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Genetic analysis for a shared biological
basis between migraine and coronary artery
disease
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ABSTRACT

Objective:To apply genetic analysis of genome-wide association data to study the extent and nature of a shared bio-
logical basis between migraine and coronary artery disease (CAD).

Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale
genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014
controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk
loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between
the 2 phenotypes and by querying known genome-wide significant loci.

Results:We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine sub-
type, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a
lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with
potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin
homeostasis (GIP).

Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but sur-
prisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understand-
ing the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our
understanding of both disorders. Neurol Genet 2015;1:e10; doi: 10.1212/NXG.0000000000000010
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GLOSSARY
CAD5 coronary artery disease; CARDIoGRAM5 Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis; CPSM5
Cross-Phenotype Spatial Mapping; GWAS 5 genome-wide association studies; IHGC 5 International Headache Genetics Consortium;
LD5 linkage disequilibrium; MA5migraine with aura; MO5migraine without aura; SNP5single nucleotide polymorphism.
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Migraine affects 19% of women and 11% of men worldwide and causes more years lost to dis-
ability than any other neurologic disorder.1,2 In about one-third of patients, headache attacks are

preceded by transient neurologic symptoms termed migraine aura, and migraine with and

without aura (MA and MO, respectively) are believed to have a partially distinct pathogenic
basis.3 It has long been assumed that the vascular system is involved in migraine pathogenesis,

but little is known of the specific biological processes involved, and the relative importance of

neuronal and vascular mechanisms remains controversial.3–6 Supporting a vascular basis, epide-
miologic studies have found an increased risk for stroke among patients with migraine, most

pronounced for MA.7 Some recent studies indicate a similar risk increase for coronary artery
disease (CAD), the most common vascular disorder, although the association is less certain than

for stroke.8–11 This raises the question of whether migraine and cardiovascular disease have a

shared biological basis.

Both migraine and CAD have a strong genetic determination, and recent genome-wide associa-

tion studies (GWAS) have identified risk variants for each. If migraine and CAD have a shared bio-

logical basis, one might anticipate that they will also share genetic variants that affect their risk. In

this study, we utilized data from 2 large-scale nonoverlapping GWAS meta-analyses of migraine (the

International Headache Genetics Consortium, IHGC)12 and CAD (Coronary ARtery DIsease

Genome-Wide Replication And Meta-Analysis, CARDIoGRAM)13 to quantify shared genetic risk.

METHODS Study cohorts. Summary statistics (p value and effect size) at single nucleotide polymorphism (SNP) level from 2

recently performed meta-analyses of genome-wide association data on migraine (IHGC)12 and CAD (CARDIoGRAM)13 were used in
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the present study. After excluding overlapping samples, the 2

studies consisted of 19,981 cases with migraine vs 56,667

controls, and 21,076 cases with CAD vs 63,014 controls. A

proportion of the migraine cases were phenotyped in sufficient

detail to allow subclassification into MO (6,413 cases, 32,745

controls) and MA (4,940 cases, 37,557 controls). In addition,

individual-level genotype data were available for a proportion of

the migraine cohorts (6,350 migraine cases vs 15,069 controls

from the German MA and MO cohorts, Dutch LUMINA study,

Finnish MA study, and the HUNT Study, Norway). All data sets

were imputed by using the HapMap release 21 or 22 as reference.

An overview of the study design and the included cohorts is given

in figure 1. A detailed description of samples, genotyping, and

association analyses is given in e-Methods, tables e-1 and e-2, and

figure e-1 at Neurology.org/ng.

Standard protocol approvals, registrations, and patient
consents. For all study cohorts, participation was based on

informed consent. Each study was approved by local research eth-

ics boards in the country where the study cohort was collected.

See original publications of the 2 studies for full details of ethics

and consent procedures.12,13

Analytic approach. Evaluating extent of overlapping signals.
To assess whether more association signals were shared between

pruned SNP sets in order to optimize sensitivity. Using each set of

CAD risk SNPs, we calculated a per-individual CAD polygenic

risk score by summing the number of CAD risk alleles (or

expected allele counts for imputed SNPs), each weighted by the

log odds ratio from the CAD study. We subsequently assessed

whether CAD polygenic risk score was associated with migraine

status by applying a logistic regression model of the effect of CAD

polygenic risk score (continuous) on migraine status (case, con-

trol), adjusted for sex and dummy-coded covariates representing

the 6 individual migraine study cohorts.

Identifying shared risk loci. In order to identify shared risk

loci between migraine and CAD, we applied a novel method,

Cross-Phenotype Spatial Mapping (CPSM; see e-Methods for an

overview). This method compares 2 sets of p values from GWAS in

order to find groups of SNPs at which they are correlated and thus

identify shared patterns of association. We applied this method to

the 2,342,101  overlapping  SNPs from the migraine and CAD

studies and selected genomic regions with signal above the 99.95th

percentile of 1,000 permutations for further analysis. Potential ef-

fects of the shared association loci on regional gene expression (cis

effect) were examined using an existing expression quantitative trait

locus database from peripheral blood17 (e-Methods).

Lastly, we analyzed loci with previously reported genome-

wide significant association to migraine or CAD (summarized
12,13
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For the CARDIoGRAM

Consortium and the

we used a set of 2,342,101 overlapping SNPs that were directly

typed or imputed in both studies. Following the same procedure

as described in a previous study,14 we first sorted the SNPs by

association p value to migraine. Starting from the top of the list,

all subsequent SNPs with linkage disequilibrium (LD) r2. 0.05

(based on HapMap CEU release 27) were removed. This process

was repeated until a set of 92,654 SNPs in approximate linkage

equilibrium remained. For each of 5 separate p value cutoffs (1 3
1022, 1 3 1023, 1 3 1024, 1 3 1025, and 1 3 1026), we counted

the number of SNPs above and below the cutoff in each of the 2

studies, resulting in one 2 3 2 table for each p value cutoff. The

was cross-analyzed for association to the other phenotype, Bon-
ferroni correcting for the number of SNPs tested. All 13 of 13

reported migraine loci and 22 of 25 reported CAD loci were

available in our data set and could be tested (excluding CAD risk

SNPs rs17465637, rs1746048, and rs12413409).

RESULTS Comparing nominally significant SNPs

from the migraine and CAD GWAS, we found an

overlap of association signals in excess of what would

be expected by chance (table 1). An overlap of signals

was   seen   for   SNPs   with p values #1 3 1022,
Fisher exact test was used to estimate deviation from the expected 24 26

International Headache distribution, and false discovery rate correction was performed on 1 3 10 , and 1 3 10 . This was supported by

Genetics Consortium
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all 6 tests using the p.adjust function in R.15 A corrected Fisher

p, 0.01 was taken to indicate an excess of overlapping signals. In

order to obtain a more robust estimate of the significance of the

observed overlap, this was also assessed through permutations. In

each permutation cycle, the relation of p values  to  SNPs  was

randomized within each of the LD-pruned migraine and CAD

data sets, and a Fisher p for overlap was calculated for each p value

cutoff. We generated 100,000 permutations to produce an

empirical null distribution of p values.

In an equivalent manner, secondary analyses were performed

for MO (83,373 overlapping SNPs after LD pruning) and MA

(88,031 overlapping SNPs after LD pruning).

Polygenic risk score analysis. If shared genetic risk variants

are in part or fully responsible for comorbidity between migraine

and CAD, we would expect an accumulation of CAD risk alleles

in migraineurs. To test this hypothesis, we used the 6 migraine

cohorts in which individual-level genotype data were available

for analysis (6,350 migraineurs vs 15,069 controls; figure 1). For

each migraine case or control, we calculated a CAD polygenic risk

score based on a previously published method.16 We first gen-

erated 3 sets of CAD risk SNPs by selecting SNPs with strong

(p , 5 3 1028;  149  SNPs),  moderate  (p , 1 3 1024; 1,631

SNPs), or weak (p , 1 3 1022; 36,384 SNPs) association to

CAD among the 2,342,101 SNPs with information in both

migraine and CAD studies. As suggested in the original

description of the method,16 the analysis was based on non–LD-

permutation testing, which indicated a sharing of

association signals at p value cutoff 131025 as well.

For reference, the full list of SNPs with association

p value #1 3 1022 to both CAD and migraine is

given in table e-3. Secondary analyses by migraine

subtype revealed an overlap of association signals

between MO and CAD at all p value cutoffs (1 3
1022, 1 3 1023, 1 3 1024, 1 3 1025, and 1 3 1026),
while no overlap was seen between MA and CAD at any

of the p value cutoffs. The direction of effect for over-

lapping association signals did not consistently agree

between migraine and CAD, as evidenced by nonsignif-

icant binomial p values for concordance (table 1).

To examine this further, the second analysis com-

pared the load of genetic risk variants for CAD

between migraineurs and controls, using individual-

level data. The results indicated that a high CAD pol-

ygenic risk score was associated with a reduced risk of

migraine (figure 2, further details in table e-4). For

migraine overall, this association was seen for only the

moderate CAD risk SNP set (p 5 0.007). Secondary

analyses revealed a similar, but more pronounced,

association between CAD polygenic risk score and

2 Neurology: Genetics
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CPSM 5 Cross-Phenotype Spatial Mapping.

MO  (p 5 1.5 3 1024 and 5.1 3 1024 for the mod-

erate and strong CAD risk SNP sets, respectively). No

association was seen for MA. In the analysis of the

weak CAD risk SNP set, there was no association to

CAD genetic risk score for either migraine category,

indicating that the observed associations were driven

by a fairly limited number of loci that are at least

moderately associated with CAD. These findings

were consistent across men and women (figure e-2)

and across individual independent cohorts within the

same migraine subtype (figure e-3).

CPSM yielded 16 loci that overlapped between

migraine and CAD (table 2; figure e-4). Details of

the most significant migraine and CAD SNPs  at

each locus are given in table e-5. The strongest evi-

dence of shared association was seen at 6p24 (locus

no. 1 of table 2), where both CAD and migraine

showed genome-wide significant signals within the

PHACTR1 gene  (CAD:  rs4714955, p 5 9.8 3

10211; migraine: rs9349379, p 5 5.9 3 1029). The

second strongest overlapping signal was on 17q21

(locus no. 2), where the lead CAD SNP (rs46522,

p 5 2.6 3 1027) was intragenic in UBE2Z, whereas

the lead migraine SNP (rs11079844, p 5 3.1 3
1025) was intergenic between SNF8 and GIP. It is

interesting that both lead SNPs are in high LD (r2 .
0.9) with 2 functional variants in GIP: Ser103Gly

(rs2291725) and a splice site variant (rs2291726) that

is predicted to lead to a prematurely truncated tran-

script18 (table e-6). The locus was also found to have a

potential effect on the expression level of UBE2Z
(table  e-7).  Lead  SNPs  in  5  loci  were  in  high  LD

(r2. 0.8) with nonsynonymous or splice site variants

in nearby genes (table e-6). Ten of the 16 loci showed

opposite direction of effect for migraine and CAD. In

the secondary analyses, 12 of the 16 lead migraine

SNPs had a lower association p value in MO than

in MA (2-tailed binomial p 5 0.08), and all 16 SNPs

Neurology: Genetics 3
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Table 1 Analysis of the extent of overlapping signals between migraine and CAD

p Value for overlap p Value for overlap Concordance of Binomial p value
Signal definition (p value cutoff) Overlapping SNPs (Fisher exact test)a (permutation test)a overlapping SNPsb for concordance

All migraine (total no. SNPs: 92,654)

1E-2 146 1.1E-05c 6.0E-05c 0.534 0.18

1E-3 7 0.099 0.056 0.571 0.23

1E-4 2 9.3E-03c 7.9E-03c 0 0.75

1E-5 1 0.014 2.1E-04c 0 0.50

1E-6 1 5.2E-03c 3.5E-03c 0 0.50

Migraine without aura (total no. SNPs: 83,373)

1E-2 113 1.6E-04c 1.5E-05c 0.510 0.87

1E-3 8 1.3E-03c 1.1E-04c 0.442 0.86

1E-4 3 2.0E-04c 1.5E-05c 0.250 0.88

1E-5 1 8.5E-03c 1.5E-05c 0 0.50

1E-6 1 3.0E-03c 1.5E-05c 0 0.50

Migraine with aura (total no. SNPs: 88,031)

1E-2 107 0.13 0.11 0.523 0.28

1E-3 1 1.0 0.64 0.523 0.50

1E-4 0 1.0 1.0 NA NA

1E-5 0 1.0 1.0 NA NA

1E-6 0 1.0 1.0 NA NA

Abbreviations: CAD 5 coronary artery disease; NA 5 not applicable; SNP 5 single nucleotide polymorphism.
aFalse discovery rate corrected p values.
bProportion of overlapping association signals having the same direction of effect in migraine and CAD.
cp,0.01.

Results are given as odds ratios with 95% confidence intervals. Separate lines are shown for all
migraine (blue), migraine without aura (green), and migraine with aura (red). The coronary artery
disease (CAD) polygenic risk score was calculated based on single nucleotide polymorphisms
(SNPs) with weak (p, 1 3 1022), moderate (p, 1 3 1024), or strong (p, 5 3 1028) association
to CAD in the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis study.

4 Neurology: Genetics

had the same effect direction in each of the 2 migraine

subtypes. Local Manhattan plots and covariance plots

for the identified loci are given in figure e-4.

When considering previously reported risk loci for

migraine and CAD, 3 CAD risk SNPs were associated

to migraine at study-wide significance, and 2

migraine risk SNPs were associated to CAD (table 3).

These correspond to loci no. 1, 2, 3, 11, and 14 as

identified by the CPSM method and corroborate the

evidence for shared genetic risk at these loci.

DISCUSSION In  this  study,  we  used  data  from  2

recently performed large-scale nonoverlapping

GWAS to examine shared genetic risk between

migraine and CAD. We found that association

signals overlapped in excess of what would be

expected by chance. Stratifying by migraine subtype

further revealed that MO and MA behaved

differently. MO had a genetic overlap with CAD,

whereas MA did not. These results are unexpected,

given the epidemiologic evidence that comorbidity

with CAD is more common in MA than MO.

Patients with MA were found to have a 2-fold

increased risk for CAD8,10 and an increased risk for

CAD-related mortality,9,11 although one cross-

sectional study failed to find an association between

Figure 2 Association between coronary artery disease polygenic risk score and
the presence of migraine
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Table 2 Overlapping association loci between migraine and CAD as identified by CPSM analysis

Position (Mb)b Locus

Locus no.a Chr band Left margin Right margin Size (kb) Peak SNP Peak height Genes within locusc

1 6p24 12.929 13.187 257.386 rs7454157 25.2 PHACTR1

2 17q21 44.282 44.512 230.813 rs12601858 13.2 CALCOCO2, ATP5G1, UBE2Z, SNF8, GIP, IGF2BP1

3 6q16 96.917 97.188 271.548 rs12529248 7.8 UFL1, FHL5

4 12q24 110.241 111.064 823.633 rs7962138 7.4 CUX2, FAM109A, SH2B3, ATXN2, BRAP, ACAD10,
ALDH2, MAPKAPK5-AS1, MAPKAPK5, ADAM1A,
TMEM116, ERP29, NAA25, TRAFD1

5 17p11 17.603 17.992 389.086 rs9890341 6.9 RAI1, SMCR5, SREBF1, MIR33B, TOM1L2, LRRC48,
ATPAF2, GID4, DRG2, MYO15A

6 16q23 73.827 74.094 266.738 rs4888396 5.2 BCAR1, CFDP1, TMEM170A, CHST6

7 10q24 104.823 105.178 354.585 rs7067970 5.1 CNNM2, NT5C2, LOC729020, INA, PCGF6, TAF5,
USMG5, MIR1307, PDCD11

8 2q33 203.375 203.52 145.53 rs6435169 4.8 ICA1L, WDR12, ALS2CR8

9 10q24 104.569 104.785 216.416 rs1538204 4.1 CYP17A1, C10orf32, C10orf32-AS3MT, AS3MT,
CNNM2

10 6q13 72.182 72.403 220.605 rs12207845 3.1 LINC00472

11 8q21 89.53 89.69 160.492 rs1352317 3.1 None

12 19q13 46.543 46.664 120.921 rs3810174 2.9 TGFB1, B9D2, TMEM91, EXOSC5, BCKDHA, B3GNT8,
ATP5SL, C19orf69, LOC100505495

13 12q24 109.501 109.714 213.015 rs16940933 2.8 PPTC7, TCTN1, HVCN1, PPP1CC

14 8q21 89.382 89.525 143.754 rs6984041 2.7 MMP16

15 16q24 88.099 88.191 91.257 rs17775174 2.6 SPG7, RPL13, SNORD68, CPNE7

16 9p21 23.429 23.505 75.25 rs10811931 2.5 None

Abbreviations: Chr5chromosome; CAD5coronary artery disease; CPSM 5Cross-Phenotype Spatial Mapping; peak height5 value of covariance signal at
apex of the peak; SNP 5 single nucleotide polymorphism.
aSorted by decreasing peak height.
bPositions refer to build NCBI36/hg18.
cRefSeq genes.

CAD and any migraine subtype.19 Studies not

differentiating on migraine subtype have been  less

conclusive, with some8,9,20,21 but not others19,22

indicating an increased risk of CAD related to

migraine overall.

For  MO,  we  found  a  clear  overlap  of  association

signals with CAD, whichever p value cutoff was used

to define signals. Intriguingly, the impact was in the

opposite direction, in that patients with MO had a

lower load  of CAD risk alleles  than migraine-free

controls. This association seemed to be driven by a

limited number of loci. Only a proportion of the

included migraine patients were phenotyped in suffi-

cient detail to allow subclassification into MA or MO.

When using the considerably larger set of all migraine

patients, a similar association was seen as for MO,

likely driven by this migraine subtype. While the

results suggest that there are shared common risk

variants between migraine and CAD, they do not

indicate that these variants explain comorbidity

between the 2 disorders.

The opposite direction of effect for some of the

loci is consistent with a recent GWAS in which the

migraine   and   CAD   risk   SNP   rs9349379   (in

PHACTR1) was associated with cervical artery dissec-

tion, with effect in the same direction as for migraine

but opposite of CAD.23 Two further migraine SNPs

showed evidence of association to cervical artery dis-

section with the same effect direction as for migraine

(rs11172113 in LRP1 and rs13208321 in FHL5, the

latter identified as locus 3 in the current study) but

opposite direction for CAD.

The significant sharing of risk loci between

migraine and CAD may reflect that they involve some

of the same biological processes. Experimental studies

will be needed to clarify this and whether the shared

risk loci can give information on vascular mechanisms

involved in migraine pathogenesis.

The lack of overlapping association signals

between MA and CAD may indicate that the 2 disor-

ders have separate and nonrelated genetic back-

grounds. However, it may also result from

insufficient power to detect shared common genetic

risk factors for this migraine subtype. This is consis-

tent with the relative failure so far in identifying com-

mon risk variants for MA; despite at least as high

heritability and comparable study sample sizes, only

one genome-wide significant locus has been identified

Neurology: Genetics 5
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for MA, compared to 9 for MO.12,24–27 It is possible

that MA is a more heterogeneous disorder or is influ-

enced by rare and low-frequency variants not cap-

tured by current imputation  panels.12,28 Larger

studies that also interrogate rare variants will be

needed to determine the genetic basis of MA  and

its potential overlap with cardiovascular disease.

Six of the overlapping loci have previously been

associated with CAD at genome-wide significant lev-

els (loci 1, 2, 4, 7, 8, and 9 of table 2),13,29 and 2 with

migraine (loci 1 and 3).12,25 The strongest overlapping

region (locus 1) is entirely intragenic in PHACTR1
(which encodes phosphatase and actin regulator 1 pro-

tein). This locus is associated with both migraine and

CAD at genome-wide significant levels in the current

and previous studies13,25,30 and has also been associ-

ated with coronary artery calcification and stroke.31,32

PHACTR1 is highly expressed in the brain, and its

transcript is an important regulator of synaptic activ-

ity and dendritic morphology through the control of

protein phosphatase 1 and actin binding.33 More

recently, PHACTR1 has been identified as a key reg-

ulator of endothelial function, including endothelial

cell survival and angiogenesis,34 and it is associated

with altered vasomotor tone.35 Both endothelial and

vasomotor dysfunctions have been implicated in

migraine,36,37 and this locus offers a potential focus

for future studies. Alternatively, the pleiotropic effects

of this gene on both synaptic and vascular functions

may give rise to independent causal pathways for the

2 disorders.

The second strongest overlapping region (locus 2)

is a previously identified risk locus for CAD.13 The

lead CAD (rs46522) and migraine variants

(rs11079844) are in strong LD (r2 5 0.94), and both

are in strong LD (r2 . 0.90) with 2 potentially func-

tional variants in GIP (which encodes gastric inhibi-

tory polypeptide). GIP regulates glucose-induced

insulin release from pancreatic b-cells and helps re-

sensitize the insulin response.38 It is also expressed in

the brain, where it may be involved in proliferation of

neuronal progenitor cells.39 Whether GIP is involved

in the observed tendency for insulin resistance and

metabolic syndrome in migraineurs should be

investigated.40

Strengths of this study include the use of large-

scale nonoverlapping GWAS of migraine and CAD,

stringent quality control measures, and sufficiently

rich phenotyping to allow secondary analyses of the

2 migraine subtypes. Nevertheless, some limitations

should also be acknowledged. First, only summary

statistics and not individual-level genotype data were

available for the majority of the samples included in

this study. Second, in each included cohort, pheno-

type information was available on only migraine or

CAD, not both. This prevented us from performing

6 Neurology: Genetics
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more in-depth analyses, including analysis for poten-

tial gene-gene interactions or identification of CAD

risk loci specific to migraineurs. Third, considerable

effort was devoted to the careful avoidance of shared

controls between studies, and stringent quality con-

trol measures within each data set were enforced to

reduce the risk of spurious effects resulting from

biases within the data sets. Nevertheless, we cannot

rule out subtle biases that could affect the current re-

sults. Two such concerns are the effects of migraine

on survival and the possibility that migraineurs may

be more likely to seek medical treatment and there-

fore be under closer surveillance with regards to other

disorders. Future efforts should aim to replicate these

findings in sufficiently large prospective data sets

where both phenotypes are measured in the same

individuals.

Our study provides novel insights into the rela-

tionship between migraine and CAD.  Intriguingly,

and unexpectedly, there was no genetic overlap

between MA and CAD, for which epidemiologic

studies suggest comorbidity, but there was compel-

ling evidence for a genetic  overlap  between  MO

and CAD, where the impact of risk variants overall

was in opposite direction for the 2 disorders. The re-

sults do not demonstrate that shared common genetic

risk factors drive comorbidity between the 2 disor-

ders. However, dissecting the mechanisms underlying

the shared risk loci may improve our understanding

of both disorders.
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