequently ad-hoc and not explicitly optimized for the specific task.

The varying definitions of similarity can be explained by the lack of a ground

truth, which is due to music similarity being subjective, multifaceted and a moving

target (Berenzweig, Logan, Ellis, & Whitman, 2004). Berenzweig et al. (2004)

note that subjective judgments of the similarity between specific pairs of artists

are not consistent between listeners and may vary with an individual’s mood or

evolve over time. Additionally, the similarity between two artists can be answered

from multiple perspectives as music may be similar or distinct in terms of virtually

any property that can be used to describe music such as genre, melody, rhythm,

geographical origin and instrumentation. These factors make the problem of music

recommendation complicated.

This thesis focuses on content-based music recommendation and describes the

some of the key audio features and similarity measures used in content-based rec-

ommender systems. Chapter 2 gives a formal definition of recommendation as a

problem and lists the factors that affect recommendations. Challenges specific to

music recommendation are also discussed. Chapter 3 discusses the history and devel-

opment of the music information retrieval research field with focus on content-based

recommendation. Some research related to other recommendation techniques is

briefly discussed. Chapter 4 details the recommendation techniques that have been



2

used for music recommendation and how they work. Chapter 5 describes how com-

monly used features describing the audio content can be computed from the audio

signal. Chapter 6 details some of the more common content-based similarity mea-

sures used by researchers. Finally, Chapter 7 describes the dataset, implementation

and evaluation of our own content-based music recommender system.



3

2 Recommendation as a problem

According to Celma (2010, p. 15), the recommendation problem can be split into

two subproblems: a prediction problem and a recommendation problem. The first

one is about the estimation of the items’ likeliness for a given user and the second

problem is to recommend a list of N items, which is reduced to list the top-N items

once the system can predict items into a totally ordered set.

Sarwar et al. (2001) formalize the prediction problem as follows: let U =

{u1, u2, . . . , um} be the set of m users, and let I = {i1, i2, . . . , in} be the set of

n recommendable items. Each user ui has a list of items Iui , which represents the

items that the user has expressed his or her opinion about through explicit or implicit

feedback. Note that Iui ⊆ I, and that Iui can be empty, Iui = ∅. The function Pua,ij

is the predicted likeliness of item ij /∈ Iua for the active user ua.

Sarwar et al. (2001) also formalize the recommendation problem as follows:

Recommendation is a list of N items, Ir ⊂ I, that the user will like the most, i.e.,

the N items with the highest Pua,ij values. The recommended list should not contain

items from the user’s interests, i.e., Ir ∩ Iua = ∅.
The set I of possible items can be very large, which is also true for the user

set U . In most recommender systems, the prediction function Pua,ij is usually repre-

sented by a rating, which is given by the user either explicitly or implicitly through

some measures, e.g., by tracking if a song is skipped. They are represented as triples

〈u, i, r〉 where r is the rating value assigned by the user u to a particular item i. The

value is usually a real number (e.g., from 0 to 1), a value in a discrete range (e.g.,

from 1 to 5), or a binary variable (e.g., like/dislike). (Celma, 2010)

2.1 Factors that affect recommendations

There are several factors that affect the quality of recommendations:

• Novelty - A high rate of novel recommendations can make the quality of

recommendations seem poor to the user. Recommending some familiar items

increases the user’s confidence in the recommender. (Herlocker, Konstan, Ter-

veen, & Riedl, 2004)

• Serendipity - A recommender should help the user discover unexpected yet

interesting items that they might not be able to discover otherwise. (Herlocker



4

et al., 2004)

• Explainability - Giving explanations about recommended items can improve

the user’s trust in the recommender system. (Herlocker, Konstan, & Riedl,

2000)

• Cold start problem - When a new user or item enters the system the lack of

data prevents the system from giving useful recommendations. (Celma, 2010,

p. 36)

• Data sparsity and high dimensionality - High dimensionality of both

users and items can result in low coverage of users’ interactions with the items.

(Celma, 2010, p. 36)

• Coverage - Low coverage of the domain limits the space of possible items to

be recommended. (Herlocker et al., 2004)

• Trust - Recommender systems that are trust-aware determine which users

can be reliably used for recommendations, and which cannot. (Celma, 2010,

p. 37)

• Attacks - Recommender systems can be attacked, which reduces the quality of

recommendations (Celma, 2010, p. 37). An example of an attack is deliberate

mistagging, which happens when a group of users tag an item using a false or

malicious tag. For example on Last.fm, several users have tagged Rick Astley’s

Never Gonna Give You Up as brutal death metal, which has made it the top

brutal death metal track1. Figure 1 is a screenshot taken of Last.fm’s top

brutal death metal tracks, which include three deliberately mistagged songs

(Rick Astley’s Never Gonna Give You Up, Paris Hilton’s Stars Are Blind, and

Avril Lavigne’s Hello Kitty).

• Temporal effects - Recommender systems can treat older items as less rel-

evant than the new ones. The system has to decide which items from a user

profile are taken into account when computing the recommendations. (Celma,

2010, p. 37)

1https://www.last.fm/tag/brutal+death+metal/tracks



5

• Psychological factors and musical taste - Certain aspects of personality

along with socio-economic status, age, and sex are correlated with music pref-

erence. Additionally, different cultural groups have different distributions for

music preference. (Uitdenbogerd & van Schyndel, 2002)

Figure 1. Top 20 brutal death metal tracks on Last.fm with three mistagged songs.

Screenshot taken on March 12, 2017.

2.2 Music recommendation

The recommendation problem in the music domain has additional challenges as indi-

vidual’s music perception depends on many factors. Lesaffre et al. (2006) discovered

that music perception is affected by the context of the user. They found subject de-

pendencies for age, music expertise, musicianship, music taste and familiarity with

the music. Furthermore, Berenzweig et al. (2004) state that subjective judgments



6

of similarity between artists are not consistent between listeners and may vary with

individual’s mood or evolve over time. They emphasize that music which holds no

interest for a given subject very frequently ”sounds the same.” Music can be similar

or distinct in terms of virtually any property that can be used to describe music such

as genre, melody, rhythm, geographical origin and instrumentation, which makes it

possible to answer the question of similarity between two artists from multiple per-

spectives.

The UK-based Phoenix 2 Project (Jennings, 2007) analyzed the different types

of listeners with an age group ranging from 16 to 45. The project classified the

listeners based on four degrees of interest in music as follows:

• Savants. Everything in life seems to be tied up with music and their musical

knowledge is very extensive. They represent 7% of the 16-45 age group.

• Enthusiasts. Music is a key part of life but is also balanced by other interests.

They represent 21% of the 16-45 age group.

• Casuals. Music plays a welcome role, but other things are far more important.

They represent 32% of the 16-45 age group.

• Indifferents would not lose much sleep if music ceased to exist. They repre-

sent 40% of the 16-45 age group and they are the predominant type of listeners

in the whole population.

According to Celma (2010, p. 46), each type of listener needs different type of

recommendations. Savants are very exigent and are thus the most difficult listeners

to provide recommendations to. They need risky and clever recommendations in-

stead of popular ones. Enthusiasts on the other hand appreciate a balance between

interesting, unknown, and familiar recommendations. Casuals and indifferents, who

represent 72% of the population, do not need complicated recommendations and

popular mainstream music that they can easily identify with would fit their musical

needs. Thus, it is important for a recommender system to be able to detect the type

of user and act accordingly.

Some researchers, e.g., (Celma & Serra, 2008) assert that there exists a ”se-

mantic gap” between content object descriptions and concepts that humans use to

relate to music in content-based music recommendation that makes it more difficult



7

to provide accurate recommendations. The term has received some criticism, e.g.,

Wiggins (2009), as being misleading due to there existing plenty of musical syntax

that is perceived and relevant to the listening experience, but it is not explicit in

the audio signal. The term also has many different interpretations, which makes

the concept slippery. Wiggins (2009) agrees that there exists a ”semantic gap” from

the perspective of the audio domain, but such ”gap” is not visible from the per-

spective of the auditory domain, in which is a discrete spectrum of structure that is

realized in or stimulated by an audio signal and is theoretically explicable in both

psychological and musicological terms.

Celma and Serra (2008) define three levels of abstraction for describing mul-

timedia objects: low-level basic features, mid-level semantic features and human

understanding. The low-level includes physical features of the object, such as the

bit depth of an audio file, and basic features such as the pitch salience of an audio

frame. The mid-level abstraction aims to describe concepts such as the genre of a

song.

These abstractions can also be used to describe a the music information plane

(Figure 2), in which one dimension represents the different media types that serve

as input data and the other dimension is the level of abstraction in the information

extraction process of this data. The semantic gap is between the mid-level abstrac-

tion (content objects) and higher-level information related to the users representing

the distance between the descriptions that can be extracted from the input sources

and the end user.



8

Figure 2. The music information plane and the semantic gap between human un-

derstanding and content object descriptions. (Celma & Serra, 2008)



9

3 Related work

Music information retrieval (MIR) is a research field that comprises several subfield

and research tasks. The core applications, which drive the research, are music

retrieval, music recommendation, automatic playlist generation, and music browsing

interfaces.

One of the most important topic groups for MIR research is the automatic

extraction of meaningful features from audio content and context. The extracted

features are used to compute similarity between two songs or to classify music based

on some criteria such as mood, instrumentation, or genre. The features, similarity

measures, and classification methods are used extensively in music recommendation

and automatic playlist generation.

The earliest work on content-based audio retrieval and content-based music

similarity, such as that of Wold et al. (1996), used only very basic aspects of the

sound, namely loudness, pitch, brightness, bandwidth, and harmonicity; for building

a database of feature vectors that were classified with weighted Euclidean distance.

The sounds could then be retrieved based on their classes such as ”scratchy”. Foote

(1997) was among the first to use Mel-frequency cepstral coefficients (MFCCs) in

the music domain. He built a music indexing system using histograms of MFCC

features, which were derived from a discriminatively trained vector quantizer. He

used Euclidean distance and cosine distance for measuring similarity between the

histograms. Blum et al. (1999) also built a music indexing system that incorporated

various audio features such as loudness, bass, pitch, and MFCCs. Welsh et al. (1999)

built a system for searching songs that sound similar to a given query song. They

used 1248 feature dimensions per song which modeled the tonal content, the noise

and volume levels, and the tempo and rhythm of a song.

The research on music content similarity in the early 2000s used MFCCs ex-

tensively and focused on timbral similarity. Both Logan and Salomon (2001) and

Aucouturier and Patchet (2002) modeled songs by clustering MFCC features and

determined their similarity by comparing the models. Logan and Salomon used K-

means clustering and Earth Mover’s Distance while Aucouturier and Patchet used

Gaussian Mixture Models (GMMs), which were initialized with K-means cluster-

ing and trained with the Expectation-maximization algorithm. For comparing the

models, Aucouturier and Pachet used Monte Carlo sampling to approximate the



10

likelihood of the MFCCs of one song given the model of another. Later, Aucou-

turier and Patchet (2004) attempted improving content-based music similarity by

fine-tuning the parameters of their algorithm. They also tried hidden Markov mod-

els in place of GMMs, but saw no improvement. Their results suggested that there

exists a ”glass ceiling” at 65-70% accuracy for timbral similarity. Berenzweig et al.

(2003) mapped MFCCs into an anchor space using pattern classifiers and modeled

the distributions using GMMs. They compared the models using an approximation

of Kullback-Leibler (KL) divergence called Asymptotic Likelihood Approximation

as well as Euclidean distance after reducing the distributions to the centroids.

However, the research did not focus solely on MFCCs and timbral features as

rhytmic and tonal features could also be extracted from the audio and then com-

bined with the timbral features for better results. Tzanetakis and Cook (2002)

extracted several timbral, rhythmic, and pitch features to determine similarity and

classify songs into genres. Li and Ogihara (2004) combined various timbral features

with Daubechies wavelet filter histograms to determine similarity and also to de-

tect emotion. Pampalk et al. (2005) proposed combining fluctuation patterns with

the spectral descriptors, such as MFCCs. Ellis (2007) combined timbral features

with beat-synchronized chroma features, which represent the harmonic and melodic

content. The features were used to identify artists through classification. Some re-

searchers, such as Gomez (2006b), extracted high-level tonal features such as chords

and the key of the song.

More recent research on feature extraction has used neural networks to au-

tomatically learn features from music audio. Hamel and Eck (2010) used a deep

belief network (DBN) to learn features, which they used as inputs for a non-linear

support vector machine SVM. The learned features outperformed MFCCs in genre

classification and in an autotagging task. Schmidt and Kim (2011) used a DBN

to learn emotion-based features from audio content. The emotions were modeled

in the arousal-valence representation of human emotions, where valence indicates

positive vs. negative emotions and arousal indicates emotional intensity. Henaff et

al. (2011) used a sparse coding method called Predictive Sparse Decomposition to

learn sparse features from audio data. The features are used as inputs for a linear

SVM that is used to predict genres for songs. Van den Oord et al. (2013) used deep

convolutional neural networks to predict latent factors from music audio for use in

music recommendation. Wang and Wang (2014) use a DBN to learn audio features



11

from audio content and combine the learned features with collaborative filtering in

a hybrid recommender.

The use of additional features improved the classification accuracy but to fur-

ther improve the accuracy, researchers have used other classifiers instead of the

GMMs that were popular in the early 2000s. Mandel and Ellis (2005) and Xu et al.

(2003) used SVMs for classifying songs instead of GMMs. Mandel and Ellis used

Mahalanobis distance and KL divergence to measure similarity. Xu et al. classified

individual frames of songs and let the frames vote for the class of the entire song.

Mandel and Ellis also discovered the ”album effect” in which the classifiers perform

significantly better when the songs from the same albums are used to train and test

the classifier. The effect is due to timbral similarity recognizing songs from the same

album easily.

Some researchers have turned to machine learning to automatically learn a

similarity metric for audio content. Slaney et al. (2008) used principal compo-

nent analysis whitening, linear discriminant analysis, relevant component analysis,

neighborhood component analysis, and large-margin nearest neighbor on web page

co-occurrence data to learn distance metrics, which they tested using a K-nearest

nearest neighbor classifier. McFee et al. (2012) used metric learning to rank algo-

rithm to learn a content-based similarity measure from collaborative filter data.

Research has also been made on context-based similarity, which uses contextual

information to infer similarity between artists and songs. Pachet et al. (2001) mined

the web and used co-occurrence data to determine similarity among songs. Whitman

and Lawrence (2002) queried web search engines for pages related to artists and used

the unstructured text to extract a feature space, which they used to predict a list of

similar artist based on term overlap and the TF-IDF score. Baumann and Hummel

(2003) also used unstructured text data fetched from the web to extract feature

spaces and similarity matrices. The difference to the approach of Whitman and

Lawrence was the use of filtering to filter out unrelated pages. Schedl et al. (2005b)

also used co-occurrences to determine similarity but used specific queries for search

engines to address the problem of finding unrelated results. Pohle et al. (2007) used

the TF-IDF approach to analyze the top 100 web pages for each artist and then

decomposed the data into base ”concepts” using non-negative matrix factorization.

The artists were classified based on the concepts with K-nearest neighbors and the

classes were used to provide artists recommendations.



12

Context-based similarity has also been combined with content-based similarity

to improve classification accuracy. Knees et al. (2007; 2009) combined web page

based song ranking with content-based similarity to improve the quality of the results

in a music search engine. Turnbull et al. (2009) combined social tags and web

documents with timbre and harmony based automatic song tagging to improve text-

based music retrieval.

The research on music recommendation has focused mainly on content-based

filtering as an extension for content-based similarity and feature extraction as well as

hybrid recommenders. This can be explained by the fact that recommenders using

collaborative filtering outperform purely content-based recommenders (Barrington,

Oda, & Lanckriet, 2009; Celma & Herrera, 2008; Slaney, 2011). Content-based

filtering is also a compelling research topic as it solves some of the issues collaborative

filtering has.

However, there has not been much research on purely content-based recom-

menders. Cano et al. (2005) presented a purely content-based recommender sys-

tem called MusicSurfer. It automatically extracted descriptors for instrumentation,

rhythm and harmony from audio signals. Logan (2004) proposed four solutions for

recommending music from song sets, which consisted of songs representative of the

sound the user is seeking. The goal was to improve recommendation accuracy by

including more audio data from multiple songs. However, the song sets Logan used

were taken from the same album and track from the same album was used as an

objective criterion for the evaluation, which meant that the real performance was

overestimated due to the ”album effect” discovered by Mandel and Ellis (2005).

Recommenders using only collaborative filtering have not been a very pop-

ular research topic in the music domain. Most research on collaborative filtering

in the music domain has often been related to other recommendation techniques

and research that focused only on collaborative filtering applied to recommendation

systems for all kinds of media. In recent years, however, research on recommenders

using collaborative filtering has gained a more popularity in the music domain.

The first music recommender system using collaborative filtering was Ringo

(Shardanand & Maes, 1995), which had a 7-point rating scale and the value 4

was fixed as a neutral value rz. It used a constrained Pearson correlation for cal-

culating similarity, which correlates absolute like/dislike rather than the relative

deviation. This was made possible by the absolute reference value rz. The recom-



13

mendations were based on the gathered rating data. In contrast, Cohen and Fan

(2000) crawled user logs associated with a large repository of digital music and con-

ducted web searches for lists of someone’s favorite artists. They used collaborative

filtering methods on the data to form recommendations. Chen and Chen (2005)

used content-based and collaborative filtering approaches separately to recommend

music based on music and user groups. The music groups contained songs the user

was recently interested in and user groups combined users with similar interests.

They achieved higher accuracy with the content-based approach, but the collabora-

tive filtering approach provided more surprising recommendations. Sánchez-Moreno

et al. (2016) proposed a collaborative filtering method that used listening coeffi-

cients as a way to address the gray sheep issue of collaborative filtering. To identify

the gray sheep users, the listening coefficients and users’ behavior regarding artists

they listen to were used to characterize the users based on the uncommonness of

their preferences. The proposed method significantly outperformed more traditional

collaborative filtering methods.

The approach by Chen and Chen (2005) was close to a hybrid recommender as

they used two recommendation techniques although they did not combine the two.

In contrast, the approach of Stenzel and Kamps (2005) was essentially a hybrid rec-

ommender as it combined content-based filtering with collaborative filtering by using

support vector machines to predict feature vectors for collaborative filtering from

sound features. They combined the vectors with implicit user profile data to build a

collaborative model and used item-item collaborative filtering to provide recommen-

dations. Yoshii et al. (2006) presented another hybrid recommender, in which they

combined collaborative and content-based filtering. The motivation was to solve

the problems with both techniques. They associated rating data and the MFCCs of

songs with latent variables that describe unobservable user preferences and used a

Bayesian network called three-way aspect model to provide recommendations from

them.

In contrast, more recent approaches to hybrid recommenders have used contex-

tual information to improve recommendations. Donaldson (2007) used co-occurrence

data from user created playlists and several acoustic features in a hybrid recom-

mender. The co-occurrence data was decomposed to eigenvectors that comprised

a set of spectral item-to-item graph features. The resulting spectral graph was

unified with the acoustic feature vectors and then used for generating recommenda-



14

tions. Chedrawy and Abidi (2009) combined collaborative filtering with ontology-

based semantic matching in a web recommender system. The recommendations

were based on similarity that was a linearly weighted hybrid of collaborative fil-

tering and item-based semantic similarity. Bu et al. (2010) modeled social media

information collected from Last.fm and acoustic features extracted from the audio

signal as a hypergraph, which allows expressing multiple dimensions of similarity

simultaneously. The hypergraph was used to compute a hybrid distance upon which

recommendations were based.

In recent years, the research direction for music recommender systems has

moved towards user-centric recommenders. The information retrieval community

has recognized that accuracy metrics are not enough to evaluate recommenders as

they do not measure many aspects of the recommendation process that are impor-

tant to the end user (McNee, Riedl, & Konstan, 2006; Ge, Delgado-Battenfeld, &

Jannach, 2010). These aspects include serendipity (McNee et al., 2006; Ge et al.,

2010), novelty (Celma & Herrera, 2008), and coverage (Ge et al., 2010) among oth-

ers. In addition, Schedl et al. (2013) argued that the multifaceted and subjectiveness

of music perception has been largely neglected and should be given more attention.

They identified that modeling user needs is a key requirement for user-centric music

retrieval systems. To improve the evaluation of recommenders, Celma and Herrera

(2008) presented item- and user-centric methods for evaluating the quality of novel

recommendations. The item-centric method analyzes the item-based recommenda-

tion network to detect pathology that hinders novel recommendations in the network

topology. The aim of the user-centric method is to measure users’ perceived quality

of novel recommendations.

One of the earliest studies in more user-focused direction in the music domain

was by Hoashi et al. (2003). They presented a content-based music retrieval sys-

tem, which retrieves songs based on the musical preferences of the user. In addition,

they proposed a method to generate user profiles from genre preferences with later

refinement based on relevance feedback in order to reduce the burden of users to

input learning data to the system. Another early study on modeling user prefer-

ences was by Grimaldi and Cunningham (2004). They attempted to predict user

taste by extending the use of signal approximation and characterization from genre

classification to the problem. They only achieved moderate success as the predic-

tors had a mean accuracy of about 4% better than random guessing. In a more



15

recent study, Bogdanov et al. (2013) presented a method for modeling users by

inferring high-level semantic descriptors for each music track in a set provided by

the user as an example of his or her preferences. They compared the recommen-

dation accuracy of their method to two metadata and two content-based baselines.

Their high-level semantic description recommender outperformed the content-based

baselines as well as one of the metadata baselines, which randomly selected tracks

from the same genre. The other metadata baseline, which used recommendations

provided by Last.fm based on 20 tracks from the user’s preference set, outperformed

the semantic recommender. The authors suggested that Last.fm was able to provide

better recommendations due to its larger dataset.

As an alternative method, Vignoli and Pauws (2005), Sotiropoulos et al. (2007),

and Lu and Tseng (2009) all presented metrics adapted to a user’s perception of sim-

ilarity. The metric of Vignoli and Pauws was based on a user-weighted combination

of timbre, genre, tempo, year, and mood. In their user test, they found that users

preferred the adjustable system to control systems as it allowed more control and was

perceived to be more useful. The system of Sotiropoulos et al. constructed music

similarity perception models of its users by associating different similarity measures

based on objective acoustic features to different users. They used relevance feed-

back and neural network-based incremental learning to determine the subset of the

objective features that more accurately approximated a specific user’s subjective

music similarity perception. Lu and Tseng combined content-based, collaborative

filtering, and emotion-based recommendation in a hybrid system that asked users

for feedback on the provided recommendations. The initial recommendations were

provided after mining users’ listening records. The system altered the weights for

the recommendation methods based on the user feedback and provided consecutive

recommendations.

Some studies looked into improving the overlooked factors of recommenders

such as novelty and serendipity. Nakatsuji et al. (2010) presented a collaborative

filtering method for increasing the novelty of recommendations. Their method first

measures user similarity based on rated items and a taxonomy of items and then

creates a graph, in which related users are connected with edges that are weighted

based on user similarity. The method then extracts related users that do not have

high similarity to the active user as they are likely to have novel items for the active

user. Their evaluation using multiple datasets showed that their method was able



16

to provide more novel recommendations than other methods. Zhang et al. (2012)

presented a recommender called Auralist, which has a special focus on serendip-

ity. It used latent dirichlet allocation (LDA) for computing item features, which

they called Artist-based LDA. The increase of novelty, diversity, and serendipity in

recommendations was achieved with two algorithms: Listener Diversity and Declus-

tering. The first prioritizes recommending artists with particularly diverse listener

communities, which encourages users to explore beyond a given niche. The latter

determines clusters of artists that user listens to and recommends artists outside of

those clusters. Schedl and Hauger (2015) proposed user features that modeled di-

versity, mainstreaminess, and novelty of user’s music taste in order to include more

user-specific characteristics into music recommendation. They evaluated the features

using multiple standalone and hybrid recommendation approaches and discovered

that grouping users according to the proposed features and performing recommen-

dations within the groups outperforms working on the entire user set.

In addition to the user-centric recommenders, context-aware recommenders

have also become a popular research topic. Context-awareness describes the com-

puter’s ability to sense and act upon information about its environment. This infor-

mation includes location, time, temperature, and user identity. Lee and Lee (2007),

Cunningham et al. (2008), and Herrera et al. (2010) all highlighted the usefulness

of context-awareness in music recommenders. Cunningham et al. hypothesized that

contextual factors probably correlated with listener’s preferences and Lee and Lee

as well as Herrera et al. noticed an improvement in recommendation accuracy when

they considered contextual factors when making recommendations.

Recent research in context-awareness has focused mainly on either temporal

context or the location of the user. Cebrián et al. (2010) presented a recommender

using collaborative filtering that took into account the temporal context of the user.

The system built temporally-constrained micro-profiles that were used to gener-

ate recommendations most appropriate for the considered time period. Dias and

Fonseca (2013) included temporal user listening patterns into a session-based col-

laborative filtering recommender. They compared two techniques, one explicit and

one implicit, to capture the listening patterns and discovered that inclusion of the

temporal information significantly improved the accuracy of the recommendations

regardless whether the information was captured explicitly or implicitly. Baltrunas

et al. (2011) presented a context-aware recommender called InCarMusic for recom-



17

mending music when traveling in a car. The system allowed the user to configure

contextual factors, such as mood, traffic conditions, and weather. These factors were

then used to generate recommendations specific to the current context. Kaminskas

et al. (2013) also presented a location-aware hybrid music recommender that used

places of interest (POIs), automatically tagged music tracks, and knowledge of the

semantic relations between the POIs and music tracks to form recommendations.

They evaluated the recommender by comparing it to a system using only the POIs

and tags and to a system using only the semantic knowledge. They conducted a

web-based user study that had the users pick which recommender produced better

recommendations that suit a specific POI. They discovered that the hybrid recom-

mender performed better than the other recommenders.

Besides the temporal and location-aware systems, there have also been recent

studies about more general context-awareness. Wang et al. (2012) presented a

probabilistic model that integrates contextual information collected from mobile

devices with audio content analysis in a recommender to satisfy users’ short-term

music playing needs. Users were able to manually choose the activity they were

currently doing or have the phone automatically infer the activity based on the sensor

data of the phone, such as acceleration and ambient noise. The system was able

to provide good recommendations even without pre-existing ratings or annotations,

which they attributed to the system’s context-awareness. Vigliensoni and Fujinaga

(2016) introduced a dataset containing listening histories of users as well as their

demographic information and features that characterize aspects of their listening

behavior. They discovered that by including demographic features and a profiling

feature termed exploratoryness, the accuracy increased 12 percent compared to only

using the listening history data.



18

4 Music recommendation methods

There are four recommendation methods that are used in music recommender sys-

tems: collaborative filtering, context-based filtering, content-based filtering, and

hybrid methods, which combine the other filtering methods and minimize the issues

a single method can have. This chapter describes how the different recommendation

methods work and what kind of limitations the methods have.

4.1 Collaborative filtering

Collaborative filtering (CF) predicts user preferences for items based on the ratings

or behavior of others users in the system. It is based on the assumption that other

users’ opinions can be selected and aggregated in a way that makes it possible

to provide a reasonable prediction of the active user’s preference. The user gives

implicit or explicit feedback to the recommender system and the system recommends

new items by inferring similarities between items and comparing them in terms of

the people who use them. (Celma, 2010, p. 23; Ekstrand, Riedl, & Konstan, 2011,

p. 88; McFee et al., 2012)

The collaborative filtering term was coined by the Tapestry project at Xerox

PARC and it was the first system to implement the method (Goldberg, Nichols,

Oki, & Terry, 1992). Collaborative filtering has become the most successful method

for a wide variety of recommendation tasks including music, books, and movies. In

fact, several studies have shown that CF systems consistently outperform alternative

methods for recommending music (Barrington et al., 2009; Slaney, 2011).

Celma (2010, p. 70) mentions that the early research on CF methods in the

music domain was based on explicit feedback, which was based on the ratings about

songs or artists. However, this has shifted to implicit feedback as tracking users’

listening habits has become the most common feedback collection method. The use

of implicit feedback has the drawback that interaction between user and items is

usually described by the songs they listen to or the total playcounts instead of a

value in a predefined range (e.g., [1, 5] or like it/hate it). Jawaheer et al. (2010)

state that explicit feedback can be positive or negative while implicit feedback is

only positive. However, explicit feedback tends to concentrate on either extreme

of the rating scale as users are more likely to express their preference if they feel

strongly about an item. Additionally, Jawaheer et al. note that implicit feedback



19

can be mapped to infer more detailed degree of preference, e.g., a user who has

listened to track A 10 times and track B 100 times has a higher preference for track

B than A.

As explained by Celma (2010, p. 23), CF methods work by building a matrix

M , with n items and m users, that contains the interaction (e.g., rating, play) of

the users with the items. Each row represents a user and the columns represent

items. Ekstrand et al. (2011, p. 101) mention that this type of representation has

extremely high dimensions as an item is a m-dimensional vector and a user is a

n-dimensional vector. Additionally, there is redundancy in the dimensions as users

and items can both be divided into groups with similar preferences. Celma (2010,

p. 26) and Ekstrand et al. (2011, p. 102) both note that matrix factorization

techniques such as singular value decomposition, non-negative matrix factorization,

or principal component analysis can be used to reduce the matrix M to k dimensions

or latent factors.

Predicting a rating value for an item i can be done in two different ways.

The first method, called item-item collaborative filtering, uses similarities between

the rating patterns of items. Items are considered similar if they tend to have the

similar users like and dislike them as users are expected to have similar preferences

for similar items. (Ekstrand et al., 2011, p. 96)

Item-item CF generates predictions by computing the similarity between a

target item i and a set of items that a user u has rated (Celma, 2010, p. 24).

The similarity between two items i and j can be calculated using cosine similarity,

Pearson correlation, or by computing the conditional probability, P (j|i) (Ekstrand

et al., 2011, p. 99). Sarwar et al. (2001) note that cosine similarity does not account

for the differences in rating scale between different users. To offset the drawback,

they present the adjusted cosine similarity (Eq. 1), which subtracts the average

rating of each user from each co-rated pair:

(1) sim(i, j) =

∑
u∈U (ru,i − r̄u) (ru,j − r̄u)√∑

u∈U (ru,i − r̄u)2
√∑

u∈U (ru,j − r̄u)2
,

where r̄u is the average rating of the u-th user.

The similarity scores can be used to calculate the predicted rating, r̂u,i, using



20

a weighted average. Common way to calculate it is

(2) r̂u,i =

∑
j∈Sk(i;u) sim(i, j)ru,j∑
j∈Sk(i;u) sim(i, j)

,

where Sk(i;u) is the set of k neighbors of item i that the user u has rated (Sarwar

et al., 2001). The predicted value is based on the weighted sum of the user’s ratings

for all items in Sk(i;u), and it captures how the user rates items that are similar to

i. (Celma, 2010, p. 25)

The second method, which is called user-user collaborative filtering or k-NN

collaborative filtering, computes the predicted rating by searching for other users

who are similar to user u and using their ratings on other items for computing the

predictions (Ekstrand et al., 2011, p. 91). The predicted rating, r̂u,i, is typically

calculated as the weighted average of the neighboring users’ ratings i using similarity

as the weights:

(3) r̂u,i = r̄u +

∑
v∈Sk(u) sim(u, v) (rv,i − r̄v)∑

v∈Sk(u) sim(u, v)
,

where Sk(u) is the set of k neighbors for user u, and r̄u is the average rating for

user u (Celma, 2010, p. 25; Ekstrand et al., 2011, p. 91). The user similarity can

be computed using several different similarity functions such as Pearson correlation,

Spearman rank correlation, and cosine similarity (Ekstrand et al., 2011, pp. 93-94).

Collaborative filtering can be further divided into three categories:

• Memory-based CF generates a prediction by using the entire user-item

database. Every user is in a group of people with similar interests and by

identifying the neighbors of a user, a prediction of preferences on new items

for the user can be computed as an aggregate of the neighbors’ ratings. Item-

based and user-based CF are in this category. (Adomavicius & Tuzhilin, 2005;

Su & Khoshgoftaar, 2009; Shi, Larson, & Hanjalic, 2014)

• Model-based CF uses machine learning and data mining algorithms to train

and model the users’ preferences based on the collection of ratings. The model

is then used to make predictions for test and real-world data. (Adomavicius

& Tuzhilin, 2005; Su & Khoshgoftaar, 2009)



21

• Hybrid CF makes predictions by combining memory-based and model-based

CF algorithms, or by combining CF with other recommendation techniques.

(Su & Khoshgoftaar, 2009)

Despite its popularity, collaborative filtering has several drawbacks, which af-

fect the quality of recommendations:

• Cold start problem. An item with no ratings cannot be recommended

until it has been rated by users. Early recommendations of the item will

often also be inaccurate due to there being few ratings on which to base the

recommendations. The problem also applies to new users that enter the system

as they only have few ratings and are thus more difficult to categorize and will

likely receive poor recommendations. This problem is also known as the early

rater problem. (Celma, 2010, p. 27; Claypool et al., 1999)

• Gray sheep. Users with atypical tastes would rarely, if ever, receive accurate

recommendations, even after the initial start up phase for the user and system.

This is due to their opinions not consistently agreeing or disagreeing with any

group of people. (Claypool et al., 1999)

• Sparsity problem. Due to the large number of items, the matrices containing

the users’ ratings for the items are very sparse. It is common to have a sparse

user-item matrix with coverage of 1% or less. The sparsity can make finding

reliable neighbors difficult. (Celma, 2010, p. 26; Claypool et al., 1999)

• Popularity bias. Popular items in the dataset are similar to many items and

it increases the probability that the system recommends the popular items

instead of less popular items that could be more interesting and novel for the

users. (Celma, 2010, p. 27)

• Feedback loop. Previous social interaction, e.g., ratings, with the system

affects the user behavior that feedbacks into the system, which creates a loop.

For example, listening to a certain genre will lead to recommendations from

that same genre and listening to the recommendations will in turn lead to

more recommendations from the genre. (Celma, 2010, p. 27; Cosley, Lam,

Albert, Konstan, & Riedl, 2003)



22

• Shilling attacks. In situations where anyone can provide ratings, i.e., explicit

feedback, people are able to give lots of positive ratings for their own creations

and negative ratings for their competitors. The manipulated ratings can affect

users to rate towards the manipulated predictions. (Lam & Riedl, 2004)

4.2 Context-based filtering

Context-based filtering uses cultural information to describe and characterize items,

which is then used to compute artist or song similarity (Celma, 2010, p. 30). The

cultural information can include metadata such as genre, emotions, semantic fea-

tures, similarity, labels, and tags (Celma, 2010, p. 56). The filtering is based on

data gathered with web mining techniques or data mined from collaborative tagging

(Celma, 2010, p. 73).

Web mining techniques aim to discover interesting and useful information by

analyzing web content and its usage. Kosala and Blockeel (2000) identify three web

mining categories. Web content mining includes text, hypertext, semi-structured

data, and multimedia mining. Web structure mining analyzes the link structures of

the Web. It is based on the topology of the hyperlinks. Web usage mining analyzes

session logs and user interactions. Celma (2010, p. 30) notes that information gained

through Web content mining can be used to derive item similarity. Information

gained through usage mining can be used derive user habits and preferences as well

as item similarity based on co-occurrences in the session logs.

A recommender system combines all three mining techniques to derive similar-

ity among items, e.g., items that co-occur in the same pages, and to model the users

based on their interaction with the content. If the information about the content is

in textual form, classic information retrieval measures can be used to characterize

the items. (Celma, 2010, p. 30)

In music information retrieval a popular method to gather artist related terms

is to query a general search engine with the name of artist and extract unigrams,

bigrams and noun phrases from the retrieved pages (Celma, 2010, p. 57). Alter-

native method is to analyze public playlists on the web and compute song or artist

co-occurrence from the data, which can then be used to compute artist or song

similarity (Celma, 2010, p. 58).

Collaborative tagging (also known as social tagging) is the annotation of web



23

content using tags, which are freely chosen keywords. A bottom-up classification

emerges when all the annotations from the users are grouped. Recommender systems

can use the collaborative tagging data to derive item or user similarity. (Celma, 2010,

p. 31)

In collaborative tagging the users’ tags for items can be represented as tuples

of 〈user, item, tag〉, which conform to a 3-dimensional matrix or a tensor, a multi-

dimensional matrix. The two main approaches for using the collaborative tagging

information to compute item and user similarity are unfolding the 3-dimensional

tensor in three bi-dimensional matrices (user-tag, item-tag, and user-item), and di-

rectly using the 3-dimensional tensor. (Celma, 2010, p. 32)

In the unfolding approach, the user-tag matrix U contains the number of times

user i has applied the tag j, Ui,j. A recommender system can derive a user profile,

e.g., a user-specific tag cloud, from the U matrix, which can be used to compute user

similarity. The item-tag matrix I contains the number of times an item i has been

tagged with tag j, Ii,j. The matrix I contains the contextual descriptions of the items

based on the tags that have been applied to the items by the users. The item-tag

matrix I can be used to compute item as well as user similarity with some additional

information such as the top-N artists in Last.fm, a website based on collaborative

tagging that also tracks listening habits. The user-item matrix R denotes whether

a user i has tagged the item j, Ri,j. Collaborative filtering techniques can be used

to compute item or user similarity from the matrix R. (Celma, 2010, p. 32)

One of the main drawbacks of the web mining techniques is that the queries

for artist names such as ”Hammock”, ”Low”, or ”Can” will give results completely

unrelated to the artists (Schedl et al., 2005b). Schedl et al. (2005a) partially solved

the problem by pursuing the TF × IDF (term frequency × inverse document fre-

quency) approach and penalizing terms that appear in many documents, i.e., the

terms with high document frequency.

Another drawback for the web mining techniques is the high dimensionality

of the datasets (Celma, 2010, p. 58). This problem has been avoided by Pohle et

al. (2007) by using non-negative matrix factorization to reduce the dimensionality

of the artist-term matrix and by using a predefined vocabulary of music terms.

According to Celma (2010, p. 34), one of the main limitations for collaborative

tagging is coverage despite popular items having been tagged by several users while

lesser known items often do not have enough tags to characterize them. Another



24

drawback stems from the lack of a constrained vocabulary for the tags. This leads

to problems with polysemy (”I love this song” versus the song being about love),

synonymy (shoegaze, shoegazer, and shoegazing), and personal tags, such as seen

live, that are not very useful for deriving similarity. Tag sparsity is also present as

some tags are widely used in the music domain (e.g., blues and electronic) and some

tags describing the music are rarely applied, e.g., dulcimer. This leads to a biased

distribution of the terms. Another big drawback with collaborative tagging is that

it can be vandalized by deliberately mistagging some items that negatively affect

the quality of recommendations of a system using the tag information.

4.3 Content-based filtering

Content-based filtering collects information describing the item content and recom-

mend items that are similar to items the user likes. The items are usually represented

by n-dimensional feature vectors and the features they contain can be collected au-

tomatically, e.g., by extracting features from the audio signal, or use manual anno-

tations by domain experts, i.e., musicians. (Celma, 2010, p. 28; Kaminskas & Ricci,

2012; Song, Dixon, & Pearce, 2012)

Content-based recommendation relies heavily on audio content analysis and

thus content-based music recommenders exploit traditional music information tech-

niques such as automatic genre detection (Kaminskas & Ricci, 2012). Through these

techniques, acoustic and musical features are extracted from the audio signal. The

features can be divided into three categories: timbral, temporal, and tonal (Schedl,

Knees, McFee, Bogdanov, & Kaminskas, 2015, p. 458). The acoustic features can

also be further used to infer or predict semantic annotations by using machine learn-

ing techniques. The extraction of some of these features is detailed in Chapter 5.

Studies have often combined timbral features with other acoustic features to

improve recommendation accuracy. Pampalk et al. (2005) combined timbral fea-

tures with fluctuation patterns that describe loudness fluctuations in 20 frequency

bands. The characteristics described by the fluctuation patterns are not described

by the timbral features. Cano et al. (2005) used temporal and tonal features (tempo,

meter, rhythm patterns, tonal strength, key, mode) in addition to timbral features in

their music recommender. Maillet et al. (2009) combined timbral features with two

temporal song-level features: danceability and long-term loudness level. The fea-



25

tures were used to learn a similarity model and automatically generate tag clouds

to steer a recommendation engine to generate personalized playlists. McFee and

Lanckriet (2009) combined timbral features with chroma features and automatically

inferred semantic tags (genre, mood) to reproduce human-derived measurements

of subjective similarity between artists. Bogdanov et al. (2013) inferred semantic

descriptors from the low-level audio features and compared recommenders using var-

ious types of features. Subjective evaluations they obtained through a user study

showed that approaches based on only timbre information have only below aver-

age or average user satisfaction. The semantic descriptors outperformed the purely

timbre information based approaches, which suggested that pure timbre-based ap-

proaches are insufficient compared to approaches that combine a large set of timbral,

temporal, and tonal features. Thus, combining multiple features is beneficial but

requires additional computation and also increases the size of the feature vectors.

Content-based recommender systems must first compute the similarity among

songs before they can recommend music to the user (Celma & Serra, 2008, p. 75).

As stated by Bogdanov et al. (2011), there exists a wide variety of approaches for

measuring the similarity between songs. The approaches comprise both the selection

of audio descriptors and an appropriate distance function. The common approaches

can include a variety of perceptually relevant descriptors related to different musical

aspects. However, such descriptors are generally low-level and not directly related

to semantic explanations that users would easily understand (Celma & Serra, 2008).

Schedl et al. (2015) note that timbral similarity is the most common similarity

that can be used. It compares the spectral shapes of the tracks and is thus very

basic. Probability distributions of frame-wise Mel-frequency cepstral coefficients (see

Subsection 5.1.1) can be used to represent timbre information, which can be then

compared using various similarity measures, some of which are detailed in Chapter

6.

In the music domain, content-based filtering ranks songs based on how similar

they are to a seed song according to some similarity measure, which focuses on

an objective distance between items and does not include any subjective factors.

This makes it possible to recommend new items that do not have any user ratings

associated with them. Additionally, there is no popularity bias as all items are

considered to be of equal importance because user-generated data is not used to

measure similarity. (Celma, 2010, p. 29, 75; Kaminskas & Ricci, 2012)



26

Content-based filtering solves some of the drawbacks of collaborative filtering,

but it has several of its own:

• Cold start problem. Recommender systems that use user preferences are

susceptible to the cold start problem as the system needs time to adapt to

new users’ preferences. However, the cold start problem does not exist for

new items. (Celma, 2010, p. 29; Kaminskas & Ricci, 2012)

• Gray sheep. Content-based recommendation relies heavily on the size of the

collection and what kind of items are in the collection. The collection may be

biased towards a specific genre, i.e., overfitted. Thus, it is possible that users

with atypical tastes will not receive relevant recommendations. (Celma, 2010,

p. 29)

• Novelty. Users can receive recommendations that are too similar when the

similarity function is accurate. Content-based recommender systems should

promote eclecticness of items by using other factors. (Celma, 2010, p. 29;

Kaminskas & Ricci, 2012)

• Feature limitation. Content-based recommender system are limited by the

features that can be extracted from the content. In other words, the recom-

mender system is limited by the descriptive data that is available. (Celma,

2010, p. 29; Kaminskas & Ricci, 2012)

• Modeling user preferences. Content similarity cannot fully capture the

user’s preferences, which results in a semantic gap between the user’s percep-

tion of music and the music representation of the system. (Kaminskas & Ricci,

2012)

4.4 Hybrid methods

Hybrid methods combine other filtering techniques to achieve better recommenda-

tions. Most commonly, collaborative filtering is combined with the other techniques.

By combining different filtering methods, the system minimizes the issues an indi-

vidual method can have. (Celma, 2010, p. 34, 78)

Burke (2002) defines some combination methods that have been used by re-

searchers to combine filtering techniques:



27

• Weighted hybrid recommender combines the results of all available recom-

mendation techniques to compute a score for a recommended item. The bene-

fits of the weighted hybrid are that all capabilities of the system are relevant to

the recommendation process in a straightforward way and performing post-hoc

credit assignment and adjusting the hybrid is easy.

• Switching hybrid recommender uses some criterion to switch between recom-

mendation techniques. For example, a system using both collaborative and

content-based filtering could attempt collaborative filtering if content-based

filtering provided recommendations with insufficient confidence. The benefit

of a switching hybrid is that it can be sensitive to the strengths and weaknesses

of individual recommenders, but it comes with additional complexity in the

recommendation process as the switching criteria has to be determined.

• Mixed hybrid recommender presents recommendations from multiple tech-

niques simultaneously. In some systems, the recommendations can be com-

bined together in the final suggested item. The benefit of a mixed hybrid is

that it avoids the cold start problem for new items as a content-based filtering

can be relied on items that have not been rated by anyone.

• Feature combination is a way to merge content-based and collaborative fil-

tering techniques. The collaborative information is treated as an additional

feature data and content-based techniques are used over the augmented data

set. This method lets the system consider collaborative data without exclu-

sively relying on it, which reduces the system’s sensitivity to the number of

users who have rated an item.

• Cascade hybrid recommender involves a staged process, in which one recom-

mendation technique is employed first to produce a coarse ranking of candi-

dates and a second technique is then used to refine the recommendation from

the candidates. This method allows the system to avoid employing the lower-

priority technique on items that are well-differentiated by the first technique

or that will never recommended to sufficiently poor rating.

• Feature augmentation method first employs one technique to produce a rat-

ing or classification for an item, which is then incorporated into the processing



28

of the next recommendation technique. It differs from the cascade method

by using the output of the first technique in the features used by the second

technique.

• Meta-level hybrid uses the model generated by one technique as the input

for another. The difference to feature augmentation is that meta-level hybrid

uses the entire model as an input instead of simply generating features for the

second technique based on a learned model.



29

5 Audio content features

There are multiple acoustic features that can be automatically extracted from the

audio signal. Most of these features are calculated by first segmenting the audio sig-

nal into overlapping frames, with the duration ranging from 10 to 100 ms and a 50%

overlap. Each frame is windowed using a window function, e.g., Hann window, and

then transformed using fast Fourier transform (FFT), which computes the discrete

Fourier transform (DFT). This process is also known as short-time Fourier trans-

form (STFT). Next, a feature vector is calculated for each frame and the features

are then summarized by their means and variances across all frames.

This chapter details the computation of several low-level features. For rhyth-

mic and tonal features, the low-level features that are used for computing the higher-

level features are detailed.

5.1 Low-level features

Low-level features have little meaning to users but they are the basis for high-level

analyses as they are easily exploited by computer systems. They are usually related

to loudness and timbre, which has been found to be related to three main music

signal properties. The properties are the spectral envelope shape, temporal evolution

of energy, and time variation of the spectrum. (Schedl, Gómez, & Urbano, 2014, p.

150)

Low-level features are often the basis for representing timbre in higher-level

features such as rhythmic features (Schedl et al., 2014, p. 153). As such, the low-

level features are often called timbral features (Bogdanov et al., 2011).

5.1.1 Mel frequency cepstral coefficients

Mel frequency cepstral coefficients (MFCCs) were originally developed for automatic

speech recognition and were later found to be useful for music information retrieval

(Pampalk, 2006, p. 17). MFCCs are a representation of the timbre of the audio.

The original implementation of the MFCC, known as MFCC FB-20, was introduced

by Davis and Mermelstein (1980).

The mel frequency in MFCCs is a value on the mel scale (Figure 3), which

approximates the frequency resolution of the auditory system by a mapping between



30

Figure 3. Mel scale

the actual frequency and the perceived pitch (Stevens, Volkmann, & Newman, 1937).

The scale is approximately linear for low frequencies (< 500 Hz) and logarithmic

for higher frequencies (Pampalk, 2006, p. 18). Stevens et al. (1937) defined the

reference point to the linear frequency scale as a 1000 Hz tone which is defined as

1000 Mel. A tone that is twice as high is 2000 Mel and a tone that is half as high

is 500 Mel. According to Ganchev et al. (2005), the widely used formulae in the

various implementations of the MFCCs are

(4) f̂mel = 2595 log10(1 + fHz/700)

and

(5) f̂mel = 1127 ln(1 + fHz/700).

The mel scale formulae are used to convert the frequency in Hz to mels. The inverse

formulae are

(6) f̂−1mel = 700
(

10f̂mel/2595 − 1
)



31

for Equation 4, and

(7) f̂−1mel = 700

[
exp

(
f̂mel
1127

)
− 1

]
for Equation 5.

The first step in the MFCC computation is to transform the magnitude spec-

trum obtained through DFT to the mel scale using a filter bank consisting of trian-

gular filters (Figure 4). Each triangular filter defines the response of one frequency

band and is normalized so that the sum of the weights for each triangle is the same.

(Pampalk, 2006)

Figure 4. 20 triangular filters with 50% overlap

In the MFCC FB-20 implementation, a filter bank Hi(k) is consists of M equal

height triangular filters, each of which is defined as

(8) Hi(k) =



0 for k < fbi−1

k − fbi−1

fbi − fbi−1

for fbi−1
≤ k ≤ fbi

fbi+1
− k

fbi+1
− fbi

for fbi ≤ k ≤ fbi+1

0 for k > fbi+1

, i = 1, 2, . . . ,M,



32

where i stands for the i-th filter, fbi are the boundary points of the filter, and

corresponds to the k-th coefficient of the N -point DFT. The positions for boundary

points fbi depend on the sampling frequency Fs and the number of points N in the

DFT as follows

(9) fbi =

(
N

Fs

)
f̂−1mel

(
f̂mel(flow) + i

f̂mel(fhigh)− f̂mel(flow)

M + 1

)
,

where flow and fhigh are the low and high boundary frequencies in Hz for the whole

filter bank, and M is the number of filters. (Ganchev et al., 2005)

In Davis and Mermelstein’s (1980) MFCC implementation, the MFCC param-

eters are computed as

(10) Cj =
M∑
i=1

Xi cos

[
j

(
i− 1

2

)
π

M

]
, with j = 1, 2, . . . , J,

where M is the number of filters in the filter bank, J is the number of computed

cepstral coefficients (usually J < M), and Xi is the ”log-energy output of the i-th

filter”, which is

(11) Xi = log10

(
N∑
k=1

|X(k)|Hi(k)

)
, i = 1, 2, . . . ,M,

where X(k) is the magnitude spectrum of the Fourier transform.

5.1.2 Spectral features

Spectral features are related to the spectral shape of the audio signal. They are

computed in the spectral domain.

Spectral centroid measures the average frequency of the spectrum weighted

by the magnitude. It is the center of gravity of the magnitude spectrum of the STFT.

It is a measure of the spectral shape and higher values correspond to ”brighter”

textures with higher frequencies. (Celma, 2010, p. 64; Tzanetakis & Cook, 2002)

Tzanetakis and Cook (2002) give the formula as

(12) Centroid(X) =

∑N
n=1 nX(n)∑N
n=1X(n)

,



33

where X(n) is the magnitude of the Fourier transform at frequency bin n, X is a

DFT frame, and N is the number of frequency bins, i.e., half the number of samples

in a DFT frame.

Spectral flatness is the ratio between the geometrical mean and the arith-

metical mean of the spectrum magnitude (Celma, 2010, p. 64). It relates to the

distinction between more noise-like and more tone-like sound (Allamanche et al.,

2001). The formal definition is

(13) Flatness(X) =

N

√∏N
n=1Mt(n)

1
N

∑N
n=1Mt(n)

.

Spectral skewness is the third order central moment and it gives indication

about the shape of the spectrum by describing the degree of asymmetry of the

distribution. When the skewness is equal to 0, it indicates that the distribution is

symmetric. Values less than 0 and values greater than 0 indicate more energy on the

right and on the left of the distribution respectively. (Celma, 2010, p. 64; Peeters,

2004)

The formula for spectral skewness is

(14) Skewness(X) =
1
N

∑N
n=1(X(n)− µt)3[

1
N−1

∑N
n=1(X(n)− µt)2

]3/2 ,
where µt is the arithmetic mean for frame t.

Spectral kurtosis is the fourth order central moment and it indicates whether

the distribution is peaked or flat relative to a normal distribution. When the kurtosis

is equal to 3, the distribution is a normal distribution. Values less than 3 indicate a

flatter distribution and values greater than 3 indicate a peaker distribution. (Celma,

2010, p. 64; Peeters, 2004)

The formula for spectral kurtosis is

(15) Kurtosis(X) =
1
N

∑N
n=1(X(n)− µt)4(

1
N

∑N
n=1(X(n)− µt)2

)2 − 3.



34

5.2 Rhythmic features

As described by Gouyon (2005, p. 15), the main goal of automatic rhythm de-

scription is turning acoustic events that occur in time into more abstract notions of

tempo, timing, and metrical structure. Tempo is the pace of a musical piece, i.e.,

how fast or slow it is. In a metrical structure, tempo is the rate of beats at a given

metrical level. Timing describes when the acoustic events occur. Metrical struc-

ture describes the regular temporal structure underlying musical event occurrences.

More accurately, the metrical structure deals with durationless points in time, i.e.,

the beats.

The computation of rhythmic features is based on measuring periodicity of

events, which are represented by onsets or low-level features such as energy or spec-

tral features (Schedl et al., 2014, p. 165). Specifically, onsets are used to used

estimate beat positions as well as beat loudness when combined with spectral en-

ergy.

There are multiple algorithms for onset detection. One of the earliest was

presented by Masri and Bateman (1996) and it was based on high frequency content

(HFC), which characterizes the high-frequency content in the signal. It is computed

as

(16) HFC(X) =
N∑
n=1

n|X(n)|2.

The actual detection was done as

(17)
HFC(Xi)

HFC(Xi−1)
· HFC(Xi)

E(Xi)
> TD,

where subscript i denotes the current frame, TD is the detection threshold, and Ei

is the spectral energy, which is computed as

(18) E(X) =
N∑
n=1

|X(n)|2.

Bello et al. (2004) presented an onset detection function called complex spec-

tral difference, which combines energy-based and phase-based onset detection and



35

detects the onset by computing the spectral difference between successive frames

in the complex domain. The two detection methods are complementary as energy-

based approaches favor strong percussive onsets and phase-based approaches em-

phasize soft, tonal onsets.

Following the simpler description of the function of Bello et al. given by Davies

and Plumbley (2007), the function makes two assumptions. Its first assumption is

that the magnitude spectrum remains approximately constant during steady-state

regions of the signal, i.e., not at a note onset. This allows making a prediction of the

magnitude spectrum M̂i(n) at frame i given the magnitude of the previous frame

(19) M̂i(n) = Mi−1(n) = |Xi−1(n)|.

The second assumption is that phase velocity of the nth STFT bin should ideally

be constant during steady-state regions of the signal, that is,

(20) ϕ̃i(n)− ϕ̃i−1(n) ≈ ϕ̃i−1(n)− ϕ̃i−2(n),

where ϕ̃i(n) is the unwrapped phase of the Fourier transform at frame i and fre-

quency bin n.

By adopting a short-hand notation for the left-hand side of Equation 20

(21) ∆ϕ̃i(n) = ϕ̃i(n)− ϕ̃i−1(n)

and substituting the short-hand into Equation 20 and rearranging the terms, a

prediction ϕ̂i(n) can be made about the phase of the nth bin for frame i given the

observations of the previous two frames as

(22) ϕ̂i(n) = princarg [ϕ̃i−1(n) + ∆ϕ̃i−1(n)] ,

where the function princarg unwraps the phase value and maps it into the range

[−π, π].

The predictions of the magnitude spectrum, M̂i(n), and the phase spectrum,

ϕ̂i(n), are then converted into polar form to give a spectral prediction, Ŝi(n), in the



36

complex domain

(23) Ŝi(n) = M̂i(n) exp (jϕ̂i(n)) ,

which is compared to the observed complex spectrum

(24) Si(n) = Mi(n) exp (jϕi(n))

using Euclidean distance. The complex spectral difference, Γi, at frame i is then

computed as the sum of the distances between the predicted and observed spectra

for all n bins

(25) Γi =
N∑
n=1

|Si(n)− Ŝi(n)|2.

The complex spectral difference onset detection function has been relatively

popular and has been used by many researchers (e.g., Davies and Plumbley (2007)

and Degara et al. (2012)) in beat tracking systems.

5.3 Tonal features

Tonality is one of the main aspects of Western music and as such, it is important to

have methods for extracting the tonal content of a song. In Western tonal music,

key is a system of relationships between a series of pitches having a central pitch, or

a tonic, as its most important element. In addition to the tonic, a key has two other

important pitches: the dominant degree, which is the fifth degree of the scale; and

the subdominant degree, which is the fourth degree of the scale. The subdominant

degree lies below the tonic and dominant lies above it. (Gómez, 2006b)

The two basic key modes, major and minor, have different musical character-

istics regarding the position of tones and semitones within their respective scales.

A scale is composed of a sequence of notes and each two notes form an interval

that is defined by a ratio between two note frequencies f1 and f2. A semitone is

defined by a frequency ratio of f2/f2 = 21/12 for an equal-tempered scale. An in-

terval of n semitones is defined by a frequency ratio of f2/f1 = 2n/12. Thus, the



37

amount of semitones n in an interval between two frequencies f1 and f2 is defined

by n = 12 log2(f2/f1). (Gómez, 2006b)

When considering an equal-tempered scale and enharmonic equivalence, there

exists 24 keys in total as each tonic manages both a major and a minor mode. This

means that there are 12 equally distributed semitones within an octave. The 12

semitones play a major role when computing tonal features. (Gómez, 2006b)

Gómez (2006b) presented the harmonic pitch class profile (HPCP), which is a

12-dimensional vector representing the intensities of the 12 semitone pitch classes of

an equally-tempered chromatic scale. It is based on the pitch class profile proposed

by Fujishima (1999). The differences to PCP are the use of only those spectral peaks

whose frequency is within the interval [100, 5000] Hz, the introduction of a weight

into the feature computation, and the use of a higher resolution in frequency bin,

which is achieved by decreasing the quantization level to less than a semitone. The

pitch class intensities are sometimes called chroma features and the HPCP is then

called the chroma feature vector (Schedl et al., 2014, pp. 159-160).

As described by Gómez (2006b), the first step in the HPCP computation is the

STFT, which calculated using a frame size of 4096 samples, hop size of 512 samples,

and a Blackman-Harris 62 dB window (Harris, 1978, pp. 64-65). Next, the spectral

peaks, i.e., the local maxima of the magnitude spectrum, are determined. Finally,

the HPCP values are then computed as

(26) HPCP(n) =
nPeaks∑
i=1

w(n, fi)a
2
1,

where n is the HPCP bin, ai is the linear magnitude of the i-th peak, fi is the

frequency value of the i-th peak, nPeaks is the number of considered spectral peaks,

and w(n, fi) is the weight of the frequency fi when considering the HPCP bin n.

The weight depends on the frequency distance between fi and the center fre-

quency of the bin n, fn, measured in semitones. The center frequency of the n-th

bin is

(27) fn = fref2n/size,

where size is the number of bins in the HPCP vector (either 12, 24, or 36), and fref



38

is the reference frequency, which is defined as

(28) fref = 440 · 2df/12,

where df is the detuning factor, which can be estimated by analyzing the deviation

of the spectral peaks with respect to the standard reference frequency of 440 Hz

(Gómez, 2006a, p. 74). The distance in semitones between the peak frequency fi

and the center frequency fn is defined as

(29) d = 12 log2

(
fi
fn

)
+ 12m,

where m is the integer that minimizes the magnitude of the distance |d|. Finally,

the weight is computed as

(30) w(n, fi) =


cos2

(
π

2

d

0.5l

)
if |d| ≤ 0.5l

0 if |d| > 0.5l

,

where l is the length of the weighting window, which is a parameter of the algorithm

and has been empirically set to 4/3 semitones.

After the HPCP values have been computed, they are normalized for each

analysis frame. This is done with respect to the maximum value of the entire

vector to store the relative relevance of each HPCP bin. Thus, the normalization is

computed as

(31) HPCPnormalized(n) =
HPCP(n)

max(HPCP)
.

To estimate the key, the correlation of the HPCP vector with a matrix of

HPCP profiles corresponding to different keys K is computed. K consists of two

matrices, one for each key mode, of size 12 · size. The correlation value R(i, j) is

computed for each key note as

(32) R(i, j) = r(HPCP, K(i, j)) =
E[(HPCP− µHPCP) · (K(i, j)− µK(i,j))]

σHPCP · σK(i,j)

,



39

where K(i, j) is the key profile, i = 1, 2 where 1 represents the major profile and

2 the minor profile, j = 1, . . . , 12 for the 12 possible key notes, and E is expected

value operator. For details on the construction of the key profile matrix based

on the model proposed by Krumhansl and Schmuckler (1990) see (Gómez, 2006b).

The maximum correlation value R(imax, jmax) = maxi,j(R(i, j)) corresponds to the

estimated key note and mode, and it is used as a measure of the tonalness, the

degree of tonality or key strength.

The HPCP can also be used as an input for other algorithms to estimate the

chords and chord progression of a piece of music.



40

6 Audio-based similarity measures

Various similarity measures have been used to compare audio features extracted

from the audio signal. This chapter introduces some of the typical measures for

timbral similarity.

6.1 K-means clustering with Earth Mover’s Distance

K-means clustering with Earth Mover’s Distance (EMD) was originally proposed

by Logan and Salomon (2001). The first step is to cluster the target song’s feature

vector using K-means clustering. The set of clusters is characterized by the mean,

covariance, and weight of each cluster, respectively. Logan and Salomon denote the

set of clusters as the signature of song.

The obtained song signatures are then compared using EMD (Rubner, Tomasi,

& Guibas, 2000), which calculates the minimum amount of work needed to transform

one distribution into the other. Let P = {(µp1 ,Σp1 , wp1), . . . , (µpm ,Σpm , wpm)} be a

song signature with m clusters where µpi , Σpi , and wpi are the mean, covariance, and

weight of cluster pi. Let Q = {(µq1 ,Σq1 , wq1), . . . , (µqn ,Σqn , wqn)} be another song

signature. Let dpiqj be the distance between clusters pi and qj, which is computed

using a symmetric form of Kullback-Leibler divergence. For clusters pi and qj this

takes the form

(33) dpiqj =
Σpi

Σqj

+
Σqj

Σpi

+
(
µpi − µqj

)2 · ( 1

Σpi

+
1

Σqj

)
.

Define fpiqj as the flow between pi and qj. It reflects the cost of moving probability

mass from one cluster to the other. Next, all fpiqj ’s are solved so that the overall

cost W is minimized. W is defined as

(34) W =
m∑
i=1

n∑
j=1

dpiqjfpiqj

and is subject to a series of constraints. These constraints define the problem of

seeking the cheapest way to transform signature P to signature Q, which can be

formulated as a linear programming task and solved efficiently. Once all fpiqj have



41

been solved, the EMD is calculated as

(35) EMD(P,Q) =

∑m
i=1

∑n
j=1 dpiqjfpiqj∑m

i=1

∑n
j=1 fpiqj

.

Magno and Sable (2008) present a slightly different version of this measure.

In their version, each cluster is fit with a Gaussian component to form a Gaussian

mixture model (GMM). Magno and Sable, as well as many other authors (e.g., Celma

(2010, p. 76) and Mandel and Ellis (2005)), falsely say that Logan and Salomon

used K-means to learn the GMM parameters when they in fact used the K-means

clusters to model the songs and did not use GMMs at all.

6.2 Gaussian Mixture Models with Monte Carlo sampling

Aucouturier and Pachet (2002) introduced the use of GMMs to model songs. Their

approach consists of two steps, of which the first is to cluster the MFCC feature

vectors using a GMM. A GMM estimates probability density as the weighted sum

of M simpler Gaussian densities, which are often called components. Aucouturier

and Pachet give the formula for a GMM as

(36) p(Ft) =
M∑
m=1

CmN (Ft, µm,Σm) ,

where Ft is the feature vector observed at time t, N is a multivariate Gaussian

probability density function with mean vector µm, covariance matrix Σm, and Cm

is a mixture coefficient. Pampalk (2006) gives the formula for N as

(37) N (x, µ,Σ) =

(
1

2π

)n/2
|Σ|−1/2 exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
,

where n is the dimension of the feature vector.

Aucouturier and Pachet used three Gaussian distributions per mixture, but in

a later evaluation (2004) discovered that using more Gaussian components provided

better results. They obtained the best results using 20 MFCCs and 50 Gaussian

components. The implementation of this method that won the ISMIR 2004 genre

classification contest used 30 Gaussian components (Pampalk, 2004).



42

As described by Pampalk (2006), the parameters of a GMM, Θ = {µm,Σm, Cm|
m = 1..M}, have to be estimated per GMM, i.e., per song. The optimal estimate for

the parameters maximizes the likelihood that the feature vector Ft = {x1, . . . , xn}
was generated by the GMM. Log-likelihood is the commonly used measure to com-

pute the likelihood and it is computed as

(38) L(Ft|Θ) = log
∏
n

p(xn|Θ) =
∑
n

log p(xn|Θ).

Good estimates for the parameters can be found using the Expectation-Maxi-

mization (EM) algorithm although the initial estimates can be random, or computed

using other clustering algorithms. Aucouturier and Pachet used K-means to compute

the initial parameters.

The EM algorithm has two steps. The first step is to compute the expecta-

tion, which is the probability that an observation xn was generated by the m-th

component. The formula for the expectation step is

(39) P (m|xn,Θ) =
p(xn|m,Θ)Cm

p(xn)
=

N (xn, µm,Σm)Cm∑M
m′=1N (xn, µm′ ,Σm′)Cm′

.

The second step of EM is the maximization of the expectation, in which the param-

eters are recomputed based on the expectations. The formula for the maximization

step is

µ∗m =

∑
n P (m|xn,Θ)xn∑
n′ P (m|xn′ ,Θ)

Σ∗m =

∑
n P (m|xn,Θ)(xn − µm)(xn − µm)T∑

n′ P (m|xn′ ,Θ)

C∗m =
1

N

∑
n

P (m|xn,Θ).

(40)

After the GMMs have been formed, the second step of the approach is to

compute the similarity between the cluster models, i.e., songs. This is done by

drawing a sample from GMMs representing songs A and B. Let these samples be

XA and XB. Aucouturier and Patchet mention that the sampling process roughly

corresponds to recreating a song from its timbre model. The sampling process

is known as Monte Carlo Sampling. The log-likelihood L(X|Θ) (Equation 38) is



43

computed for each song/sample combination and the results are used to compute

the distance. This is computed as

(41) dAB = L(XA|ΘA) + L(XB|ΘB)− L(XA|ΘB)− L(XB|ΘA).

Pampalk (2006) notes that L(XA|ΘB) and L(XB|ΘA) are generally different

values. Both are used because a symmetric similarity measure is desirable for most

applications. Furthermore, the self-similarity is added to normalize the results and

in most cases the inequalities L(XA|ΘA) > L(XA|ΘB) and L(XA|ΘA) > L(XB|ΘA)

hold true.

6.3 Average feature vectors with Euclidean distance

Tzanetakis and Cook (2002) presented a simple method in which the means and vari-

ances of spectral centroid, spectral rolloff, spectral flux, time domain zero crossings,

low energy, and the first five MFCC coefficients were combined into a single 19-

dimensional feature vector. In addition to the timbral features, they used six rhyth-

mic content features and five pitch content features resulting in a 30-dimensional

feature vector.

Tzanetakis and Cook trained a GMM for a genre classification tasks using

the feature vectors. However, Magno and Sable (2008) used Euclidean distance

to determine the similarity of the feature vectors as the vectors can be compared

with standard distance measures. In another work, Tzanetakis (2002, p. 58) used

Mahalanobis distance to compare the vectors citing different dynamic ranges of the

features and their probable correlation as the reason for using it over Euclidean

distance. In fact, Tzanetakis mentions that a näıve implementation of the similarity

retrieval would use Euclidean distance.

6.4 Single Gaussian with Kullback-Leibler divergence

Mandel and Ellis (2005) presented a method using a single Gaussian with full co-

variance matrix to model a song. For comparing two Gaussian models, they used

Kullback-Leibler (KL) divergence. For two distributions, p(x) and q(x), it is defined



44

as

(42) KL (p‖q) =

∫
p(x) log

p(x)

q(x)
dx.

There exists a closed form of the KL divergence for single Gaussians and it is

(43) KL (p‖q) =
1

2

[
log

(
|Σq|
|Σp|

)
+ Tr(Σ−1q Σp) + (µp − µq)TΣ−1q (µp − µq)− d

]
,

where d is the dimensionality of x, and Tr(M) is the trace of the matrix M .

As Mandel and Ellis used the KL divergence as a support vector machine

kernel, it had to be modified to satisfy the Mercer conditions. The conditions are

not fulfilled because KL divergence is neither symmetric nor positive definite. To

symmetrize KL divergence, Mandel and Ellis summed the two divergences together

(44) DKL(p, q) = KL (p‖q) +KL (q‖p) .

Fulfilling the other Mercer condition can be done by exponentiating the elements of

this matrix as it will create a positive definite matrix. The final gram matrix has

elements

(45) K(Xi, Xj) = e−γDKL(Xi,Xj),

where γ is a parameter that can be tuned to maximize classification accuracy.

No closed form solution exists for KL divergence between two GMMs and it

must be approximated instead. Bogdanov et al. (2009) compare songs X and Y

modeled using GMMs containing a single Gaussian component with a closed form

symmetric approximation of KL divergence as

d(X, Y ) = Tr(Σ−1X ΣY ) + Tr(Σ−1Y ΣX) +

Tr((Σ−1X + Σ−1Y )(µX − µY )(µX − µY )T )− 2NMFCC ,
(46)

where µX and µY are MFCC means, ΣX and ΣY are MFCC covariance matrices,

and NMFCC is the number of used MFCCs.



45

6.5 Euclidean distance based on Principal Component

Analysis

Cano et al. (2005) used the Euclidean metric to compare feature vectors. Bogdanov

et al. (2009) consulted Cano on the methodology used as the cited reference lacked

specific details. Cano et al. normalized the feature data to interval [0, 1] and then

used principal component analysis to reduce the dimension of the feature vectors to

25 variables. The comparisons were then done in the reduced feature space.

This similarity measure does not use MFCCs unlike all the other described

measures. It uses an extensive set of features representing the timbral, rhythmic, and

tonal aspects of the song. These include various spectral features such as spectral

centroid, spread, and kurtosis. Rhythmic aspects are represented by beats loudness

and the tonal aspects by untransposed harmonic pitch class profiles and key strength.

(Bogdanov et al., 2011)



46

7 Content-based music recommender

This chapter describes a query-by-example content-based music recommender, which

allows the user to input a song for analysis and recommends n most similar songs

to the user. The recommender does not incorporate any user profiling and is based

purely on objective similarity.

7.1 Dataset

The dataset that was used to train and evaluate the recommender was based on

the 10,000-song subset of the Million Song Dataset (MSD) (Bertin-Mahieux, Ellis,

Whitman, & Lamere, 2011). The songs in the subset have been selected randomly

from the full dataset. The MSD dataset consists of pre-computed song features and

metadata information related to the songs. The dataset does not contain any actual

audio content as sharing songs would infringe on the artists’ copyright, but pre-

computed song features do not. However, as the method for computing the features

is not well documented and we needed more control over the features as well as more

features in general, we needed to get access to the audio content.

The recommended method for obtaining the audio is to fetch song previews

from 7digital1 and the dataset contains several 7digital identifier numbers related to

each song, which makes it relatively easy to do so. By using the 7digital identifiers

from the dataset as well as identifiers fetched by searching the store for the songs,

we were able to fetch previews for 7143 songs. The length of each preview was

either 30 or 60 seconds although few songs had previews whose duration was less

than 30 seconds. The sampling rate for most songs was 44.1 kHz but some songs

had a sampling rate of 22.05 kHz. Many songs were no longer available with the

dataset’s identifier as different versions, e.g., remastered, of the albums had replaced

the original albums. Some albums or artists had been completely removed from the

store and were not available.

To compute the audio features, an open-source C++ library called Essentia

(Bogdanov, Wack, et al., 2013) was used. The library includes bindings for Python,

which was the programming language of choice for implementing the feature ex-

tractor. The computed audio features are listed in Table 1. Some of the computed

features were not used in similarity comparisons due to their inaccuracy, but were

1An online music store. https://www.7digital.com/



47

still used for computing the high-level features.

Instead of storing all values for the audio frames, several statistics were com-

puted over the frames. These statistics included the minimum and maximum values,

median, mean, variance, and the mean and variance of the first derivative and sec-

ond derivative. For some features the values were simply summarized. The means

of the coefficients, the covariance matrix and its inverse were computed for MFCCs

and GFCCs.

The high-level features were computed using pre-trained classifier models from

the lower-level representations of the songs. These models were provided separately

by the authors of Essentia2. We used only the models with the highest accuracy.

Table 1: Computed audio features.

Feature group Feature name

Low-level Average loudness, dynamic complexity

Spectral centroid, spread, kurtosis, rolloff, decrease, skewness

Spectral crest, flatness, RMS, flux

Spectral energy, energy band ratio, strong peak, complexity

Spectral dissonance, entropy, contrast

High frequency content

Pitch salience

Silence rate at 20, 30, and 60 dB∗

Zero crossing rate

Mel bands, ERB bands, Bark bands

MFCCs∗, GFCCs∗

Kurtosis, skewness, spread, crest, and flatness for Mel, ERB and Bark bands

Rhythmic Beat positions∗

Beat loudness, beat loudness band ratio

BPM, BPM histogram∗

Onset rate

Danceability

Tonal Transposed and untransposed HPCP, key strength∗

Key∗, scale∗

HPCP crest and entropy

Tuning frequency∗, diatonic strength∗

Chords key∗, scale∗, strength∗

Chord change rate∗, chords histogram∗

Equal-tempered deviation∗, non-tempered energy ratio∗

High-level Danceability (danceable/not danceable)

Singer gender (male/female)

Vocal/instrumental

Mood (acoustic/not acoustic and aggressive/not aggressive)

Timbre (bright/dark)

Tonality (tonal/atonal)

∗Not used in similarity comparisons.

2http://essentia.upf.edu/documentation/svm models/



48

7.2 Implementation

The implemented recommender attempts to improve the recommendations by using

more features than Cano et al. (2005) while using a similar similarity measure,

which is described in Section 6.5. One noteworthy addition to the used features are

the high-level features that Bogdanov et al. (2013) used to achieve better recom-

mendations than methods based on only MFCCs. The high-level features were not

included in the PCA and were appended to the reduced feature vectors consisting

of 25 PCA components. With the high-level features, the feature vectors contained

40 elements per song.

The recommender uses K-nearest neighbors (KNN) as the classifier to easily

obtain the top-N recommendations for a given query song. In this case, we settled

for N = 10. We used Euclidean distance as the similarity metric to stay as close to

the method used by Cano et al.

Figure 5. The pipeline for obtaining recommendations for a query song.

The pipeline for obtaining recommendations for a query song is detailed as

a flowchart in Figure 5. In the feature extraction step, all features listed in Table

1 are extracted. After the extraction, the data is first normalized to range [0, 1]

and then the dimensions of the data are reduced using PCA. The final feature

vector is then used as an input for the trained KNN model that outputs the top-N

recommendations.



49

7.3 Evaluation

We evaluated the recommender using two different methods. The first evaluation

method was more objective as it was based on the tags obtained from Last.fm. The

second method was entirely subjective and based on the author’s judgment on the

similarity of the songs. In the first method, our recommender (REC-PCA+HI) was

compared to randomly chosen recommendations as well as a recommender using the

single Gaussian similarity measure described in Section 6.4, that is, a recommender

using only MFCCs (REC-MFCC). In the second method, our recommender was

compared to the MFCC-based recommender. We also evaluated the effectiveness of

the high-level features by comparing our recommender to a recommender trained

without the high-level features (REC-PCA).

7.3.1 Objective evaluation

The objective evaluation method split the dataset into a test set containing 100

randomly selected songs and a training set containing the rest of the songs. The

recommender was trained using the training set and then queried using every song

in the test set as the input.

The actual evaluation of the recommendation quality was based on the similar

tags the input song and the recommended songs had. The top tags (genre, personal

tags) were fetched from Last.fm for the input song and for each of the recommenda-

tions provided by the recommender. At most 10 tags were used per song. The tags

were then compared and used to form a ratio of how many of the tags of the recom-

mended song were similar. After the similar tag ratios had been discovered for all

recommendations, the ratio of good recommendations was calculated. We consid-

ered every recommendation that had a similar tag ratio of 0.3, i.e., three similar tags

in most cases, to be a good recommendation in the context of this evaluation. Once

every song in the test set had been used as the query song, the mean of the good

recommendation ratios was computed as the overall accuracy of the recommender.

However, this approach had some issues as some songs did not have any top

tags or the particular song was not found in the Last.fm database. In these cases,

the top tags for the artist were fetched. However, not all of the artists were found

in the database either. In most cases these issues were due to the song having

been performed by multiple artists. Due to inconsistent artist naming in the MSD,



50

parsing only the relevant artist name would have required relatively complex rules.

Additionally, certain song names consisted of multiple parts, e.g., ”Concerto for

Orchestra (Zoroastrian Riddles) (1996)/3. Adagio non troppo”, and determining

the name possibly used in Last.fm’s database would have been non-trivial. Thus,

when tags could not be found for a song, the song was simply skipped.

The evaluation described above was repeated 50 times after which the total

accuracy for each recommender was computed. The results of the evaluation are

presented in Table 2. The table lists the accuracy as a percentage for every evaluation

as well as the total accuracy computed over all the evaluations.

The obtained results correspond to the results obtained by Bogdanov et al.

(2011) in their similarity measure comparison, in which the single Gaussian recom-

mender performed better than a recommender using the PCA method. In some eval-

uations, both REC-PCA and REC-PCA+HI provide better recommendations than

REC-MFCC but overall they provide less accurate recommendations. All methods

outperform the random selection.

The addition of the high-level features improves the quality of recommenda-

tions in most cases, which suggests that the high-level features are beneficial for

music recommendation.

7.3.2 Subjective evaluation

The subjective evaluation method was based on listening to the song previews and

deciding whether the songs sounded similar. As discussed previously in Section

2.2, the similarity of the songs is completely subjective and properly evaluating

the recommender would require multiple subjects. This was not done due to time

constraints. The accuracy of randomly selected recommendations was not evaluated

subjectively as the objective evaluation showed that all recommenders outperformed

the random baseline.

For the evaluation, 25 songs were randomly selected from the dataset. The

songs were then used as queries for the recommenders and the recommended songs

were compared to query song. The songs were given a similarity rating using the

following ratings:

• Not similar songs did not sound like the song used as a query.

• Somewhat similar songs had some similarities to the query song, e.g., similar



51

Table 2: Results of objective evaluation.

Method REC-PCA REC-PCA+HI REC-MFCC Random

6.733218 7.755456 6.570354 2.561873

3.113426 3.206019 4.155093 2.292926

5.824742 6.062428 9.650630 2.752556

6.819967 7.742690 10.140351 2.266527

4.783626 4.577277 5.298246 2.048767

6.563239 6.315012 6.870567 2.336528

6.296296 5.791246 7.732884 2.327734

5.055556 4.792398 6.970760 2.115976

4.905754 6.262401 6.795222 2.164036

5.161565 5.609410 4.196226 2.810787

5.598846 6.007295 6.105499 1.923309

6.746032 6.907814 7.716728 2.143820

5.314505 5.984043 7.044917 2.733811

6.607757 7.364998 6.338570 2.600848

5.107184 5.203322 5.693013 1.870962

5.950000 6.390079 6.717460 2.646911

6.895255 8.683449 7.743056 2.247353

3.673469 4.481293 4.529478 1.753077

7.972509 8.737113 8.582474 3.072995

5.461988 6.192982 7.039265 2.537376

4.736690 4.864005 4.884259 2.482440

8.040828 7.644003 8.924480 2.369983

7.701754 7.017544 7.915205 2.294046

6.923977 6.461988 6.988304 2.151584

9.207702 8.598485 8.860480 2.465699

7.187135 7.267335 8.008772 2.449631

7.047101 7.304607 8.230676 2.491446

5.815789 5.359649 7.644528 2.266437

3.451968 3.177083 4.415509 2.041062

5.856307 5.646199 8.170426 2.224903

7.884039 8.793210 10.435185 2.538937

3.535880 3.399884 3.927745 2.040127

5.685764 5.607639 8.046875 1.999770

5.400585 5.701754 7.833333 1.854815

5.269274 5.918367 6.493764 2.021732

5.203322 5.005727 5.057274 2.406994

5.525687 5.740741 5.430108 1.877152

6.140046 6.513310 6.178902 2.323281

6.529240 6.921053 8.801170 2.310103

6.486111 6.288889 8.127778 2.390718

3.315217 3.817719 5.469289 1.819739

5.202295 5.763889 8.454106 2.364619

5.238095 6.383220 7.593537 1.974333

5.816151 6.592211 8.611111 2.089455

3.176714 3.540189 2.612293 2.212621

6.629439 6.620848 8.101375 2.301098

8.073671 8.354469 8.546843 2.485782

6.187642 6.502268 6.363379 2.225862

6.022459 6.081560 5.789007 2.465544

3.315603 4.045508 4.373522 2.419606

Average of total accuracy 5.823828 6.100002 6.923601 2.291354



52

feel or style.

• Similar songs sounded similar to the query song. Generally these songs had

many similarities but might not have been good recommendations.

• Very similar songs sounded very similar to the query song and would have

been excellent recommendations as a result unless they were from the same

artist.

The results of the evaluation are presented in Table 3. REC-PCA+HI had the

most not similar ratings as well as the most similar and very similar ratings, which

indicates that while the recommendations were more often complete misses, the hits

were of better quality. REC-PCA and REC-MFCC had nearly identical ratios of

ratings.

All recommenders generally recommended songs that were similar to each other

but sometimes not even remotely similar to query song. The recommenders also pro-

vided more accurate recommendations for query songs belonging to certain genres.

Rap and metal songs generally received many recommendations that were at least

somewhat similar to the query song. REC-PCA+HI worked especially well for metal

songs.

Some genres were problematic for the other similarity but not for the other.

REC-MFCC often recommended completely different genre for electronic music

while REC-PCA and REC-PCA+HI provided relatively accurate recommendations.

REC-PCA and REC-PCA+HI in turn had the same issue with Latin music, e.g.,

salsa, while REC-MFCC was able to provide some similar recommendations.

The album effect discovered by Mandel and Ellis (2005) was also noticeable as

songs from the same album were usually in the top three recommendations. These

obvious recommendations are not great as the user generally wants to find similar

songs by other artists.

Table 3: Results of subjective evaluation.

Not similar Somewhat similar Similar Very similar

REC-PCA 0.765 0.163 0.056 0.016

REC-PCA+HI 0.772 0.136 0.068 0.024

REC-MFCC 0.764 0.164 0.056 0.016



53

8 Conclusions

Both objective and subjective evaluation show that music recommendation based

solely on the audio content does not give accurate recommendations. This goes

in line with the other research on content-based recommendation. Had the recom-

menders been compared to a collaborative filtering recommender, their ineffective-

ness would have been even more apparent.

It is possible that better results would have been obtained with complete songs

and larger dataset. The small size of the dataset naturally means that there are fewer

songs that can be recommended. This affects the quality of the recommendations

as there are fewer similar songs, which leads to the recommender recommending less

similar songs.

The use of previews also has an effect on the recommendations as the preview

might not be very representative of the entire song. For example, a preview of a

rock song might only contain a softer or a quieter part of the song, which would lead

to recommendations that completely lack the heavy sections that might be present

in the full query song.

The selection of the extracted features for determining the similarity among

songs seems to be very important as using more features does not seem to improve

the recommendation quality. The recommender using only the MFCCs outper-

formed the recommenders using a wide range of features. It seems to be more

important to select a subset of features that better represent the audio content and

use a better similarity metric than a simple metric with many features. The use

of high-level features in addition to the lower level features had a very minor but

positive effect by improving recommendations slightly.

Nonetheless, researchers have discovered that content-based recommenders are

not the solution to the recommendation problem on their own and they work better

as a complementary recommendation technique when combined with other tech-

niques. Content-based recommendation is especially useful cold-start situations

when no collaborative filtering data is available as it makes it possible to provide at

least somewhat accurate recommendations to the user.

Content-based recommendation can still improve in the future if certain fea-

tures such as the key and chord progression of a song can be more accurately com-

puted. Additionally, high-level semantic features inferred from the low-level features



54

have been shown to improve the quality of recommendations (Bogdanov, Haro, et

al., 2013).



55

References

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.

Knowl. Data Eng., 17 (6), 734–749.

Allamanche, E., Herre, J., Hellmuth, O., Fröba, B., Kastner, T., & Cremer, M.

(2001). Content-based identification of audio material using MPEG-7 low

level description. In Proceedings of the 2nd International Symposium on Music

Information Retrieval.

Aucouturier, J., & Pachet, F. (2002). Music similarity measures: What’s the use?

In Proceedings of the 3rd International Conference on Music Information Re-

trieval (pp. 13–17).

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., . . .

Schwaiger, R. (2011). InCarMusic: Context-aware music recommendations

in a car. In Proceedings of the 12th International Conference on E-Commerce

and Web Technologies (pp. 89–100). Springer Berlin Heidelberg.

Barrington, L., Oda, R., & Lanckriet, G. R. G. (2009). Smarter than Genius?

Human evaluation of music recommender systems. In Proceedings of the 10th

International Society for Music Information Retrieval Conference (pp. 357–

362).

Baumann, S., & Hummel, O. (2003). Using cultural metadata for artist recommen-

dations. In Proceedings of the 3rd International Conference on WEB Delivering

of Music (pp. 138–141).

Bello, J. P., Duxbury, C., Davies, M. E., & Sandler, M. B. (2004). On the use of

phase and energy for musical onset detection in the complex domain. IEEE

Signal Processing Letters , 11 (6), 553–556.

Berenzweig, A., Ellis, D. P. W., & Lawrence, S. (2003). Anchor space for classifi-

cation and similarity measurement of music. In Proceedings of the 2003 IEEE

International Conference on Multimedia and Expo (Vol. 1, pp. 29–32).

Berenzweig, A., Logan, B., Ellis, D. P. W., & Whitman, B. (2004). A large-scale

evaluation of acoustic and subjective music-similarity measures. Computer

Music Journal , 28 (2), 63–76.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., & Lamere, P. (2011). The Million

Song Dataset. In Proceedings of the 12th International Conference on Music



56

Information Retrieval.

Blum, T., Keislar, D., Wheaton, J., & Wold, E. (1999). Method and article of

manufacture for content-based analysis, storage, retrieval, and segmentation

of audio information. (US Patent 5,918,223)

Bogdanov, D., Haro, M., Fuhrmann, F., Xambó, A., Gómez, E., & Herrera, P.

(2013). Semantic audio content-based music recommendation and visualization

based on user preference examples. Information Processing & Management ,

49 (1), 13–33.

Bogdanov, D., Serrà, J., Wack, N., & Herrera, P. (2009). From low-level to high-

level: Comparative study of music similarity measures. In Proceedings of

the 11th IEEE International Symposium on Multimedia (pp. 453–458). IEEE

Computer Society.

Bogdanov, D., Serrà, J., Wack, N., Herrera, P., & Serra, X. (2011). Unifying

low-level and high-level music similarity measures. IEEE Trans. Multimedia,

13 (4), 687–701.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., . . . Serra,

X. (2013). ESSENTIA: An audio analysis library for music information re-

trieval. In Proceedings of the 14th International Society for Music Information

Retrieval Conference (pp. 493–498).

Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., & He, X. (2010). Music

recommendation by unified hypergraph: Combining social media information

and music content. In Proceedings of the 18th ACM International Conference

on Multimedia (pp. 391–400). ACM.

Burke, R. D. (2002). Hybrid recommender systems: Survey and experiments. User

Model. User-Adapt. Interact., 12 (4), 331–370.

Cano, P., Koppenberger, M., & Wack, N. (2005). Content-based music audio recom-

mendation. In Proceedings of the 13th Annual ACM International Conference

on Multimedia (pp. 211–212). ACM.

Cebrián, T., Planagumà, M., Villegas, P., & Amatriain, X. (2010). Music recom-

mendations with temporal context awareness. In Proceedings of the 4th ACM

Conference on Recommender Systems (pp. 349–352). ACM.

Celma, Ò. (2010). Music Recommendation and Discovery - The Long Tail, Long

Fail, and Long Play in the Digital Music Space. Springer.

Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel recommenda-



57

tions. In Proceedings of the 2008 ACM Conference on Recommender Systems

(pp. 179–186). ACM.

Celma, Ò., & Serra, X. (2008). FOAFing the music: Bridging the semantic gap in

music recommendation. J. Web Sem., 6 (4), 250–256.

Chedrawy, Z., & Abidi, S. S. R. (2009). A web recommender system for recom-

mending, predicting and personalizing music playlists. In Proceedings of the

10th International Conference on Web Information Systems Engineering (pp.

335–342). Springer-Verlag.

Chen, H., & Chen, A. L. P. (2005). A music recommendation system based on

music and user grouping. J. Intell. Inf. Syst., 24 (2-3), 113–132.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M.

(1999). Combining content-based and collaborative filters in an online news-

paper. In Proceedings of ACM SIGIR Workshop on Recommender Systems.

Cohen, W. W., & Fan, W. (2000). Web-collaborative filtering: Recommending

music by crawling the web. Computer Networks , 33 (1-6), 685–698.

Cosley, D., Lam, S. K., Albert, I., Konstan, J. A., & Riedl, J. (2003). Is seeing

believing?: How recommender system interfaces affect users’ opinions. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems

(pp. 585–592). ACM.

Cunningham, S., Caulder, S., & Grout, V. (2008). Saturday night or fever? Context-

aware music playlists. In Proceedings of the Audio Mostly Conference.

Davies, M. E. P., & Plumbley, M. D. (2007). Context-dependent beat tracking of

musical audio. IEEE Trans. Audio, Speech & Lang. Proc., 15 (3), 1009–1020.

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations

for monosyllabic word recognition in continuously spoken sentences. IEEE

Transactions on Acoustics, Speech, and Signal Processing , 28 (4), 357–366.

Degara, N., Argones-Rúa, E., Pena, A., Torres-Guijarro, S., Davies, M. E. P., &

Plumbley, M. D. (2012). Reliability-informed beat tracking of musical signals.

IEEE Trans. Audio, Speech & Lang. Proc., 20 (1), 290–301.

Dias, R., & Fonseca, M. J. (2013). Improving music recommendation in session-

based collaborative filtering by using temporal context. In Proceedings of the

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

(pp. 783–788). IEEE Computer Society.

Donaldson, J. (2007). A hybrid social-acoustic recommendation system for popular



58

music. In Proceedings of the 2007 ACM Conference on Recommender Systems

(pp. 187–190). ACM.

Ekstrand, M. D., Riedl, J., & Konstan, J. A. (2011). Collaborative filtering recom-

mender systems. Foundations and Trends in Human-Computer Interaction,

4 (2), 175–243.

Ellis, D. P. W. (2007). Classifying music audio with timbral and chroma features.

In Proceedings of the 8th International Conference on Music Information Re-

trieval (pp. 339–340).

Foote, J. T. (1997). Content-based retrieval of music and audio. In Proceedings of

SPIE 3229, Multimedia Storage and Archiving Systems II (pp. 138–147).

Fujishima, T. (1999). Realtime chord recognition of musical sound: A system using

Common Lisp Music. In Proceedings of the 1999 International Computer Music

Conference.

Ganchev, T., Fakotakis, N., & Kokkinakis, G. (2005). Comparative evaluation of

various MFCC implementations on the speaker verification task. In Proceed-

ings of the SPECOM (Vol. 1, pp. 191–194).

Ge, M., Delgado-Battenfeld, C., & Jannach, D. (2010). Beyond accuracy: Evaluat-

ing recommender systems by coverage and serendipity. In Proceedings of the

4th ACM Conference on Recommender Systems (pp. 257–260). ACM.

Goldberg, D., Nichols, D. A., Oki, B. M., & Terry, D. B. (1992). Using collaborative

filtering to weave an information tapestry. Comm. of the ACM , 35 (12), 61–70.

Gómez, E. (2006a). Tonal description of music audio signals (PhD thesis). Univer-

sitat Pompeu Fabra, Barcelona, Spain.

Gómez, E. (2006b). Tonal description of polyphonic audio for music content pro-

cessing. INFORMS Journal on Computing , 18 (3), 294–304.

Gouyon, F. (2005). A computational approach to rhythm description — Audio

features for the computation of rhythm periodicity functions and their use in

tempo induction and music content processing (PhD thesis). Universitat Pom-

peu Fabra, Barcelona, Spain.

Grimaldi, M., & Cunningham, P. (2004). Experimenting with music taste predic-

tion by user profiling. In Proceedings of the 6th ACM SIGMM International

Workshop on Multimedia Information Retrieval (pp. 173–180). ACM.

Hamel, P., & Eck, D. (2010). Learning features from music audio with deep belief

networks. In Proceedings of the 11th International Society for Music Informa-



59

tion Retrieval Conference (pp. 339–344).

Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete

Fourier transform. Proceedings of the IEEE , 66 (1), 51–83.

Henaff, M., Jarrett, K., Kavukcuoglu, K., & LeCun, Y. (2011). Unsupervised

learning of sparse features for scalable audio classification. In Proceedings

of the 12th International Society for Music Information Retrieval Conference

(pp. 681–686).

Herlocker, J. L., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering

recommendations. In Proceedings of the 2000 ACM Conference on Computer

Supported Cooperative Work (pp. 241–250). ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. (2004). Evaluating

collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22 (1),

5–53.

Herrera, P., Resa, Z., & Sordo, M. (2010). Rocking around the clock eight days a

week: An exploration of temporal patterns of music listening. In Proceedings

of the 1st Workshop on Music Recommendation and Discovery.

Hoashi, K., Matsumoto, K., & Inoue, N. (2003). Personalization of user profiles for

content-based music retrieval based on relevance feedback. In Proceedings of

the 11th ACM International Conference on Multimedia (pp. 110–119). ACM.

Jawaheer, G., Szomszor, M., & Kostkova, P. (2010). Comparison of implicit and

explicit feedback from an online music recommendation service. In Proceedings

of the 1st International Workshop on Information Heterogeneity and Fusion

in Recommender Systems (pp. 47–51). ACM.

Jennings, D. (2007). Net, Blogs and Rock ’n’ Roll: How Digital Discovery Works

and What it Means for Consumers, Creators and Culture. Nicholas Brealey

Publishing.

Kaminskas, M., & Ricci, F. (2012). Contextual music information retrieval and

recommendation: State of the art and challenges. Computer Science Review ,

6 (2-3), 89–119.

Kaminskas, M., Ricci, F., & Schedl, M. (2013). Location-aware music recommenda-

tion using auto-tagging and hybrid matching. In Proceedings of the 7th ACM

Conference on Recommender Systems (pp. 17–24). ACM.

Knees, P., Pohle, T., Schedl, M., Schnitzer, D., Seyerlehner, K., & Widmer, G.

(2009). Augmenting text-based music retrieval with audio similarity: Advan-



60

tages and limitations. In Proceedings of the 10th International Society for

Music Information Retrieval Conference (pp. 579–584).

Knees, P., Pohle, T., Schedl, M., & Widmer, G. (2007). A music search engine

built upon audio-based and web-based similarity measures. In Proceedings

of the 30th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 447–454). ACM.

Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. SIGKDD

Explorations , 2 (1), 1–15.

Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. Oxford University

Press.

Lam, S. K., & Riedl, J. (2004). Shilling recommender systems for fun and profit.

In Proceedings of the 13th International Conference on World Wide Web (pp.

393–402). ACM.

Lee, J. S., & Lee, J. C. (2007). Context awareness by case-based reasoning in a music

recommendation system. In Proceedings of the 4th International Conference

on Ubiquitous Computing Systems (pp. 45–58). Springer-Verlag.

Lesaffre, M., Leman, M., & Martens, J. (2006). A user-oriented approach to music

information retrieval. In Content-Based Retrieval.

Li, T., & Ogihara, M. (2004). Content-based music similarity search and emotion

detection. In 2004 IEEE International Conference on Acoustics, Speech, and

Signal Processing (Vol. 5, pp. 705–708).

Logan, B. (2004). Music recommendation from song sets. In Proceedings of the 5th

International Conference on Music Information Retrieval.

Logan, B., & Salomon, A. (2001). A music similarity function based on signal anal-

ysis. In Proceedings of the 2001 IEEE International Conference on Multimedia

and Expo (pp. 745–748).

Lu, C., & Tseng, V. S. (2009). A novel method for personalized music recommen-

dation. Expert Syst. Appl., 36 (6), 10035–10044.

Magno, T., & Sable, C. (2008). A comparison of signal based music recommen-

dation to genre labels, collaborative filtering, musicological analysis, human

recommendation and random baseline. In Proceedings of the 9th International

Conference on Music Information Retrieval (pp. 161–166).

Maillet, F., Eck, D., Desjardins, G., & Lamere, P. (2009). Steerable playlist gener-

ation by learning song similarity from radio station playlists. In Proceedings



61

of the 10th International Society for Music Information Retrieval Conference

(pp. 345–350).

Mandel, M. I., & Ellis, D. (2005). Song-level features and support vector machines

for music classification. In Proceedings of the 6th International Conference on

Music Information Retrieval (pp. 594–599).

Masri, P., & Bateman, A. (1996). Improved modeling of attack transients in mu-

sic analysis-resynthesis. In Proceedings of the International Computer Music

Conference (pp. 100–103).

McFee, B., Barrington, L., & Lanckriet, G. (2012). Learning content similarity for

music recommendation. IEEE Trans. Audio, Speech, and Lang. Proc., 20 (8),

2207–2218.

McFee, B., & Lanckriet, G. R. G. (2009). Heterogeneous embedding for subjective

artist similarity. In Proceedings of the 10th International Society for Music

Information Retrieval Conference.

McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough:

How accuracy metrics have hurt recommender systems. In Extended abstracts

on human factors in computing systems (pp. 1097–1101). ACM.

Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Fujimura, K., & Ishida, T.

(2010). Classical music for rock fans?: Novel recommendations for expanding

user interests. In Proceedings of the 19th ACM International Conference on

Information and Knowledge Management (pp. 949–958). ACM.

Pachet, F., & Aucouturier, J.-J. (2004, April). Improving timbre similarity: How

high is the sky? Journal of Negative Results in Speech and Audio Sciences ,

1–13.

Pachet, F., Westermann, G., & Laigre, D. (2001). Musical data mining for electronic

music distribution. In Proceedings of the 1st International Conference on WEB

Delivering of Music (pp. 101–106). IEEE Computer Society.

Pampalk, E. (2004). A Matlab toolbox to compute music similarity from audio.

In Proceedings of the 5th International Conference on Music Information Re-

trieval.

Pampalk, E. (2006). Computational models of music similarity and their application

in music information retrieval (PhD thesis, Vienna University of Technology,

Vienna, Austria). Retrieved from http://www.ofai.at/~elias.pampalk/

publications/pampalk06thesis.pdf

http://www.ofai.at/~elias.pampalk/publications/pampalk06thesis.pdf
http://www.ofai.at/~elias.pampalk/publications/pampalk06thesis.pdf


62

Pampalk, E., Flexer, A., & Widmer, G. (2005). Improvements of audio-based

music similarity and genre classificaton. In Proceedings of the 6th International

Conference on Music Information Retrieval (pp. 628–633).

Peeters, G. (2004). A large set of audio features for sound description (similarity

and classification) in the CUIDADO project (Tech. Rep.). IRCAM.

Pohle, T., Knees, P., Schedl, M., & Widmer, G. (2007). Building an interactive

next-generation artist recommender based on automatically derived high-level

concepts. In Proceedings of the 2007 International Workshop on Content-Based

Multimedia Indexing (pp. 336–343).

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a

metric for image retrieval. International Journal of Computer Vision, 40 (2),

99–121.

Sánchez-Moreno, D., González, A. B. G., Vicente, M. D. M., Batista, V. F. L., &

Garćıa, M. N. M. (2016). A collaborative filtering method for music recom-

mendation using playing coefficients for artists and users. Expert Syst. Appl.,

66 , 234–244.

Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based col-

laborative filtering recommendation algorithms. In Proceedings of the 10th

International World Wide Web Conference (pp. 285–295). ACM.

Schedl, M., Flexer, A., & Urbano, J. (2013). The neglected user in music information

retrieval research. J. Intell. Inf. Syst., 41 (3), 523–539.

Schedl, M., Gómez, E., & Urbano, J. (2014). Music information retrieval: Re-

cent developments and applications. Foundations and Trends in Information

Retrieval , 8 (2-3), 127–261.

Schedl, M., & Hauger, D. (2015). Tailoring music recommendations to users by

considering diversity, mainstreaminess, and novelty. In Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval (pp. 947–950). ACM.

Schedl, M., Knees, P., McFee, B., Bogdanov, D., & Kaminskas, M. (2015). Music

recommender systems. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recom-

mender Systems Handbook (pp. 453–492). Springer US.

Schedl, M., Knees, P., & Widmer, G. (2005a). Improving prototypical artist detec-

tion by penalizing exorbitant popularity. In Proceedings of the 3rd Interna-

tional Symposium on Computer Music Modeling and Retrieval (pp. 196–200).



63

Schedl, M., Knees, P., & Widmer, G. (2005b). A web-based approach to assessing

artist similarity using co-occurrences. In Proceedings of the 4th International

Workshop on Content-Based Multimedia Indexing.

Schmidt, E. M., & Kim, Y. E. (2011). Learning emotion-based acoustic features

with deep belief networks. In Proceedings of IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics (pp. 65–68).

Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for

automating ”word of mouth”. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp. 210–217). ACM Press/Addison-

Wesley Publishing Co.

Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-

item matrix: A survey of the state of the art and future challenges. ACM

Comput. Surv., 47 (1), 3:1–3:45.

Slaney, M. (2011). Web-scale multimedia analysis: Does content matter? IEEE

MultiMedia, 18 (2), 12–15.

Slaney, M., Weinberger, K. Q., & White, W. (2008). Learning a metric for music

similarity. In Proceedings of the 9th International Society for Music Informa-

tion Retrieval Conference (pp. 313–318).

Song, Y., Dixon, S., & Pearce, M. (2012). A survey of music recommendation

systems and future perspectives. In Proceedings of the 9th International Sym-

posium on Computer Music Modeling and Retrieval (pp. 395–410).

Sotiropoulos, D. N., Lampropoulos, A. S., & Tsihrintzis, G. A. (2007). MUSIPER:

A system for modeling music similarity perception based on objective feature

subset selection. User Model. User-Adapt. Interact., 18 (4), 315–348.

Stenzel, R., & Kamps, T. (2005). Improving content-based similarity measures by

training a collaborative model. In Proceedings of 6th International Conference

on Music Information Retrieval (pp. 264–271).

Stevens, S., Volkmann, J., & Newman, E. (1937). A scale for the measurement of the

psychological magnitude pitch. Journal of the Acoustical Society of America,

8 (3), 185–190.

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques.

Advances in Artificial Intelligence, 2009 , 421425:1–421425:19.

Turnbull, D., Barrington, L., Lanckriet, G. R. G., & Yazdani, M. (2009). Combining

audio content and social context for semantic music discovery. In Proceedings



64

of the 32nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 387–394). ACM.

Tzanetakis, G. (2002). Manipulation, analysis and retrieval systems for audio signals

(PhD thesis). Princeton University, Princeton, NJ, USA.

Tzanetakis, G., & Cook, P. R. (2002). Musical genre classification of audio signals.

IEEE Trans. Speech and Audio Processing , 10 (5), 293–302.

Uitdenbogerd, A. L., & van Schyndel, R. G. (2002). A review of factors affecting

music recommender success. In Proceedings of the 3rd International Conference

on Music Information Retrieval (pp. 204–208).

van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music

recommendation. In Advances in Neural Information Processing Systems 26

(pp. 2643–2651). Curran Associates, Inc.

Vigliensoni, G., & Fujinaga, I. (2016). Automatic music recommendation systems:

Do demographic, profiling, and contextual features improve their performance?

In Proceedings of the 17th International Society for Music Information Re-

trieval Conference (pp. 94–100).

Vignoli, F., & Pauws, S. (2005). A music retrieval system based on user driven sim-

ilarity and its evaluation. In Proceedings of the 6th International Conference

on Music Information Retrieval (pp. 272–279).

Wang, X., Rosenblum, D. S., & Wang, Y. (2012). Context-aware mobile music

recommendation for daily activities. In Proceedings of the 20th ACM Interna-

tional Conference on Multimedia (pp. 99–108). ACM.

Wang, X., & Wang, Y. (2014). Improving content-based and hybrid music recom-

mendation using deep learning. In Proceedings of the 22nd ACM International

Conference on Multimedia (pp. 627–636). ACM.

Welsh, M., Borishov, N., Hill, J., von Behren, R., & Woo, A. (1999). Querying

large collections of music for similarity (Tech. Rep.). University of California,

Berkeley, CA.

Whitman, B., & Lawrence, S. (2002). Inferring descriptions and similarity for music

from community metadata. In Proceedings of the 2002 International Computer

Music Conference.

Wiggins, G. A. (2009). Semantic gap?? Schemantic schmap!! Methodological

considerations in the scientific study of music. In Proceedings of the 11th

IEEE International Symposium on Multimedia (pp. 477–482). IEEE Computer



65

Society.

Wold, E., Blum, T., Keislar, D., & Wheaton, J. (1996). Content-based classification,

search, and retrieval of audio. IEEE MultiMedia, 3 , 27–36.

Xu, C., Maddage, N. C., Shao, X., Cao, F., & Tian, Q. (2003). Musical genre

classification using support vector machines. In Proceedings of the 2003 IEEE

International Conference on Acoustics, Speech, and Signal Processing (pp.

429–432).

Yoshii, K., Goto, M., Komatani, K., Ogata, T., & Okuno, H. G. (2006). Hybrid col-

laborative and content-based music recommendation using probabilistic model

with latent user preferences. In Proceedings of the 7th International Conference

on Music Information Retrieval (pp. 296–301).

Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., & Jambor, T. (2012). Auralist:

Introducing serendipity into music recommendation. In Proceedings of the 5th

ACM International Conference on Web Search and Data Mining (pp. 13–22).

ACM.


	Introduction
	Recommendation as a problem
	Factors that affect recommendations
	Music recommendation

	Related work
	Music recommendation methods
	Collaborative filtering
	Context-based filtering
	Content-based filtering
	Hybrid methods

	Audio content features
	Low-level features
	Mel frequency cepstral coefficients
	Spectral features

	Rhythmic features
	Tonal features

	Audio-based similarity measures
	K-means clustering with Earth Mover's Distance
	Gaussian Mixture Models with Monte Carlo sampling
	Average feature vectors with Euclidean distance
	Single Gaussian with Kullback-Leibler divergence
	Euclidean distance based on Principal Component Analysis

	Content-based music recommender
	Dataset
	Implementation
	Evaluation
	Objective evaluation
	Subjective evaluation


	Conclusions
	References

