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Tiivistelmä  
Tutkimuksen tausta ja tavoitteet: Monet rasvakudokseen liittyvät sairaudet, kuten 

esimerkiksi sairaalloinen lihavuus ja tyypin 2 diabetes, ovat jo saavuttaneet 

maailmanlaajuisten epidemioiden mittasuhteet. Rasvakudos toimii kehossa energiavarastona. 

Tämän lisäksi rasvakudos on merkittävä endokriininen elin, joka on erityisen tiiviissä 

yhteydessä verisuonistoon. Rasvakudoksen ja sen sairauksien tutkimukseen on kehitetty 

paljon erilaisia eläinmalleja. Eläinmalleilla saavutetut tulokset eivät kuitenkaan vastaa hyvin 

tilannetta ihmisessä, minkä vuoksi tarvitaan uusia ja tarkempia ihmissolupohjaisia 

kudosmalleja. Tämän tutkimuksen tavoitteena oli optimoida ja karakterisoida 

ihmissolupohjainen verisuonitettu rasvamalli. Tutkimuksessa määritettiin, vaikuttaako 

verisuonten lisääminen rasvamalliin positiivisesti rasvan kypsymiseen, muodostuuko malliin 

kunnollisia verisuoniverkostoja rasvasolujen läsnä ollessa ja voidaanko solujen 

irtoamisongelma ratkaista vaihtamalla solujen siirrostus- ja erilaistusstrategiaa.  

Tutkimusmenetelmät: Tutkimuksessa mallinnettiin verisuonitetun rasvakudoksen 

muodostumista viljelemällä ihmisen rasvan kantasoluja ja ihmisen napanuoran endoteelisoluja 

yhteisviljelmässä 14 päivää. Työssä kokeiltiin kuutta erilaista siirrostus- ja erilaistusstrategiaa. 

Yhteisviljelmää käsiteltiin viljelyn aikana sekä rasva- että verisuonierilaistusmediumeilla. 

Viljelyn päätyttyä, triglyseridien kertymistä tutkittiin Adipored reagenssilla, solujen 

suhteellista määrää WST-1 reagenssilla ja verisuonten muodostumista 

immunosytokemiallisilla värjäyksillä. Rasvakudosspesifien geenien ilmentymistä tutkittiin 

RT-qPCR -menetelmällä soluviljelyn 14. päivänä. Triglyseridien kertymistä ja verisuonten 

muodostumista havainnoitiin fluoresenssimikroskoopilla. Muodostuneita verisuonia tutkittiin 

myös konfokaalimikroskoopilla sekä Cell-IQ -laitteella. Myös verisuonten pinta-ala 

määritettiin.  

Tulokset: Soluviljelystrategia, jossa rasvakudos erilaistettiin ennen verisuonia, ja jossa solut 

siirrostettiin kahdessa erässä kahtena eri päivänä, oli teknisesti paras strategia ratkaisemaan 

solujen irtoamisongelman, kerrytti triglyseridejä riittävissä määrin, ilmensi 

rasvakudosspesifisiä geenejä ja muodosti rasvasoluja ja verisuonia, jotka olivat 

morfologialtaan samankaltaisia kuin rasvasolut ja verisuonet in vivo. 

Johtopäätökset: Tulokset osoittivat, että solujen erilaisilla siirrostus- ja erilaistusstrategioilla 

oli merkitystä mallin tekniseen toteuttamiseen ja toistettavuuteen, triglyseridien kertymiseen, 

verisuonirakenteiden muodostumiseen ja muodostuneen rasvakudoksen geneettiseen 

kypsyyteen. Verisuonitettu rasvamalli on lupaava työkalu rasvakudoksen tutkimiseen. 

Kudosmallin perusteellisella karakterisoinnilla ja optimoinnilla on mahdollista luoda nykyisin 

saatavilla olevia eläinmalleja tehokkaampi, tarkempi ja luotettavampi testisysteemi. 
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Abstract 
Background and aims: Many adipose tissue related diseases, such as obesity and type 2 

diabetes, are already worldwide epidemics. In addition to being energy storage, adipose tissue 

is an endocrine organ, which is in particular closely associated with vascular system. In order 

to study adipose tissue and diseases related to it, a wide variety of animal models have been 

developed. However, the results obtained with these models correlate relatively poorly to 

humans. Thus, new and more accurate human cell based models are needed. The aim of this 

study was the optimization and characterization of human vascularized adipose tissue model. 

The more specific aims were to determine whether adding tubules to adipose tissue model 

would have a positive effect on the maturation of adipocytes, whether proper vascular 

structures are formed in the model in the presence of adipocytes and, whether the problem of 

cell detachment can be solved by trying different cell plating and differentiation schemes. 

Methods: Human adipose stromal cells (hASC) and human umbilical cord vein endothelial 

cells (HUVEC) were cultured as a co-culture on a 48-well plate to mimic vascularized 

adipose tissue in vitro. Six different cell culturing strategies with respect to cell plating and 

differentiation schemes were tested. Co-cultures were grown for 14 days and during the co-

culture, exposed both to adipogenic and angiogenic differentiation media. After this, 

triglyceride accumulation was studied with Adipored reagent, the relative cell number with 

WST-1 reagent and the formed vascular structures with immunocytochemical stainings. 

Adipocyte specific gene expression was studied with RT-qPCR on the 14th day of cell culture. 

Triglyceride accumulation and vascular structure formation were observed with a fluorescent 

microscope. Vascular structures were also studied with confocal microscope and Cell-IQ and 

the area of vascular networks was quantified.  

Results: The cell culturing scheme, in which adipogenesis was induced before angiogenesis, 

and where cells were plated in two batches at two different days, was the best cell culturing 

strategy for solving the detachment issue, accumulated triglycerides, expressed adipose tissue 

specific genes and the morphology of adipocytes and blood vessels was similar to their 

morphology in vivo. 

Conclusions: The results showed, that changing cell plating and differentiation scheme 

affected the technical repeatability of the model, triglyceride accumulation, vascular structure 

formation and the genetic maturity of the formed adipose tissue. The vascularized adipose 

tissue model is a promising tool for adipose tissue research. By thorough characterizing and 

optimizing the developed in vitro model, it is possible to create a more efficient, reliable and 

accurate test method than the currently available animal models offer.  
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1. Introduction 
The prevalence of several adipose tissue related diseases, such as obesity and type 2 diabetes, 

have reached worldwide epidemic proportions. Already 2.1 billion people are obese and over 

371 million people have type 2 diabetes (Lai et al., 2014). In addition to type 2 diabetes, 

obesity and overweight are associated with an increased incidence of other comorbidities 

including several different cancer types, sleep apnea, asthma, degenerative joint disease, 

hypertension, renal failure, stroke, and cardiovascular disease (Switzer et al., 2013; van Baak, 

2013). 

Adipose tissue is a complex organ that has many important functions in the body. In addition 

to adipocytes, adipose tissue contains stromal-vascular cells, blood vessels, lymph nodes and 

nerves (J. H. Choi et al., 2010). For a long time adipose tissue was considered merely as 

energy storage, but nowadays it is clear that adipose tissue does a lot more. It is a dynamic 

endocrine organ secreting many different bioactive factors that control systemic insulin 

sensitivity, energy metabolism, immune responses and cardiovascular homeostasis (Gu & Xu, 

2013). Adipose tissue serves also as a mechanical support for the body and insulates heat 

(Rosen & Spiegelman, 2014).  

Adipose tissue is particularly intimately associated to the vascular system, being one of the 

most vascularized tissues in the body (Y. Cao, 2013). Adipose tissue secretes both pro- and 

anti-angiogenic factors and the vascular system supports the growth and function of adipose 

tissue (Y. Cao, 2014, Christiaens & Lijnen, 2010). The vascular system does not only bring 

oxygen, nutrients, cytokines, growth factors and stem cells to adipose tissue and remove 

waste products from adipose tissue through circulation but also produces local growth factors 

and cytokines that communicate with adipose tissue (Y. Cao, 2014). In addition, vascular 

pericytes have been noticed to have stem cell features and can differentiate into preadipocytes 

and adipocytes (Tran et al., 2012). Thus, adipose tissue expansion could be controlled through 

angiogenesis prevention, which has led to new experimental obesity treatments (Y. Cao, 

2013; Daquinag et al., 2011).    

A wide variety of animal models have been generated in order to study obesity. The species 

used include fruit flies, dogs, cats, pigs, rabbits, hamsters, squirrels, mice, rats and primates 

(Lai et al., 2014). However, the results obtained with animal models translate relatively 
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poorly to humans (Bergen & Mersmann, 2005; Chandrasekera & Pippin, 2014; Lai et al., 

2014). The complex pathways of lipid metabolism are mostly species specific (Bergen & 

Mersmann, 2005). There are also ethical aspects related to animal studies (Sade, 2011). Thus, 

new human cell based methods offer biologically relevant tools for the study of human 

adipose tissue related diseases. Development of in vitro adipose tissue models is also 

interesting from a tissue-engineering point of view (Kang et al., 2009). Soft tissue 

reconstruction is often needed, when a patient loses soft tissue due to injury, trauma or disease 

(J. H. Choi et al., 2010). In addition to the cosmetic and emotional well-being of the patient, 

the loss of adipose tissue can impair function, such as range of motion (Patrick, 2001).   

In this study, human adipogenesis and angiogenesis cell models developed earlier at FICAM 

(Huttala et al., 2015; Sarkanen et al., 2012a; Sarkanen et al., 2012b) were combined to form a 

functional vascularized adipose tissue model. Different cell culturing strategies for building 

the model were examined, in order to find out how they affect the maturation of the adipose 

tissue, the formation of vascular networks and the technical repeatability and reliability of the 

model.   
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2. Literature review 

2.1 Adipose tissue 
Adipose tissue is typically divided into two major types, white adipose tissue (WAT) and 

brown adipose tissue (BAT). White adipocytes store lipids in one, large lipid droplet, while 

brown adipocytes contain several smaller lipid droplets (Hyvonen & Spalding, 2014; Peirce et 

al., 2014). BAT is present mainly in infants and it is responsible for the non-shivering 

thermogenesis, where triglycerides are oxidized for heat production (J. H. Choi et al., 2010; 

Hyvonen & Spalding, 2014). The amount of BAT decreases in humans as the body matures, 

while the amount of WAT increases (J. H. Choi et al., 2010).  

WAT is highly dynamic tissue, as it can rapidly respond to the changes in the energy balance 

of the body by increasing or decreasing its mass (Hyvonen & Spalding, 2014; Sun et al., 

2011). WAT is distributed all over the body and can be classified by type and depot: the 

subcutaneous (e.g. arm, abdominal and gluteal adipose tissue), the intraabdominal (e.g. 

visceral) and other sites (e.g. intramuscular) (J. H. Choi et al., 2010). WAT in different depots 

differs from each other (Hyvonen & Spalding, 2014; Rosen & Spiegelman, 2014). For 

example, increased amount of visceral fat is known to raise the risk of the metabolic 

syndrome whereas increased amount of subcutaneous fat does not or might even decrease the 

risk (Hyvonen & Spalding, 2014; Rosen & Spiegelman, 2014).   

Mature adipocytes constitute the majority of WAT. However, they account for 20 - 60 % of 

the total cell number in WAT (Hyvonen & Spalding, 2014; Lanthier & Leclercq, 2014). In 

addition to mature adipocytes, WAT contains stromal vascular fraction cells (SVF cells), 

which are a heterogeneous group of cells including endothelial cells, macrophages, 

fibroblasts, stem cells and lymphocytes (J. H. Choi et al., 2010; Hyvonen & Spalding, 2014). 

WAT is highly vascularized tissue and contains an extensive system of lymph nodes and 

nerves (Y. Cao, 2013; J. H. Choi et al., 2010). WAT is supported by the extracellular matrix 

(ECM), which consists of collagen types I, III, IV, V and VI in addition to other ECM 

proteins (J. H. Choi et al., 2010).   

Quite recently, a third type of adipocyte has been discovered. These cells are typically 

referred to brite cells, for their brown-in-white phenotype (also known as beige, inducible, 

recruitable, brown-like or paucilocular cells) (Hyvonen & Spalding, 2014; Peirce et al., 2014). 

Brite cells are interspersed among WAT, where they are capable of thermogenesis (Hyvonen 
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& Spalding, 2014; Peirce et al., 2014). Although there is a rising interest in the metabolism 

and function of BAT (J. H. Choi et al., 2010) and BAT/brite cell activation might offer new 

therapeutic targets for treating metabolic diseases (Harms & Seale, 2013), this thesis focuses 

on WAT, as it is the major form of adipose tissue in humans and as the cells used in this study 

are obtained from WAT.     

2.2 Adipogenesis 
The development of adipose tissue compartments begins at late gestation (Cristancho & 

Lazar, 2011). The rate of adipogenesis emerges in response to increased nutrient availability 

that leads to the remarkable postnatal expansion of adipose tissue (Cristancho & Lazar, 2011). 

Expansion of adipose tissue after birth occurs both by the increment of adipocyte size and 

adipocyte number (Gregoire et al., 1998). It seems that the expansion of adipose tissue can 

occur by both ways also in the adult stage, but the relative contribution of adipocyte size and 

adipocyte number to human adipose tissue growth in response to nutritional stimulus remains 

unclear (Cristancho & Lazar, 2011; Gregoire et al., 1998).  

Adipogenesis is typically described as a two-phase process that includes determination (also 

known as commitment) and terminal differentiation (Cristancho & Lazar, 2011; Rosen & 

MacDougald, 2006). In the determination phase, stem cells transform into committed 

preadipocytes (Rosen & MacDougald, 2006). These preadipocytes cannot differentiate 

anymore into other cell types than adipocytes (Rosen & MacDougald, 2006). However, 

before further differentiation, the growth arrest of preadipocytes is required (Gregoire, 2001). 

Following growth arrest, preadipocytes need also an appropriate mixture of adipogenic and 

mitogenic signals for terminal differentiation (Gregoire, 2001).    

In terminal differentiation, preadipocytes transform into insulin-sensitive, lipid synthesizing 

and transporting mature adipocytes that secrete adipocyte-specific secretory products 

(Gregoire et al., 1998; Rosen & MacDougald, 2006). Adipocyte differentiation into mature 

adipocyte phenotype is typically characterized by chronological changes in the expression of 

multiple genes (Gregoire et al., 1998). The changes can be detected by the early, intermediate 

and late mRNA/protein markers and triglyceride accumulation (Gregoire et al., 1998). A 

schematic picture of adipogenesis is represented in Figure 1.  

2.2.1 The molecular events and regulation of adipogenesis 

Adipogenesis requires the coordinated activation of over 2000 genes (Gregoire, 2001). The 

most important transcriptional factors include peroxisome proliferator-activated receptor γ 
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(PPARγ) and CCAAT/enhancer binding proteins (C/EBPs) (Bucky & Percec, 2008; Gregoire, 

2001; Rosen & MacDougald, 2006).  

PPARγ is often referred to the ‘master regulator’ of adipogenesis. PPARγ belongs to nuclear-

receptor superfamily and its expression alone is sufficient for adipocyte differentiation 

(Farmer, 2006; Rosen & MacDougald, 2006). In the absence of PPARγ, no other transcription 

factor can promote adipocyte differentiation (Rosen & MacDougald, 2006). Moreover, most 

pro-adipogenic factors operate by the activation of PPARγ expression or activity (Rosen & 

MacDougald, 2006).  Due to alternative promoter usage and splicing, PPARγ is expressed as 

two different isoforms, PPARγ1 and PPARγ2. During adipogenesis, both isoforms are 

expressed, but PPARγ2 is exclusively expressed in adipose tissue whereas PPARγ1 is 

expressed also in other tissues besides adipose tissue (Farmer, 2006; Rosen & MacDougald, 

2006). The relative roles of two different isoforms remain inconclusive, as it seems that 

although PPARγ2 might be essential for obtaining the insulin sensitivity of adipocytes, it is 

not absolutely necessary for adipocyte differentiation, when PPARγ1 is expressed (Rosen & 

MacDougald, 2006). PPARγ is not only vital for adipocyte differentiation, but it is also 

needed for the regulation of insulin sensitivity, lipogenesis and adipocyte survival and 

function (Lefterova et al., 2014). 

C/EBPs (α, β and δ) are important activators of PPARγ. C/EBP-β and C/EBP-δ stimulate the 

expression of PPARγ in early differentiation (Bucky & Percec, 2008; Rosen & MacDougald, 

2006). PPARγ and C/EBP-β activate then C/EBP-α, which induces many adipogenic genes 

directly and activates PPARγ (Rosen & MacDougald, 2006). The activation of C/EBP-α 

induced by PPARγ creates a positive feedback signal that maintains the differentiated 

adipogenic state (Daquinag et al., 2011).  

In addition to PPARγ and C/EBPs, many other transcriptional factors effect on adipogenesis. 

For example, ADD1/SREBP-1c, CREB, Krüppel-like factors (KLF5, KLF15, and KLF2), 

early growth response 2, early B-cell factors and lipoprotein lipase (LPL) have been 

discovered to be important inducers of adipogenesis (Bucky & Percec, 2008; Gregoire et al., 

1998). Also factors of negative regulation have been discovered: GATA binding transcription 

factors GATA-2 and GATA-3 function as anti-adipogenic transcriptional factors (Gregoire, 

2001; Rosen & MacDougald, 2006). 

Besides transcriptional factors, also other signaling molecules participate in the regulation of 

adipogenesis. Among other pathways, the activation of mitogen-activated protein kinase 
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kinase/extracellular signal regulated kinase (MEK/ERK) signaling pathway and p38 mitogen-

activated protein kinase (p38 MAPK) signaling pathway are required for adipogenesis (Bost 

et al., 2005; Farmer, 2005). Also insulin, insulin-like growth factor 1 (IGF-1), glucocorticoids 

and agents that increase intracellular cyclic adenosine monophosphate (cAMP) concentrations 

act as promoters of adipogenesis (Gregoire et al., 1998), whereas Wnt family, pref-1, 

transforming growth-factor β (TGF-β) superfamily members, cytokines and protein kinase C 

(PKC) are inhibitory extracellular signal molecules of adipogenesis (Gregoire, 2001; Rosen & 

MacDougald, 2006).  

Furthermore, one of the key regulators of the adipocyte differentiation is the shape 

transformation of fibroblast-like shaped preadipocytes into more spherical shaped 

preadipocytes (Gregoire, 2001). These morphological modifications are correspondent to the 

changes in ECM and promote the expression of C/EBPα and/or PPARγ (Gregoire, 2001). In 

addition to cell-shape change, the modification of ECM is needed for adipocyte-specific gene 

expression and lipid accumulation (Selvarajan et al., 2001).  

 

Figure 1: The key regulators of adipogenesis. C/EBPδ and C/EBPβ stimulate KLF5 and 

PPARγ in the early differentiation. PPARγ is the most important transcriptional regulator of 

adipogenesis and is further activated by ADD1/SREBP-1c. C/EBPβ and PPARγ activate 

C/EBPα, which activates PPARγ creating a positive feedback-signal to maintain the 

differentiated state. GATA-2 and GATA-3 act as inhibitory transcriptional factors. 

Glucocorticoids, cAMP, insulin and IGF-1 stimulate adipogenesis, whereas Wnt, Pref1, 

cytokines, PKC inhibitors and TGF-β inhibit adipogenesis. During adipogenesis, MEK/ERK 

and p38 MAPK signaling pathways are activated. 
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2.3 Adipocyte metabolism 

2.3.1 Lipid metabolism in adipocytes 

Triglycerides (triacylglycerides) are the major storage molecules for fatty acids for energy 

utilization and for the synthesis material of membrane lipids (Yen et al., 2008).   Triglycerides 

are stored in cells in lipid droplets, which can be found in most cell types in vertebrates 

(Brasaemle & Wolins, 2012; Walther & Farese, 2012). However, adipocytes are the only cell 

type that is specialized in lipid storage: while lipid droplets in other cell types have the 

diameters of 100 - 200 nm, lipid droplets in adipocytes have diameters up to 100 µm and fill 

almost the whole cytoplasm (Walther & Farese, 2012).  

Triglycerides are transported in the circulation in the form of multi-molecular lipoprotein 

particles (Mead et al., 2002). Dietary triglycerides are packed into chylomicrone lipoproteins 

by the intestine, whereas triglycerides synthetized in the liver are packed into very-low-

density lipoprotein (VLDL) particles (Kersten, 2014; Mead et al., 2002). Adipocytes, as well 

as some other cell types, utilize circulating triglycerides with the help of lipoprotein lipase 

(LPL) (Frayn et al., 2003; Kersten, 2014). As adipocytes release LPL, LPL is transported to 

the lumenal side of capillary endothelium (Kersten, 2014). Then, LPL catalyzes the 

hydrolysis of circulating chylomicrons and VLDL (Mead et al., 2002). This reaction provides 

non-esterified fatty acids and 2-monoacylglycerols (Mead et al., 2002; Rutkowski et al., 

2015). Non-esterified fatty acids are taken into adipocytes by several binding and transport 

proteins, such as CD36 and fatty acid transport protein family (Rutkowski et al., 2015). Upon 

transportation into adipocytes, non-esterified fatty acids are esterified to a glycerol backbone 

(Mead et al., 2002; Rutkowski et al., 2015). Esterification thus forms triglycerides for storage 

within the lipid droplets in adipocytes (Rutkowski et al., 2015).  Adipocytes are also capable 

of de novo lipogenesis and can take in free fatty acids in the fasting state (Hames et al., 2015; 

Rosen & Spiegelman, 2014).  

Fatty acids are released from triglycerides, so that they can be oxidized locally or by other 

organs, through the process called lipolysis (Rosen & Spiegelman, 2014; Rutkowski et al., 

2015). The surface of lipid droplets includes structural proteins and metabolic enzymes that 

are specified to adipocytes and respond to hormonal stimulation of lipolysis (Rutkowski et al., 

2015). Lipolysis is classically thought to be driven by β-adrenergic signaling in adipocytes, 

but it is possible that also other inducers can stimulate lipolysis (Rosen & Spiegelman, 2014). 

The binding of cathecolamins to β-adrenergic receptors results in the increased concentration 

of cellular cyclic adenosine monophosphate (cAMP), which in turn activates lipolytic 



 

8 
 

enzymes through the stimulation of protein kinase A (PKA) (Zechner et al., 2005). Lipolytic 

enzymes include at least three major enzymes: adipose triglyceride lipase (ATGL), hormone-

sensitive lipase (HSL) and monoglyceride lipase (MGL) (Rosen & Spiegelman, 2014). ATGL 

functions as the initiator of triglyceride hydrolysis and results in the generation of 

diacylglycerols and free fatty acids (Zechner et al., 2005), while HSL functions as a 

diglyceride lipase and MGL completes the process by generating glycerol and free fatty acids 

(Rosen & Spiegelman, 2014).   

2.3.2 Insulin action on adipocytes 

Insulin is an important regulator of adipocyte metabolism. It promotes the synthesis and 

storage of triglycerides and inhibits their catabolism (Rutkowski et al., 2015). In the high fed 

state, insulin binds to its receptor on adipocytes and causes the translocation of glucose 

transporter 4 (Glut4) from the cytosol to the cell surface (Watson & Pessin, 2007). The 

translocation of Glut4 then enables effective glucose influx into the adipocytes (Watson & 

Pessin, 2007). Insulin-stimulated Glut4 seems to be the predominant glucose transporter type 

in adipocytes, although another glucose transporter type, Glut1, is constitutive present at the 

cell membranes of adipocytes (Rutkowski et al., 2015). Studies with adipocyte-specific Glut4 

knock-out mice have shown that Glut4 deletion in adipocytes causes skeletal and hepatic 

insulin resistance, suggesting that adipocyte Glut4 - mediated glucose uptake plays an 

important role in glucose homeostasis (Abel et al., 2001). The influx of glucose is not just 

necessary for ATP production, as glucose is also needed for effective adipocyte lipid 

packaging (Guan et al., 2002). 

Insulin acts also as a lipolysis inhibitor by activating phosphodiesterase 3B, which inactivates 

the function of cAMP (S. M. Choi et al., 2010). Thus, the downstream activation of PKA is 

inhibited as well as the activation of ATGL and HSL (S. M. Choi et al., 2010). Insulin inhibits 

lipolysis also indirectly by enhancing the influx of glucose (Rutkowski et al., 2015). Glucose 

is metabolized into pyruvate, which enters the citric acid cycle. However, a portion of 

pyruvate is metabolized into lactate. As lactate exits adipocytes, it mediates insulin-dependent 

inhibition through an autocrine and paracrine lactate loop (Ahmed et al., 2010). Lactate 

binding to the G protein-coupled receptor GPR81 inhibits the formation of cAMP and also the 

down-stream activation of PKA (Ahmed et al., 2010).   

2.4 Adipose tissue secretory products 
Adipose tissue is the largest endocrine organ of the human body (Burke et al., 2014). Mature 

adipose tissue secretes several hormones, growth factors, enzymes, matrix proteins, cytokines 
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and complement factors (Coelho et al., 2013; Poulos et al., 2010). The secreted factors 

regulate fat mass, adipogenesis, vasculature, blood flow, lipid and cholesterol metabolism and 

the function of the immune system (Poulos et al., 2010). In addition to adipose tissue and 

vasculature, the main organ systems affected by adipose tissue secretory products are liver, 

muscle, the brain, pancreatic β-cells and the reproductive track (Scherer, 2006). The most 

important adipose tissue secretory products are discussed in detail below and more secretory 

products and their main functions are listed in Table 1. 

2.4.1 Adipose-derived hormones 

Leptin and adiponectin are the most abundant hormones produced by adipose tissue (Coelho 

et al., 2013). They both regulate the whole body energy homeostasis via hypothalamus, albeit 

having opposite functions (Coelho et al., 2013; Galic et al., 2010). In addition, they have 

metabolic effects on other tissues (Galic et al., 2010).  

2.4.1.1 Leptin  

Leptin is the gene product of the obese gene and it is mainly produced and secreted by mature 

adipocytes (Gregoire, 2001). The main function of this peptide hormone is the regulation of 

the energy balance of the body (Coelho et al., 2013; Gregoire, 2001; Kershaw & Flier, 2004).  

The effects on the energy balance of leptin are mostly mediated by receptors located in the 

central nervous system, whereas other effects are mediated by receptors located in peripheral 

tissues, including muscle and pancreatic β-cells (Kershaw & Flier, 2004).  

Adipose tissue and circulating leptin concentrations are dependent on the energy stored as fat 

and the current status of energy balance (Coelho et al., 2013; Rasouli & Kern, 2008). Thus, 

leptin concentrations are higher in obese individuals and increase with overfeeding (Coelho et 

al., 2013). Correspondingly, leptin concentrations decrease, when caloric intake is restricted 

and weight-loss occurs. This decrease in leptin concentration is associated with adaptive 

physiological responses to starvation, which include increased appetite and decreased energy 

expenditure (Kershaw & Flier, 2004). The absence of leptin or a mutation in leptin receptor 

leads to increased appetite and therefore to massive obesity, but the prevalence of these 

mutations in humans is rare (Coelho et al., 2013). 

In addition to energy homeostasis regulation, leptin has other versatile effects on several 

tissues. It regulates neuro- and traditional endocrine systems, the immune system, 

hematopoiesis, angiogenesis and bone development (Kershaw & Flier, 2004).  
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2.4.1.2 Adiponectin 

Adiponectin (also known as Arcp30, AdipoQ, apM1, and GBP28) is a full-length protein, 

which can circulate as homotrimer, higher molecular weight hexamer or as high molecular 

weight multimer (Coelho et al., 2013; Poulos et al., 2010). In addition, a fragment containing 

the globular domain of adiponectin circulates in the blood stream and shows metabolic 

activity in several tissues (Coelho et al., 2013; Kershaw & Flier, 2004).  Adiponectin is 

secreted exclusively by adipose tissue (Kershaw & Flier, 2004). Two different adiponectin 

receptors have been discovered, adipoR1 and adipoR2 (Kershaw & Flier, 2004). Both of these 

receptor types are highly expressed in skeletal muscles (Coelho et al., 2013). AdipoR2 is also 

abundant in liver (Coelho et al., 2013; Kershaw & Flier, 2004).  

Adiponectin regulates the energy balance of the body via activation of AMP-activated protein 

kinase in the hypothalamus (Coelho et al., 2013). Adiponectin stimulates appetite and reduces 

energy expenditure and thus has opposite functions compared with leptin (Coelho et al., 

2013). In addition, adiponectin affects liver enhancing insulin sensitivity, increasing fatty acid 

oxidation, reducing hepatic glucose production and decreasing the influx of non-essential 

fatty acids (Kershaw & Flier, 2004). In muscles, adiponectin stimulates fatty acid oxidation 

and glucose intake (Kershaw & Flier, 2004). 

2.4.2 Adipokines 

Cytokines are peptides, which are produced as a respond to certain stimulation and are 

bioactive at very low concentrations (Thalmann & Meier, 2007).  They have a central role in 

the regulation of inflammation, immunity, cell growth and maturation (Thalmann & Meier, 

2007). Adipokines are cytokines produced by adipose tissue (Poulos et al., 2010). Thus far, 

numerous adipokines, such as chemerin, several interleukins, plasminogen activator inhibitor-

1 (PAI-I), retinol binding protein 4, tumor necrosis factor-alpha (TNFα), interferons, tissue 

inhibitor of metalloproteinases 1 (TIMP-1) and visfatin has been discovered (Poulos et al., 

2010).  

The concentrations of pro-inflammatory adipokines, such as TNFα, IL-6 and PAI-I, are higher 

in obese individuals compared with lean individuals (Weisberg et al., 2003). These adipokines 

are mostly produced by SVF cells of adipose tissue (Weisberg et al., 2003). TNFα impairs 

insulin signaling in liver and in adipose tissue and can also reduce fatty-acid oxidation in liver 

and muscle (Galic et al., 2010). The increased levels of TNFα in obese individuals result from 

the increased infiltration of M1 macrophages into adipose tissue (Weisberg et al., 2003). 
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In addition to obesity, high IL-6 concentrations are associated with type 2 diabetes and 

hyperlipidemia (Galic et al., 2010; Kershaw & Flier, 2004). IL-6 has been demonstrated to 

impair insulin signaling in peripheral tissues by repressing the expression of insulin receptor 

components and inducing suppressor of cytokine signaling 3, which is a negative regulator of 

both insulin and leptin (Kershaw & Flier, 2004).  

PAI-I acts in many biological processes, including angiogenesis, atherosgenesis and the 

regulation of thrombus formation by inhibiting fibrinolysis (Kershaw & Flier, 2004; Ronti et 

al., 2006). Elevated levels of PAI-I in plasma are associated with insulin resistance and 

predict the future risk of the metabolic syndrome, type 2 diabetes and cardiovascular disease 

(Kershaw & Flier, 2004). Thus, PAI-I is likely to contribute to the insulin resistance 

development in obesity and to connect obesity to cardiovascular disease (Kershaw & Flier, 

2004).  

2.4.3 Growth factors 

Adipose tissue growth factors are typically considered as proteins that stimulate the 

proliferation and differentiation of cells. They can act either as endocrine hormones via blood 

stream or as paracrine manner to neighboring cells (Poulos et al., 2010).    

Adipose tissue secretes several growth factors including insulin-like growth factor 1 (IGF-1), 

fibroblast growth factors (FGFs), transforming growth factors α and β (TGFα and TGFβ), 

vascular endothelial growth factors (VEGFs), hepatocyte growth factor (HGF),  placental 

growth factor (PIGF), angiopoietin 1 and 2 (Ang-1 and Ang-2) and platelet derived growth 

factors (PDGFs) (Christiaens & Lijnen, 2010; Poulos et al., 2010).  

The most important angiogenic growth factors secreted by adipose tissue are VEGF-A and 

HGF (Christiaens & Lijnen, 2010). Also FGF-2, TGFβ, VEGF-B, VEGF-C, PIGF, PDGFβ, 

Ang-1, Ang-2 have positive effects on angiogenesis (Christiaens & Lijnen, 2010). VEGFs are 

needed for the initiation of the immature blood vessel formation both in vasculogenesis and 

angiogenesis (G. J. Hausman & Richardson, 2004). VEGF-A and its receptors are the key 

regulators of endothelial cell proliferation and migration and it is believed to have the main 

responsibility of the angiogenic capacity of adipose tissue (Christiaens & Lijnen, 2010; G. J. 

Hausman & Richardson, 2004).   

HGF is a multifunctional growth factor that promotes mitogenic and morphogenic activities 

during development and in several other biological processes (Christiaens & Lijnen, 2010). 

HGF has been discovered to promote the tube formation of human umbilical cord vein 
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endothelial cells (HUVECs) in vitro and is one of the key regulators of angiogenesis in 

developing adipose tissue (Bell et al., 2008; Saiki et al., 2006).  

FGF-2 enhances the differentiation, proliferation and migration of human adipose-derived 

stem cells in vitro (Christiaens & Lijnen, 2010; Poulos et al., 2010). In addition, FGF-2 

stimulates the synthesis of proteinases, such as collagenase and urokinase type plasminogen-

activator during angiogenesis (Christiaens & Lijnen, 2010). TGFβ is a known inhibitor of 

mesenchymal cell differentiation into several cell types, including adipocytes (Poulos et al., 

2010). TGFβ is also thought to be an important regulator of angiogenesis, as it regulates PAI-I 

production, release and transcription (Poulos et al., 2010).  

2.4.4 Extracellular matrix components and enzymes 

Adipose tissue contains a dense network of ECM, where every adipocyte is surrounded by 

basal lamina (Mariman & Wang, 2010; Sun et al., 2011). The major component of adipose 

tissue basal lamina is collagen VI (Divoux & Clement, 2011). 

Adipocytes secrete a number of ECM components, especially collagen I, III, IV and VI (P. 

Wang et al., 2008). In addition, enzymes involved in ECM modification, such as ADAMTS (a 

disintegrin and metalloproteinase with thrombospondin motifs), MMPs (matrix 

metalloproteinases) and TIMPs (tissue inhibitors of MMPs) are expressed in adipose tissue 

(Mariman & Wang, 2010; Sun et al., 2011).  

Members of ADAMTS family have been proven to have procollagen proteinase activity and 

they may also function in adipose tissue growth, as the expression of different family 

members change during the development of diet induced obesity (Mariman & Wang, 2010).   

MMPs are neutral endopeptidases that can cleave all ECM components and several non-ECM 

proteins, such as adhesion molecules, cytokines, proteinase inhibitors and other MMPs 

(Maquoi et al., 2002). MMPs are potential regulators of adipogenesis and adipose tissue 

growth. For example, MT1-MMP has been demonstrated to be essential for adipogenesis in 

vivo (Chun et al., 2006). In the absence of MT1-MMP, adipose tissue development is 

disturbed so that only miniature adipocytes are developed and lipodystrophia occurs (Chun et 

al., 2006). However, the inhibition studies of different MMPs have produced somewhat 

controversial results and more research is needed to elucidate the functional roles of different 

MMPs (Mariman & Wang, 2010).
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Table 1: The main adipose-derived hormones and adipokines released main growth factors, ECM components and enzymes released by adipose tissue. 

Type Factor Main cell 

source 

Main function Main reference 

Adipose-

derived 

hormones 

Leptin Adipocytes Main regulator of the energy balance of the body via hypothalamus, inhibits food 

intake, increases energy expenditure 

(Coelho et al., 2013; Kershaw & Flier, 

2004) 

 Adiponectin  Adipocytes Regulates fatty-acid oxidation in liver and muscle, increases insulin sensitivity, signals 

energy requirement via hypothalamus 

(Coelho et al., 2013; Kershaw & Flier, 

2004) 

 Resistin  Macrophages Affects insulin action, possible link between obesity and type 2 diabetes (Galic et al., 2010; Kershaw & Flier, 

2004) 

Adipokines Visfatin  Adipocytes Involved in B-cell maturation, possible role in insulin sensitivity development (Rasouli & Kern, 2008) 

 TNFα Macrophages Promotes inflammation, impairs insulin signaling in liver and in adipose tissue  (Galic et al., 2010) 

 IL-6 SVF cells Promotes inflammation, impairs insulin function in peripheral tissues, high expression 

in  type 2 diabetes 

(Galic et al., 2010; Kershaw & Flier, 

2004) 

 IL-1β SVF cells Promotes inflammation, Might decrease glucose uptake and Glut-1 receptor 

translocation in adipocytes 

(Jager et al., 2007) 

 Chemerin Adipocytes Modulator of adipogenesis, regulates metabolic homeostasis in adipocytes (Goralski et al., 2007) 

 PAI-I SVF cells Inhibits fibrinolysis, an anticlotting factor, functions in angiogenesis and atherosgenesis (Kershaw & Flier, 2004; Ronti et al., 

2006) 

 RBP4 Adipocytes Impairs insulin signaling in muscle and adipocytes, increases glucose production and 

enhances gluconeogenesis in liver, causes systemic insulin resistance 

(Galic et al., 2010) 

Growth 

factors 

VEGF-A SVF cells, 

adipocytes 

Promotes angiogenesis, key regulator of endothelial cell proliferation and migration (Christiaens & Lijnen, 2010; G. J. 

Hausman & Richardson, 2004) 

 VEGF-B SVF cells, 

adipocytes 

Promotes angiogenesis, has a role in ECM degradation (Christiaens & Lijnen, 2010) 

 VEGF-C SVF cells, 

adipocytes 

Promotes angiogenesis and lymphangiogenesis (Christiaens & Lijnen, 2010) 

 HGF SVF cells Promotes and regulates angiogenesis, promotes morphogenic and mitogenic activities 

in many biological processes 

(Bell et al., 2008; Saiki et al., 2006) 

 TGFβ SVF cells Regulates angiogenesis trough PAI-I regulation, inhibits adipogenesis (Poulos et al., 2010) 

 FGF-1 Adipocytes, 

preadipocytes 

Regulates PPARγ activation  (Jonker et al., 2012) 

 FGF-2 Adipocytes, 

preadipocytes 

Promotes differentiation, migration and proliferation of hASCs, promotes angiogenesis (Poulos et al., 2010) 

 Ang-1, Ang-

2 

Adipocytes, 

SVF cells 

Contributes to blood vessel maintenance, stabilization and growth through TIE-2 

receptor activation 

(Christiaens & Lijnen, 2010) 

ECM 

components 

& enzymes 

Col-VI Adipocytes The main component of ECM basal lamina, involved in adipocyte differentiation, may 

contribute to the development of obesity-related diseases, may stimulate tumor growth, 

interacts with other matrix proteins 

(Iyengar et al., 2005; Mariman & 

Wang, 2010) 

 MMP-2, 

MMP-9 

SVF cells Degrade ECM components and remodel ECM, possible regulators of adipocyte 

differentiation 

(Y. Cao, 2010; Mariman & Wang, 

2010) 

 TIMP-1 SVF cells Inhibits MMPs, inhibits angiogenesis and adipogenesis, promotes cell growth (Meissburger et al., 2011; Ries, 2014) 
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2.5 Vascularization of adipose tissue 
Vascularization is essential for the growth, development and repair of all organs and tissues. As 

adipose tissue is able to either shrink or enlarge depending on the energy balance of the body, also 

adipose tissue vascular network needs to remodel itself. Enlargement of the adipose tissue can be 

supported by new blood vessel formation, neovascularization, or by dilating and remodeling of the 

already existing capillaries (Christiaens & Lijnen, 2010).   

2.5.1 Capillaries 

Capillaries are the smallest blood vessels of the body. They consist of a single layer of endothelial 

cells (EC), which are surrounded by the basement membrane and loosely covered by pericytes 

(Szoke et al., 2012). Capillaries can be either continuous or fenestrated. Fenestrated capillaries have 

small pores in them and are more permeable than continuous capillaries (Risau, 1998). 

EC line the inside of capillaries and larger blood vessels (Kalluri, 2003; Lehle et al., 2010).  EC are 

stable cells, having a turnover time of hundreds of days (Kalluri, 2003). However, during the 

neovascularization, turnover time of EC can accelerate up to 5 days (Kalluri, 2003). Although 

vascular EC in general have common features, EC show a high degree of heterogeneity in their 

gene expression and function, depending on their location (Lehle et al., 2010). Despite the extensive 

studies, the fundamental molecular mechanisms of EC differentiation are not yet well understood 

(Lehle et al., 2010).  

In adipose tissue, as well as in the most other tissues, the majority of the substance exchange occurs 

through capillaries. One of the main functions of endothelial cells is to act as a selective barrier 

between the blood stream and tissues (Goddard & Iruela-Arispe, 2013). Endothelial cells can 

exchange substances either passively or actively (Vestweber, 2008).  The permeability of ECs is 

controlled by vesicular trafficking, complex junction rearrangements and refined cytoskeletal 

dynamics (Goddard & Iruela-Arispe, 2013). The highly dynamic and delicate regulation of 

endothelial permeability thus allows substance exchange to be accelerated or reduced, facilitates 

immune surveillance and enables the deposition of matrix proteins outside the vascular wall, when 

repair is needed (Goddard & Iruela-Arispe, 2013). In addition to barrier functions, ECs control 

haemostasis and vasomotor tone (Lehle et al., 2010).  

Basement membranes are about 50 - 100 nm thick specialized extracellular matrices that separate 

endothelial and epithelial cells from connective tissue and surround fat, muscle and adipose tissue 

(Morris et al., 2014). The vascular basement membrane consists mostly of collagen IV, laminins, 

nidogens and perlecan, which is a heparan sulfate proteoglycan (Senger & Davis, 2011).  Basement 
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membrane offers physical support and stabilization to the vessels and together with ECs controls the 

permeability of capillaries (Senger & Davis, 2011). Basement membrane thickening due to the 

excess synthesis and/or decreased degradation of its components is one of the most prominent and 

characteristic features of early diabetic microvessel disease (Roy et al., 1994).  

Pericytes are polymorphic, elongated, periendothelial support cells that wrap around the length of 

microvessels (Sarkar & Schmued, 2012; Stapor et al., 2014). Although capillaries lack the smooth 

muscle layer present in larger blood vessels, pericytes are able to contract and they express actin 

and desmin, which are two crusial proteins in smooth muscle function (Sarkar & Schmued, 2012; 

Stapor et al., 2014). Thus, pericytes may have an important role in blood flow regulation at capillary 

level (Stapor et al., 2014). It has also been proposed that pericytes would influence on EC action 

and angiogenesis (Sarkar & Schmued, 2012; Stapor et al., 2014).   

2.5.2 Angiogenesis 

Neovascularization is typically divided into two different processes. During the embryonic 

development, the de novo -formation of blood vessels occurs through vasculogenesis, where 

mesoderm-derived angioblasts are organized into blood vessels (Corvera & Gealekman, 2014). In 

adulthood new blood vessels develop mainly through angiogenesis, where new vessels develop 

from pre-existing blood vessels (Ucuzian & Greisler, 2007). However, neovascularization is likely 

to be a more complex process, where vasculogenesis and angiogenesis occur simultaneously in both 

developmental and adult tissues (Ucuzian & Greisler, 2007). As the majority of the existing in vitro 

models of neovascularization model angiogenesis, only angiogenesis is discussed in detail below. A 

scheme of angiogenesis and the main events are represented in Figure 2  

Angiogenesis is initiated, when a blood vessel senses an angiogenic signal, which is released by a 

hypoxic, inflammatory or tumour cell (Carmeliet & Jain, 2011). First, pericytes detach from the 

basal membrane by proteolytic degradation, which is mediated by MMPs (Carmeliet & Jain, 2011). 

MMPs degrade also ECM in co-operation with the suppressors of protease inhibitors (Jain, 2003). 

Nitric oxide dilates the existing vessels and VEGF increases the permeability of the endothelial cell 

layer that leads to the leaking of plasma proteins from the nascent vessels (Jain, 2003). These 

plasma proteins serve as a temporal migration matrix for endothelial cells as they move with the 

help of integrin interactions (Carmeliet & Jain, 2011). Endothelial cells also start to proliferate in 

response to VEGF and other mitogenic signals (Jain, 2003). One endothelial cell becomes a tip cell, 

which leads the tip in the presence of factors such as VEGF receptors, neuropilins and Notch 
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ligands DLL4 and JAGGED1 (Carmeliet & Jain, 2011). 

 

Figure 2 : The main events and regulators of angiogenesis. Angiogenesis initiates, when a hypoxic, 

inflammatory or tumor cell releases angiogenic signal (such as VEGFs or Ang2) that a vessel 

senses. Pericytes then detach from the vessel wall and basement membrane and ECM are degraded 

by proteases and the degradation is controlled by the protease inhibitors (MMPs and e.g.TIMP-2). 

Endothelial cells migrate and proliferate, tip cell as their leader. Ephrin, neuropilins and cues from 

basement membrane and ECM regulate branching of vascular networks. Finally vessels are 

stabilized by pericyte attachment and ECM and basement membrane re-building. Modified from 

(Clapp et al., 2009). 

The immature vessels are stabilized by recruiting mural cells, either pericytes or smooth muscle 

cells, and by forming ECM (Gerhardt & Betsholtz, 2003). Four pathways have been recognized to 

be involved in the stabilization process: (1) PDGF and B-PDGF receptor (PDGFR-β), (2) 

sphingosine-1-phosphate-1 (S1P1) and endothelial differentiation sphingolipid G-protein coupled 

receptor 1 (EDG1), (3) Ang1-Tie-2 and (4) transforming growth factor β (TGF-β) (Jain, 2003). 

PDGF-PDGFR-β and S1P1-EDG1 pathway function both in recruiting mural cells (Carmeliet & 

Jain, 2011; Jain, 2003) whereas Ang1-Tie-2 pathway is needed to further stabilize the endothelial 

cell–mural cell interactions (Jain, 2003) and TGF-β to induce genes, which products are necessary 

for basement membrane formation (Holderfield & Hughes, 2008). 

The final maturation of vascular networks involves the optimal patterning of the network. The same 

signalling pathways that control the evolvement of the nervous system, such as ephrins and 

neuropilins, also coordinate the development of vascular networks (Jain, 2003). In addition, 
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basement membrane and ECM produce cues for network development by regulating the 

proliferation, migration, survival and differentiation of endothelial and mural cells (Jain, 2003). 

2.5.3 Angiogenic triggers in adipose tissue 

Two different possibilities for angiogenic growth triggers in adipose tissue have been proposed. In 

the first option, angiogenesis in adipose tissue is a response to hypoxia, which is caused by the 

enlargement of adipocytes and/or proliferation of adipocytes (Corvera & Gealekman, 2014). In the 

second option, angiogenesis in adipose tissue is a result of developmental and/or metabolic signals 

(Corvera & Gealekman, 2014). Thus, blood vessels would develop before adipocyte growth and/or 

proliferation or parallel to it (Corvera & Gealekman, 2014).  

There are several studies that support the first option. In mice studies, adipose tissue has shown to 

become hypoxic in response to obesity that has been accomplished with high-fat diet (Corvera & 

Gealekman, 2014).  Human adipose tissue has also been found to be hypoxic in a study done with 

microelectrodes (Pasarica et al., 2009). The reported levels of hypoxia were however relatively 

small and they did not activate classic hypoxia targets, such as VEGFs (Pasarica et al., 2009).  In 

addition, it has been discovered that adipose tissue enlargement in response to high-fat diet in mice 

does not increase blood flow correspondingly (Trayhurn, 2013).   

However, there are in vitro studies to support the hypoxia theory. It has been noticed that the 

expression and secretion of proangiogenic factors is stimulated, when the culturing conditions are 

low of oxygen (Lolmede et al., 2003). The evidence for hypoxia theory remains thus inconclusive, 

so it might not be alone sufficient to trigger angiogenesis in adipose tissue.  

The evidence to support the second option relies on developmental studies. During fetal 

development, angiogenesis/vasculogenesis precedes adipogenesis and blood vessel ECM develops 

before adipose tissue ECM development (G. J. Hausman & Richardson, 2004). VEGF expression 

and the following angiogenesis may increase or precipitate adipogenesis also in postnatal 

development (G. J. Hausman & Richardson, 2004).  In addition, antiangiogenic treatments for mice 

have shown to decrease fat pad weights 12 - 22 % and decrease body weights in a dose-dependent 

and reversible manner (Rupnick et al., 2002).  

2.6 Adult stem cells 
Stem cells are typically categorized into embryonic stem cells, induced pluripotent stem cells (iPS 

cells) and adult stem cells. Embryonic stem cells and iPS cells have almost unlimited differentiation 

potential in vitro and in vivo, but  the use of these cells is limited by ethical, legal and political 

concerns as well as by clinical and scientific issues of safety and efficacy (Lindroos et al., 2011). 



 

18 
  

Thus, although adult stem cells have lower differentiation capacity, they offer a less controversial 

alternative to embryonic stem cells and are considerably cheaper to produce than iPS cells 

(Lindroos et al., 2011). 

Adult stem cells (also called mesenchymal stem cells and somatic stem cells) are undifferentiated 

cells that are found in a specific tissue or organ (Gomillion & Burg, 2006). Adult stem cells have 

been found in e.g. from bone marrow, blood, adipose tissue, synovium, deciduous teeth, liver and 

spleen (Baer, 2014). In general, adult stem cells are self-renewing and multipotent cells that are 

easily isolated, cultured and expanded in laboratory settings (Gomillion & Burg, 2006).  

Adult stem cells are typically obtained either from bone-marrow (BMSCs, bone-marrow-derived 

stem cells) or from adipose tissue (ASCs, adipose-derived stromal cells). BMSCs have excellent 

proliferating capacity and they can differentiate to wide variety of cell types (Cai et al., 2011; 

Lindroos et al., 2011). However, the harvesting of BMSCs by bone marrow aspiration is painful for 

the donor and the number of cells obtained is usually low (Cai et al., 2011; Lindroos et al., 2011). 

Thus, adipose tissue is an attractive choice of cell source, as ASCs are relatively easy to harvest by 

liposuction or lipoplasty, have lower donor-site morbidity and are available in greater number 

(Kokai et al., 2014).   

2.6.1 Adipose stromal cells 

Like BMSCs, also ASC have potential to differentiate into multiple lineages. ASC have been shown 

to be able to differentiate into cells of ectodermal, mesodermal and endodermal origin (Tsuji et al., 

2014). These cells include adipocytes, myocytes, osteoblasts, chondrocytes, neurons, endothelial 

cells and hepatocytes (Kokai et al., 2014). In addition, ASC are genetically more stable in a long-

term culture when compared with BMSCs (Lindroos et al., 2011). ASC have also been 

demonstrated to have immunosuppressive properties (Lindroos et al., 2011). ASC inhibit the 

proliferation of activated lymphocytes in vitro and have been noticed to alleviate graft-versus-host 

diseases in mice (Kokai et al., 2014). ASC also secrete several soluble factors, such as angiogenic 

factors (e.g. VEGF), anti-apoptosis factors (e.g. IGF-1), hematopoietic factors (e.g. colony 

stimulating factors and interleukins) and hepatocyte growth factor (Ong & Sugii, 2013). Thus, ASC 

are promising cell candidates to several regenerative clinical applications.  

ASC have been used by now in soft tissue, skeletal tissue, heart, immune disorder, 

neurodegeneration and gene therapy applications (Gimble et al., 2012; Lindroos et al., 2011). 

Several clinical studies with ASCs have been made and have shown promising results, but yet more 
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studies are needed to verify the clinical safety and reproducible utilization of these cells (Lindroos 

et al., 2011). 

2.7 Adipogenesis assays  

2.7.1 In vitro assays 

Much of what is known about the molecular mechanisms of adipogenesis is based on studies done 

with adipogenic cell lines. Currently available cell models include preadipocyte cell lines that are 

already committed to the adipocyte lineage and multipotent stem cells that are able to commit to 

different lineages, including adipocyte, muscle and bone lineages (Armani et al., 2010). Multipotent 

stem cells used in adipogenesis assays include embryonic stem cells and SVF cells obtained from 

adipose tissue.  

3T3-F442A and 3T3-L1 cell lines are considered the most frequently used preadipocyte lines 

(Armani et al., 2010; Gregoire et al., 1998). They are both originally clonally isolated from the 

Swiss 3T3 cell line, which is derived from disaggregated 17- to 19-day-old mouse embryos (Green 

& Meuth, 1974; Green & Kehinde, 1976). Clonal cell lines are homogenous in terms of cellular 

population and they exhibit the same phase of differentiation, which allows homogenous response 

to different treatments (Armani et al., 2010). In addition, these cells can be passaged indefinitely 

(Ntambi & Young-Cheul, 2000). Other common preadipocyte cell lines include Ob17 cell line, 

which is generated from the fat pads of genetically obese (ob/ob) adult mouse, and TAI cell line, 

which is established by treating CH310T1/2 mouse embryo fibroblast cells with the demethylating 

agent 5-azacytidine (Gregoire et al., 1998).  

Although preadipocyte cell lines share similarities with primary adipocytes and are useful when 

studying adipogenesis, they have some important properties that differ from primary adipocytes. 

For example, leptin is expressed at much lower concentrations than in primary adipocytes 

(Cristancho & Lazar, 2011). Thus, SVF-derived cultures may reflect the real in vivo context better 

than preadipocyte cell lines (Armani et al., 2010).  Another advantage of SVF-derived cultures is 

that cells can be obtained from various species (including humans) and from different fat depots, 

which enables the study of differences between species and depots (Gregoire et al., 1998). 

However, the heterogeneity of SVF-derived cell cultures may be a problem as well as the fact that 

the cultures have a limited life span, which restrains their time window for experimental procedures 

(Gregoire et al., 1998; Scroyen et al., 2013).  

Pluripotent embryonic stem (ES) cells have also been studied as a model system for adipogenesis. 

These cells have been derived from the inner mass of 3,5-day-old mouse blastocyst (Armani et al., 
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2010). Differentiating ES cells into committed preadipocytes require retinoic acid treatment of ES 

cell-derived embryonic bodies before induction with standard adipogenic hormones (Armani et al., 

2010).  

In order to achieve maximal adipogenic differentiation, cell culture models are treated with 

adipogenic cocktails. The nature of the induction is dependent of the specific cell culture model 

used, as the responsiveness of cells obtained from different sources varies (Gregoire et al., 1998). 

However, the standard adipogenic cocktail includes typically supraphysiological concentrations of 

insulin, dexamethasone (DEX) and isobuthylmethylxanthine (IBMX) (Gregoire, 2001). DEX is a 

synthetic glucocorticoid agonist, which stimulates adipogenesis by the glucocorticoid receptor 

pathway, whereas IBMX is a cAMP phosphatase inhibitor that stimulates the cAMP-dependent 

kinase pathway (Armani et al., 2010; Ntambi & Young-Cheul, 2000). Also other adipogenic factors, 

such as indomethacin, glucocorticoids, troglitazone and triiodothyronine, are commonly used in 

adipogenic cocktails (Armani et al., 2010).   

2.7.1.1 Adipose tissue extract for in vitro adipogenesis induction 

Also new ways apart from chemical induction to elicit adipogenesis have been studied. Sarkanen et 

al. developed adipose tissue extract (ATE, patent number WO2010026299A1), which has been 

proven to induce adipogenesis and angiogenesis in vitro (Sarkanen et al., 2012a). ATE is a cell-free 

product, which is extracted from mature human adipose tissue without affecting cell viability 

(Sarkanen et al., 2012a).  

Adipogenic differentiation of human adipose stromal cell (hASC) cell cultures treated with ATE 

was shown in less than one week, when ATE concentration was at least 200 µg/ml, measured in 

total protein content (Sarkanen et al., 2012a). ATE treatment results in the homogenous 

differentiation of hASC cells into mature adipocytes and induces an accelerated and up to fourfold 

higher triglyceride accumulation, when compared with control adipogenic cocktail treatment, which 

included adipogenesis inducing agents DEX, insulin, indomethacin and IBMX (Sarkanen et al., 

2012a; Verseijden et al., 2009).  

2.7.2 In vivo assays 

Although some events of adipogenesis can be studied directly with humans, the possible toxicity of 

most of the experimental methods limits the use of human studies (Spalding et al., 2008). Thus, 

mouse remains the most used in vivo model for adipogenesis and adipose tissue biology (Bluher, 

2005; Q. A. Wang et al., 2014).     
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Methods in order to study expansion of adipocyte size (hypertrophy) and number (hyperplasia) in 

vivo have relied traditionally on quantification of cell size and number (Jo et al., 2009) and BrdU or 

radiolabeling “pulse-chase” experiments to quantify the incorporation of the label into mature 

adipocytes (Joe et al., 2009; Lee et al., 2012). There are some key assumptions that have to be done 

when using these methods. In cell size and number quantification method, cell size is a surrogate for 

the age of the cell, where small cells represent new adipocytes and large cells adipocytes 

undergoing hypertrophy (Jo et al., 2009). However, differences in the sizes of adipocytes might 

only be a result from different lipid handling. Quantification of adipocyte number can also be 

challenging from a technical point of view, as adipose tissue is heterogeneous tissue (Q. A. Wang et 

al., 2014).  In the BrdU method, progenitor cells are thought to proliferate before differentiation into 

adipocytes (Lee et al., 2012). Although this is a reasonable assumption, recent findings suggest that 

this might not always be the case (Q. A. Wang et al., 2014).  

In order to study adipose tissue biology, several transgenic and knock-out mouse models have been 

developed. The promoters for adipocyte lipid binding protein 2 (AP2) and for phosphoenolpyruvate 

carboxykinase are commonly used to target both white and brown adipose tissue, when studying 

adipose tissue-specific gene expression or knock-out  (Bluher, 2005). Transgenic mouse models 

have been recently developed to model also adipogenesis. For example, “AdipoChaser” mice have 

been created by combining three published transgenic lines. They can be used when tracing 

adipogenesis that occurs during high-fat feeding or in response to cold exposure (Q. A. Wang et al., 

2014).   

2.7.2.1 In vivo models for adipose tissue related diseases 

A large number of in vivo models, especially mouse models, have been generated in order to study 

adipose tissue related diseases, such as obesity and type 2 diabetes (Chandrasekera & Pippin, 2014; 

Lai et al., 2014). These disease models have also been used to produce basic knowledge of 

adipogenesis. Available mouse obesity and type 2 diabetes models can be divided into two main 

groups: nutritionally induced obesity and/or type 2 diabetes and genetically induced obesity/type 2 

diabetes (Lai et al., 2014; Scroyen et al., 2013). Diet induced obesity models are sometimes also 

combined with chemical, surgical or genetic type 2 diabetes induction (Lai et al., 2014).  

Nutritionally induced obesity is usually achieved with high-fat diet (HFD) feeding. Although the 

term HFD is widely used, there is no standardized HFD, where the exact fat content or composition 

would have been defined (Buettner et al., 2007). Fat content of HFD varies typically between 20 - 

60 % and the basic fat component varies between animal-derived fats to vegetable oils (Buettner et 
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al., 2007). Also high-carbohydrate diets, such as high-fructose and high-sucrose diets have been 

used alone or in combination with HFD in order to elicit the events of the metabolic syndrome (Lai 

et al., 2014). Problem with the nutritionally induced obesity mouse models is that different mouse 

strains response to diet varies greatly (Scroyen et al., 2013). In addition, the experimental 

circumstances of the test animals affect their eating habits. It is thus difficult to compare results 

obtained by different laboratories with each other and human translatability is also limited (Lai et 

al., 2014). 

Genetically induced obesity is typically studied with mice deficient in leptin (ob/ob) or leptin 

receptor (db/db) (Lijnen, 2011). Genetically induced type 2 diabetes in mice is usually achieved 

with the gene manipulation of the insulin receptor, insulin receptor substrate subtypes, protein-

kinase B or glucose-transporter 4 (LeRoith & Gavrilova, 2006). Manipulation of these genes can be 

targeted to various tissues, e.g. adipose tissue, muscle, liver and the β-cells in pancreas, in order to 

mimic the insulin resistance seen in pre-diabetes and type 2 diabetes (LeRoith & Gavrilova, 2006).     

2.8 Adipose tissue in vitro models for tissue-engineering applications  
In vitro models of adipose tissue are an interesting area of research also from the tissue-engineering 

point of view. Current repair methods for soft tissue reconstruction include autologous transplants 

and commercially available fillers. These approaches have however some serious disadvantages, 

such as volume loss and site morbidity, that could be overcome with tissue-engineered adipose 

tissue (Gomillion & Burg, 2006). 

2.8.1 Key requirements and analysis methods for tissue-engineered adipose tissue  

Key requirements for tissue-engineered adipose tissue include host compatibility, bioactivity and 

sustainability (J. H. Choi et al., 2010). Host compatibility is an essential remark for any tissue-

engineered construct, so that the construct does not elicit immunorejection in the body (Levenberg 

& Langer, 2004). For soft tissue reconstruction, also site specificity might play an important role. 

Several studies have shown that soft tissue site has an effect both on the degree of adipose tissue 

regeneration and the metabolic function of regenerated tissue (J. H. Choi et al., 2010). Considering 

the detected differences between different fat depots in the body (Hyvonen & Spalding, 2014), the 

results are not surprising, but need to be taken into account, when designing engineered adipose 

tissue.  

In addition to host compatibility, the mechanical properties and the degradation profile of the 

implanted scaffold biomaterial are critical when creating desired conditions for tissue formation 

(Lavik & Langer, 2004).  It is also important that the bioactivity of the regenerated adipose tissue 
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mimics the bioactivity of native adipose tissue. This means that the regenerated tissue has the same 

function and structure as the native tissue. Thus, regenerated adipose tissue should contain 

functional vasculature, nerves and lymph supply (D. B. Hausman et al., 2001).   

Several assays to elucidate the properties of tissue-engineered adipose tissue have been created. 

Typically measured variables are lipid droplet formation, adipocyte gene expression, adipose tissue 

secretory product expression, metabolic activity and vasculature incorporation (J. H. Choi et al., 

2010). Common methods to evaluate these variables are listed in Table 2. 

2.8.2 Current human vascularized adipose tissue models 

Current human vascularized adipose tissue models are typically constructed by co-culturing human 

adipose stromal cells (hASC) or preadipocytes with endothelial cells (Kang et al., 2009). Kang et al. 

have developed vascularized adipose tissue in vitro by culturing hASCs and human umbilical cord 

vein endothelial cells (HUVECs) on a porous silk protein scaffold (Kang et al., 2009). Also Borges 

et al. have been developing vascularized adipose tissue in vitro by culturing human preadipocytes 

with human endothelial cells in a fibrin glue matrix on a chick chorioallantoic membraine (Borges 

et al., 2003; Borges et al., 2007). Wittmann et al. used also fibrin gels as scaffolds in their hASC 

based in vivo vascularized adipose tissue model (Wittmann et al., 2015).  

Table 2: Common methods to evaluate tissue-engineered adipose tissue. Modified from (J. H. Choi 

et al., 2010).  

Measured variable Method 

Adipocyte morphology Oil-red-oil 

Adipored 

Triglyceride quantification assays 

Adipocyte gene and enzyme expression RT-qPCR 

Adipose tissue secretory product expression ELISA 

Metabolic activity Lipolysis assay 

Glucose uptake 

Vasculature incorporation Histology 

Immunohistochemistry 
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3. Aim of the Study 
The main goal of this study was to develop a vascularized adipose tissue model by combining 

adipogenesis and angiogenesis cell models, and optimize and characterize it, so that it can be 

validated and finally used as a tool in adipose tissue research and in the in vitro testing of chemicals 

and drugs. The specific aim of this study was to find out how the vascularized adipose tissue model, 

constructed of hASC-HUVEC co-culture, would be the most optimally created to resolve the issues 

in maturity and detachment. The examined questions regarding the optimal construction of the 

vascularized adipose tissue model were to: 

1) Determine whether adding tubules to adipose tissue model results in improvement of the 

maturity of the adipocytes 

2) Determine whether proper vascular structures are formed when cultured with adipocytes 

3) Determine if the problem of too early cell detachment can be solved by changing the plating 

and differentiation scheme 
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4. Materials & Methods 

4.1 Cell culture 

4.1.1 Cell culturing of human adipose stromal cells 

The human adipose stromal cells (hASC) used in the study were heterogenous cell populations 

obtained by isolating the stromal vascular fraction cells of human adipose tissue. Adipose tissues 

were obtained from plastic surgeries conducted at Tampere University Hospital. The isolation and 

use of hASC have been approved by the Ethics committee of the Pirkanmaa Hospital district. hASC 

were isolated by mechanically cutting and digesting the adipose tissue with collagenase type I 

(Sarkanen et al., 2012b). The isolated hASC were expanded in hASC medium and cryopreserved in 

vapor phase nitrogen at passage 0. Before cryopreservation, mycoplasma contamination was tested 

with Mycoplasma kit (MycoAlert® Detection Kit, Lonza Group LTD, Basel Switzerland).   

Primary hASC were thawed in 37ºC water bath (OLS200, Grant instruments, Cambridge, UK) the 

maximum of 2 minutes and then transferred into a 15 ml polypropylene tube (Sarsted, Nürnberg, 

Germany) containing 10 ml preheated hASC medium (Table 3).  After this, hASC were centrifuged 

(Biofuge PrimoR, Heraeus, Hanau, Germany) at 131 x g at room temperature (RT) for 5 minutes. 

Then, supernatant was removed and cells were resuspended to 1 ml of preheated hASC medium. 

Resuspended cells were then transferred into a 75 cm2 cell culture flask, which contained 9 ml 

preheated hASC medium. The cell culture flask was swirled so that the cells would spread evenly in 

the culture flask.  

Cells were cultured in a humidified carbon dioxide (CO2) incubator MCO-17AI (Sanyo Electrics 

Co., Ltd., Osaka, Japan) at 37ºC in 5% CO2 atmosphere. The proliferation and morphology of hASC 

were monitored with Olympus CK 40-F200 microscope (Olympus Corporation, Tokyo, Japan). The 

culture media was changed every second or third day. hASC were cultured for 7 - 9 days in the cell 

culture flasks before using them  in experiments.  

4.1.2 The cell culturing of human umbilical cord vein endothelial cells 

Human umbilical cord vein endothelial cells (HUVEC) used in the study were isolated from 

donated umbilical cords. The donated umbilical cords were obtained from scheduled Cesarean 

sections conducted at Tampere University Hospital. The isolation and use of HUVEC have been 

approved by the Ethics committee of the Pirkanmaa Hospital district. HUVEC were isolated by the 

cannulation of the umbilical vein and infusing the vein with collagenase I (Sarkanen et al., 2012b). 

The isolated HUVEC were expanded in HUVEC medium and cryopreserved in vapor phase 
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nitrogen at passage 2. Mycoplasma contamination was tested before cryopreservation with 

Mycoplasma kit (Lonza Group LTD). 

HUVEC were thawed in 37ºC water bath (OLS200, Grant instruments) the maximum of 2 minutes 

and then transferred into a 15 ml polypropylene tube (Sarsted) containing 10 ml preheated HUVEC 

medium (Table 3). HUVEC were then centrifuged (Biofuge PrimoR, Heraeus) at 131 x g at RT for 

5 minutes. After this, supernatant was removed and cells were resuspended to 1 ml of preheated 

HUVEC medium. Then, resuspended HUVEC were pipetted into 75 cm2 cell culture flask, which 

contained 9 ml pre-heated HUVEC medium. The cell culture flask was swirled in order to get the 

cells spread evenly in the culture flask. 

HUVEC were cultured in the incubator (Sanyo) at 37ºC in 5% CO2 atmosphere. The proliferation 

and morphology of HUVEC were monitored with Olympus CK 40-F200 microscope. HUVEC were 

cultured 3 days in cell culture flasks before their use in experiments.  

 Table 3: List of cell culture media and their components. 

Medium Components Manufacturer 

hASC medium Dulbecco’s modified Eagle’s 

medium Nutrient Mixture F-12 

(DMEM/F-12) 

10 % human serum 

2 mM L-Glutamine 

Gibco (Life technologies, Carlsbad, 

USA) 

 

Lonza Group LTD 

Gibco 

HUVEC medium EBM-2 

Single-Quots supplements: IGF-1, 

VEGF, FGF-β, Fetal Bovine 

Serum, Hydrocortisone, Heparin, 

Ascorbic Acid, Epidermal growth 

factor  

Lonza Group LTD 

Lonza Group LTD 

 

4.1.3 Building the hASC-HUVEC co-culture 

hASC were first rinsed with 1 ml of preheated Tryple™ express (Gibco), which was immediately 

removed. Then, 2.5 ml of Tryple™ express was added into the cell culture flask to detach the cells 

from the bottom of the flask. TrypleTM express containing flasks were incubated in the incubator for 

6 - 10 minutes and after the cells had detached, they were suspended into 5 ml of preheated 

HUVEC medium, transferred to a 15 ml polypropylene tube (Sarsted) and centrifuged (Biofuge 

PrimoR, Heraeus) at 131 x g at RT for 5 minutes. After that, supernatant was removed carefully and 

the cell pellet was resuspended into 0.5 ml of HUVEC medium.  
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An aliquot of cell suspension was stained and diluted 1:10 with Trypan Blue (Sigma Aldrich, St. 

Louis, MO, USA) and the cells were counted with Bürker’s chamber (Assistent®, Glaswarenfabrik, 

Karl Hecht KG, Rhön, Germany). Cells were then diluted to an appropriate volume of HUVEC 

medium and plated in a density of 22 000 cells/cm2 on 48-well Nunclon™ ∆-Surface (Sigma 

Aldrich) plates. hASC were at passage 2 in the model.  

If HUVEC were added on top of hASC on the same day hASC were seeded, hASC were allowed to 

attach to the well bottoms for 1 hour before adding HUVEC. HUVEC were detached from the cell 

culture flasks and counted like hASC and plated in a density of 4400 cells/cm2. HUVEC were at 

passage 4 in the model. Altogether, 3 different hASC-HUVEC combinations were used. All 

strategies were tested with all the hASC-HUVEC combinations, so that possible batch to batch 

variations could be eliminated. The used hASC-HUVEC combinations in different experiments are 

listed in Appendix 1. 

4.2 hASC-HUVEC co-culture differentiation into vascularized adipose tissue 
The differentiation was begun on day 1 by exposing hASC-HUVEC co-cultures to adipogenic and 

angiogenic differentiation media, as shown in Figure 3, in order to achieve vascularized adipose 

tissue. Adipose tissue extract, ATE was used as a base solution for adipogenic differentiation 

medium, ATE medium. ATE was prepared by cutting adipose tissue specimens into small pieces 

and then incubating the pieces with DMEM/F12 and finally sterile-filtering the extract (Sarkanen et 

al., 2012a). In this study, ATE was used at total protein concentration of 1800 µg/ml. The list of 

ATE-medium components is represented in Table 4. Altogether, 6 different ATE batches were used. 

In order to eliminate possible batch to batch variation on the results, all strategies were treated with 

all the different ATE batches. ATE batches used in this study are listed in Appendix 2.   

The content of angiogenic differentiation medium, angiogenesis stimulation medium, has been 

optimized before (Huttala et al., 2015). Angiogenesis stimulation medium was supplemented with 

serum free medium. The contents of both stimulation medium and serum free medium are listed in 

Table 4.   

Cultures were exposed to one differentiation medium at a time so that 500 µl of differentiation 

medium was pipetted on the cell cultures and changed on each 2 - 3 day. Each cell culture was 

exposed twice (exposures 1 and 2) to either adipogenic or angiogenic medium and then twice 

(exposures 3 and 4) to the remaining differentiation medium. Thus, each cell culture was exposed in 

total four times during the 14 day long cell culturing. The study design for differentiation is 
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represented in Figure 3. Different differentiation order strategies were tested and they are discussed 

in detail in the following section.  

Table 4: List of differentiation media components. 

Medium Components Manufacturer 

ATE medium DMEM/F-12 

Adipose tissue extract (different 

batches) 

ATE-supplement: 

10 % Human Serum 

 

2 mM L-Glutamine 

Penicillin-Streptomycin: 

    50 units/µl Penicillin 

    50 µg/µl Streptomycin 

Gibco 

Own production 

 

Lonza Group LTD 

PAA Laboratories (Pasching, 

Austria) 

Gibco 

Gibco 

 

Serum free medium DMEM/F-12 

1 % Bovine Serum Albumin 

(BSA) 

2,8 mM Sodium Puryvate 

2,56 mM L-Glutamine 

ITS-supplement: 

    6,65 µg/ml Insulin 

    6,65 µg/ml Transferrin 

    6,65 ng/ml Selenious 

0,1 nM 3,3,5-Triiodo-L-thyronine 

sodium salt 

Gibco 

Biosera (Boussens, France) 

 

Gibco 

Gibco 

BD Biosciences (Franklin Lakes, 

USA) 

 

 

Sigma Aldrich 

Angiogenesis stimulation 

medium 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serum free medium 

 200 µg/ml Ascorbic Acid: 

      Ascorbic Acid 

      0,1 M NaOH 

 

 2 µg/ml Hydrocortisone: 

      Hydrocortisone 

      abs. EtOH 

1 ng/ml FGF-β 

10 ng/ml VEGF 

 0,5 µg/ml Heparin: 

     Heparin 

     Sterile Water 

 

 

Sigma Aldrich 

Fluka (Sigma-Aldrich, St. Louis, 

MO, USA) 

 

Sigma Aldrich 

Altia (Helsinki, Finland) 

R&D Systems (Abingdon, UK) 

R&D Systems 

 

Sigma-Aldrich 

Gibco 

 

4.3 hASC-HUVEC co-culture plating & differentiation strategies 
In order to find out the optimal plating time for hASC and HUVEC with respect to the 

differentiation of the cells into adipocytes and blood vessels, six different strategies were tested. 

Also different amounts of hASC were tested. The details about the plating times and differentiation 

schemes of different strategies are represented in Table 5.  
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Figure 3: Study design for hASC-HUVEC co-culture plating and differentiation. 

Table 5: Plating and differentiation details of different strategies tested for hASC-HUVEC co-

culturing. 

Strategy hASC 

plating 

day 

Number of 

hASCs 

plated/well 

HUVEC 

plating day 

Number of 

HUVECs 

plated/well 

Differentiation 

order 

1 Day 1 

Day 8 

22 000 cells 

22 000 cells 

Day 8 4400 cells 1.ATE medium  

2.Angiogenesis 

stimulation medium 

2 Day 1  44 000 cells Day 1 4400 cells 1.ATE medium  

2.Angiogenesis 

stimulation medium 

3 Day 1 44 000 cells Day 1 4400 cells 1 Angiogenesis 

stimulation medium 

2. ATE medium 

4 Day 1 

Day 8 

22 000 cells 

22 000 cells 

Day 1 4400 cells 1 Angiogenesis 

stimulation medium 

2. ATE medium 

5 Day 1 22 000 cells Day 1  4400 cells 1.ATE medium  

2.Angiogenesis 

stimulation medium 

6 Day 1 22 000 cells Day 1  4400 cells 1 Angiogenesis 

stimulation medium 

2. ATE medium 

 

4.3.1 Control samples  

Positive controls and negative controls were used to verify the reliability of the results. Both blood 

vessels (tubules) and fat had their own positive controls. Two negative controls were used, with 

varying hASC number, corresponding to the number of hASC plated in the wells in different 

strategies, other having 22 000 and other 44 000 hASC per well. The control cultures were cultured 

on the same 48-well plates as the actual samples. Tubule (blood vessel) control was exposed only to 

angiogenesis stimulation medium, fat control only to ATE medium and negative controls to serum 

free medium. The details of control samples are listed in Table 6.  
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Table 6: Plating details of control samples. 

Control hASC plating 

day 

Number of 

hASC 

plated/well 

HUVEC 

plating day 

Number of 

HUVEC 

plated/well 

Differentiation 

medium used 

Negative 1 Day 1 22 000 cells Day 1 4400 cells Serum free 

medium 

Negative 2 Day 1 44 000 cells Day 1 4400 cells Serum free 

medium 

Blood vessel  Day 1 22 000 cells Day 1 4400 cells Angiogenesis 

stimulation 

medium 

Fat  Day 1 22 000 cells -  -  ATE medium 

  

4.4 Cell culture measurements  

4.4.1 Triglyceride accumulation measurement 

Triglyceride accumulation to the cell cultures was measured with Adipored assay reagent (Lonza 

Group LTD) and with Varioskan flash multimode reader (Thermo Fischer Scientific, Waltham, 

MA, USA). Adipored assay was performed on the 14th day of cell culturing (Figure 3), by first 

removing differentiation media from the wells, then carefully rinsing each well with 400 µl of 

phosphate buffered saline (PBS) (Lonza Group LTD) and after removal the rinsing-PBS, adding 

412 µl of a mixture of Adipored (Lonza Group LTD) assay reagent (12µl) and PBS (400µl) to each 

well. Then, the plates were incubated in the incubator (Sanyo) at 37ºC for 10 minutes. Finally, the 

fluorescence was measured with Varioskan flash multimode reader (Thermo Fischer), with 

excitation at 485 nm and emission at 572 nm. Absorbance values were given as a mean of 

multipoint calculation.   

4.4.2 The relative cell number definition  

The relative cell number was spectrophotometrically defined with Cell proliferation reagent WST-1 

(Roche Diagnostics, Basel, Switzerland) and with Varioskan flash multimode reader (Thermo 

Fischer Scientific). WST-1 assay was performed on the 14th day of cell culture (Figure 3) by adding 

50µl of WST-1 reagent (Roche Diagnostics) to each well, incubating the plates in CO2 incubator 

MCO-17AI (Sanyo) at 37ºC for 60 minutes and then shaking the plates for 1 minute in the dark on a 

shaker. Finally, the absorbance was measured at 450 nm. Absorbance values were given as a mean 

of multipoint calculation. 

4.4.3 Quantification of triglyceride accumulation 

In order to quantify the amount of accumulated triglycerides per cell, Adipored assay absorbance 

values were divided with WST-1 assay absorbance values. Before that, absorbance values were first 

normalized to the average of the absorbance values of negative samples of each run. Normalization 
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and Adipored/WST-1 ratio calculations were made with Microsoft Excel 2010 (Microsoft 

Corporation, Redmond, Washington, USA). Results were plotted in GraphPad Prism (GraphPad 

Software Inc., La Jolla, California, USA), where columns represent the mean values and error bars 

standard deviations.  

4.5 Immunocytochemical stainings 
To visualize and analyze tubule formation, immunocytochemical stainings were performed. 

Stainings were made as double-stainings, where both endothelial cells and basement membranes of 

blood vessels were stained. Stainings were made to the same cell cultures, which were used for 

Adipored and WST-1 measurements.  

Before immunocytochemical stainings, cells were fixed. At first, cells were washed two times with 

Dulbecco’s phosphate buffered saline (DPBS) and then fixed with 4 % paraformalaldehyde at RT 

for 20 minutes. Then, cells were washed again two times with DPBS. After fixation, cells were 

permeabilized with 0.5 % Triton-X100 (MP Biochemicals, Santa Ana, CA, USA) at RT for 15 

minutes. Cells were then washed two times with DPBS. Next, cells were incubated with 10 % BSA 

(Roche Diagnostics) at RT for 30 minutes to block unspecific binding sites. After this, primary 

antibodies diluted in 1 % BSA in DPBS was added on the cells and incubated for 1h at RT or 

overnight at +4ºC. Two different primary antibodies were used: (1) Anti-von Willebrant factor IgG 

(anti-vWf IgG, produced in rabbit, Sigma Aldrich), diluted in ratio 1:100, to target endothelial cells 

and (2) Anti-Collagen IV IgG (anti-ColIV IgG, produced in mouse, Sigma Aldrich), diluted in ratio 

1:500, to target the basement membranes of blood vessels.  

After primary antibody treatment, cells were washed with DPBS two times and then incubated for 

40 minutes with secondary antibodies diluted in 1% BSA in DPBS at RT. FITC-labeled goat 

polyclonal antibody anti-mouse IgG (Sigma Aldrich), diluted in ratio 1:100, was used to visualize 

collagen IV and TRITC-labeled goat polyclonal antibody anti-rabbit IgG (Sigma Aldrich), diluted 

in ratio 1:50, to visualize von Willebrant factor. Cells were then washed two times with DPBS. 

Finally, DPBS was added and left to the wells and plates were sealed with parafilm. Plates were 

protected from light and stored at +4ºC until microscopic or Cell-IQ analysis.  

4.6 Microscopic analyses 

4.6.1 Fluorescence microscopy 

After immunocytochemical stainings, tubule structures and triglyceride accumulation were 

investigated and imaged with Nikon Eclipse Ti-S inverted fluorescence microscope (Nikon, Tokyo, 
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Japan) and Nikon digital sight DS - U2 camera (Nikon). Images were processed with NIS Elements 

(Nikon) and Adobe Photoshop CS3 software (Adobe Systems Incorporated, San Jose, CA, USA).   

4.6.2 Confocal microscopy 

The three-dimensional imaging of tubular networks was performed with a confocal microscope. 

Microscopic imaging was done with LSM710 and with Zeiss Axio Observer Z1 inverted 

microscope (Carl Zeiss, Oberkochen, Germany). In order to investigate the 3D-structures and 

thicknesses of tubular networks, z-stack images were obtained. Z-stack images were taken to cover 

the whole thickness of the vascular structures, so that in total 25 images were taken. Images were 

further processed with ZEN 2012 software (Carl Zeiss) and Adobe Photoshop CS3 software (Adobe 

Systems Incorporated).  

4.6.3 Cell-IQ image analysis 

In order to investigate the area of tubular networks, cell cultures were imaged with Cell-IQ (CM 

Technologies Oy, Tampere, Finland). Wells of cell culture plates were imaged with 10x objective 

and with a grid of 5x5 so that large area of the well was imaged. Grids of each well were then 

stitched together with Cell-IQ Analyzer (CM Technologies Oy).   

Cell-IQ images were further analyzed with ImageJ software (The National Institutes of Health, 

Maryland, USA). Images were converted to an 8-bit gray scale and the background was subtracted. 

Then, binary threshold function was adjusted to obtain the highest contrast of tubules against the 

background. The total tubule area was calculated as the total number of pixels in images with a set 

threshold. Results were plotted in GraphPad Prism (GraphPad Software Inc.), where columns 

represent the mean values and error bars standard deviations.  

4.7 Gene expression studies 

4.7.1 RNA isolation 

Samples for gene expression studies were collected at the 14th day of cell culture (Figure 3). Cells 

were lysed with the lysis buffer from Purelink RNA Minikit (Life Technologies) so that parallel 

sample cells from five to eight wells were lysed into 600 µl of the lysis buffer and combined as one 

sample. Cells were detached from the well bottom by adding the lysis buffer and scratching the well 

bottom with the tip of the pipette. Cell lysates were preserved at -80ºC until RNA isolation.  

Isolation was continued according to the instructions of the kit. RNAs were finally eluted into 35 - 

40 µl of RNAse free water and the RNA concentrations and 260/280 purity ratios were measured 

with µPlate (Thermo Fischer) and Varioskan flash multimode reader (Thermo Fischer). Genomic 
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DNA contaminations were eliminated with Purelink DNAse treatment (Life Technologies). RNA 

samples were preserved at -80ºC until cDNA synthesis. 

The possible degradation of RNA samples was studied with gel electrophoresis using QIAxcel 

RNA QC kit v2.0 (Qiagen, Venlo, Netherlands) and QIAxcel Advanced (Qiagen). QIAxcel RNA 

gel cartridge and buffer tray were prepared according to the instructions of the kit. Also samples for 

the run were prepared according to the instructions. Each reaction mix contained 1 µl of RNA, QX 

RNA size marker and QX RNA denaturation buffer, which were heated at 70 ºC for two minutes. 

After this, reaction mixtures were placed on ice for 1 minute and then briefly spinned. Then, 7 µl of 

QX RNA dilution buffer was added to each reaction mixture, after which the samples were 

analyzed with QIAxcel Advanced (Qiagen).  

4.7.2 cDNA synthesis 

From each RNA sample, complementary DNA (cDNA) was synthetized with iScript cDNA 

synthesis kit (Biorad, Hercules, CA, USA) according to the protocol of the manufacturer. Each 

reaction mixture contained 4 µl of 5x iScript reaction mix, 1 µl of iScript reverse transcriptase and 

RNA diluted with nuclease-free water to a final volume of 20 µl. Syntheses were conducted with 

CFX96 Real-Time System (Biorad) as follows: 5 min at 25ºC, 30 min at 42ºC, 5 min at 85ºC and 

then cooled down to 4ºC. cDNAs were then preserved at -80ºC until RT-qPCR.  

4.7.3 RT-qPCR 

cDNA samples were analyzed with RT-qPCR in order to evaluate differences in gene expression 

between the different samples. Used housekeeping genes and adipocyte marker genes are listed in  

Table 7.  

 Table 7: Used housekeeping genes and adipocyte markers.  

Gene name Abbreviation Function 

Succinate dehydrogenase 

complex, subunit A 

SDHA Housekeeping gene  

Acidic ribosomal 

phosphoprotein P0 

36B4 Housekeeping gene 

Leptin - Adipose tissue secretory product 

Adiponectin - Adipose tissue secretory product 

Adipocyte protein 2 AP2 Carrier protein for fatty acids in adipose 

tissue 

Peroxisome proliferator-

activated receptor γ 

PPARγ Transcription factor in adipogenesis 

Glucose transporter type 4 Glut4 Glucose transporter in adipose tissue 
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To ensure primer specificity, primer sequences were checked with Primer-BLAST (National Center 

for Biotechnology Information, Bethesda, Maryland, USA). After specificity check, primers were 

ordered from Oligomer Oy (Helsinki, Finland). Primer sequences, product lengths and their melting 

temperatures reported by the manufacturer are listed in Table 8.   

Table 8: Primers used in RT-qPCR, their sequences and melting temperatures reported by the        

manufacturer.  

Gene name Primer sequence (5’ 3’) Melting 

temperature 

(Tm) 

Product 

length 

SDHA F: CATGCTGCCGTGTTCCGTGTGGG 67,8 ºC 321 bp 

R: GGACAGGGTGTGCTTCCTCCAGTGCTCC 72,4 ºC 

36B4 F: ATGCTCAACATCTCCCCCTTCTCC 64,4 ºC 251 bp 

R: GGGAAGGTGTAATCCGTCTCCACAG 66,3 ºC 

Leptin F: GCCCTATCTTTTCTATGTCC 55,3 ºC 387 bp 

R: TCTGTGGAGTAGCCTGAAG 56,7 ºC 

Adiponectin F: GGCCGTGATGGCAGAGAT 58,2 ºC 109 bp 

R: CCTTCAGCCCGGGTACT 57,6 ºC 

AP2 F: GCTTTTGTAGGTACCTGGAAACTT 59,3 ºC 125 bp 

R: ACACTGATGATCATGTTAGGTTTGG 59,7 ºC 

PPARγ F: CAGTGTGAATTACAGCAAACC 55,9 ºC 101 bp 

R: ACAGTGTATCAGTGAAGGAAT 54,0 ºC 

Glut4 F: TGGGCGGCATGATTTCCTC 58,8 ºC 88 bp 

R: GCCAGGACATTGTTGACCAC 59,4 ºC 

 

PCR amplification was performed with  CFX96 Real-Time System (Biorad) and with iQ™ 

SYBR® Green supermix (Biorad). Each reaction contained 25 µl of iQ™ SYBR® Green supermix, 

forward and reverse primers for 300nM primer concentration and 30 ng of the template, diluted 

with nuclease-free water to a final volume of 50 µl.  Thermal cycling conditions were as follows: 

1. Initial denaturation and enzyme activation 95 ºC  3 min 

2. Denaturing   95 ºC  10 sec 

3. Annealing    51 - 65 ºC  (gradient)  15 sec 

4. Extension    72ºC  30 sec 

 Steps 2. - 4. repeated 39 times 

5. Melt Curve  (in 0.5 ºC increments) 55 - 95 ºC   10 sec  
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Before sample runs, the annealing temperature was optimized for each primer pair. Based on the 

results, the annealing temperature for each primer pair was set as is represented in Table 9. 

Table 9: Annealing temperatures used for each primer pair. 

Row Primer pair Temperature 

A SDHA 65 ºC 

B 36B4 64,2 ºC 

D Leptin 59,9 ºC 

E Adiponectin 56,5 ºC 

F AP2 53,8 ºC 

G PPARγ 51,9 ºC 

H Glut4 51,0 ºC 

 

In order to monitor the size and quality of the amplified DNA, amplified DNA-samples were 

studied with gel electrophoresis using High Sensitivity DNA analysis kit (Agilent Technologies, 

Santa Clara, California, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies). The chip 

priming station was set up according to the protocol of the manufacturer. The gel-dye mix was 

prepared by first pipetting 5 µl of High Sensitivity DNA dye concentrate into 100 µl of High 

Sensitivity DNA gel matrix. The mixture was then vortexed and spinned, after which it was loaded 

on the High Sensitivity DNA chip according to the protocol of the manufacturer. After that, 5 µl of   

High Sensitivity DNA marker, 1 µl of High Sensitivity DNA ladder and 1 µl of each sample were 

pipetted on the chip. After brief vortexing, the samples were analyzed with Agilent 2100 

Bioanalyzer (Agilent Technologies). 

qPCR data was analyzed using CFX96 Real-Time System software (Biorad). The relative 

quantification of each gene was calculated from the cycle threshold (Ct) values by applying the 2-

∆∆CT –method (Livak & Schmittgen, 2001). Mean fold changes were calculated with Microsoft 

Excel 2010 (Microsoft Corporation) with the following equation: 

Fold change =  2-∆∆CT, where ∆∆Ct = ΔCtreference - ΔCttarget  and 

where ΔCttarget = Ctcontrol - Cttreatment and ΔCtreference = Ctcontrol - Cttreatment 

This way, the normalized gene expression of each target gene is compared that of the control 

sample. In this study, undifferentiated hASC-HUVEC co-culture samples (negative controls, see 

Table 6) were used as controls to indicate the extent of adipocyte differentiation. If the target gene 

was not detected in the sample (Ct ≥ 40), the Ct value of 40 was used, so that the equation would 
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mathematically apply to the situation. In order to visualize down-regulation better, fold regulations 

were determined. For fold change values 1 ≥, fold regulation is equal to fold change and for fold 

change values <1, fold regulation is the negative inverse of fold change -1/ (fold change). 5 

biological replicates of each strategy were analyzed. Fold regulation results were plotted in 

GraphPad Prism (GraphPad Software Inc.), where columns represent the mean values and error bars 

standard deviations.  

4.8 Statistical analyzes 
All statistical analyzes were performed with GraphPadPrism (GraphPad Software Inc.). Results 

from triglyceride accumulation, Cell-IQ image analysis and RT-qPCR were subjected to one-way 

analysis of variance (ANOVA), followed by Dunnet’s multiple comparison test and Tukey’s 

multiple comparison test. Dunnet’s test compares one group with other groups and was thus used to 

test whether there is a difference between untreated and treated samples (i.e. negative control was 

compared with other samples). Tukey’s test compares all the groups with each other and was used 

to investigate the possible difference between different strategies. Differences were considered 

significant when *p<0.05 (significant), **p<0.01(very significant) and ***p<0.001 (extremely 

significant). 

4.8.1 Quantification of triglyceride accumulation 

The significance of the differences in triglyceride accumulation between negative control and other 

samples was tested by one-way ANOVA with Dunnet’s multiple comparison test. Fat control and 

different strategies were also compared with each other and the significance of the differences was 

tested by one-way ANOVA with Tukey’s multiple comparison test. For every sample, n was 12.  

4.8.2 Quantification of the area of the vascular networks 

The significance of the differences in the tubule area between negative control and other samples, 

was tested by one-way ANOVA with Dunnet’s multiple comparison test. Tubule control and 

different strategies were also compared with each other and the significance of the differences was 

tested by one-way ANOVA with Tukey’s multiple comparison test. For negative control, fat 

control, tubule control and strategies 1 and 5, n was 15, for strategy 4, n was 6 and for strategy 6, n 

was 3.  

4.8.3 RT-qPCR result quantification 

In order to examine the significance of the differences in gene expression between different 

samples, all samples were compared with each other by one-way ANOVA with Tukey’s multiple 

comparison test. For every sample, n was 5.  
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4.9 Good laboratory practice 
The laboratory work and the documentation of the study were performed in the spirit of GLP (the 

OECD Principles of Good Laboratory Practice: Directive 87/18/EEC) and according to the standard 

operating procedures of FICAM.  
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5. Results 

5.1 Triglyceride accumulation 

5.1.1 Visualization of triglyceride accumulation in contrast to vascular networks 

As Adipored (Lonza Group LTD) is a fluorescent dye, the accumulation of triglycerides can be 

observed with fluorescence microscopy. Adipored can be seen in red and yellow, being the brighter 

the more triglycerides have accumulated. Triglycerides clearly accumulated to fat control, where 

tubules are absent. There were a few bright red spots in negative and tubule control suggesting 

some triglycerides have accumulated to them as well. Triglycerides accumulated evenly also to 

different strategies in the presence of blood vessels. Control samples and different strategies are 

represented in Figure 4. 

5.1.2 Quantification of triglyceride accumulation 

Triglyceride accumulation in different strategies and control samples was analyzed semi-

quantitatively, by calculating the ratio between the normalized Adipored values and the normalized 

WST-1 values. Negative control 2 (see Table 6) was used as the negative control in this analysis, as 

there was no significant difference between the triglyceride accumulation values for negative 

control 1 and negative control 2 and as the cell number in negative control 2 was higher than in 

negative control 1, it gave the maximum background noise possible for the negative control, leading 

to more reliable positive results. When comparing negative control with other samples, fat control, 

strategy 1 and strategy 6 accumulated significantly more triglycerides than negative control (one-

way ANOVA, Dunnet’s multiple comparison test). When comparing different strategies and fat 

control with each other, strategy 5 accumulated significantly less triglyceride than fat control (one-

way ANOVA, Tukey’s multiple comparison test). Strategies 2 and 3 were not included in this 

analysis, as there were not enough data for reliable statistical analysis. The results of the 

quantification of triglyceride accumulation and the statistical analysis are shown in Figure 5. 

5.2 The formation of vascular networks 

5.2.1 Visualization of vascular networks 

Vascular networks were visualized with immunocytochemical stainings and fluorescence and 

confocal microscopy. The overview of vascular networks in tubule control and in different 

strategies (strategies 2 and 3 not included) is represented in Figure 6. Tubules formed ramified 

networks in tubule control and in all different strategies. Vascular networks did not form in negative 

controls and in fat control (data not shown).  
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 Figure 4: Triglyceride accumulation can be seen as red/yellow spots. Tubules are stained with 

anti-vWF and TRITC (red) and anti-ColIV and FITC (green). Images are obtained with Nikon 

Eclipse Ti-S inverted fluorescence microscope and with 10 x objective, scale bar is 100 µm. 
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3D-structure of the formed tubules in tubule control and in all different strategies is represented in 

Figure 7. Inner endothelial layer (red) and the outer basement membrane (green) can be seen in all 

of the samples. The thicknesses of the formed vascular structures in tubule control and in different 

strategies did not differ markedly from each other.   

5.2.2 The area analysis of vascular networks 

The area of formed vascular networks was analyzed from Cell-IQ images with ImageJ. Negative 

control 1 was used as a negative control in this analysis, as it had the same amount of hASC as the 

tubule control and as there was no difference in the tubule formation between the negative samples. 

When comparing negative control with other samples, tubule control and strategies 1, 4, 5 and 6 had 

significantly more tubules than negative control (one-way ANOVA, Dunnet’s multiple comparison 

test). When tubule control and different strategies were compared with each other, strategy 1 had 

significantly less tubules than tubule control and strategy 4 (one-way ANOVA, Tukey’s test). 

Strategies 2 and 3 were not included in this analysis. The results of the vascular network area 

quantification and statistical analysis are represented in Figure 8. 

 

Figure 5: Semi-quantification of triglyceride accumulation. In every sample, n=12. The 

bars represent mean with SD. A) Fat and tubule controls and different strategies were 

compared with negative control by ANOVA with Dunnet’s multiple comparison test. B) 

Fat control and different strategies were compared with each other by ANOVA with 

Tukey’s multiple comparison test. Differences were considered significant when *p<0.05 

(significant), **p<0.01 (very significant) and ***p<0.001 (extremely significant). 
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5.3 The genetic profile of the formed adipose tissue 
The maturation of adipose tissue was evaluated with adipose tissue specific marker genes. 

Expression of marker genes was studied at one time point, at the 14th day of cell culture. All data 

was normalized using the expression levels of SDHA, as SDHA was more stable than the other 

housekeeping gene, 36B4. For fat control and for strategies 5 and 6, negative control 1 was used as 

the calibrator, as it had the same amount of hASC and correspondingly, for strategies 1 and 4, 

negative control 2 was used as the calibrator. The gene expression was considered elevated when 

fold regulation was higher than 2. Correspondingly, gene expression was considered decreased 

when fold regulation was lower than -2.  

The expression of PPARγ was elevated in fat control and all of the strategies, except of strategy 4, 

where PPARγ expression was decreased. The expression of leptin was elevated in all samples. The  

Figure 6: Overview of the vascular networks. Anti-ColIV is labeled with 

FITC. Images are obtained with Nikon Eclipse Ti-S inverted fluorescence 

microscope and with 4 x objective, scale bar is 100 µm. 
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 Figure 7: Visualization of the 3D-structures of the vascular networks in tubule control and in 

all different strategies. Anti-vWf is labeled with TRITC (red) and anti-ColIV with FITC (green). 

Images are obtained with LSM710 confocal microscope with 20 x objective. Scale bars are in 

micrometers. 
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expression of adiponectin was elevated in fat control and in strategies 4,5 and 6. AP2 expression 

was decreased in fat control and in strategies 4 and 6. The expression of Glut4 was elevated in fat 

control and in strategies 1, 5 and 6. 

In order to find out the possible statistical differences in gene expression between different 

strategies, fat control and different strategies were compared with each other by one-way ANOVA 

(Tukey’s multiple comparison test). There was statistical difference only in adiponectin expression: 

adiponectin expression was significantly more elevated in strategy 5 than in other samples. The 

gene expression charts and mean fold regulation values are represented in Figure 9. 

5.3.1 Quality control & primer optimization for gene expression studies 

The integrity of the isolated RNA samples was controlled along the study. Also the size and quality 

of the amplified DNA was checked. Overall, RNA stayed intact during the isolation and DNA 

product of right size was amplified. A quality control panel with example samples is represented in 

Figure 10. In order to achieve maximal amplification for each gene, annealing temperatures for each 

primer pair were optimized. Annealing temperatures were selected based on the lowest CT value 

and melt curve analysis. An example of melting curve analysis is represented in Figure 10. 

Figure 8: The quantification of the area of tubular networks. In samples Neg, Tubule, Fat, S1 and 

S5, n=15. In samples S4, n=6 and in sample S6, n=3. The bars represent mean with SD.A) Tubule 

control, fat control and different strategies were compared with negative control by ANOVA with 

Dunnet’s multiple comparison test. B) Tubule control and different strategies were compared 

with each other by ANOVA with Tukey’s Multiple comparison test. Differences were considered 

significant when *p<0.05 (significant), **p<0.01 (very significant) and ***p<0.001(extremely 

significant). 
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Figure 9: The gene expression of adipose tissue specific gene markers. The bars represent mean 

with SD. A) PPARγ B) Leptin C) Adiponectin D) AP2 E) Glut4 A-E) all samples of each gene were 

compared with each other by ANOVA with Tukeys multiple comparison test. F) Mean fold 

regulation values for each sample and gene. Values marked with ∆ are neither elevated nor 

decreased. Differences were considered significant when *p<0.05 (significant), **p<0.01(very 

significant) and ***p<0.001 (extremely significant). 
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Figure 10: Primer optimization & quality control panel. A) RNA analysis for detecting possible 

decomposition. The RNA ladder is presented on the left and sample line on the right. On the 

sample line, the visible bands of the sizes 2807 and 4670 nucleotides are both ribosomal-RNA. 

As the two bands can be detected, RNA is not decompiled. B) Analysis for amplified DNA. The 

DNA ladder is presented on the left and sample line on the right. The band on the sample line 

size of 100 bp is the amplified DNA. The product size of PPARγ according to Primer-BLAST is 

101 bp. C) Annealing temperature optimization for primer pairs. Sharp and high peak suggests 

that there is a single amplicon. Temperatures from 50.9°C to 60.0°C degrees would work for 

this primer pair. 51.9°C degrees was selected for the annealing temperature for PPARγ.  
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6. Discussion 
In this study, different cell culturing strategies were tested, in order to form a functional 

vascularized adipose tissue model by combining ATE-induced adipogenesis of hASC culture to the 

blood vessel structures formed in hASC-HUVEC angiogenesis model. ATE-induced adipogenesis 

of hASC cultures has been proven before (Sarkanen et al., 2012a) and a hASC-HUVEC based 

angiogenesis model has been optimized before (Huttala et al., 2015; Sarkanen et al., 2012b). 

Overall, adipose tissue and blood vessels were both formed with all of the strategies, although there 

were differences in triglyceride accumulation and in the density of vascular networks in different 

strategies. Most of the adipose tissue specific genes’ expressions were elevated in adipose tissue 

formed with all the strategies. Results showed that strategy 1, where adipose tissue was induced 

before blood vessels and cells were plated in two batches at two different days, was technically the 

best strategy for solving the detachment issue frequently seen in multilayered cell cultures, 

accumulated adequate amount of triglycerides, expressed adipose tissue specific genes and the 

morphology of adipocytes and blood vessels was similar to their morphology in vivo.  

6.1 Cell detachment issues 
Earlier attempts to combine ATE-induced adipogenesis of hASC culture to angiogenesis model 

have faced severe cell detachment issues. One aspect for testing different cell culturing strategies 

(Table 5) was thus to find out if the cell detachment problem could be solved by changing the 

plating or the differentiation scheme.  

In strategies 2 and 3 cells started to detach from the bottom of cell culture plate already after 2 - 3 

days, probably because of the great cell number plated already on the first day. Strategies 5 and 6 

were other ways identical to strategies 2 and 3, in respect, but the number of hASC used in 

strategies 5 and 6 was only half of the cell number used in strategies 2 and 3. Because of the 

detachment issues, strategies 2 and 3 were not tested further and were thus not included in most of 

the analysis.   

Although the best strategy was chosen based on the quantitative data obtained from different 

analysis, also the hands-on experience of cell culturing had importance. In addition to strategies 2 

and 3, also other strategies had some detachment issues. However, in other strategies the possible 

detachments occurred on the 11th to 14th day of cell culturing, i.e. much later than in strategies 2 and 

3. Thus, adipose tissue and blood vessels had already formed in most cases. In strategies 4 and 6, 

where blood vessels were induced before adipose tissue, the detachment was more frequent than in 

strategies 1 and 5, where adipose tissue was induced before blood vessels. Thus, it seems that 
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differentiation order has an effect on the cell detachment issue. Differentiating adipose tissue before 

blood vessels seems to be the best differentiating order for the cell adherence.  

Cell detachment occurred in most detachment cases so that the uppermost cell layers of the cell mat 

started to bud from the edges of the cell culturing well. In the worst cases, the cell mat formed a cell 

ball at the bottom of the cell culturing well. Cells inside the cell ball might not be as viable as the 

cells on the outer surface of the cell ball and the cells growing as they were intended to, planar. 

Detachment of cells in tissue models is a serious problem when considering the applicability and 

reliability of the model. For instance, if the vascularized adipose tissue model would be used in 

chemical testing, it is important that the morphology of adipocytes and blood vessels can be seen. 

Detection of the possible effect of the chemical on the adipogenesis and/or angiogenesis would be 

impossible if the cells detached.  

6.2 Triglyceride accumulation  
Mature adipocytes contain microscopic intracellular lipid droplets that are the first visible signs of 

adipose tissue formation (J. H. Choi et al., 2010). Triglycerides accumulated to all the different 

strategies forming visible lipid droplets, regardless of the differentiation order or the plating 

scheme. However, only the accumulation obtained with strategies 1 and 6 was statistically 

significantly greater than in the negative control (Figure 5A). When fat control and different 

strategies were compared with each other, there was a significant statistical difference only between 

fat control and strategy 5 (Figure 5B).  

In strategy 1, adipose tissue was induced before blood vessels and in strategy 6, blood vessels 

before adipose tissue. In strategy 1, hASC and HUVEC were added in between differentiations and 

in strategy 6, all the cells were plated at the beginning of cell culture. Strategy 6 included only half 

of the number of hASC compared with strategy 1. As strategies 1 and 6 are different cell culturing 

schemes in respect to differentiation order, cell plating and hASC number, it is possible that these 

variables in the cell culturing set-up do not have an effect on triglyceride accumulation. 

Adipored-treated cell cultures were imaged with fluorescent microscopy to observe adipocyte 

morphology. Adipored-treated cell cultures were also double-stained with blood vessels specific 

antibodies vWf and ColIV, which were labeled with TRITC and FITC, in respect (Figure 4). This 

way triglyceride accumulation in contrast to blood vessel formation could be seen although TRITC 

and Adipored can be seen partly in the same color. Based on the fluorescence images, triglycerides 

were present in fat control and all the different strategy samples. According to the images, 

triglyceride accumulation was not disturbed even though vascular networks were formed with 
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different strategies. Although negative control and tubule control were not treated with ATE, some 

triglycerides still accumulated, based on both absorbance measurements and fluorescence images. 

hASC include also committed preadipocytes, which are already determined to become adipocytes 

(Gregoire, 2001), which could explain the occurrence. However, without ATE-treatment, 

accumulation of triglycerides barely existed. 

Triglyceride accumulation to hASC-HUVEC based vascularized adipose tissue models has been 

proven also by others (Kang et al., 2009; Wittmann et al., 2015). In the model of Kang et al., the 

adipogenic inducement was achieved with an adipogenic cocktail, which included insulin, IBMX, 

biotin, pantothenate, DEX and thiazolidinediones (Kang et al., 2009). Wittmann et al. used insulin, 

IBMX, DEX and indomethacin containing adipogenic cocktail (Wittmann et al., 2015). However, 

as mentioned before, ATE is proven to induce accelerated and higher triglyceride accumulation, 

when compared with a standard adipogenic cocktail including insulin, IBMX, DEX and 

indomethacin (Sarkanen et al., 2012a).  

6.3 The formation of vascular networks 
Vascular networks were formed successfully with all the different cell culturing strategies. Confocal 

microscope images showed that tubules formed in tubule control and in all strategies have similar 

structure: the inner endothelial layer is covered with the basement membrane just like in real 

capillaries in the body. Formed vascular networks were about the same thickness in the tubule 

control and in different strategies. Based on the confocal images, also the vertical diameter of the 

formed capillaries and the thickness of the basement membrane seem similar in tubule control and 

in different strategies.   

When observing the vascular network images taken with a fluorescent microscope and with 4 x 

objective, one can see that ramified vascular networks were formed with all of the strategies, but it 

seems that in tubule control and in strategies 4 and 6 networks were denser than in strategies 1 and 

5. Quantitative tubule area analysis from Cell-IQ images showed that tubule control and all the 

strategies had significantly more tubules than negative control (Figure 8A). When comparing tubule 

control and different strategies with each other, only strategy 1 had significantly less tubules than 

tubule control and strategy 4 (Figure 5B). However, n for strategies 4 (n=6) and 6 (n=3) was 

considerably smaller than for other samples (n=15). Thus, there would probably have been a 

statistical difference between strategy 6 and strategy 1 as well, if n for strategy 6 would have been 

greater. 
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As blood vessels were induced first in strategies 4 and 6, it is logical that denser vascular networks 

occurred. In these strategies, blood vessels had time to mature for 14 days. On the other hand, in 

strategies 1 and 5, where adipose tissue was induced first, blood vessels were able to mature only 

for 7 days, which results in less dense vascular networks. However, in pre-validated angiogenesis 

model, the maturation time for blood vessels is also 7 days (Sarkanen et al., 2012b). Although 

vascular networks were not as dense in strategies 1 and 5 as they were in strategies 4 and 6, they 

were still ramified and had similar structure, where the basement membrane and the endothelial 

cells could be seen. Thus, for this purpose, vascular networks induced by strategies 1 and 5 are as 

appropriate as vascular networks induced by strategies 4 and 6. 

Although blood vessels were induced with angiogenesis stimulation medium, the vascularized 

adipose tissue co-cultures were also treated with ATE, which in addition to adipogenesis induces 

angiogenesis (Sarkanen et al., 2012a). Thus, it is possible that ATE treatment further enhances 

blood vessel maturation. ATE-treatment alone did not normally induce dense vascular network 

formation, as was seen from fat control. However, ATE treatment does not seem to disturb vascular 

network formation. In other vascularized adipose tissue models, adipogenic cocktail treatments 

have been suspected to have a negative effect on endothelial cells and delay HUVEC growth (Foley 

et al., 2015; Kang et al., 2009).  

6.4 The genetic profile of the formed adipose tissue 
Based on the RT-qPCR results, adipogenesis occurred at least to some extent in fat control and in 

all the different strategies. The studied gene markers were PPARγ, leptin, adiponectin, Glut4 and 

AP2, which are all commonly used adipogenesis markers (J. H. Choi et al., 2010). Overall, the 

expression of PPARγ, leptin, adiponectin and Glut4 was elevated and the expression of AP2 was 

decreased in most samples.  

When looking at the results in more detail (Figure 9), fat control and strategy 6 have similar 

expression: PPARγ, leptin, adiponectin and Glut4 expressions are elevated and AP2 expression is 

decreased. The gene expression in strategy 5 is other ways similar, except that AP2 expression is 

not decreased. The expression of strategy 1 in turn resembles strategy 5, except that adiponectin 

expression is not elevated. In strategy 4, only leptin and adiponectin expressions are elevated, 

whereas the expression of PPARγ and AP2 is decreased. Glut4 expression is neither elevated nor 

decreased.  

There were 5 biological replicates in this study. Overall, 3 different hASC-HUVEC combinations 

and 6 different ATE batches were used. This causes some natural dispersion on the results, as the 
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cells and ATE are isolated from different donors. This also partly explains why the standard 

deviations for some similarly treated samples, e.g. strategy 5-leptin, strategy 5-adiponectin and fat 

control-AP2 were high. Another explanation for the dispersion may come from ATE-treatment 

itself: in addition to adipogenesis and angiogenesis, ATE induces proliferation (Sarkanen et al., 

2012a). Thus, in the ATE-treated cell cultures, there are preadipocytes and adipocytes in many 

different developmental phases and all of the cells do not have enough time to mature into 

adipocytes. In both fat control and strategy 5, all cells are plated at once, at the beginning of cell 

culture. Fat control is treated only with ATE, whereas strategy 5 is treated the first 7 days with ATE 

and then the remaining 7 days with angiogenesis stimulation medium. In strategy 5, adipocytes can 

thus mature for the entire cell culturing time. However, as the medium changes from ATE to 

angiogenesis stimulation medium after one week, it is possible that the already more maturated 

adipocytes, committed preadipocytes, continue maturation during the angiogenesis stimulation 

medium treatment whereas early stage preadipocytes, which would still need adipogenic cues that 

ATE offers, stay at their developmental phase. Angiogenesis stimulation medium is serum free, so 

it enhances the differentiation of the cells at the expense of proliferation. Thus, angiogenesis 

stimulation medium might enhance the differentiation of the committed preadipocytes.    

Elevated PPARγ expression in fat control and in all of the different strategies, except of strategy 4, 

suggests that adipogenesis has begun. In 3T3-L1 cells, PPARγ expression rises rapidly after the 

hormonal induction of differentiation and maximum expression is attained in mature adipocytes 

(Gregoire et al., 1998). Elevated PPARγ expression has been detected also in hASC based obesogen 

screening model (Foley et al., 2015). The results for strategy 4 are controversial, as the decreased 

expression of PPARγ would suggest that adipogenesis does not occur, leptin and adiponectin 

expressions are still elevated.  

Leptin and adiponectin are the most abundant secretory products of adipose tissue (Coelho et al., 

2013). The expression of leptin and adiponectin is thus typically investigated, when studying the 

secretory properties of the formed adipose tissue (J. H. Choi et al., 2010). The expression of leptin 

was elevated in all of the samples which implies to functional adipose tissue formation. However, 

the protein expression of the formed adipose tissue needs yet to be confirmed. In 3T3-L1 cells, the 

gene and protein expression of leptin is elevated during the terminal differentiation of adipocytes, 

being however much lower than that detected in native adipose tissue (Gregoire et al., 1998). Leptin 

secretion has been studied also in hASC-HUVEC based vascularized adipose tissue: leptin secretion 

was detected to be higher in samples that were treated with adipogenic cocktail when compared 

with untreated samples (Kang et al., 2009). 
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Also adiponectin expression results suggest that functional adipose tissue has formed: the 

expression of adiponectin was elevated in fat control and all the strategies except of strategy 1. Also 

in 3T3-L1 cells, adiponectin gene and protein expression is elevated (Gregoire et al., 1998). When 

the samples were compared with each other, there was statistically significant difference in 

adiponectin expression: in strategy 5 adiponectin expression was elevated significantly more than in 

other samples. However, the expression of adiponectin was generally low, with CT values higher 

than 35, so the fold regulation values calculated with these results are not that reliable.  

Glut4 is a glucose transporter that is translocated by insulin to adipocyte cell surface in high-fed 

state (Watson & Pessin, 2007). Glut4 expression thus describes the metabolic state of the formed 

adipose tissue. Glut4 expression was elevated in all the samples, however, as it was with 

adiponectin, the general expression of Glut4 was also low (CT values>35). The fold regulation 

values are thus not that reliable. In 3T3-L1 cells, the expression of Glut4 rises in the terminal stage 

of differentiation (Gregoire et al., 1998).  

AP2, also known as fatty acid-binding protein 4, belongs to lipid chaperon protein family that 

regulate the lipid trafficking and response in cells (Furuhashi et al., 2015). The expression of AP2 

was decreased in fat control and in strategies 4 and 6. In strategies 1 and 5, AP2 expression was 

neither elevated nor decreased. Although there was no statistical difference in AP2 expression 

between different samples, it is interesting that AP2 expression seems to be less or not at all 

decreased in different strategies, whereas in fat control AP2 expression is clearly decreased. As 

angiogenesis stimulation medium includes insulin, which increases glucose influx and represses 

lipolysis in adipocytes (S. M. Choi et al., 2010; Watson & Pessin, 2007), it is possible that the 

combination of ATE and angiogenesis media treatments enhances adipose tissue maturation more 

than just ATE treatment. It is also possible, that formed vasculature supports adipocyte maturation, 

as activated endothelial cells in angiogenic vessels are known to produce various cytokines and 

growth factors that promote adipose tissue growth and expansion (H. Cao, 2014). However, more 

studies are needed to confirm the effect of angiogenesis stimulation medium and vascularization on 

the maturity of the formed adipose tissue. 

Studies with 3T3-L1 cell line have shown that AP2 expression rises during the terminal stage of 

differentiation (Gregoire et al., 1998). Thus, it is possible that the formed adipose tissue has not 

entirely matured. Generally low adiponectin and Glut4 gene expressions would support this theory. 

Preadipocyte cell lines are already committed to adipocyte cell line and are thus further in 

development than hASC, which could explain the difference. However AP2 expression has been 
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detected to be elevated also in the hASC based obesogen screening model (Foley et al., 2015), when 

treated with an adipogenic cocktail including insulin, IBMX, DEX and rosiglitazone. Foley et al. 

assessed the relative gene expression using the 2-∆∆CT method and GAPDH as the housekeeping 

gene. However, although GAPDH is one of the most used housekeeping genes, it has been detected 

to be regulated during dietary intervention (Viguerie et al., 2012). Thus, it is not the most ideal 

housekeeping gene for adipose tissue studies and may skew the fold regulation value results. 

6.5 The vascularized adipose tissue model built with strategy 1 showed the most 

promising results 
When considering the best cell culturing strategy for building the vascularized adipose tissue model, 

strategies 1 and 6 showed the most promising quantitative data. Triglycerides were accumulated, a 

sufficient vascular network was formed and adipocyte specific genes were expressed. However, 

strategy 6 had more serious detachment issues than strategy 1, so strategy 1 should be selected for 

further development of human vascularized adipose tissue. 

In strategy 6, blood vessels were induced before adipose tissue and all the cells were plated on the 

day 0 (Figure 3). Blood vessels had 14 days long maturation time and formed thus quite dense 

blood vessel networks. It might be that dense and mature blood vessel network would support the 

maturation of adipose tissue. The RT-qPCR results of AP2 would support this theory. However, in 

strategy 4, which also had a dense blood vessel network, adipose tissue did not significantly mature. 

The difference between strategies 6 and 4 was, that in strategy 4, cells were plated on two days (day 

0: hASC and HUVEC, day 7: hASC) and that the total hASC number used in strategy 4 was twice 

as high when compared with strategy 6. Thus it is possible that the good maturation of adipocytes in 

strategy 6 results of the positive effect of angiogenesis stimulation medium on adipogenesis.  

In strategy 1, adipose tissue was induced before blood vessels and cells were plated on day 0 

(hASC) and on day 7 (hASC and HUVEC) (Figure 3). Adipose tissue had thus long maturation 

time, which would explain why adipose tissue maturated so well. However, also in strategy 5, 

adipose tissue was induced before blood vessels having thus the same maturation time for adipose 

tissue, but adipose tissue did not seem to mature based on the triglyceride accumulation. The 

difference between strategies 5 and 1 was that in strategy 5, all the cells were plated on the day 0 

and that the total hASC number used in strategy 1 was twice as high when compared with strategy 

5. On the other hand, the RT-qPCR results for strategy 5 would suggest that the formed adipose 

tissue is mature. The maturity of the adipose tissue formed with strategy 5 thus remains 

questionable. Overall, it seems that inducing adipose tissue before blood vessels would be 

beneficial for adipose tissue maturation. 
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6.6 The future of vascularized adipose tissue 
Although strategy 1 should be chosen for further development, the good results obtained with 

strategy 6, which had only half of the hASC number of strategy 1, give reason to question the 

necessity of hASC addition in the second batch in strategy 1. If as good triglyceride accumulation, 

vascular network formation and adipogenesis specific gene expression could be achieved by leaving 

the second batch of hASC out, the model would be more cost-effective, as hASC number and 

needed working hours would decrease. Thus, this kind of plating strategy would yet be worth 

testing.  

In addition to plating strategy refinement, as the gene expressions of some of the adipogenesis 

specific gene markers were low or in the case of AP2, not elevated at all, adipocyte maturation 

could be enhanced. In order to maturate the formed adipose tissue further, the composition of ATE 

medium could be optimized. Insulin addition would perhaps come into the question. However 

insulin concentration should be lower than in commonly used adipogenic cocktails, which use 

supraphysiological concentrations (Gregoire, 2001).  Normal insulin concentrations would keep the 

vascularized adipose tissue model closer to the normal body conditions and preserve the insulin 

sensitivity of the model. Also the effect of serum free ATE medium to the model differentiation 

could be tested. 

Blood vessels formed by every strategy had similar structure: TRITC labeled endothelial cells were 

covered by FITC labeled basement membrane. However, in addition to the endothelial cells and the 

basement membrane, real capillaries in the body have pericyte layer that loosely covers the 

basement membrane (Szoke et al., 2012). Thus, pericyte staining would ensure the authentic 

structure. It would also be interesting to find out the existence of lumen with electron microscopy. 

Immunocytochemical stainings could also be used in order to study more closely the morphology of 

the formed adipose tissue. Collagen VI is the major protein in adipose tissue ECM (Divoux & 

Clement, 2011) and would thus be suitable for this purpose. Also staining CD36, which is needed in 

the transportation process of fatty acids into adipocytes (Rutkowski et al., 2015), could provide 

useful information about the composition of the formed adipocytes.   

The next thing in the model optimization would be the examination of protein secretion of the 

model. As it seems that leptin and adiponectin mRNAs are expressed, their protein expression 

should also be ensured. In order to investigate the metabolic functionality of the formed adipose 

tissue, the effectiveness of lipolysis and the insulin sensitivity of the model should be studied. After 

optimization, the vascularized adipose tissue model will be tested with reference chemicals that 
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have well-established effect on adipogenesis and/or angiogenesis. After the chemical testing, the 

model is ready for intra-laboratory validation.  

The vascularized adipose tissue model optimized in this study could also fit interesting applications 

in the field of tissue-engineering. hASC and endothelial cell based vascularized adipose tissue has 

been successfully grown by others in vitro and/or in vivo on 3D silk scaffolds and in fibrin gels 

(Borges et al., 2003; Kang et al., 2009; Wittmann et al., 2015). Thus, it is plausible that our model 

could also be grown on biomaterials. The advantages that our model has over to the existing 

vascularized adipose tissue models are the novel and own differentiation media, ATE medium and 

angiogenesis stimulation medium.   
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7. Conclusions 
In this study, the hASC-HUVEC based human vascularized adipose tissue model was optimized 

and characterized in respect of cell plating and differentiation scheme. The results showed, that 

changing the cell plating and differentiation schemes affected the technical repeatability and 

reliability of the model, triglyceride accumulation, vascular network formation and the genetic 

maturity of the formed adipose tissue. A scheme, which showed the best results with respect to 

these variables, was selected to be further developed.   

Maturation of adipocytes might be enhanced in the presence of blood vessels although more 

experiments are needed to confirm this. However, it is clear that proper vascular structures can be 

formed in the presence of adipocytes and that the cell plating and differentiation scheme have a 

notable effect on the technical repeatability and reliability of the model.  

The vascularized adipose tissue model is a promising tool for adipose tissue research. By thorough 

characterizing and optimizing the formed in vitro model, it is possible to create a more accurate, 

reliable and efficient test system than the currently available animal models offer.   
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Appendices 
 

Appendix 1: Used hASC-HUVEC combinations in different experiments 
 

Experiment 1: hASC153+HUVEC20 

Experiment 2: hASC29+HUVEC25 

Experiment 3: hASC161+HUVEC19 

Experiment 4: hASC161+HUVEC19 

Experiment 5: hASC29+HUVEC25 

Experiment 6: hASC161+HUVEC19 

Experiment 7: hASC153+HUVEC20 
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Appendix 2: Used ATE batches in different experiments 
 

Experiment 1: Pool: 10 % ATE153, 60 % ATE159, 30 % ATE162 

Experiment 2: ATE187 (first two exposures), ATE177 (last two exposures) 

Experiment 3: ATE183 

Experiment 4: ATE159 

Experiment 5: ATE177  

Experiment 6: Pool: 50 % ATE159, 50 % ATE 183 

Experiment 7: Pool: 50 % ATE177, 25% ATE183, 25% ATE159 


