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ABSTRACT:

Neural tissue engineering and 3D in vitro tissue modeling require the development of biomaterials that take into

account the specified requirements of human neural cells and tissue. In this study, an alternative method of

producing biomimetic hydrogels based on gellan gum (GG) was developed by replacing traditional crosslinking

methods with the bioamines spermidine and spermine. These bioamines were proven to function as crosslinkers for

GG hydrogel at +37°C, allowing for the encapsulation of human neurons. We studied the mechanical and

rheological properties of the formed hydrogels, which showed biomimicking properties comparable to naïve rabbit

brain tissue under physiologically relevant stress and strain. Human pluripotent stem cell-derived neuronal cells

demonstrated good cytocompatibility in the GG-based hydrogels. Moreover, functionalization of GG hydrogels with

laminin resulted in cell type-specific behavior: neuronal cell maturation and neurite migration.

Submitted to Biomedical Materials.
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1. Introduction

Tissue engineering (TE) is a field of study that aims to produce tissue-like structures in vivo and in vitro

using a combination of a biomaterial and living cells [1]. Thus, TE has combined advances in cell therapy

and biomaterials science to stabilize an injury or defect site and deliver cells and molecules to promote

the regeneration of damaged tissues [1; 2]. Neural TE has emerged as a promising strategy for neural

regeneration, both for the central nervous system (CNS) and the peripheral nervous system, which suffer

from limited regenerative capacity  [2—4]. For successful functional neural TE graft, it is important to

combine neural tissue mimicking material e.g. a hydrogel and clinically relevant human cell type [5]. In

addition to therapeutic use in TE, hydrogels as neural scaffolds can also be used for in vitro disease

modeling, drug testing and developmental biology studies [5—7].

The main requirement for biomaterials intended for TE is biocompatibility [3; 8; 9], defined by the

International Union of Pure and Applied Chemistry (IUPAC) as “the ability to be in contact with a living

system without producing an adverse effect” [9]. Hydrogel biomaterials can fulfill the biocompatibility

(systemic scale) and cytocompatibility (cellular scale) requirements [8], and their tunable physical

properties can mimic soft tissue, such as CNS [3—5]. Thus, while designing hydrogels for TE, important

material characteristics to take into account are for example mechanical properties, porosity, permeability

and transparency, especially for in vitro TE [4; 10—12]. Moreover, hydrogels can be further modified to

incorporate extracellular matrix (ECM) molecules (such as collagen, fibronectin, and laminin) or peptides

to provide anchoring sites for cells and to enhance growth [3; 4; 11].

Gellan gum (GG) is an exopolysaccharide produced by Sphingomonas elodea bacteria. This

biologically safe polymer has been approved by the Food and Drug Administration (FDA) and the

European Medicines Agency (EMA)  [13—15], and it has been recently been suggested as a material for

scaffold development for TE [16; 17]. GG is a deacetylated form of gellan molecule which has a

tetrasaccharide repeating structure of β-D-glucose, β-D-glucuronic acid and α-L-rhamnose in a 2:1:1 ratio

[13]. Like many other polysaccharides, GG is a relatively inert biomaterial [17]. To improve cell

attachment, GG-based hydrogels have been functionalized with peptides by covalently binding them in
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the molecule backbone itself [17; 18]. GG has been studied for bone [16; 19], cartilage [20—22] and

spinal cord [23—27] TE applications. In neural applications, GG can support the in vitro culture of rodent

or human cells (neural stem cells [18; 28], olfactory ensheathing glia cells [18], oligodendrocyte-like

cells [23]) and has been shown to be biocompatible in vivo in a hemisection rat spinal cord injury model

[23].

GG hydrogels produced by physical, ionotropic, crosslinking with metallic cations (Ca2+, Mg2+, Na+,

K+) are primarily mechanically weak [13; 29]. Another option is chemical crosslinking using

methacrylate derivatives, followed by the addition of a photoinitiator and photocrosslinking with UV-

light [23; 29]. Disadvantages of these crosslinking methods include cation leakage or exchange,

weakening of the mechanical properties of the hydrogel over time [29; 30], phototoxicity of UV-light and

chemical reactivity of the photoinitiator [31—33]. Chemical crosslinking is often in practice more

complicated than ionotropic crosslinking. Bioamines spermine (SPM) and spermidine (SPD) are small

cations that have been demonstrated to interact with anionic polymers such as GG [34—36]. Crosslinking

with bioamines is simple, and a wide crosslinker concentration range can be applied to vary the

mechanical properties of GG in a controlled way, so they provide an alternative crosslinking method.

SPM and SPD are present in all living cells, and they play important roles in many physiological

processes, such as protecting DNA by scavenging oxygen radicals and affecting cell proliferation [37;

38] also in neural cells [39; 40].

In this study, we developed GG bioamine hydrogels with mechanical properties that resemble brain

tissue. The resulting hydrogels were characterized mechanically and rheologically. The mechanical

properties of these hydrogels were compared to naïve rabbit brain tissue by compression testing.

Hydrogels with a compressive modulus similar to that of brain tissue were used for the cell studies.

Cytocompatibility and cell type-specific behavior were studied in vitro using human pluripotent stem cell

(hPSC)-derived neuronal cells.
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2. Materials & Methods

2.1. Preparation of GG hydrogels

To prepare the hydrogels, GG (GelzanTM, low acyl, Mw 1 kg/mol), SPD (spermidine trihydrochloride),

SPM (spermine tetrahydrochloride) and sucrose were acquired from Sigma-Aldrich (Finland) with the

highest level of purity available. A 10% (w/w) sucrose solution in deionized water was used as a solvent

for the hydrogel components to reduce osmotic pressure on the cells [5]. The GG solution was prepared at

5 mg/ml. We tested two different crosslinkers (SPD and SPM); both with three different concentrations,

the names and details are shown in table 1.

Table 1. Hydrogel compositions used in this study and calculated details of bioamine per GG in the used

concentrations.

Hydrogel
nomenclature

Bioamine
working

solution [mM]

Bioamine in
hydrogel [w-

%]

Bioamine in
hydrogel

[mM]

Bioamine
mmoles /
GG [g]

Positive
charge /
GG [g]

GG 1.10%SPM 1005 1.108 138.7 32.17 128.7
GG 0.60%SPM 502.6 0.5569 69.43 16.08 64.33
GG 0.40%SPM 395.0 0.3984 49.52 11.49 45.95
GG 3.00%SPD 3927 3.101 541.7 125.6 377.0
GG 1.50%SPD 1885 1.513 260.0 60.32 180.0
GG 1.25%SPD 1551 1.248 214.0 49.64 148.9

All solutions were sterile filtered for mechanical and rheological testing with 0.8/0.2 mm Acrodisc®

(PALL Corporation, Port Washington, NY, USA) or for cell culture with Whatman FP 30/0.2 CA-s 0.2

µm (Whatman plc, Little Chalfont, UK) syringe filters. The GG solution was heated in a water bath to

+60°C for reduced viscosity prior to sterile filtration. All solutions can be stored for up to one month at

+4°C.

When preparing hydrogels, the solutions were first heated in a water bath to +37°C. A crosslinker

solution of SPM or SPD was mixed with GG at a volume ratio of 4:25 and cast into a suitable mold or

directly onto a cell culture plate. When used, laminin (1 mg/ml) was added to the hydrogel just before

gelation in the GG solution at 1 v-%, 5 v-% or 10 v-%.
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This study follows the ASTM F2900-11 Standard Guide for Characterization of Hydrogels Used in

Regenerative Medicine [41]. For initial gelation testing and gelation time estimation, a small glass bottle

was used as the mold. Gelation time was estimated with the tube tilt test, as described by Tanodekaew at

al. [42]. In brief, after mixing the reagents, the bottle was slowly turned upside down at 30 s time

intervals, and the flow of gel was observed. If the solution started to move even slightly once tilting

started, it was not tilted further to let the gelation continue. Once the solution did not flow, the gelation

was considered complete, and the time was recorded.

2.2. Mechanical testing

Compression testing was performed using a BOSE Electroforce Biodynamic 5100 machine equipped with

a 225 N load sensor and Wintest 4.1 software (Bose Corporation, Eden Prairie, Minnesota, USA).

Samples were cast into a self-made cylindrical mold with an approximate height of 6.5 mm and a

diameter of 12.2 mm, and stored overnight before compression testing to ensure the complete gelation

before each measurement. Each composition was tested in five parallel samples; the exact dimensions of

each sample were measured with calipers before testing. To avoid slippage of samples, the compression

plates were covered with a piece of wet cellulose paper to increase friction between the hydrogel and the

metal plate. The sample was set in between compression plates so that the upper plate touched the sample,

but no pre-stress was used. Unconfined compression was performed with a constant 10 mm/min strain

rate, and samples were compressed until 65% strain was reached from the original height. The test was

performed in wet conditions at room temperature. After compression, the data were analyzed with MS

Excel. According to Hooke’s law, σ = E*ε, the compressive modulus was calculated from the stress-strain

curve as the slope of the elastic region [43]. In addition, the fracture strength and fracture strain were

recorded as a sudden drop in the stress-strain curve.

To obtain a good reference in terms of the mechanical properties to design hydrogels for neural TE,

compression testing was also performed with brain tissue samples. New Zealand white rabbits, age 10

weeks, male, were sacrificed with deep anesthesia, after which the heads were removed and stored in ice
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for a maximum of 8 hours. The brains were removed from the skulls, and samples containing midbrain,

cerebellum or cortex were prepared. The samples were cut with a biopsy punch to the same size and

shape as the hydrogel compression samples and stored on ice until compression testing. The test

parameters used were the same as those described above. The naïve brain tissues were obtained from

animal experiments conducted at Tampere University Medical School, University of Tampere.

2.3. Rheological testing

Rheological experiments were carried out with a rotational rheometer (Haake RheoStress RS150)

equipped with Rheowizard 4.3 software (ThermoHaake, Germany). Parallel plate geometry with 20 mm

diameter metal plates was used. All the experiments were conducted at room temperature (~25°C) in the

oscillatory mode. In the oscillatory mode the sample is subjected to sinusoidal oscillatory shear strain

with amplitude γo. In the linear viscoelastic region (LVER) with sufficiently small strain amplitudes the

resulting stress will also be sinusoidal of the same frequency with amplitude τo and phase angle δ. The

complex moduli (G*) represents the rigidity of the sample and in the LVER the following relationship

applies:

( )22* ''' GGG
o

o +==
g
t

The storage modulus (G’) is the in-phase and loss modulus (G’’) the out-of-phase components of the

response:

d
g
t

cos
o

oG =¢

d
g
t

sin
o

oG =¢¢

The G’ represents the elastic and G’’ viscous behavior of the sample. The loss factor tan δ is the ratio of

the viscous to the elastic portion. [44]

The samples for rheological testing were cast in self-made cylindrical molds with height a maximum of

1 mm and 20 mm cross-section diameter. Prior to each measurement, the hydrogels were stored overnight

to ensure the complete gelation. During measurement the gap between plates was set to 0.8 mm. All

(1)

(2)

(3)
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measurements were done in oscillatory shear deformation mode and both amplitude and frequency

sweeps were used for all samples. The strain amplitude range for amplitude sweeps was from 0.01 to 5.00

rad (0.1 rad = 1.6 % displacement) with 1 Hz frequency. Six parallel samples were tested with amplitude

sweeps and two parallel samples with frequency sweeps. The frequency sweep was done in range from

0.1 to 3.0Hz, with constant 0.1 rad strain amplitude which is in the LVER for all samples.

2.4. Cell culture

hPSCs, both human embryonic stem cells and human-induced pluripotent stem cells were used in this

study [45].  The used hESC-lines were Regea 08/023 [46] and Regea 11/013 [47] and the used hiPSC-

lines were UTA.04511.WT [48], Hel24.3 and A116 [49] (two kind gifts from Prof. Timo Otonkoski,

University of Helsinki).

BioMediTech has Pirkanmaa Hospital District’s ethical approval to derivate, culture and differentiate

hESCs (Skottman, R05116) and permission from the National Authority for Medicolegal Affairs (FIMEA

1426/32/300/05) to conduct human stem cell research. Additionally, approval has been obtained to use

hiPSC lines produced by other laboratories for neuronal research (R14023).

2.4.1. Neuronal differentiation

The culture and neuronal differentiation of hPSCs were performed as described previously [50]. Briefly,

undifferentiated stem cell colonies were mechanically cut into small aggregates and placed in a

suspension culture on neural differentiation medium (NDM) containing 1:1 DMEM/F12 (Gibco, Thermo

Fisher Scientific, Finland) and Neurobasal medium, 2 mM GlutaMax™, 1 x B27, 1 x N2 (all from

Gibco), 20 ng/ml basic fibroblast growth factor (bFGF, R&D Systems, Minneapolis, MN, USA) and 25

U/ml penicillin/streptomycin (Cambrex, Belgium). During suspension culture, the cell aggregates formed

round, floating neurospheres. Neurospheres were kept small via mechanical cutting once per week, and

1/3 of the medium was changed three times per week. Cells were kept for 8–17 weeks in the

differentiation phase prior to the hydrogel experiments. Cells were under constant monitoring for the
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quality of differentiation. Only experiments in which cells formed good neuronal cultures in 2D control

were included to the analysis (representative images of good quality 2D cultures in supplemental figure

1).

2.4.2. Hydrogel cell culture experiments

For the biological evaluation of the hydrogels, three approaches were taken to study the cell/biomaterial

interactions as shown in figure 1. In every case, control cells were plated on laminin-coated cell culture

wells (positive control) and on non-coated cell culture wells (negative control). Cell behavior on the

studied materials was always compared to that of the controls. Depending on the well type used, either

plastic (Nalge Nunc International, Rochester, NY, USA) or glass bottom (MatTek Corporation, Ashland,

MA, USA), the wells were coated either with laminin (10 mg/ml mouse laminin) or poly-L-lysine and

laminin (10 mg/ml poly-L-lysine followed by 10 µg/ml mouse laminin), respectively.
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Figure 1. Schematic presentation of plating cells with the hydrogels. All components were kept at 37°C to

ensure homogeneous and complete gelation.

Gelation was performed as described in figure 1. A drop of crosslinking agent was added on top of the

cell culture, followed by the gentle addition of GG solution, in case of cultures beneath the gel. To avoid

disturbing the cells, no additional mixing was performed. For cell encapsulation, the cells were suspended

in GG solution with a minimal amount of medium prior to crosslinking. After complete gelation, medium

was gently added on top of the gel. In 3D cell encapsulation studies for gels with slow gelation (all except
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GG 3.00%SPD), a thin bottom layer of gel was cast beforehand to prevent cell aggregates from

sedimenting to the well bottom during gelation.

2.4.3. Cell plating

Cells were plated either as mechanically cut small cell aggregates or as enzymatically dissociated single

cell suspensions prepared using 1X TrypLE Select (Gibco). For the 2D experiments (controls, cells

embedded or on top), the plating density was 60,000 cells/cm2 or 7–20 small aggregates/cm2 (3000-7000

cells/aggregate). The cell density for the 3D experiments (cells encapsulated) was ~3.5 × 106 cells/ml of

gel, or a corresponding amount of small mechanically cut cell aggregates.

The cells were cultured with the gel for 2 weeks. NDM without bFGF was used during the first week of

the experiments. After one week of culture, NDM containing 5 ng/ml bFGF and 4 ng/ml brain-derived

neurotrophic factor (BDNF, Prospec Bio, Germany) was used. Half of the medium was changed three

times per week using caution to avoid disrupting the gels.

Cells were imaged using a Zeiss AxioVert.A1 microscope and AxioCam ERc 5s camera system or with

a Nikon Eclipse TE 2000-S and Nikon Digital Sight DS-Fi1 camera system during the culturing period.

2.5. Live/dead staining

For viability analysis, the cultures were stained using a LIVE/DEAD® viability/cytotoxicity assay

(Molecular probes, Thermo Fisher Scientific). In brief, there are two fluorescent dyes in the kit. Calcein-

AM (0.1 mM, λemission = 488 nm) stains intact cells, and ethidium homodimer-1 (0.4 mM, λexcitation= 568

nm) stains dead cells. After 1 h of incubation at +37°C, the cells were imaged with an Olympus IX51

inverted microscope and an Olympus DP30BW digital camera (Olympus, Finland). The numbers of

parallel samples varied between 2 and 4.

2.6. Immunostaining

We optimized the parameters for immunostaining cells within macroscopic (60-300 ml) hydrogel blocks.

In brief, cultures were fixed with 4% paraformaldehyde preheated to +37°C for 30 min. After a brief wash
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in phosphate buffered saline (PBS), non-specific staining was blocked with 10% normal donkey serum

(NDS), 0.1% Triton X-100, and 1% bovine serum albumin (BSA) in PBS for 1 h at room temperature,

followed by another wash in 1% NDS, 0.1% Triton X-100, and 1% BSA in PBS. Then, the cells were

incubated with a combination of primary antibodies at +4°C for at least 2 days. These antibodies included

rabbit anti-microtubule associated protein 2 (MAP-2, 1:400, AB5622, Merck Millipore, Darmstadt,

Germany) and rabbit anti-β-tubulin isotype III (β-tub, 1:1000, A01627, GenScript, Piscataway, NJ, USA)

in 1% NDS, 0.1% Triton X-100, and 1% BSA in PBS. The samples were washed three times in 1% BSA

in PBS (first briefly followed by 2 x 1 hour washes) and then incubated overnight at +4°C with Alexa

Fluor 488 conjugated to donkey anti-rabbit antibody (1:400, Life Technologies, A21206) and

tetramethylrhodamine isothiocyanate conjugated to phalloidin (TRITC-phalloidin, 0.625 mg/ml, Sigma

Aldrich, P1951) in 1% BSA in PBS. The samples were washed three times (first briefly followed by 2 x 1

hour washes) in PBS and then mounted with VECTASHIELD containing 4’,6-diamidino-2-phenylindole

(DAPI, Vector Laboratories, England). They were then imaged with an Olympus IX51 inverted

microscope and an Olympus DP30BW digital camera. Confocal scanning of the samples was performed

with a Zeiss LSM 780 mounted into inverted Cell Observer microscope (Carl Zeiss, Jena, Germany)

using 10× (NA. 0.45) or 20× (NA. 0.80) air objectives. The samples were scanned through #1.5 glass

bottom well plates (MatTek Corporation, Ashland, MA, USA) or through high performance #1.5

coverslips (Carl Zeiss). The confocal data were visualized with the ZEN Black 2012 software (Carl Zeiss)

and ImageJ (Version 1.39, U. S. National Institutes of Health, Bethesda, Maryland, USA) [51; 52].

2.7. Neurite migration

Neurite migration measurements were performed with the ImageJ measure tool. Migration was measured

using a straight line from the cell aggregate surface to the visible end of a neuronal process. Each

analyzed cell aggregate was measured from 4 longest separately distinguishable neurites. Values of less

than 10 µm were considered as representing no migration. The analysis was conducted with at least 2
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individual experiments with at least 2 replicative wells. For each studied group, 7 to 16 images were

analyzed.

2.8. Statistical analysis

Due to the non-Gaussian distribution of the data, the nonparametric Kruskal Wallis test and Mann-

Whitney U-test were used. A p value of less than 0.05 was considered significant. If more than two

groups were compared, the resulting p values were multiplied by the number of comparisons performed

(Bonferroni correction).
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3. Results

3.1. Gel forming and gelation time

GG hydrogels were formed with bioamine weight percentage varying from 0.40% to 1.10% for SPM and

from 1.25% to 3.00% for SPD. With these concentrations, the hydrogels were transparent and strong

enough to hold their own weight and be handled with tweezers. Higher crosslinker concentrations caused

partial gelation of the solutions before they could be mixed uniformly, resulting in high anisotropy with

non-transparent (cloudy) areas. Lower crosslinker concentrations formed weak gels that could not support

their own weight and were not suitable for 3D cell culture, as the encapsulated cells would sediment to

the bottom of gel. The 10 v-% or lower laminin additions did not affect gelation.

The gelation times approximated with tube tilt test are listed in table 2. As seen, the fastest gelation

times were just a few seconds, which could cause difficulties in mixing the reagents evenly and cause

anisotropic gels. Gelation times over 10 minutes were so slow that during plating the cells could sediment

to the bottom of the gel before the gelation is completed. From a practical point of view, a gelation time

of 1–5 minutes is optimal, as it is long enough to mix the components uniformly but short enough to keep

the cells suspended in the 3D gel and prevent them from sedimenting to the bottom.

Table 2. The gelation times determined by the tube tilt test

Gel composition 1.10%SPM 0.60%SPM 0.40%SPM 3.00%SPD 1.50%SPD 1.25%SPD
Gelation time 1 min 5 min 10 min 5 sec 5 min 10 min

3.2. Compression testing

The main variable influencing the mechanical properties of hydrogels in this study was the crosslinker

concentration. The upper and lower limits of crosslinking were tested along with one concentration

between the extremes. The compression testing data were analyzed as stress-strain curves (figure 2), from

which the compressive modulus (figure 3) was calculated as the slope of the elastic region. In all GG

samples, a distinct fracture point was observed during the test. In contrast, the rabbit brain samples did not

have a clear fracture point in the measured displacement but rather a more rubber-like elastic behavior
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with strong strain stiffening in the end. The GG 0.40%SPM was almost too soft for the load cell, with the

force varying during measurement between only 0.01–0.12 N.

Figure 2. Representative stress-strain curves of GG and brain tissue compression testing. The linear

elastic region was determined individually for each sample and ranged from approximately 0.1–0.35

mm/mm strain. As an example, the fracture point of GG 1.50%SPD is marked with a red arrow.

Based on figure 2, it is clear that brain tissue is more ductile than any of the hydrogel samples as it can

endure more plastic deformation without fracture than the GG samples. However, the elastic regions at

strain of approximately 0.1–0.35 mm/mm of GG 0.60%SPM and GG 1.25%SPM are very similar to those

of the brain stress-strain curve, resulting in both cases in a compressive modulus of approximately 10

kPa. The comparison of calculated compressive moduli is shown in figure 3. The strongest compositions,

GG 1.10%SPM and GG 3.00%SPD, both have a ~23 kPa modulus, whereas the weakest composition, GG

0.40%SPM, has only a 3.9 kPa modulus. A significant, linear decrease in the compressive modulus is

seen with both crosslinkers when lowering the concentration. The addition of laminin did not affect the
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compressive modulus (data not shown). The part of the stress-strain curve after the fracture point is

negligible. The different parts of the rabbit brain, midbrain, cerebellum and cortex, all behaved very

similarly throughout the compression testing, with compressive moduli in the 7–10 kPa range.

Figure 3. Average compressive moduli of GG bioamine hydrogels and brain tissue samples with error

bars showing the standard deviation, n = 5, * = significant at p ≤ 0.05.

The compressive moduli of the hydrogel can be tuned by varying the bioamine concentration, and

similar mechanical properties can be achieved with either crosslinker. The compressive moduli of cortex

samples were in the same range as the hydrogel moduli with the lowest crosslinker concentrations: GG

0.40%SPM vs. GG 1.25%SPD (p > 0.05). The standard deviation was approximately 2.5–3.5 kPa in all

measurements. This result indicates that the calculated moduli less than 5 kPa are not very accurate, being

on the lower limit of the compression testing machine load sensor capability. The dependence of the

compressive modulus on the crosslinker concentration is linear and within the limits of the standard

deviation, as shown in figure 4. SPM has a tetravalent charge, so the rise of the modulus with increasing

crosslinker concentration is steeper than that of trivalent SPD.
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Figure 4. The dependence of the hydrogel compressive modulus on the crosslinker concentration is linear

and within the limits of standard deviation as shown by error bars, n = 5. The trend line fit to the average

modulus values was determined using MS Excel.

The fracture strength (figure 5) is the ultimate amount of stress a sample can endure, and this value can

be critical for load-bearing TE applications even though a cell’s mechanotransduction is likely not

affected by it. A significant decrease in fracture strength is seen when the crosslinker concentration is

lowered. The fracture strain (figure 5) is an indicator of the brittleness of the sample, and the more

crosslinker, the more brittle the hydrogel. The brain tissue samples did not have a visible fracture point

when compressed to 65% of the original height, but they had a strong strain hardening effect, as shown in

figure 2. However, the strain hardening occurred in the plastic deformation region because the

deformation was not recoverable (data not shown).
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Figure 5. The measured fracture strength is shown on the primary y-axis as bars, and fracture strain is

shown on the secondary y-axis as dots. For each hydrogel composition (n = 5), error bars represent

standard deviation, * = significant p ≤ 0.05. Brain tissue samples did not have a clear fracture point, so

they are excluded from the graph.

3.3. Rheological testing

The low amplitude strain of the rheological spectrum measured with oscillatory shear amplitude sweep

showed a discernible LVER for GG SPM hydrogels, which is used to calculate the complex modulus

(figure 6 (d)). At higher strain, a decline due to plastic deformation leads to fracture of the sample at the

crossover point of the storage and loss modulus as shown in the figure 6 spectra. All the GG SPM

hydrogels have a typical gel-like behavior in the LVER with the storage modulus higher than the loss

modulus (G’ > G’’), which means that elastic behavior dominates over viscous behavior and that the

material is more solid than liquid. As shown in figure 6 (a-c) by decrease in the phase angle and tan δ

value in LVER, when the crosslinker concentration increases, the solid-like behavior increases. And
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similar to the compressive modulus, the complex modulus decreased upon lowering the crosslinker

concentration.

Figure 6. Rotational rheological spectra of (a) GG 1.1%SPM, (b) GG 0.60%SPM and (c) GG 0.40%SPM

in amplitude sweep and (d) complex moduli of all GG SPM hydrogels. The LVER exceeds to 0.1 rad

amplitude and the gel breaking takes place around 1.0 rad.

Only SPM crosslinked hydrogels displayed distinctive gel-like behavior related to a stable 3D network

structure, which was confirmed by a straight line in the frequency sweep (data not shown). The SPD

crosslinked gels did not have a discernible LVER, likely due to anisotropy or being too solid for rheology,

and thus were not possible to measure with this method. The very quick gelation of SPD crosslinked gels

can cause nucleation of crosslinking spots. This nucleation leads to anisotropy of gel network structure

and density variations, which are not seen in compression testing.

A B

C D
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3.4. Neuronal cell cultures beneath the hydrogels

Neuronal cells were cultured for one week on the plastic dish before casting gel over the cells. The

gelation process on top of cultures did not cause any acute cytotoxic effects. During prolonged culture (up

to two weeks) beneath the hydrogel, the neuronal cells remained viable, and neuronal maturation

continued similarly as in the positive control cultures without the GG. Culturing beneath the hydrogel did

not cause any morphological changes compared to control 2D cultures (figure 7 (a)). In the cell viability

analysis, all studied cases had similar degrees of cell viability by visual inspection (figure 7 (b)). Neuronal

cultures beneath hydrogel also had similar neuronal protein expression according to immunocytochemical

analysis as control cultures without hydrogel (figure 7 (c)). Figure 7 shows the representative images of

cultures beneath hydrogel with highest the crosslinker concentration and a 2D positive control. The

results were similar at all studied crosslinker concentrations (SPD 3.00%, 1.50%, and 1.25% or SPM

1.10%, 0.60%, and 0.40%, figure 7, data not shown). Thus, SPD and SPM crosslinkers enable the

formation of GG hydrogels that are compatible with culturing human neuronal cells. The hydrogel layers

(height 2.2–2.8 mm) on top of the neuronal cultures enabled prolonged culturing, implying that the

porosity of the formed hydrogels was high enough for nutrient and metabolite exchange.
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Figure 7. Neuronal cultures beneath the gels. Cells were pre-cultured on a laminin coating for one week,

thereafter the gel was cast over the cells and then cultured for 2 additional weeks before analysis. The

representative images are shown for the highest crosslinker concentrations, that is, SPM 1.10% (column

1) and SPD 3.00% (column 2) and for the positive 2D control (column 3). Phase contrast images (a), cell

viability analysis (b) and immunocytochemistry (c) are shown. Row B: Green = Calcein-AM, live cells,

red = EthD-1, dead cells. Row C: Blue = DAPI, Red = MAP-2+B-tub. Scale bar for all images 50 mm.

3.5. Neuronal cell behavior on top of the hydrogels

Neuronal cells remained viable during prolonged culturing (2 weeks) when plated on top of pre-cast

hydrogels (success rate 100%, figure 8). For cell type-specific behavior, neurite migration was studied in

more detail. Although neuronal cells remained alive on top of all the studied hydrogels, their spreading
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and migration along the hydrogel surfaces varied within and between groups. Figure 8 shows a summary

of the results. Without any functionalization with laminin, the GG 1.10%SPM and GG 0.60%SPM were

the best compositions for supporting neuronal cell spreading (figure 8 (a)). When a low concentration of

laminin (1 v-%) was added, the performance of the GG 3.00%SPD hydrogel was superior to any other

tested gel composition. (figure 8 (a)). As GG 3.00%SPD with laminin functionalization gave the best

results in neuronal cell spreading and migration, functionalization with higher laminin concentrations was

further studied.

Figure 8. Cell viability and spreading were analyzed on top of GG hydrogel surfaces crosslinked using

either SPD (1.25–3.00%) or SPM (0.40–1.10%). With 3.00%SPD and 1.10%SPM, the effects of

functionalization with laminin were also tested. All experiments were considered successful, as the cells
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were alive in all experiments even though neurite outgrowth was not seen in all cases (a). The best neurite

migration was seen in 3.00%SPD crosslinked gel with 1% laminin (a**, b**). Representative images of

cultures on top of 3.00%SPD crosslinked gel with 1% laminin (b). In some experiments cells were alive,

but no migration was seen (a*, b*), while in other experiments the cells did migrate along the gel surface

(a**, b**). (b) second column: Green = Calcein-AM, live cells, red = EthD-1, dead cells, (b) third

column, Blue: DAPI, Green: MAP-2+B-tub. Scale bar for all images 100 mm.

3.6. Effect of laminin concentration on SPD crosslinked gels

The addition of laminin (5 v-% and 10 v-%) significantly increased neurite migration on top of gel

surfaces during prolonged culturing time (2 weeks). Laminin addition increased both the length of the

neurites (figure 9 (a)) and the number of neurites (figure 9 (b)). The most obvious increase in neurite

migration was seen on top of GG 3.00%SPD, but a similar trend was also observed with 1.5%SPD and

1.25%SPD gels (data not shown).

Figure 9. Neurite migration in human derived neuronal cells cultured for 2 weeks on top of GG hydrogels.

Laminin enhances migration in a concentration-dependent manner. Neurite length distribution in SPD

crosslinked gels with different laminin concentrations (a). The box shows 50% of samples and the
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median, and the whiskers show 90% of samples. The value of each measured neurite is shown as a dot in

the background. Representative images of neurite migration in each laminin concentration (b). By visual

inspection, the laminin concentration increased the amount of neurite outgrowth. Green = live cells, red =

dead cells. Scale bar 100 mm for all images. *= p ≤ 0.05, **= p ≤ 0.0001.

3.7. Neuronal cells encapsulated inside the gel

Neuronal cells were cultured as encapsulated in GG hydrogels for two weeks. Cells remained viable

inside all the studied GG bioamine compositions (data not shown). Due to promising neurite migration

results obtained from cultures on top of the laminin functionalized GG 3.00%SPD hydrogel, this

composition was studied further. Neurite migration was observed in cultures inside the GG 3.00%SPD

hydrogel both with and without functionalization with laminin (0–10 v-%). The amount of neurites

migrating from the cell aggregates varied from zero to dense outgrowth from aggregate to aggregate

(example images of dense outgrowth are presented in figure 10). Neither neurite amount nor neurite

length were affected by laminin concentration of hydrogel. Variation observed was also cell line or cell

source independent (supplemental figure 1). The neuronal cells cultured encapsulated inside the GG

hydrogel formed 3D neuronal network expressing typical neuronal markers (MAP-2 and β-tubulinIII) co-

labelled with phalloidin, (supplemental video 1).
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Figure 10. Neuronal cell aggregates cultured for 2 weeks inside the GG 3.00%SPD gel. Phase-contrast

images (a) and Live/Dead images of cultures (b). Green = live cells, red = dead cells. Scale bar 100 mm

for all images.
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4. Discussion

4.1. Bioamine crosslinked GG

GG has been approved by the FDA and EMA for food, cosmetic and pharmaceutical applications as a

gelling or emulsion agent [15]. Taking advantage of the wide usage, GG has been applied for TE with

promising results [15; 27; 28].  The common method of physical/ionotropic crosslinking of

polysaccharides with metallic cations in order to form hydrogels has some inherent problems: Controlling

the crosslinking process and tuning of properties is challenging [30]. With this fact in mind, we tested the

ability of bioamines for physical crosslinking of GG. The study of alternative ionotropic crosslinking

methods using bioamines for anionic polymers in TE is relatively new [34; 35] and those studies focused

on the development of multicomponent hydrogels for drug delivery applications [35]. On the other hand,

we have addressed the GG-based bioamine crosslinked hydrogels specifically as a 3D cell culture scaffold

for neural TE applications.  Other forms of GG have already been studied in spinal cord injury rodent

models [23—27], but not with these alternative crosslinking methods. The small cationic bioamine

molecules worked efficiently and in a broad range of concentrations, producing stable hydrogels with

tuneable mechanical properties.

The definition of a true gel is a material that responds to high stress by fracturing and is self-supporting,

whereas a weak gel is a structured fluid that flows under stress [13]. The hydrogels we produced were

macroscopic and strong enough to keep their shape after casting or even being handled with tweezers,

thus they are true gels. For SPM, the lowest concentration that still produced a true gel was 0.40 w-% and

for SPD the limit was 1.25 w-%. Lower concentrations produced weak gels that still pass the tube tilt test

but flow under stress. When increasing the crosslinker concentration, a non-transparent (cloudy) area is

formed inside the gel due to too rapid crosslinking and uneven mixing. This effect corresponds to highly

anisotropic hydrogel formation, so the appearance of the cloudy area was considered to indicate the upper

limit of the crosslinker concentration. For SPM, this limit was 1.10 w-%, and for SPD, it was 3.00 w-%.

These concentration limitations also limit the mechanical properties of produced hydrogels, as they are
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directly proportional to the crosslinker concentration, as shown in figure 4. The same bioamine

crosslinking method could be used as an alternative to many hydrogels conventionally formed with

ionotropic crosslinking, for example, alginate [30], pectin [13], xanthan gum [13] and other anionic

polysaccharides.

4.2. Mechanical and rheological properties of GG bioamine hydrogel

One design basis in current TE scaffold development is to produce biomimicking materials with

mechanical properties similar to the corresponding tissue [4; 6; 10—12]. For the applications requiring

higher stiffness (compressive or Young’s modulus), such as cartilage TE, suitable GG compositions

already exist [53]. For lower stiffness applications such as neural TE, however, GG needs to be modified

further [17; 18]. The comparison of hydrogel properties with tissue properties would be easier if a higher

consensus or standardization of the mechanical testing of biomedical samples existed, as also discussed

by others [54; 55]. The lack of standardization and lack of accepted mathematical models causes high

variability and difficulties in interpretation of results between different studies. To overcome this

challenge, we included rabbit brain tissue samples and tested them with the same parameters as the

hydrogels. According to the measurements, GG 0.40%SPM and GG 1.25%SPD gels with 2.7 and 9.4 kPa

modulus, respectively, most closely resembled the compression moduli of rabbit cortical brain samples at

6.3 kPa. These values are slightly higher than those often measured for the brain, with previously reported

values being 0.5–3 kPa [56; 57].

The hydrogel’s fracture strength and strain are not comparable to brain tissue because no clear fracture

point was seen on the brain samples, which underwent only a continuous strain hardening effect. In the

biologically relevant deformation range of < 20% strain, the mechanical behavior is similar between

bioamine GG and brain. The compression rate, however, has a direct effect on gel fracture due to the

visco-elastic recovery, as elegantly shown for GG already before [58]. Based on their methodology, we

chose the compression rate at a relevant range for our application. In general, our results were in line with
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those of others [58], showing that higher crosslinker concentration or faster compression rate made GG

more brittle (data not shown).

Rotational rheometry was used here as a complementary method to compression testing to gain

additional insight into viscoelastic properties of the hydrogels. In addition, rheometry is very sensitive to

anisotropy of the measured samples; the rheological spectrum is not continuous if the material is not

isotropic. This effect makes the measurements more laborious to perform, but it can also be used as a

quality control for checking the similarity of parallel samples. The measurements show that all the

successfully measured samples had a gel-like response [13; 59]. In the rheological spectra, the gel storage

modulus was always higher than the loss modulus, in both amplitude and frequency sweep, and a fracture

was seen under high strain. The rheological spectrum is also in a similar range as previously reported for

GG hydrogels [26]. The high precision of rotational rheometry revealed the anisotropic nature of SPD

crosslinked gels, causing those measurements to fail, but anisotropy was not discerned in compression

testing. However, in cell culture, these anisotropies and nanotopographical variations can actually provide

better cell anchoring sites than a totally homogenous hydrogel network [11].

4.3. Suitability of GG as a culturing matrix for human neuronal cells

Cytocompatibility, the cellular scale response, needs to be evaluated with human cells before large-scale

systemic biocompatibility testing [8]. In this work, we used hPSC-derived neuronal cells [50] to study

both cytocompability and cell type-specific behavior in developed GGs. Importantly, when aiming for

clinical applications, the development of neural TE products requires the usage of human cells already in

the preclinical stage [60].

In this study, we used three steps to evaluate the hydrogel performance: 1) culturing cells beneath, 2) on

top of or 3) encapsulated inside the hydrogel. This evaluation protocol gives information of cell survival,

cell migration, and 3D network formation, but the different approaches should not be directly compared

between each other [5]. First, performing the crosslinking directly on top of a pre-cultured neuronal

network can reveal acute cytotoxicity caused by gel components or gelation during the first days in
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contact with the material [5; 61]. Crosslinking of GG with SPD or SPM did not cause acute (data not

shown) or long-term cytotoxicity during 2-week follow-up. This result is in line with previous

cytotoxicity studies for GGs [16; 17; 20; 35]. Importantly, SPD and SPM at the concentrations used for

gelation (213–541 and 49.5–138 mM, respectively) do not cause detrimental effects on neuronal cells.

Culturing cells beneath hydrogel can also reveal gel-related effect on cell behavior, e.g., changes in cell

fate as described earlier for Matrigel [61]. With GG hydrogels, no obvious changes in cell fate were

observed, as these cultures developed similarly to control cultures. Successful embedding also indicates

that the porosity of the developed hydrogels was sufficient for medium diffusion and metabolite exchange

through the gel block (height: 2.2–2.8 mm) during 2 weeks follow up. In conclusion, bioamine

crosslinked GG hydrogels provided a suitable growth environment for human neuronal cells.

To study cell type-specific behavior, we cultured human neuronal cells on top of and encapsulated in

GGs. GG hydrogels are considered biologically inert materials [17]. According to earlier studies, GG

does not in vitro support neuronal cell migration on top of gels or as encapsulated without the addition of

cell adhesion cues [18; 28]. Our experiments using cells on top of gels showed similar results, as some

neuronal aggregates remained as spheres without neurite migration as previously described for mouse

neural cells [18]. Some aggregates, however, had neurite growth along the hydrogel surface. We assume

that neurites growing on top of unmodified gel surfaces follow physical cues of the hydrogel. To enhance

the cell migration on top of gels, we added the ECM protein laminin by physically mixing it into the GG

prior to gelation. This functionalization of GG SPD hydrogels with laminin (5 v-% to 10 v-%)

significantly increased neurite migration. A similar positive effect was reported with fibronectin-derived

synthetic GRGDS-peptide GG hydrogels [18]. Interestingly, functionalization with laminin was not

beneficial with SPM crosslinked gels.

Encapsulated human neuronal cells showed a similar level of neurite migration despite

functionalization with laminin. Previous studies using neural cells either on top of hydrogels or

encapsulated have contradictory results about the benefits of functionalization on growth and migration.

For example, functionalization with RGD, IKVAV or YIGSR peptides has shown both favorable and
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non-meaningful effects in neural cultures [62; 63]. This discrepancy could reflect the different

microenvironments that cells experience in these cases.

The current paradigm of hydrogel development for TE involves making the mechanical properties

mimic the tissue of interest [4; 10—12]. For neural cells, a suitable Young’s modulus of hydrogel was

previously reported between 1–5 kPa [57; 64; 65]. Our study revealed a wider, 2.7–22.6 kPa range in

compression moduli, enabling neuronal cell growth. At the same time, our measured compression

modulus for the rabbit brain samples ranged from 7.1 to 10.1 kPa. These results strongly suggest that the

lack of standardized methods produces high variability in the results, preventing valuable comparisons

between studies.

Interestingly, the gels with higher compressive moduli (11.5 to 22.6 kPa) showed the best cell type-

specific response for cells grown on top of these hydrogels; even the compressive moduli brain samples

were lower (7.1–10.1 kPa). Thus, there is a clear need to determine the actual threshold limits under

which cells sense the mechanical properties of the surrounding scaffold and exhibit cell type-specific

behavior [6; 12]. In other words, the true essence of biomimicking is still unknown. To answer this

question, more optimal testing patterns need to be designed specifically for each tissue type. For example,

the unconfined compression method measures a bulk hydrogel, whereas locally varying modulus and

density, which are measurable with atomic force microscopy (AFM), are likely more important for cells

[11; 12]. Compression testing should be used only to define the correct range of operations and for

screening purposes, not to make specific interpretations. Although they are easier to measure and

interpret, the mechanical properties of a bulk hydrogel may not be optimal to predict the cellular level

response to the hydrogel.
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5. Conclusions

We conclude that GG hydrogels crosslinked with either SPM or SPD are cytocompatible and provide a

compatible 3D scaffold for human neuronal cells. Metallic cations can be replaced by these small

bioamines as ionotropic crosslinking agents. The mechanical properties of the GG bioamine hydrogel

show a direct proportionality to crosslinker concentration, increasing the predictability of the properties of

a certain composition. Mechanically, the GG bioamine hydrogels closely resemble the naïve rabbit brain.

Both SPM and SPD crosslinked hydrogels were supporting the migration of neuronal cultures either on

top of the hydrogel or as encapsulated inside the hydrogel and from a practical point of view there was no

difference in gel handling between the crosslinkers. Neuronal cells grown on top of the SPD crosslinked

GG hydrogels clearly benefit from laminin functionalization of the gel in a concentration dependent

manner, suggesting that GG itself is too inert material for consistent neurite outgrowth. Based on our

results the GG 3.00%SPD hydrogels were the most supportive for 3D neuronal network formation inside

the hydrogel, being the most promising gel composition for further studies.
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SUPPORTING INFORMATION

Supplementary video 1. Confocal microscope image of hPSC-derived neuronal cells cultured inside

the GG hydrogel. Cells were immunostained against MAP-2+β-tubulinIII (green), labelled with phalloidin

(red) and DAPI (blue).
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Supplementary figure 1. Phase contrast images of neuronal cultures similarly derived from hESC and

hiPSC origin. Representative images of good quality 2D neuronal cultures on top of laminin coated

plastic (A, B). Similarly derived neuronal cultures encapsulated inside GG hydrogel (C, D). Scale bars:

100 µm.
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