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Abstract

This thesis describes the AXIOM method for cross-impact modeling and analy-

sis. AXIOM is a novel cross-impact analysis technique, which combines the best

features of various existing techniques in an attempt to create a practical cross-

impact modeling tool with emphasis on modeling power and fitness for modeling

of real systems. The thesis reviews the existing documented cross-impact anal-

ysis techniques and discusses their problems and shortcomings. The AXIOM

approach improves on the existing methods in a number of ways. A software

implementation of AXIOM is also presented.
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1 Introduction and context

This thesis describes in detail the novel AXIOM method for cross-impact anal-

ysis. The AXIOM method is developed by the author. The acronym AXIOM

stands for Advanced Cross-Impact Option Method. A number of documented

cross-impact analysis techniques exist, but they have problems and shortcomings

that hinder their application in actual research and modeling problems. Some

cross-impact techniques are also inadequate in terms of the way they facilitate

drawing conclusions from the cross-impact calculation results. AXIOM aims to

be a pragmatic method for cross-impact modeling and analysis, combining the

best aspects of the various techniques under the banner of cross-impact analysis,

to provide a practical tool for cross-impact modeling that is well suited for actual

research and real modeling cases. AXIOM also facilitates easier extraction of

higher added value information from the cross-impact calculation outputs on the

basis of similar inputs than alternative cross-impact approaches.

This introductory chapter presents the basic ideas of cross-impact analysis and

the research areas and fields in which cross-impact techniques are utilized. It also

makes the case for the utility of AXIOM in those fields. Chapter 2 goes to examine

the characteristics and problems of the documented cross-impact methods in

detail. Chapter 3 presents the concepts and components of the AXIOM model

and the computational process of extracting higher-order information from the

model. Chapter 4 details what are the problems in cross-impact analysis and

modeling, and how AXIOM addresses these problems and contributes to the

state-of-the-art of cross-impact modeling and analysis. Finally, Chapter 5 reports

the software implementation of the AXIOM method and discusses how AXIOM

could be developed further.

1.1 What cross-impact analysis is

There are several documented cross-impact techniques as well as several ones

that are mentioned in reviews of cross-impact analysis and in the literature on

the different specific techniques, but which are not well documented. Identifying

the core features that would be shared by all flavours of cross-impact analysis

is challenging. For this reason, also drawing clear lines that would patently

distinguish cross-impact analysis techniques from other analytical techniques with

slightly similar inspirations is difficult.
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According to Gordon [1994, 1] the cross-impact method was originally developed

by himself and Olaf Helmer in 1966, to find out “whether forecasting could be

based on perceptions about how future events may interact”. A motivation for

developing the early techniques of cross-impact analysis was to enable analysis of

interactions between events, which is not present in the Delphi method [Gordon,

1994; Godet et al., 1994, 139]

The Delphi method is a communication and collaboration technique used with

expert panels, especially in the fields of futures studies and foresight [Linstone

& Turoff, 1977]. There are many variations of the Delphi method, but the basic

process is as follows: People with expertise considered relevant for a studied

topic answer questions and provide reasoning about their answers anonymously.

The Delphi facilitator summarizes the answers and the reasoning and presents

the summary to the panel, maintaining the anonymity of answers and reasoning.

Discussion about the results may or may not take place. On the basis of the

summary, expert participants reconsider and revise their answers. This usually

leads to answers converging and the range of answers narrowing. These phases

may be reiterated until some halting condition is met; the halting condition may

be that a consensus is reached or that answers do not converge further or change

anymore. If there is no consensus, a mean, median or mode of the answers can

be used. This consensus or iterated average expert opinion is then considered to

be the result of the Delphi process and to be close to the ”real” value or at least

be information of higher value than the initial expert opinions.

The Delphi method is linked to the cross-impact method, as the valuations for the

input data for cross-impact method can be obtained through a Delphi process.

This thesis is focused on the computation aspect of the cross-impact analysis

process and the details of Delphi method are not elaborated further. For more

information about Delphi method, see, e.g., the manual by Linstone & Turoff

[1977] and for some recent perspectives on use of technology in service of the

Delphi process, see, e.g., the work of Seker [2015].

Godet et al. [1994, 139–140] note that cross-impact method is a generic name

for a family of techniques evaluating changes in probabilities of events as the

information about the interactions between the events is accounted for. With

this definition, Godet et al. seem to limit the use of cross-impact analysis label to

methods which operate on probability valuations and also to methods specifically

dealing with events.
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Gordon [1994, 1–2] appears to define the family of cross-impact approaches through

more of an evolutionary approach, listing different methods that have been in-

spired by his and Olaf Helmer’s original cross-impact method. Many of these

methods try to address some particular challenge related to the original method

or incorporate analytical aspects that are not present in it. Some of the methods

mentioned by Gordon in his summary of the history of the cross-impact method

deviate from the original ideas in such a way that it is somewhat questionable to

call them variations or evolutions of the same analytical technique: for example,

the KSIM approach devised by Kane [1972] cannot really be used to answer the

same research questions as Gordon and Helmer’s original cross-impact technique.

This thesis takes the position that the techniques that perform analysis on a

system model, comprised of representations of system components expressed in

discrete options and the probability-influencing interactions between them, can

all be called cross-impact analysis. Having said this, the scope of reviewing

the different methods and comparing them to the AXIOM method is limited to

well-documented methods. As there is a market for doing cross-impact analysis

in management consultancies and possibly more money revolving around these

analyses than in the academia, it is completely possible that viable cross-impact

techniques exist outside the documented sphere. Some of those methods might

offer a similar analytical process and outputs as the AXIOM method does. As

information about these techniques is not available in the literature, they cannot

be reviewed and fall outside the scope of this thesis. Chapter 2 reviews the

documented methods.

In general terms, cross-impact analysis could be described as a technique for

studying a system modeled as a set of components, states, events and forces that

are partially dependent on each other and therefore have impacts and influence

on each other. Some formats of cross-impact analysis can be used to study con-

trafactuals, hypotheticals or the future of a system [Gordon, 1994]. Methods

providing outputs like this need to valuate the probabilities of events or system

states. Other formats can be used to refine the understanding about the inter-

dependencies between the system components [Godet et al., 1991, 24]. Methods

like these do not necessarily need to explicitly deal with probability valuations,

but they do operate with hypotheses or system descriptors that could, in the-

ory, be assigned a probability value. This characteristic demarcates cross-impact

modeling techniques from other types of simulation and modeling practices.
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1.2 Aims of cross-impact analysis

Godet et al. [1994, 140] see that the central aim of cross-impact analysis is to

test the probability valuations provided by the experts used in the exercise and

iteratively correct these probabilities. This iteration results in corrected proba-

bility valuations that are consistent and abide to the laws governing probability.

With the corrected probabilities, it is then possible to calculate the probabili-

ties of different system configurations. A system configuration means a specific

combination of states the different system components can have. A single sys-

tem configuration can be seen as a scenario, so the cross-impact process can lead

to a probability distribution for all scenarios for the system [Godet et al., 1994,

139–142]. Godet et al. [1991, 49] also talk about the cross-impact method as

a sort of preprocessing tool used in conjunction with the scenarios method (see

[Godet et al., 1991, 12]), used to identify the most probable, logical, consistent

and interesting scenarios that warrant more detailed study and that should be

the subject to the scenarios method.

Gordon [1994, 5] mentions the learning process that occurs while the cross-impact

matrix values are being estimated as one of the major benefits of undertaking

cross-impact analysis. Similarly to Godet et al., for Gordon the corrected a pos-

teriori probabilities are an important outcome. Gordon, in contrast to Godet,

specifically mentions policy testing as a way to use the analysis. It can be accom-

plished by defining an anticipated policy or action that would affect the events

in the matrix, and adding it to the matrix. Matrix is then changed to reflect the

immediate effects of the policy. This can be accounted for by changing the initial

probabilities or adding a new event to the matrix. A new iteration is performed

and the differences to the ’calibration run’ are the effects of the newly intro-

duced policy. Gordon quite aptly states that “The cross-impact matrix becomes

a model of event interactions that is used to display the effects of complex chains

of impacts caused by policy actions” [Gordon, 1994, 6].

A review of cross-impact techniques by Matic & Berry lists the uses and aims of

cross-impact techniques in general. These are evaluation of possible future sce-

narios, impact analysis, intervention point evaluation, strategic decision-making

and evaluating complex collaboration arrangements. Matic and Berry do not

elaborate on the uses or provide examples. However, evaluation of possible fu-

ture scenarios is definitely possible, by way of using the cross-impact method

to investigate which particular states of system components typically happen to-
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gether; impact analysis can be done by introducing new components to the system

and comparing the outcome to a situation where the added components are not

present; intervention point evaluation is possible by means of introducing policy

actions as system components and testing how the system works when these poli-

cies are realized or not; strategic decision-making can be thought to benefit fairly

directly from impact analysis and intervention point evaluation.

The author’s summary of the aims and benefits of cross-impact analysis is as

follows: Cross-impact analysis in its basic form extracts information about the

indirect and total interactions between system components on the basis of the

direct interactions. Direct interactions are input data for the method, so the

interesting part of the analysis is the network of indirect interactions. When the

system model has a lot of components, the indirect interactions can happen over a

complex web and the chains of impacts can be long. Exploring these long impact

chains and interaction webs can bring forward surprising and counter-intuitive

analytical results. Cross-impact analysis can reveal that a system component

that is seemingly unrelated to some other component of interest is actually of

central importance and conversely that some other seemingly important compo-

nent’s effect might be cancelled or reversed by the system’s web of interactions.

Cross-impact analysis can identify effective policy actions and interventions in

the system, or high leverage points for influencing outcomes of the system, so-

called high-leverage intervention points, resulting in information and actionable

recommendations relevant for decision-making and policy.

Other than the analytical outputs resulting from the cross-impact computations,

the cross-impact modeling, preceding the application of any algorithm on the

model, can be highly useful in refining the conceptual model underlying the cross-

impact model and as a learning experience. This thesis focuses on extracting

higher-order information from the cross-impact model through computation, and

the practical modeling power that different cross-impact methods offer modelers.

The other cross-impact methods are evaluated from this perspective.

1.3 Application domains of cross-impact analysis

Cross-impact analysis techniques are associated with the disciplines of futures

studies and foresight. The family of techniques is often mentioned in resources

listing the various futures research methods (see e.g. [Cagnin et al., 2016; Wikipedia,
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2016]), but normally not presented in detail. A recent guide on foresight meth-

ods by van der Duin [2016] doesn’t touch cross-impact techniques at all, so they

probably cannot be said to be at the methodological core of futures studies and

foresight. In the author’s experience the cross-impact analysis methods are not

well known or understood and rarely used. This could be a result of the lack

of practical software tools to perform the analysis with, the fairly opaque doc-

umentation that the existing techniques have and certain characteristics of the

methods that significantly limit their applicability in research use. The AXIOM

approach makes the usage of cross-impact analysis and modeling easier, more

flexible, more practical and better suited for real research problems and modeling

cases. (see Chapter 2 for discussion about the problems of existing techniques

and Chapter 4 for notes on how AXIOM improves these aspects).

Acknowledging the association of cross-impact techniques to futures studies and

foresight activities, there is no reason to perceive them as applicable and relevant

only in those somewhat esoteric fields; cross-impact analysis should be seen as a

general strategic planning and strategic thinking tool. The different cross-impact

techniques have already been employed in the study of diverse topics including

industry technological forecasting, corporate strategy, air traffic foresight and

planning of energy system [Gordon, 1994; Godet et al., 1994], and have potential

to serve many other fields of research.

A characteristic of futures studies and foresight is that since the analytical focus

is on the future and the change of the studied systems and their operating logic,

there is little or no empirical data available to conduct traditional, e.g. econo-

metric modeling based on statistical data and the relationship derived from such

data; in some cases it could be said that the data relevant for traditional modeling

cannot exist as the object of interest (the future or some contrafactual situation)

does not exist. Futures studies and foresight activities often operate on expert

insights and data collected from experts via interviews, workshops and surveys.

Processing this expert-sourced data into higher-order information and providing

synthesis and practical, policy-relevant results is often challenging. Cross-impact

analysis provides a systematic way for extracting expert insights and dealing with

the expert inputs.

Modeling of systems is normally based on empirical data. For a notable share

of modeling cases and research domains the best available data for a modeling

exercise will be opinion data, provided by knowledgeable people, i.e., experts of
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the domain in question. Cross-impact methods can be seen as tools for systems

modeling and simulation using the expert-sourced data that for many domains is

the best and only data available and that would be difficult or even impossible to

model with traditional modeling techniques. Even when some relevant statistical

data might be available for modeling, the relationships between the components

of the modeled system might be difficult to derive from time-series data. In

this sense, cross-impact modeling can fill a major gap in the toolkit of systems

modelers. Developing pragmatic approaches and practical tools for cross-impact

modeling, such as AXIOM, might prove to be of great value for adoption of the

technique.



2 Cross-impact analysis techniques

This chapter reviews the well-documented cross-impact methods. To the author’s

knowledge, no comprehensive comparative reviews of cross-impact methods exist.

In his technical paper on his cross-impact analysis technique Gordon [1994] men-

tions several later cross-impact methods originating from his and Olaf Helmer’s

method; Matic & Berry provide a very high-level overview of the different cross-

impact methods; and the FOR-LEARN Online Foresight Guide [Cagnin et al.,

2016], which to some extent enjoys a status of methodological reference tool in

the field of foresight, reviews (but does not detail) one cross-impact technique

and mentions three others. The methods mentioned in all these three sources

are Gordon’s method, KSIM, SMIC and INTERAX and they are discussed in

this thesis as well. Methods that are mentioned but of which no documentation

could be obtained include the EZ-IMPACT method, which is possibly derived

from KSIM [Wikipedia, 2015], and the EXPLOR-SIM method.

The most well-known and oft-mentioned cross-impact techniques are Theodore

Gordon’s and Olaf Helmer’s cross-impact method and Michel Godet’s SMIC.

Gordon’s and Helmer’s method is often stated [Gordon, 1994; Matic & Berry;

Wikipedia, 2016] to be the original cross-impact technique which has largely in-

spired the other, more recent approaches. In the FOR-LEARN Online Foresight

Guide [Cagnin et al., 2016] the template for cross-impact analysis used in describ-

ing the whole family of techniques is Godet’s SMIC method.

2.1 Overview of features of different techniques

Table 1 displays the comparison of the most important characteristics of the cross-

impact techniques that are relevant to the AXIOM method as reference points

and alternatives. The most important differences in the various techniques lie in

a) how the interactions between system components are expressed b) does the

technique explicitly calculate probability values in its computations c) how the

model components are represented and d) incorporation of temporal dimension

in cross-impact modeling.

The way that the interactions between system components in a cross-impact

model are expressed has very important consequences, for both the possibilities to

derive analytical outputs and the cross-impact modeling process, and ultimately
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Technique I) II) III) IV)

Gordon & Helmer a X a

INTERAX a X a

SMIC (Godet) a X a

KSIM b c X

MICMAC b a

EXIT b a/c

Basics & JL c X b

AXIOM c X b X
I ) Expression of interactions

a Conditional probabilities

b Indices

c Probability adjustment functions

II ) Explicit probabilities

III ) Representations of model components

a Binary hypotheses/events

b Multivalued statements

c Descriptors having a continuous value

IV ) Temporal dimension in modeling

Table 1: Comparison table of features cross-impact techniques

the modeling power of the technique. The trade-off is between the accuracy of

model inputs and outputs and the ease of valuation of the model. For this issue,

some techniques, AXIOM included, propose a compromise between accuracy and

ease.

Calculating the probabilities explicitly enables richer analytical outputs, such as

testing for effects of interventions and other changes in the system. This focus,

however, requires more input information (the a priori probability valuations).

AXIOM deals with the probabilities explicitly.

Representation of model components is important from the perspective of the

modeling power of the technique. The most flexible and expressive solution for

modeling real systems appears to be the multivalued statement. This is the basic

component of AXIOM models.

The most widely-used techniques do not allow for easy representation of time in

cross-impact models. As the most natural application for cross-impact modeling
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is planning and futures-oriented systems analysis, this is a significant drawback.

AXIOM provides a straightforward way to take the temporal aspect into consid-

eration in cross-impact modeling.

2.2 Gordon and Helmer’s cross-impact technique

Gordon and Helmer’s cross-impact model consists of binary hypotheses called

events, and the interactions between the events described as conditional proba-

bilities. Events, in spite of the term, need not be thought to necessarily represent

only one-time occurrences, but can be thought to represent the state of the stud-

ied system in a more general and temporally longer-standing way. The modeling

process starts by defining the set of included events that can be called, in a more

general way, hypotheses. Once the set of included hypotheses is determined, each

is assigned an initial or a priori probability by a group of valuators consisting

of suitable experts. Considerations about use of experts and their selections are

discussed in Section 3.4.

Once the a priori probabilities have been estimated, the conditional probability

matrix can be estimated. The conditional probabilities should comply to the laws

governing probability: as the a priori probabilities of the hypotheses are known,

the conditional probabilities for each pair (A,B) of hypotheses must be in the

bounds P (A)−1+P (B)
P (B)

≤ P (A|B) ≤ P (A)
P (B)

, where P (A) is the a priori probability

of the impacted hypothesis, P (B) is the a priori probability of the impacting

hypothesis, and P (A|B) is the conditional probability of hypothesis A if hypoth-

esis B is true [Gordon, 1994, 6]. If the initial conditional probability valuations

do not fall in the permissible bounds, the expert group providing the valuations

must decide how to resolve the inconsistency. The conditional probability can be

corrected into the permissible bounds, or the a priori probability valuation can

be changed; it is up to the valuators to decide how the problem is resolved.

Hypothesis evaluation means assigning a value (true or false) to them according

to their probability. The cross-impact model, in turn, is evaluated by placing

the hypotheses in random order, evaluating them in that order and adjusting

the probabilities of the hypotheses using the odds ratio technique described by

[Gordon, 1994, 7–9]. The model evaluation is repeated “a large number of times”

[Gordon, 1994, 10]. The frequencies of the hypotheses in the set of completed

model evaluations are interpreted as their a posteriori probabilities.
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Subsection 3.4.6 discusses the possible interpretations of the a priori probabilities

in cross-impact modeling. According to the interpretation used in the valuation,

different analytical outcomes can arise from the a posteriori probabilities. If the

a priori probabilities are valuated in isolation (see interpretation one of a priori

probability in Subsection 3.4.6) the a posteriori probabilities clearly embody the

indirect impacts in the system, or the probabilities that consider the impact

chains. This kind of matrix can be used for testing the sensitivity of hypotheses’

probabilities to introduction of new hypotheses simulating policy or sensitivity

to other changes (like adjusting probabilities) in the matrix. On the other hand,

if the interpretation is that a priori probabilities are already cross-impacted (see

interpretation two in Subsection 3.4.6) significant differences in the a priori and

a posteriori probabilities, in Gordon’s view, can reflect inconsistencies in the

original valuations in addition to the effect of accounting for the higher-order

interrelationships [Gordon, 1994, 10]. Regardless of the interpretation of the a

priori probabilities, the model is used for illuminating the indirect interactions

of the systems and policy analysis, by means of simulating policy by introducing

changes to the model.

The INTERAX model [Enzer, 1980] can be understood as an application of Gor-

don’s cross impact method. It aims to make the cross-impact technique more

approachable and useful by providing a ready set of hypotheses representing an-

ticipated technical changes, societal changes, economic trends, and various other

trends and developments. The case-specific hypotheses of the modeling exer-

cise are added by the analyst to this ready set, or the INTERAX database is

modified, and the extended model is evaluated to draw conclusions about the

particular strategic issue. A similar general pre-designed cross-impact models

describing global, domain-specific or country-specific trends and issues and their

assumed interactions could well be developed for AXIOM as well, reducing the

cost of setting up a cross-impact study modeling a multitude of general societal

and technological trends.

2.3 Godet’s SMIC

Michel Godet et al’s SMIC method is somewhat similar to Gordon and Helmer’s

method in terms of inputs and process. Godet et al. emphasize the role of SMIC

analysis as a part of a larger framework of futures techniques that are used in

conjunction with SMIC [Godet et al., 1994, 143]: SMIC is used to identify the
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most probable scenarios (represented by the different possible combinations of

hypotheses) that warrant a more detailed study with other approaches.

In contrast to Gordon’s technique, the valuators provide, in addition to the a pri-

ori probabilities and conditional occurrence probabilities also conditional nonoc-

currence probabilities. These initial valuations are then corrected to comply with

the standard probability axioms. In SMIC, the uncorrected valuations are ad-

justed into the bounds of the constraints in such way that they remain as close as

possible to the original estimates. The probability correction process is outlined

by Godet et al. [1994, 144–146]. The idea is that a linear optimization function is

used to find a solution for the corrections. Godet et al. [1994, 149] note that mul-

tiple solutions exist and that there is a degree of arbitrariness to the solution that

the SMIC optimization function finds. A software implementation exists [Godet

et al., 1991, 51] to perform the probability correction. The various approaches

to and the technical particulars of the probability correction problems in the val-

uation of the a priori and conditional probabilities of SMIC-like cross-impact

matrices have aroused a lot of discussion [Sarin, 1978; Jensen, 1981; Brauers &

Weber, 1988; Jackson & Lawton, 1976].

The SMIC calculation process results, in a case of n hypotheses, 2n scenarios

ordered by their probabilities. Godet recommends pulling a set of the most prob-

able scenarios for further analysis with other futures methods. He also suggests

deriving an elasticity matrix for the variables on the basis of the cross-impact

model to perform sensitivity analysis. The elasticity matrix values represent the

change in the probabilities of the impacted variables when the probability of the

impacting variable is changed some predefined amount, such as 10% [Godet et

al., 1994, 147]. The row sums of the elasticity matrix reflect the total influence

of the hypothesis in the system; the column sums reflect the total dependency

(elasticity to changes in probability of other hypotheses) of the hypothesis. The

sensitivity analysis informs the analyst about which system components repre-

sented by hypotheses should be enhanced and which inhibited to steer the system

in some desired direction, interpreted as some desirable change in the probability

of a target hypothesis or a set of target hypotheses.
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2.4 KSIM

Julius Kane has presented an analysis technique called KSIM that is often listed

as a cross-impact technique. The KSIM technique does not operate on hypotheses

having a probability or that would be evaluated to some state; instead it operates

on a set of semi-abstract continuous time-series variables. The values of the

variables have a minimum and a maximum defined by the user (in the calculation

the values of the variables range from 0 to 1 but these values can naturally

be scaled to fit the needs of the analysis). The interpretations of the different

values of the variables are left completely to the analyst. The variables are given

an initial value and a cross-impact matrix describing the interactions between

variables. With this information, the values of the variables can be forecast.

[Kane, 1972].

KSIM could be described as a trend-impact analysis technique, as it doesn’t re-

ally fit the definition of a cross-impact technique formulated in Section 1.1. It is

discussed here for the reason that it is one of the few techniques which consider

the temporal aspect of the analysis of interactions. It must be noted that the

interactions remain unchanged for the entire projection period. The application

could easily be amended to periodically change the cross-impact matrix to better

simulate a less linear system. KSIM is computationally simple and apparently

a flexible technique with wide application area, but the level of abstraction is

very high and the interpretations of the variable values and interactions are very

subjective; the vague, abstract nature of the variables in KSIM makes modeling

systems, interpreting the results of the analysis and drawing clear recommenda-

tions somewhat difficult.

2.5 MICMAC and EXIT

Michel Godet’s MICMAC R© method is used as a part of a larger analytical frame-

work Godet calls “structural analysis”. Structural analysis is used to study sys-

tems consisting of interrelated elements, highlighting the structure of the relation-

ships. Structural analysis permits analysis of the relationships and identification

of the main variables [Godet et al., 1994, 83]. The key variables are identified in

structural analysis by using the MICMAC R© method. MICMAC R© is described

as a classification matrix using cross-multiplication factors [Godet et al., 1991,

26]. The MICMAC R© classification process takes a cross-impact matrix as input.
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This cross-impact matrix can have impact valuations which indicate the strength

and direction of the impact, but it can also just have values 0 or 1, 0 indicating

no impact from variable to another and 1 indicating an impact of some strength.

The sum of the impact values on a row expresses the level of impact a variable

has in the entire system. The sum of the impact values on a column tells the

degree of dependence of a variable. The variables can be ordered by their general

influence or dependency; in MICMAC R© , this ordering is the initial ordering.

The MICMAC R© approach to extracting information about the indirect impacts

is based on squaring the direct impact matrix iteratively. When the cross-impact

matrix describing the direct impacts is squared, the indirect impacts are revealed.

In the new matrix obtained by squaring the original direct impact matrix, the

variables can again be ordered according to the row or column sums like with

the direct impacts. The ordering is likely to be different in the power matrix as

compared to the original. This squaring of the matrix is repeated and the variable

ordering is produced by calculating the row or column sums for each iteration.

As enough iterations have taken place, the ordering becomes stable, and the

iteration can be stopped. This stable ordering, which no longer changes as the

matrix is squared, is the MICMAC R© ordering. The number of required iterations

is dependent on the number of variables as well as the number of interactions in

the cross-impact matrix.

The MICMAC R© method produces an ”a posteriori” importance (or dependency)

ordering for the variables, which is based on the indirect impacts between the

variables; the initial ordering is compared to the a posteriori ordering to high-

light the change in the importance of variables. The analytical output is the

prioritization of driving forces based on influence-dependence criteria, using the

information about the indirect impacts acquired with the MICMAC R© technique.

[Godet et al., 1994, 96–97].

EXIT (Express Cross Impact Technique) is a cross-impact analysis method de-

veloped by the author. The details of the method are described by Panula-Ontto

& Piirainen [2016]. It offers a less costly (in terms of expert participation, time

and other resources) way to analyse indirect interactions in systems as compared

to AXIOM, with reduced analytical possibilities. The valuation phase of EXIT

is faster and in many cases possible to be completed in a single-day workshop.

EXIT processes a cross-impact matrix that describes the direct impacts between

hypotheses. EXIT doesn’t explicitly deal with or calculate probabilities for the
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hypotheses; a priori probabilities are not needed as input data. The impacts are

described as indices that have an interpretation relative to a maximum impact

index value in the model: an impact value equal to the maximum impact value

means a completely determinative direct impact from one hypothesis to another.

The computational process of EXIT calculates the total (direct and indirect)

impacts between all pairs of hypotheses in the model. It starts from the direct

impacts between hypotheses and recursively accounts for the effects of longer

intermediary impact chains, given that they exceed the analyst-defined minimum

impact threshold. This process reveals the role and significance of the system

components for the other components and overall system.

EXIT is directly comparable to the MICMAC R© method in terms of inputs, but

provides more detailed analytical outputs. The improvements of EXIT as com-

pared to MICMAC R© are as follows: a) soft quantification of influence and de-

pendency of hypotheses instead of simple ordering of hypotheses by influence or

dependency, b) detailed information about the relationships of hypothesis pairs

instead of a ranking based on general influence or dependency in the entire sys-

tem, and c) assessment of the total impact of both direct and indirect impacts

instead of providing an alternative ranking based on indirect impacts for the ob-

vious ranking based on direct impacts. As both direct and indirect impacts are

important, the cross-impact analysis technique should be able to look at both

types of impacts alongside each other and under equal terms [Panula-Ontto &

Piirainen, 2016].

2.6 BASICS and JL-algorithm

The BASICS method is described by Honton et al. [1984] (see also Huss & Honton

[1987]). It processes a cross-impact model very similar to AXIOM, consisting of

hypotheses and their possible values, a priori probabilities and a model of direct

impacts expressed as references to probability adjustment functions. The pro-

cess of model evaluation in BASICS method differs from Gordon’s cross-impact

method and Godet’s SMIC method: it doesn’t employ a Monte Carlo process

and doesn’t yield a posteriori probabilities for the hypotheses (which are called

”descriptors” in the BASICS terminology). Instead, it employs a deterministic

process, where the model is evaluated twice for each possible state of each in-

dividual descriptor in the cross-impact model, once assuming that the state in
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question is true and once that the state is false.

Each model evaluation results in all descriptors being assigned a state. The set

of states is interpreted as a scenario. The motivation is to find scenarios that are

”probable and consistent” [Luukkanen, 1994, 238] in the light of the supplied a

priori probabilities and the cross-impact matrix. The sets of descriptor states, or

scenarios, that emerge from multiple different evaluations are interpreted as being

probable and consistent. The output is one or more scenarios that warrant further

study, possibly with other analytical techniques. This process of model evaluation

is not a good fit for studying the modeled system from the perspective of the

effects of interventions. Possibilities of analysis available in Gordon’s method,

SMIC or AXIOM are not available in BASICS-type cross-impact analysis. JL-

algorithm developed by Jyrki Luukkanen proposes certain technical improvements

to the model evaluation procedure of BASICS and could be seen as preferable

over BASICS on the basis of the arguments made by Luukkanen [1994, 239].



3 The AXIOM method

In the AXIOM method the investigated system and its objects are represented as

an AXIOM model, using the components and concepts of what could be called

the AXIOM modeling language. This chapter presents these components and

concepts. It also presents the computational process of its evaluation, deriving

AXIOM iterations and iteration sets, and extracting analytical results. After the

model concepts, modeling primitives and the computational process have been

explicated, Section 3.4 will discuss the process of building the AXIOM model and

related considerations.

3.1 The AXIOM model

Before the computational process of AXIOM can be explained, it is necessary

to define the AXIOM model and its components and concepts. Cross-impact

modeling aims at representing a real-world system with the modeling primitives

available in the modeling approach. AXIOM, like other cross-impact techniques,

deals with hypothesis-like constructs that are used to describe the possible states

of the modeled system. The hypotheses, at the time of model construction,

have a yet-unknown state or value, probabilities of occurrence and a set of direct

impacts that are conditional to the state of the hypotheses and the model. The

modeled system is given a representation, fit for the needs of the analysis at hand,

with the concepts or modeling primitives available. AXIOM provides modeling

primitives that are not available in other cross-impact techniques but, from a

practical point of view, can prove very useful in cross-impact modeling of real

systems and research questions.

AXIOM models are comprised of multiple statements. Statements have two or

more options or possible states. Options, in turn, can have impacts on other

options. Statements also have a property called timestep, which reflects their

temporal position in the modeled system. Other important concepts concerning

the AXIOM cross-impact model are evaluation of statements and the model, con-

figuration meaning a specific combination of states the statements of the model

have, iteration as a set of configurations resulting from consecutive model evalu-

ations, interventions as model representations of actions influencing the system,

and iteration sets as collections of iterations with different sets of interventions.

All of these concepts are explained in detail in this chapter. Figure 1 presents an
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Figure 1 ER model of the AXIOM concepts
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*a) Statement is evaluated to an option in a single configuration

*b) A configuration in an iteration has a single option for each statement in the

model; the a posteriori probability of each option is the rate of occurrence of the

option in configurations in the iteration.

*c) An iteration can have options as active interventions

entity-relationship diagram of the AXIOM model concepts. For details on concep-

tual modeling using the entity-relationship model, see, e.g., Elmasri & Navathe

[2011, 49–74].

3.1.1 Statements

Statements in an AXIOM model correspond to what Gordon [1994] calls events

and what Godet et al. [1991] call hypotheses. However, AXIOM statements are

more flexible: they represent components of the modeled system, and can have
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multiple possible states whereas events or hypotheses in Gordon’s or Godet et al.’s

approaches only have a binary state, being either true or false (or undetermined).

It could be said that statements collect the different states a system component or

aspect can have under one modeling primitive for convenience. Statements should

have a) a unique, identifying label, b) a description detailing what they represent,

c) a set of options (two options normally being the minimum number), d) a

timestep value (timesteps are explained in Subsection 3.1.4) and e) information

whether the statement is to be treated as an intervention (intervention statements

are explained in Subsection 3.1.8).

As noted, statements have a set of possible states that are mutually exclusive, and

that ideally should be exhaustive and in practice near-exhaustive. Exhaustiveness

means here that the states a statement can have in the cross-impact model cover

completely the possible states of the corresponding component of the modeled

system. In practice, this is rarely possible.

In theory, a statement representing a component of a real system can have in-

numerable states. Modeling of any system with any modeling technique requires

framing of the model to cover only some components of the system, and in the case

of AXIOM, framing of the possible states the modeled components are allowed

to have. There is no upper limit to the number of states a statement in AXIOM

model is allowed to have, but the practical considerations of time allotted to the

modeling and cognitive capacity of the experts providing the a priori probability

valuations and the impact valuations set an upper limit for the number of states

the system components can have. Cross-impact models must have a defined con-

textual frame or event horizon. This means that they only cover the pertinent

parts the examined system (placing a limit on the number of statements). It also

means that they leave out many marginal or irrelevant states that the statements

might have (limiting the number of options the statements have).

AXIOM statements could in theory be represented by Gordon’s events or Godet

et al’s hypotheses by sets of events or hypotheses that are set to have a cancelling-

out effect on each other (as they are mutually exclusive). As many hypotheses

in modeled systems have this characteristic of having other hypotheses that they

cancel out, AXIOM statements provide a much more convenient modeling primi-

tive for cross-impact modeling than Gordon’s events or Godet et al’s hypotheses.

Conversely, an AXIOM statement can function as a Gordon-style event or Godet-

style hypothesis when it is set to have two options, true and false.
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Assume an AXIOM model would be built for the purpose of exploring the future of

the geopolitical position and alignment of Finland. Examples of model statements

representing forces and factors relevant for that alignment could be:

1. Geopolitical position of Finland after 2025.

2. Governing political parties in Finland 2019–2023.

3. Economic development in the European Union in period 2017–2023.

4. Role of the United States in international politics in 2020s.

Each statement, in turn, has a number of options, which are discussed in Subsec-

tion 3.1.2. The statements could be refined to be more detailed and accurate, to

make the process of expert valuations of the probabilities and the impacts more

precise and less ambiguous, but this level of detail might be sufficient for AXIOM

statements. For modeling the domain of the future geopolitical alignment of Fin-

land, this set of statements in representing the relevant factors and forces would

most certainly be seen by experts of the domain as insufficient.

3.1.2 Options

Options represent the different possible states a system component modeled as

an AXIOM statement can have. Every option in an AXIOM model has a) one

statement that they fall under, b) identifying label, c) a description about what

they represent, d) an immutable a priori probability, e) a mutable, adjusted

probability valuation, and f ) a (possibly empty) set of impacts directed to other

options in the model.

Normally statements have at least two options. A two-option statement can rep-

resent a hypothesis with the possible states true and false. Naturally, the states of

a two-option statement can also have some other interpretation. Statements can

have more than two options; there is no upper bound for the number of options.

A single-option statement can only be evaluated to have that single option as its

state. The motivation for using this kind of single-option statement in AXIOM

modeling would be to represent some event or development that is thought to be

certain to take place and that the modeler wants to explicitly represent in the

model.

The a priori probability is the initial, expert-sourced probability valuation of an

option. The a priori probability of an option is interpreted as the probability
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of the option to become true, as estimated when no other information about

the system is available; the a priori probability valuation is given in a context

where the states of the other statements are unknown. The initial value of the

mutable probability valuation of the option is equal to the a priori probability.

The mutable probability valuation can change during model evaluation (detailed

in Subsection 3.1.6) as impacts of other options directed to the option are realized.

An option can have impacts associated with it. Impacts are directed to other

options in the model. When a statement is evaluated (see statement evaluation

details in Subsection 3.1.5), and the evaluation results in statement evaluated to

an option, the impacts associated with that particular option take effect.

As each option under a statement has both an immutable a priori probability

and a mutable adjusted probability subject to change as the model is evaluated,

these probabilities form two probability distributions for the statements. As the

options under a statement included in the model are treated as exclusive and

exhaustive, the sum of values of both sets of probabilities must be equal to 1 at

all times.

The AXIOM options are flexible and can model the possibilities of the modeled

system in various ways. It is possible that the different options under a statement

embody a very clear and atomic value, such as a number or percentage, or a single

boolean fact. The other end of the spectrum would be to load the AXIOM options

with an abundance of detail that are seen by the modeler to be associated with

each other closely enough to be bundled together in the AXIOM model. This

approach makes the options akin to mini-scenarios.

The atomic value approach in setting the content of options results in a model

with much more options (and probably more statements). The upside is that the

atomic values are much easier to understand and remember for the experts provid-

ing valuations for the model. The mini-scenario approach can drastically reduce

the number of options and limit the number of statements as well, making the

high-level structure of the model easier to comprehend. Conversely, the downside

will be the difficulty of understanding the content of each option and the danger

of the experts understanding the options in a flawed way. The approaches can be

combined in a single model unproblematically, using some statement options sets

to express atomic values and some to express bundled values. The flexibility of

the AXIOM options as modeling primitives should be used to construct a model

that is cognitively inexpensive to valuate. Careful consideration of the model
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structure and the presentation of the options increase the chances of success of

the model valuation.

Expanding the minimalistic example model consisting only of statements pre-

sented in Subsection 3.1.1 with examples of options, an AXIOM model dealing

with the geopolitical position and alignment of Finland could have the following

options as possible values of its statements:

1. Geopolitical position of Finland after 2025

(a) Member state of the European Union

(b) Member state of the Eurasian Union

(c) A non-aligned position.

2. Governing political parties in Finland 2019–2023

(a) True Finns as the ruling political party

(b) SDP and Left Alliance as the ruling parties

(c) Center Party and Coalition Party as the ruling parties

(d) Rainbow coalition government.

3. Economic development in the European Union in period 2017–2023

(a) Average economic growth close to zero in the EU area

(b) Average growth in the EU area slow (close to 1% GDP growth annu-

ally)

(c) Average growth in the EU area fast (close to 3% GDP growth annu-

ally).

4. Role of United States in international politics in 2020s

(a) The United States polices the whole world

(b) The United States is active in the Pacific region and passive in Europe

(c) The United States observes an isolationist foreign policy.

The descriptions of the options of this example model are rather vague. They

could be refined to be much more detailed and doing so would be very beneficial

from the valuation perspective, to give the experts giving the valuations for the

model the least varied and ambiguous understanding of the meaning of the options
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as possible. These options can, however, serve as examples of AXIOM model

options as their a priori probabilities and impacts on other options could probably

be estimated with some accuracy by domain experts.

3.1.3 Impacts

An AXIOM impact consists of the option the impact belongs to, the option it is di-

rected to (and whose probability the impact changes), and a probability-adjusting

function. Impacts are linked to specific probability adjustment functions, that are

used in determining what the probability of the impacted option will be after the

adjustment. An option in a statement can have zero or more impacts, directed

to options under other statements than the one the impacting option belongs

to. The experts providing the impact valuations express the impacts of options

on other options as names or indices of probability adjustment functions. The

probability adjustment functions will change the probabilities of the impacted

options contextually; probability adjustment functions are described in detail in

Subsection 3.2.1.

Expressing the interactions between model components as impact indices or

names pointing to probability adjustment functions is, for the valuation-providing

experts, cognitively much easier than providing exact conditional probability val-

uations. The contextual nature of the probability adjustment makes it possible

to still calculate probabilities and provide the analytical benefits of explicitely

considering probability in the cross-impact analysis.

This reduced cognitive cost of providing interaction strength valuations makes

it possible, for the expert valuators, to valuate a cross-impact model with a

much bigger number of components. This is essential for the fitness of the cross-

impact method for actual research questions and modeling tasks. The cross-

impact modeling is most valuable in cases where the modeled systems are complex

and the interaction web is extensive, making the possible impact chains in the

model long. In cases like this, the cross-impact analysis can reveal surprising

and unintuitive characteristics of the modeled system. The cross-impact analysis

method should enable the construction of fairly large-scale models, comprised of

numerous components. This can be seen as a very strong selling point for AXIOM

as a cross-impact modeling tool in comparison with the methods operating on

exact conditional probabilities.
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3.1.4 Timestep

Timestep is a property of AXIOM statements, used to represent the temporal

dimension in an AXIOM model. It expresses the time category and evaluation

precedence of the statement: Statements with a lower temporal category are

always evaluated before statements with a higher temporal category. Details

of statement evaluation order are presented in Subsection 3.1.6. If a statement

represents something in the modeled system that is expected to happen only after

some other events or phenomena represented by other statements have occurred

or resolved, it is given a higher temporal category. Timestep values can be years,

if that makes sense for the modeler, but they can also be consecutive integers;

only the numeric ordering is of consequence in the model evaluation.

The possibility of modeling the temporal aspect of events and hypotheses in the

modeled systems with the timestep property is a feature not present in most cross-

impact techniques. This clearly increases the modeling power of the cross-impact

analysis approach. This added modeling power can reasonably be expected to

be very useful as the utilization area of cross-impact models is in most cases

the modeling of the future of systems, where the temporal aspect is of great

importance.

3.1.5 Statement evaluation

Statement evaluation gives a state to an unevaluated statement: after evaluation,

the state of the statement becomes equal to one of its options, according to the

adjusted probability distribution of the options of the statement. All statements

in an AXIOM model are evaluated exactly once during a single model evaluation

(detailed in Subsection 3.1.6).

Each option in an AXIOM model can cause zero or more impacts. When the

statement’s state is determined, the impacts caused by the option that is now

the evaluated state of the statement take effect. The probabilities of the options

that are the targets of these impacts are now adjusted contextually as detailed

in Subsection 3.2.1.

A random real from the interval [0..1] can be used in a simple way to evaluate an

AXIOM statement. The options of a statement have a natural ordering which can

be based on the alphabetical ordering of the labels or identifiers of the options. A
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random number is drawn; if it is smaller than the probability of the first option,

that option is assigned as the state of the statement. If the random number is

equal to or greater than the first probability, the probability of the next option

is added to the probability of the first statement and the same test is performed.

Probabilities of consecutive options are added to the sum until the probability

sum of all the included options is greater than the random number. When this

condition is met, the option whose probability was added last is assigned as the

state of the statement.

3.1.6 Model evaluation

Model evaluation refers to the process of iterating through all the statements of

the model and performing the statement evaluation to them, determining the

state of the statements, resulting in a single configuration. In a simple case where

all the statements in the model belong to the same temporal category (i.e. have

the same timestep value) all statements are placed in a random order (the random

ordering is generated for each model evaluation) and then evaluated in this order.

This random order of evaluation of temporally equal statements is important for

eliminating the effect of input order of the statements.

In a more complex case, the statements fall into different temporal categories. The

statements in each temporal category are randomly ordered within their category

and evaluated. The different time categories are processed in an ascending order:

the statements in temporal categories with a higher timestep value are evaluated

only after the statements in temporal categories with a lower timestep value

have been evaluated. This means that the statements modeled to have their

state determined later cannot have effect on the probability distribution of the

statements modeled to be determined earlier as those statements are guaranteed

to already have been assigned a state.

3.1.7 Configuration

Model evaluation results in a configuration. The information content of a con-

figuration is a set of options, one option for each statement in the model. The

options in the configuration are the options evaluated to be the states of each of

the statement in a single model evaluation. Configuration can be understood as

a scenario for the modeled system. As the model is evaluated multiple times, the
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resulting sets of configurations or iterations can be used for deriving higher-order

information from the cross-impact model. This is described in Subsection 3.1.9.

3.1.8 Intervention statements

In AXIOM model construction, certain statements can be flagged as intervention

statements. These statements and their options represent the policies or actions

of some actor modeled in the system. Most typically this actor will be the entity,

organisation, party or stakeholder undertaking the cross-impact modeling as a

part of their strategic planning. In such a case, the intervention statements

might represent the strategic options this entity has in its disposal.

It is also possible to use the intervention statements to model several actors with

their own strategic courses of action. Cross-impact modeling of the strategies

of several actors involved with the same system could be useful in identifying

a scheme of coordinated actions by the involved actors, that would result in an

outcome in the system that would be desirable for all involved entities; this mode

of using cross-impact technique is hinted at in the review by Matic & Berry,

already mentioned in Section 1.2. Modeling the actions of several actors into

a cross-impact model could naturally also be done to test strategic choices of a

particular actor against the strategic choices of opposing or competing actors.

The statements flagged as intervention statements are not evaluated as normal

statements. They rather have a predetermined state that is assigned when the

model evaluation commences. Even when the state of the intervention state-

ments is already assigned at the start of the model evaluation, the impacts of

the assigned state are not realized immediately at the first step of the model

evaluation. The intervention statements have their timestep property and they

are processed in the normal order of evaluation determined by that timestep (see

model evaluation details in Subsection 3.1.6).

The states of the intervention statements change only between different iterations

(iterations are covered in Subsection 3.1.9). The idea is to run a single iteration

with a specific combination of options as the states of the intervention statements.

The a posteriori probabilities of the options are computed as their frequencies

of occurence in the configurations of an iteration. They reflect the impacts of

the specific combination of policy actions. Policy actions are represented by the

combination of intervention statements’ states in that iteration.
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3.1.9 Iteration

An iteration is a set of configurations; model evaluation results in a configuration

and several consecutive model evaluations produce an iteration. The utility of

iterations is to be able to calculate the frequencies of different model options

from a set of configurations with identical characteristics (same interventions,

same model valuations etc.). The frequency of occurrence of each option in an

iteration is the a posteriori probability of that option. The a posteriori probability

is the probability of the option when the cross-impacts present in the modeled

system have been factored in.

In order for an iteration to be useful for its intended purpose, the configurations

it consists of must meet certain requirements. These are the following:

1. Configurations must be derived from the same model (the model structure

in terms of statements and options must be identical for all configurations).

2. Configurations must have the same valuations (the a priori probabilities

of the options, the impact relationships and the probability adjustment

functions pointed by the impacts must be identical).

3. Configurations must have the same options as active interventions (all the

statements flagged as interventions must have the same predefined state).

The purpose of these requirements is to ensure that the information extracted

from an iteration is meaningful; if the iterations would comprise of configurations

derived from models that have different structure and valuations, the a posteriori

probabilities would not make sense. If the active interventions would be different

in different configurations of the same iteration, it would be impossible to appraise

the effects a certain combination of interventions has as the results would reflect

the outcomes of different intervention combinations.

The number of configurations in an iteration is not defined by the AXIOM

method. The more configurations iterations have, the less the randomness of the

Monte Carlo process effects the option frequencies. That is why a high number

of configurations is recommended. For iterations that will be used for extracting

final results to be analysed, the number of configurations should be at least 106.

As the number of statements and options in an AXIOM model grows, a greater

number of configurations in an iteration to eliminate the random component in

the option frequencies is required.
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In addition to the rudimentary information of the a posteriori probabilities, the

iterations can be used to examine the occurrence of options in more refined ways.

These are discussed further in Section 3.5.

3.1.10 Iteration set

Iteration set is simply a set of iterations. The function of iteration sets is to

enable comparisons between different model setups. The different model setups

can mean inclusion and exclusion of different statements and options, different

a priori probability or impact valuations, and using a different set of options as

the intervention combination. A key mechanism offered by the AXIOM software

implementation (see Section 5.1) is the automatic creation of an iteration set con-

taining an iteration for each intervention option combination derivable from the

flagged intervention statements. This facility makes it straighforward to inves-

tigate how the policy actions modeled by the intervention statements and their

options affect the a posteriori probabilities of model options.

Beside comparing the effect of different intervention option sets, the analyst might

be interested in examining the effect of different a priori probability valuations or

impact valuations. Computing iterations with different valuations can be used,

say, for sensitivity analysis. In a case where the model structure is changed

by eliminating or adding options or statements, the comparisons of a posteriori

probabilities of options, probabilities of specific configurations or occurrence fre-

quencies of smaller option sets can be done only for the options present in both

model setups from which the compared iterations have been obtained.

3.2 The AXIOM computational process

3.2.1 Probability adjustment and probability adjustment functions

As explained in Subsections 3.1.3 and 3.1.5, evaluation of statements results in

statements being assigned a state, which is one of the options of the statement.

The option might have impacts directed to other options in the model assigned to

it, and those impacts are realized when the option has been assigned as the state

of the evaluated statement. The impacts change the probabilities of the options

they are directed to, according to the probability-adjusting function the impacts

point to.
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Figure 2 Examples of probability adjustment functions.
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The probability adjustment functions change the probability of the targeted op-

tions in a contextual way. This normally means that, for instance, an option

that already has a high probability will have its probability increased less (rela-

tive to its current adjusted probability) than a statement with low probability.

This, however, completely depends on the used probability adjustment functions.

Figure 2 shows the graphs of four probability adjustment functions.

The probability adjustment functions used by AXIOM models can vary, but they

must have a domain of [0, 1] as well as a codomain of [0, 1]. In addition to this,

they should adjust probabilities in a way that is easy to understand and coherent

from the perspective of the model valuators. For this purpose, it is probably a

useful feature of a probability adjustment function to be symmetric about the

line y = −x + 1. The probability adjustment functions in Figure 2 have this

property.

When the adjusted probability of an option of an AXIOM statement is changed

according to the used probability-adjusting function, the probabilities of the other

options under the impacted statement must be adjusted too. We can call the
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probability adjustment of the option that is the target of the impact primary

probability adjustment and the probability adjustment of all the other options

under the impacted statement secondary probability adjustment. The secondary

probability adjustment is necessary because the sum of the probabilities of the

options must always be equal to 1. The adjusted probabilities of all the other

options of the impacted statement are calculated as per Algorithm 3.

The basic idea is that the probability of the impacted option is changed according

to the probability adjustment function pointed by the impact, and the probabil-

ities of the other options change so that their summed probability is equal to

the complement of the new adjusted probability of the impacted option and the

probability share each of these other options gets out of that summed probability

is equal to their share of their summed probability before the probability adjust-

ment. When the other options under the same statement as the impacted option

is have their probabilities adjusted in this way, the total sum of the probabilities

of all the statement’s options remains equal to 1.

3.2.2 Computing an AXIOM configurarion, iteration and iteration set

This subsection presents the pseudocode detailing the computational procedures

of evaluating an AXIOM model and computing iterations and iteration sets. A

step-by-step computation example is presented in Section 3.3.

Algorithm 1 AXIOM model evaluation

1: function evaluate model(AXIOM Model m): Configuration c

2: for all unique timestep values t in m from lowest to highest t do

3: ss← statements in m that have timestep t

4: shuffle(ss) . Place statements in random order

5: for all Statement s in ss do

6: evaluate statement(s)

7: add s.state to c

8: return c

The model evaluation (Algorithm 1) results in a configuration. The statements

are divided into temporal categories on the basis of their timestep values. The

categories are processed in order from the lowest to the highest timestep value.

The statements within each category are evaluated in random order. After eval-
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uation, one of the options of the evaluated statements becomes its state, and this

option is added to the configuration, which is a set of options.

Algorithm 2 AXIOM statement evaluation

1: procedure evaluate statement(Statement s)

2: if s is an intervention statement then

3: s.state← s.model.activeIntervention(s)

4: else

5: r ← random real from the interval [0,1]

6: sum← 0

7: for all Option o in s.options do

8: sum← sum+ o.adjustedProbability

9: if r ≤ sum then

10: s.state← o

11: is← shuffle(s.state.impacts)

12: for all Impact i in is do

13: execute impact(i)

The statement evaluation procedure (Algorithm 2) a) assigns a state for the

statement, and b) for each impact the assigned state has, calls the procedure to

effectuate the impact. The intervention statements have a predefined state in the

model being evaluated, so they are simply assigned that predefined state; other

statements are evaluated to one of their possible options according to the adjusted

probability distribution of the statement’s options. Impacts are placed in random

order (shuffled) before being executed; this is to eliminate the effect the impact

order might have on model evaluation results over the course of multiple model

evaluations.

The procedure of impact execution is presented in Algorithm 3. The probability

of the option targeted by the impact is adjusted according to the probability

adjustment function pointed by the impact. The probabilities of the other options

under the same statement as the targeted option have their probabilities adjusted

as well, to ensure the sum of the probabilities of the option set remains equal to 1.

The complement probability of the new adjusted probability of the target option

is divided to the other options so that each option’s share of the new complement

probability remains equal to their share of the old complement probability.

The computation of an iteration (Algorithm 4) simply consists of performing the
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Algorithm 3 AXIOM impact execution

1: procedure execute impact(Impact i)

2: Pnew ← i.adjustmentFunction(i.target.adjustedProbability)

3: Pcomplement ← 1− pnew
4: for all Option o in i.target.statement do

5: if o is i.target then

6: o.adjustedProbability ← Pnew

7: else

8: os← i.target.statement.options where option is not i.target

9: share← o.adjustedProbability
sum of adjusted probabilities of Options in os

10: o.adjustedProbability ← Pcomplement × share

Algorithm 4 AXIOM iteration computation

1: function compute iteration(Model m, iteration count) : Iteration

2: for 1 to iteration count do

3: Configuration c← evaluate model(m)

4: add c to Iteration i

5: return i

model evaluation multiple times and saving the resulting configurations to the

iteration. The model structure, valuation and its active interventions remain the

same for each model evaluation during the computation of an iteration. This is

to ensure that the calculation of a posteriori probabilities for the options as the

occurrence frequency of each option in the configurations of the iteration remains

a meaningful operation.

Algorithm 5 AXIOM iteration set computation

1: function compute iteration set(Model m, iterationCount):

IterationSet

2: repeat

3: add compute iteration(m, iterationCount)

4: m.nextInterventionCombination

5: until all possible intervention combinations of m have been processed

One possible computation procedure for creating an iteration set is expounded

in Algorithm 5. This algorithm iterates through all the possible intervention
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combinations, resulting in an iteration set in which each iteration and the a

posteriori probabilities derivable from that iteration reflect the effects of that

specific combination of interventions on the modeled system.

The iteration set could be created also by doing some other changes in the model

instead of going through all the option combinations of statements flagged as in-

terventions. Those changes could concern the probability and impact valuations,

impact structure and even introducing new options or statements or removing

them; the study of the effects of changes in the system could be also done in

this way. The approach of studying the system with the help of intervention

statements can be seen as a modeling convenience in AXIOM.

3.3 Example of model evaluation

This section details a single AXIOM model evaluation with example data re-

sulting in a single configuration. The AXIOM model used in the example uses

five probability adjustment functions to express the impacts between the options

of the model. These functions have names +2, +1, 0, −1 and −2. Function

+2 has the greatest probability-increasing effect; function −2 has the greatest

probability-decreasing effect. Function 0 is used for expressing no impact between

the options. Figure 3 displays the graphs of the probability-adjusting functions.

The following equations

Padj(+2)(P ) = Padj(P, 1.1003) (1a)

Padj(+1)(P ) = Padj(P, 2.0778) (1b)

Padj(0)(P ) = P (1c)

Padj(−1)(P ) = 1− Padj(1− P, 2.0778) (1d)

Padj(−2)(P ) = 1− Padj(1− P, 1.1003) (1e)
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Figure 3 Probability adjusting functions of the example model evaluation.
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define the five probability-adjusting functions from +2 to −2 used in the model

of this example. Equation 1a (respectively, equations 1b, 1c, 1d, 1e ) defines the

function with name ”+2” (respectively, ”+1”, ”0”, ”−1”, ”−2” ).

Table 2 presents the statements of the example model. Statements A, B and

C are in temporal category 1, and statements D and E are in temporal cate-

gory 2. This means that statements A, B and C will be always evaluated and

have their impacts in the model before D and E are evaluated. Statement C is

flagged as an intervention statement. As the states of intervention statements

are predetermined for the duration of a single model evaluation which results in

a configuration, we assume that for this particular model evaluation, statement

C has the predetermined state C1, meaning its first option.

Table 2: Details of statements of example model

Statement name Timestep Intervention? Option count

A 1 No 2

B 1 No 4

C 1 Yes 2

D 2 No 3

E 2 No 2

Table 3 presents the cross-impact matrix of the AXIOM model from which a

single configuration is derived in this example. The impact (expressed as the

name of an probability-adjusting function) of each option on other options can

be read from the rows of the matrix. The impact of statement A’s option 1 on

statement C’s option 2 is the value (2) in the cell on row 1, column 8; the impact

of statement B’s option 4 on statement E’s option 1 is the value (0) in the cell

on row 6, column 12.

The adjusted probabilities of all options in the example model in different stages

of the model evaluation are presented in Table 4. The second row of the table

shows which impact has been processed and the probability values below what

are the adjusted probabilities after processing that impact. For example, impact

A1:C1(−2) refers to impact of option A1 on option C1, where the probability

adjustment is made according to probability adjustment function −2. The second

column of the table shows the a priori probabilities of the options; the last column
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A1 A2 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2

A1 ∅ ∅ 0 0 0 0 -2 2 0 0 0 0 0

A2 ∅ ∅ 1 1 0 0 0 0 0 0 0 0 0

B1 0 0 ∅ ∅ ∅ ∅ 0 0 0 -1 0 0 0

B2 0 1 ∅ ∅ ∅ ∅ 0 0 0 0 1 2 -2

B3 0 0 ∅ ∅ ∅ ∅ 2 0 0 0 0 1 0

B4 2 1 ∅ ∅ ∅ ∅ 0 -1 1 0 0 0 0

C1 0 0 0 0 1 0 ∅ ∅ 0 0 -2 1 0

C2 0 1 -1 2 0 0 ∅ ∅ 1 0 0 0 0

D1 0 0 0 -1 0 0 0 0 ∅ ∅ ∅ 0 1

D2 0 0 -1 0 2 0 0 0 ∅ ∅ ∅ 0 0

D3 2 0 0 0 0 0 0 0 ∅ ∅ ∅ 1 1

E1 -2 0 0 0 0 1 0 0 0 -1 0 ∅ ∅

E2 2 0 2 -2 0 1 0 0 0 -2 0 ∅ ∅

Table 3: Cross-impact matrix describing the direct impacts between model op-

tions.
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shows the result of the computation, the configuration, where each statement has

a state and each option a truth value (the option with the truth value true being

the evaluated state of its statement).

Evaluation of A Evaluation of C Evaluation of B Evaluation of E Evaluation of D

apriori A1:C1(-2) A1:C2(+2) C1:B3(+1) C1:D3(-2) B2:D3(+1) B2:E2(-2) B2:E1(+2) E1:D2(-1) Configuration

A1 0.559 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

A2 0.441 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

B1 0.297 0.297 0.297 0.296 0.296 FALSE FALSE FALSE FALSE FALSE

B2 0.328 0.328 0.328 0.327 0.327 TRUE TRUE TRUE TRUE TRUE

B3 0.003 0.003 0.003 0.007 0.007 FALSE FALSE FALSE FALSE FALSE

B4 0.372 0.372 0.372 0.371 0.371 FALSE FALSE FALSE FALSE FALSE

C1 0.727 0.366 0.097 TRUE TRUE TRUE TRUE TRUE TRUE TRUE

C2 0.273 0.634 0.903 FALSE FALSE FALSE FALSE FALSE FALSE FALSE

D1 0.114 0.114 0.114 0.114 0.336 0.220 0.220 0.220 0.233 FALSE

D2 0.053 0.053 0.053 0.053 0.157 0.103 0.103 0.103 0.052 TRUE

D3 0.833 0.833 0.833 0.833 0.507 0.676 0.676 0.676 0.715 FALSE

E1 0.244 0.244 0.244 0.244 0.244 0.244 0.600 0.886 TRUE TRUE

E2 0.756 0.756 0.756 0.756 0.756 0.756 0.400 0.114 FALSE FALSE

Table 4: The adjusted probabilities of options in the course of model evaluation

The evaluation of the example model starts with evaluating statements A, B,

and C as they are in the lowest temporal category (their timestep value is 1).

Statements D and E will be evaluated after statements A, B, and C have been

assigned states. Statements with timestep 1 are placed in random order among

themselves: assume this random ordering is A, C, B: the model evaluation starts

with evaluation of statement A.

Option A1 has the a priori probability 0.559; option A2 has the a priori proba-

bility 0.441. As this is the first statement evaluation, no probability adjustments

resulting from impacts have yet taken place and the mutable adjusted probabili-

ties are equal to the a priori probabilities. A random real is used in determining

the state of statement A. The use of randomness in statement evaluation is ex-

plained in Subsection 3.1.5. Assuming the random number is 0.486, statement A

is evaluated to state A1.

The impacts of option A1 are now realized. A1 has two impacts: impact on

option C1 by probability adjustment function −2 and impact on option C2 by

probability adjustment function +2. At this point it must be noted that since

statement C is flagged as an intervention statement, it already has a predefined

state (in this example, that state is C1). Calculating the probability changes

for options C1 and C2 is not necessary, as they have no effect on the resulting

configuration; statement C will, upon its evaluation, be assigned its predefined

state C1. The probability changes for options C1 and C2 are, however, calculated

to illustrate the computation process. As option A1 has more than one impact,
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its impacts must be processed in random order. This is done to eliminate the

effect that the input ordering of impacts might have on the results; as the impacts

are processed in random order, the influence of the ordering of the impacts will

become insignificant over the course of multiple model evaluations. We assume

that the random ordering for impacts is C2, C1.

The probability of C2 is 0.273; after probability adjustment with function +2

the adjusted probability of C2 becomes 0.634. To preserve a valid probability

distribution for the option set of statement C, the probability of C1 needs to be

adjusted as well. The adjustment of the complementary options or the secondary

adjustment, i.e., the other options of the statement than the one the impact being

processed is directed to, is presented in Algorithm 3.

The adjusted probability of C1 is now, as an indirect result of the probability ad-

justment of C2, 0.366; after probability adjustment with function −2 the adjusted

probability of C1 becomes 0.097.

Statement C is the next statement to be evaluated. As C is flagged as an in-

tervention statement, it is not evaluated according to the adjusted probability

values of this point in the model evaluation, but it has a predefined state, C1. C1

has impact +1 on option B3 and impact −2 on D3. Let the random ordering of

impacts be B3, D3. B3 has probability 0.003; it is adjusted with function +1 to

0.007. The probabilities of B1, B2 and B4 are adjusted according to Algorithm

3 to 0.296, 0.327 and 0.371. D3 has the probability of 0.833; it is adjusted with

function −2 to 0.507. The probabilities of D1 and D2 are adjusted to 0.336 and

0.157.

Statement B is the final statement in the first temporal category to be evaluated.

Let the random number used in statement evaluation be 0.346; statement B is

evaluated to B2. B2 has four impacts: A2(+1), D3(+1), E1(+2), E2(−2). Let

the random ordering for the impacts be D3, A2, E2, E1. D3 has the probability

of 0.507; it is adjusted with function +1 to 0.676. Probabilities of D1 and D2

are adjusted to 0.220 and 0.103, respectively. Statement A has already been

evaluated and assigned a state, so the impact of B2 on A2 can be disregarded.

E2 has the probability of 0.756 which is adjusted by −2 to 0.400. The probability

of E1 is (as a secondary adjustment) adjusted to 0.600. Finally, the probability

of E1 is (as a primary adjustment) adjusted by +2 to 0.886, and the probability

of E2 (as a secondary adjustment) to 0.114.

As the statements of the first temporal category have now been evaluated, we
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continue with evaluating the second temporal category. Suppose the random

ordering of the statements with timestap 2 is E, D. Statement E is evaluated

first. Let the random number for this statement evaluation be 0.074; statement

E is evaluated to option E1. Option E1 has three impacts: on A1 by−2, on B4

by +1, and on D2 by −1. Let the random ordering of the impacts be D2, B4, A1.

D2 has the probability of 0.103 which is adjusted by −1 to 0.052. Probabilities

of D1 and D3 are secondarily adjusted to 0.233 and 0.715. Statements B and A

have already been evaluated, so it is not necessary to compute the probability

changes resulting from impacts to them.

Finally, statement D is evaluated. Suppose the random number used in evaluation

of statement D is 0.276; statement D is evaluated to D2. D2 has two impacts, on

options B1 and B3, but since D is the last statement in this model evaluation, all

the other statements already have been evaluated and been assigned a state.

The model evaluation has resulted in all of the model statements being evaluated

to one of their options: statement A to A1, statement B to B2, statement C to

C1, statement D to D2 and statement E to E1. This configuration resulting from

model evaluation can be interpreted as a scenario.

3.4 Considerations for AXIOM modeling

Section 3.1 and subsection 3.2.2 have presented the concepts of AXIOM and the

details of the computational process, and Section 3.3 has presented the steps of

an AXIOM model evaluation with example data. While the data transformation

process of the input data may be formal and exact, it is important, from the point

of view of utilization of the analytical results, to understand the approximate

nature of the input data (which causes the output data to have an approximate

nature as well), and what can be done to improve the quality of it.

3.4.1 Data source

Experts are the source of data in cross-impact analysis. Experts of the fields

relevant to the modeled domain or system should preferably be used in all stages

of the modeling process preceding the actual computation, and equally preferably

in the analysis of the results. Experts should be involved in a) building a con-

ceptual model of the system as a basis for further modeling steps, b) formulating
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a representation of the system as AXIOM statements, c) formulating the options

for the statements and consideration of the inclusion and exclusion of options,

d) probability valuations, e) desing of the impact network, and f ) impact val-

uations. The level of expert involvement in each stage is largely a question of

resources and the level of commitment of the involved experts. The best prac-

tices of organizing the expert work in cross-impact modeling are not in the main

focus of this thesis, but the most important and considerations are addressed in

this section. Discussion related to the use of experts in cross-impact analysis in

real research cases can be found e.g. in Alizadeh et al. [2016]; Blanning & Reinig

[1999].

3.4.2 Accuracy of expert valuations

Gordon’s original cross-impact method and Godet et al’s method place great em-

phasis on extracting a consistent cross-impact matrix of conditional probablities

from the used expert group. The experts are usually unable to produce a mathe-

matically consistent matrix of cross-impacts in a single iteration. Software tools

exist to assist the expert group providing valuations in adjusting the probabilities

so that the changes to the initial conditional probability valuations can be made

more easily and a mathematically consistent valuation can be found. It is possible

that in the course of this iterative valuation, the original idea and higher abstrac-

tion level model of the experts about the interactions between the different model

components becomes obfuscated; in the worst case the process might turn into

an abstract number-placement puzzle whose ultimate outcome no longer reflects

the experts’ understanding of the interactions within the modeled system.

The perspective on the expert valuations taken in AXIOM is different from the

one taken in Gordon’s cross-impact analysis and Godet et al’s SMIC. The ba-

sic assumption in AXIOM approach concerning the valuations is that the expert

valuators are able to estimate the a priori probabilities, map out the model inter-

actions, and valuate their strength on an approximate and rough accuracy, not

with a two- or three-decimal precision. The value of the analysis is not in the

ability to calculate exact a posteriori probabilities but to be able to observe the

direction of change in the target statements and options. The analytical focus

should, in the opinion of the author, be more on how the impact network func-

tions and how interventions and actions translate to the system over the impact

network and less on the exact individual a posteriori probabilities. The effects of
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the system’s impact network is the area where a cross-impact computation tool

provides the most added value as these effects are hard to evaluate intuitively,

without a systematic computation process.

3.4.3 Selection of experts

As the experts are the sole data source, their competence and ability to contribute

to model building and valuation are of utmost importance. Individual experts

should have high competence in one or more aspects of the modeling and valuation

effort. They preferably should also feel some ownership towards the project as

the cost of the model building and valuation in time and effort is relatively high.

As the modeled systems are often big and consist of complex subsystems, the

cross-impact modeling effort requires expertise in various fields. It would be

unrealistic to expect a single expert to possess all the necessary expertise, as it

would to expect that the combined knowledge of a group of experts of a single

discipline would cover all the information requirements of the modeling. This is

why ideally the model building and valuation should use panels of experts with the

best possible coverage of expertise: The experts should jointly have the relevant

competences and there should be more than one expert in the group with high

competence for each relevant field of expertise. Some authors (see e.g. [Godet et

al., 1991, 49]) recommend using more than 100 experts for valuation, although it

must be noted that the case for which this recommendation is made is a model

of only a handful (6–10) of hypotheses to be valuated. If there is only one expert

in the expert group with expertise on a specific issue relevant to the modeling,

it is possible that the expert in question might have some marginal views that

bias the valuations. It is beneficial to have some triangulation of expert views.

The selection of statements and options and the valuations should take place

after discussion in the expert group. Facilitation of this type of group work is

challenging and a very important success factor to the model design phase and

the whole cross-impact modeling project.

3.4.4 Extracting the AXIOM model from expert valuations

The expert group work might be organized so that it leads to valuations that

can be directly used as model input. This would be the case if the expert group

is able to come to consensus about all choices of the model design. The group
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might agree right away or reach consensus after argumentation and discussion.

If a consensus is not reached, the group can take a vote to resolve which design

choices or valuations should be used in the AXIOM model; the design choices

used in the model can be in line with the most popular expert view or in case of

valuations valuated by some measure of central tendency. Another way of making

design choices in case of divergent expert views can be selecting a particular line

of reasoning that some fraction of the experts might have, and building the model

on that basis. In this case, a choice is made between several underlying conceptual

or theoretical models.

The valuation part of the AXIOM model building can also be based on expert

survey. A simple and fairly logical strategy of dealing with divergent valuations

in a case where the inputs are collected by means of a survey can be averaging the

valuations. If, for instance, the impact valuations have different impact directions

(some experts having evaluated the effect of a hypothesis A on hypothesis B

as probability-decreasing and others probability-increasing), the valuations will

more or less cancel each other out and the disputed interaction will not have a

lot of impact in the model. Another strategy would be to identify the valuations

where the variability is high and bring those parts of the model to further scrutiny

by the expert group in hope of finding a consensus on the disputed issues.

3.4.5 Contextual frame, time horizon and event horizon

It is very important that the experts used in model design and valuation un-

derstand the aims and the focus of the cross-impact modeling exercise and the

information content of the statements and options clearly and as similarly as pos-

sible. Defining a clear contextual frame, a time horizon and event horizon for the

modeling effort will help in the group work of the model design. A contextual

frame explains on a general level what is the aim and focus of the model, and

presents the information that is common and shared for all model statements and

options. Explicating the contextual frame of the modeling can cut the informa-

tion content of the statements and options, reducing the cognitive cost involved in

model valuation: the common information of the model doesn’t need to be loaded

to the statements and options. Time horizon explains the time frame in which

the model hypotheses are resolved. The valuators need to understand the time

horizon precisely and in the same way as it can change the probability valuations

greatly: if the time horizon is seen as near-infinite or e.g hundreds of years long,



43

a hypothesis with very low probability in a time frame of 10 years could easily be

thought to become very probable to occur at some point of that very long time

frame. AXIOM models can have several temporal categories for statements; the

interpretations of each category needs to be clearly defined for the valuators to

have an unambiguous understanding of the valuated items. Event horizon draws

boundaries on which kind of possibilities are considered in the modeling effort.

In the contextual frame of a cross-impact model, some possible but unlikely or

marginal developments can be seen as unimportant for the goals of the planning

and decision-making that cross-impact modeling supports: in this case, they fall

outside the event horizon of the modeling. Unlikely events or changes that would

completely transform the studied system or the situation and goals of the actors

in it should probably be placed outside the event horizon especially if there is no

way to prepare to them. Event horizon is useful in the model design phase, in

making judgements about which hypotheses and options are included and which

excluded.

3.4.6 Nature of a priori probability

The nature of a priori probabilities of hypotheses in cross-impact analysis can be

understood in two different ways. The first way is that the a priori probability of

a hypothesis is the probability of the hypothesis occurring in isolation, i.e. when

all other hypotheses have not occurred. The second way is that the a priori prob-

ability is the probability of the hypothesis when no information about the state of

other hypotheses is available. The different interpretations of a priori probability

are also discussed by Gordon [1994, 4]: he sees that the second interpretation of

the a priori probability leads to using the analysis for checking the coherence of

expert valuations of the initial and conditional probabilities.

The first way of understanding the a priori probability, in a cross-impact model

consisting of n hypotheses, requires that the probability valuator considers the

states of n hypotheses simultaneously while providing the probability valuation.

In effect, the valuator gives a probability of an entire scenario. This might be

feasible in a case where the number of hypotheses is low. Whether the absolute

maximum number of hypotheses for a human evaluator in this type of probability

valuation is thought to be 5 or 20 or even 35, it presents a serious limitation to

the modeling power and possibilities of cross-impact modeling. The upside of

this interpretation of the a priori probability is that it makes, in theory, the
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probability valuations exact (as the valuated item is known exactly). As Gordon

[1994, 10] states, with this interpretation of a priori probabilities (and assuming a

high accuracy of the model valuations) the cross-impact model could in theory be

used for fairly precise sensitivity analysis. Understanding, however, the difficulty

of providing probability valuations of future events of changing systems (and the

impossibility of observing how exact those valuations were even after the fact),

the use of cross-impact analysis for precise sensitivity analysis seems like a pipe

dream.

The second way of understanding the a priori probability is clearly not as exact

as the impacts of other hypotheses are in some way factored into the a priori

probability valuation. It is, however, the more realistic interpretation considering

that the valuators are humans. In AXIOM, the second way of interpreting a

priori probability is natural, since AXIOM statements can have multiple possible

options and since one option, by definition, has to have value true. This char-

acteristic makes the first interpretation of a priori probabilities an impossibility.

The second interpretation is also vastly easier for the valuators and should be

preferred on that basis alone.

3.5 Interpretation of results

The analytical outputs of the AXIOM computational process are derived from

the a posteriori probabilities of the model options and the difference between the

a priori and a posteriori probabilities. The a posteriori probabilities can be seen

as interesting as such: Their values reflect the effects second- and higher-order

interactions that exist in the cross-impact model. These changes in the option

probabilities are the detail of interest in comparing different AXIOM iteration

sets with each other. The iteration sets normally differ in the combination of

interventions used in their evaluation. Iteration sets can also differ in some other

way, such as model valuations or even the structure of the evaluated model; in

such a case, iteration sets can only be compared on the intersect of their option

sets. The analyst can be interested in certain ”target” options whose probability

changes are of greatest interest for the whole analysis: The desired outcome for

the analysis could be the identification of the intervention set that will maximise

the probability of some desirable option, or that will minimise the probability of

some undesirable option.
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Other analytical outputs that can be extracted from the AXIOM iterations in-

clude at least the following:

1. Frequency of specific configurations

• Probability of a scenario

• Comparison of probabilities of specific scenarios

2. Frequency of co-occurrence of options (with frequent itemset mining tech-

nique)

• Which options typically occur together

3. Frequence of option subsets

• Probability of a ”partial scenario”

• Comparison of probabilities of partial scenarios.

It is worthwhile to consider the exact nature of the a posteriori probabilities in

light of the discussion of the nature of a priori probabilities (see Subsection 3.4.6).

It was noted that the a priori probabilities are already cross-impacted to some

extent as they, in AXIOM, cannot be valuated in isolation even in theory. How

can the difference between a priori and a posteriori probabilities be interpreted

in AXIOM?

As Gordon [1994, 9] points out, the difference of a priori and a posteriori prob-

abilities in cross-impact analysis will partially result from inconsistencies of the

expert valuations of a priori probabilities. Another component of the difference

will reflect the effect of higher-order interactions between the AXIOM options.

As the model grows beyond the trivial size of five to ten statements, which is

the maximum size recommended for a cross-impact model using the technique

of defining conditional probabilities as per Gordon’s and Godet’s methods (see

Sections 2.2 and 2.3 for details) the higher-order interactions between options

typically become longer and more significant; as the cross-impact grows in size,

the effect of higher-order interactions probably outweigh the valuation inconsis-

tencies.

An open question about using the a posteriori probabilities of options under dif-

ferent intervention combinations is which probabilities to use as the reference

point: the a priori probabilities or the a posteriori probabilities of the AXIOM

iteration without any active interventions. The ”normal” way established in the
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well-known cross-impact methods is to compare the a posteriori probabilities of

model runs representing interventions to the a priori probabilities. In AXIOM

(and possibly in other cross-impact techniques as well) it might be equally well

or better reasoned that the a posteriori probabilities of options under a specific

intervention combination are compared, instead of the a priori probabilities, to

the a posteriori probabilities of options in an iteration without any active inter-

ventions. This iteration could be interpreted to have the valuation inconsistencies

resolved and account for the higher-order interactions unlike the a priori probabil-

ities. Comparison of option probabilities of iterations under specific interventions

to the no-intervention combination would seem to reveal the effects of the in-

terventions more clearly. The author will not conclusively take position on this

question at this point.



4 How AXIOM improves on the other cross-

impact techniques

As the AXIOM method has been outlined in Chapter 3, many of the choices made

in development of the method have already been justified through comparison

with other existing cross-impact methods. As stated in the introduction, AXIOM

combines the strengths of several documented cross-impact techniques and for

this reason the individual advantageous features are not necessarily superior to

all documented techniques. The combination of the features makes AXIOM a

recommendable method for use in cross-impact modeling. The advantages of

AXIOM over other cross-impact techniques are as follows:

1. Model valuation in AXIOM is relatively easy. The impact valuation

phase in AXIOM is decisively easier when compared to cross-impact meth-

ods which represent interactions as conditional probabilities. The cognitive

cost of providing a large number of conditional probabilities is very high.

The conditional probability valuations are needed for all ordered pairs of

hypotheses in the model, even when the model valuators would conclude

that there is no direct interaction between the hypotheses. For example,

the conditional probability valuation P (A|B) = P (A) might violate the

probability axioms, so no ”default” conditional probability value exists: all

interactions have to be valuated. The valuations have to comply with the

probability axioms, and as the number of hypotheses grows, simply find-

ing a compliant valuation solution might become difficult (at least without

a help of a computer program specifically designed for this purpose). In

this difficult valuation process, the qualitative-nature understanding of the

experts about the interactions in the modeled system might get distorted

in the attempt to find an acceptable valuation solution, changing the focus

from modeling the system in the best way possible on the basis of expert

knowledge into a sudoku-like number-placement exercise.

The interpretation of the a priori probabilities in AXIOM also eases valua-

tion. The a priori probabilities are valuated under the assumption that the

state of the rest of the system apart from the valuated option is unknown

(see Subsection 3.4.6). This interpretation as such is not an advantage of

AXIOM over other methods as it can be adopted in those other methods

as well, but it reflects the realistic overall attitude to the model valuation
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process assumed in the AXIOM approach: valuations are provided by hu-

man valuators and are approximate and rough, and should not be treated

as exact and completely reliable measurements.

2. AXIOM is suited for cross-impact models with a large number of

components. Cross-impact techniques which represent the interactions as

conditional probabilities are not well suited for constructing system mod-

els with a large number of components. The cognitively expensive valua-

tion phase heavily limits the practical number of components in the model.

Godet et al. [1994, 149] actually recommend that the number of hypotheses

should not exceed 6.

Modeling systems with such a small number of hypotheses is very limiting.

In a system model with a handful of components represented by hypothe-

ses, if those hypotheses are detailed and concrete, many relevant factors and

driving forces are left outside the cross-impact model. Conversely, if the hy-

potheses are loaded with a lot of content so that each hypothesis represents

many factors and driving forces simultaneously, the abstraction level of the

hypotheses gets very high. This high abstraction level will make the model

valuation difficult and ambiguous. The interpretation of results is likely to

suffer from the high abstraction level and drawing concrete policy recom-

mendations on the basis of the model might turn out difficult. Either way,

practical and useful cross-impact modeling is very difficult if the nature of

the cross-impact technique per se limits the number of model components.

As the object of interest in cross-impact modeling is the impact network

of the modeled system, the limitations on the number of components in

cross-impact models also limit the interestingness of the analysis. In a

system model of few components, the impact chains cannot be very long. If

the ability to investigate higher-order interactions and long impact chains

is an important motivation to do cross-impact analysis, the cross-impact

modeling should definitely support this aspiration.

3. AXIOM primitives have comparatively high modeling power. It is

easy to make the case that the multi-valued AXIOM statements are a better

solution than separate boolean hypotheses for constructing useful and rele-

vant cross-impact models. Boolean hypotheses can, to some degree, be used

to model mutually exclusive system states akin to AXIOM options, but they

are much less convenient and error-prone in modeling as they require the
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exclusiveness to be explicitly defined through conditional probabilities. Ad-

ditionally, boolean hypotheses cannot model the exhaustiveness of AXIOM

options: there is no mechanism to ensure that the probability distribution

of a supposedly exclusive and exhaustive set of boolean hypotheses will

remain valid during the model evaluation.

Incorporating temporal aspect to cross-impact modeling is a feature of

AXIOM that greatly increases its power to model real systems compared

to methods that do not offer a mechanism to model time. Providing a way

to model time makes it easier to construct models from the perspective of

modeling interventions: today’s decisions can be modeled to take their ef-

fect on the future states of the system in a very convenient and natural way

instead of providing means to only model a system with a single temporal

space where events happen without any temporal structure.

4. AXIOM facilitates extracting practical and useful analytical out-

puts. In Gordon’s method and Godet’s SMIC method, especially the pro-

cess of studying the effect of interventions and policy actions on the modeled

system is, compared to AXIOM, cumbersome (although this might be more

dependent on the implementation than the method). Modeling interven-

tions requires changes to the cross-impact model and possibly redefinition

of the conditional probabilities. The AXIOM method offers tools to design

the simulation of interventions cleanly in the model building phase, and the

focus of the analytical outputs is from the start in the effects of the different

intervention sets, which makes it easy to extract practical policy recommen-

dations. In addition to this, a number of further analytical outputs can be

easily extracted on the basis of the AXIOM computation. These possibili-

ties are outlined in Section 3.5. The concepts of AXIOM bring a great deal

of convenience to the cross-impact modeling. The lack of convenient tools

could be the reason why cross-impact techniques have not been adopted on

a larger scale.

Above-stated strengths of the AXIOM approach, the freely available implemen-

tation (see Section 5.1) and the transparent documentation of the computation

details make AXIOM a strong candidate for a general cross-impact modeling

approach.



5 Implementation and further development

5.1 Software implementation of AXIOM method

The author has implemented the AXIOM method as a Java program. The JAR

(Java Archive) and the source code of the implementation are available for down-

load in GitHub at address https://github.com/jmpaon/AXIOM. The GitHub

repository contains also instructions for use and an example input and test data.

The Java program accepts input data as a text file. The input file describes

the AXIOM model components in a special syntax. The program reads input

data in this syntax and constructs the AXIOM model. A valid model can then

be consecutively evaluated the requested number of times with all the possible

intervention combinations available for the model. A single run of the AXIOM

program creates an iteration set with as many iterations as there are different

intervention combinations in the model. The first iteration is always generated

using an ”empty” combination of interventions. The a posteriori probabilities of

this iteration reflect the operation of the system without any interventions. This

iteration is followed by iterations computed using the different possible combina-

tions of options of statements flagged as intervention statements in the AXIOM

model. Finally, the a posteriori probabilities of model options in each iteration

are output.

Listing 1 is an example input file for the AXIOM program as it is at the time of

writing of this thesis. The example input file contains the input information of the

example statements presented in Subsection 3.1.1 and the example options pre-

sented in Subsection 3.1.2. A command in the input file resulting in a statement

addition begins with the character ’#’, in option addition with the character ’*’

and in an impact addition with character ’>’. Options are added under the state-

ment that is last defined before the option; impacts are added under the option

that is last defined before the impact. After the symbol that defines what type of

component is added to the model comes the identifying label of that component

(for statements and options) and the other details about the component. For

example, the first line of the example input file defines a statement addition to

the model. The label of the statement is ’GEOPOLITICS’ and it is to have timestep

value 2. The second statement (with label ’GOVERNMENT’) defined in the input

data file has timestep value 1 and is also flagged as an intervention statement

(as the statement definition contains the flag ’INT’). Line 2 in the input file adds
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Listing 1.AXIOM input data example
# GEOPOLITICS ts 2 Geopolitical position of Finland after 2025

* EU 0.5 Member state in the European Union

> unitedstates police -2

> unitedstates pacific +1

* EURASIAN 0.15 Member state in the Eurasian Union

> unitedstates police +3

* NEUTRAL 0.35 Non -aligned position

> unitedstates pacific +2

# GOVERNMENT ts 1 INT Governing political parties in Finland 2019 -2023

* TRUEFINN 0.1 True Finns as the ruling political party

> geopolitics eurasian +3

> geopolitics neutral +4

> geopolitics eu -3

> economy nogrowth +1

* SDP_LEFT 0.3 SDP and Left Alliance as the ruling parties

> geopolitics eu -2

> geopolitics neutral +1

> unitedstates isolationist +1

* CENTER_COAL 0.4 Center Party and Coalition Party as the ruling parties

> geopolitics eu +3

> unitedstates police +1

* RAINBOW 0.2 Rainbow coalition government

> geopolitics eu +1

# ECONOMY ts 1 Economic development in the European Union from 2017 -2023

* NOGROWTH 0.30 Average economic growth close to zero in EU area

> government truefinn +3

> government sdp_left +2

> unitedstates pacific +2

> unitedstates isolationist +1

* SLOWGROWTH 0.45 Average growth in EU area slow

(close to 1% GDP growth annually)

> government rainbow +1

* FASTGROWTH 0.25 Average growth fast in EU area

(close to 3% GDP growth annually)

> government center_coal +3

# UNITEDSTATES ts 2 Role of United States in international politics in 2020s

* POLICE 0.15 United States polices the whole world

> geopolitics eu +3

* PACIFIC 0.65 United States is active in the pacific region

and passive in Europe

> geopolitics eurasian +1

> geopolitics neutral +2

* ISOLATIONIST 0.2 United States observes an isolationist foreign policy

> geopolitics eurasian +4

an option with label ’EU’ under statement ’GEOPOLITICS’. The option has an a

priori probability of 0.5. Line 3 adds an impact to option with label ’EU’. The

added impact is directed at option ’POLICE’ under statement ’UNITEDSTATES’.

The probability adjustment function associated with the impact is −2.

Table 5 presents the main output of the AXIOM program run. The model eval-

uation has been performed 106 times for each iteration presented in the table.

The first column displays the labels of the model’s statements and options. The

second column displays the initial or a priori probabilities of the options. The

third column displays the a posteriori probabilities of the options when no option

is an active intervention. As the model has only one statement flagged as an in-
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tervention statement, and the single intervention statement has four options, the

iteration set has four iterations in addition to the iteration without interventions.

For these iterations, calculating the a posteriori probability for the options under

the intervention statement does not make sense, as the options have a predefined

state for each iteration.

The chief analytical output is the change in the probability of an option of spe-

cial interest under different interventions. If the geopolitical state of Finland as

an European Union member state is seen as a desirable state, according to the

example cross-impact model the best intervention to accomplish this state would

be to have the Center Party and the Coalition Party as the dominant parties

for the next electoral term. On the other hand, if a neutral position is seen as

desirable, this would be best promoted by having the True Finns party as the

dominant party. The trade-off for this might be that True Finns as the ruling

party appears to also maximise the probability of zero economic growth. It must

be noted that the selection of the model statements and options and valuation

of probabilities and impacts have been done alone by the author who claims no

particular expertise in the domain of the example model.

apriori no intervention center coal rainbow sdp left truefinn

economy:fastgrowth 0.25 0.248 0.248 0.249 0.25 0.24

economy:nogrowth 0.3 0.302 0.3 0.3 0.299 0.326

economy:slowgrowth 0.45 0.448 0.45 0.45 0.45 0.432

geopolitics:eu 0.5 0.48 0.696 0.534 0.279 0.078

geopolitics:eurasian 0.15 0.135 0.094 0.144 0.189 0.132

geopolitics:neutral 0.35 0.384 0.209 0.32 0.531 0.788

government:center coal 0.4 0.414 TRUE FALSE FALSE FALSE

government:rainbow 0.2 0.189 FALSE TRUE FALSE FALSE

government:sdp left 0.3 0.294 FALSE FALSE TRUE FALSE

government:truefinn 0.1 0.101 FALSE FALSE FALSE TRUE

unitedstates:isolationist 0.2 0.178 0.17 0.172 0.199 0.163

unitedstates:pacific 0.65 0.694 0.693 0.706 0.68 0.713

unitedstates:police 0.15 0.127 0.136 0.12 0.12 0.122

Table 5: A posteriori probabilities of the geopolitics model under different inter-

ventions

As stated, the AXIOM program calculates the AXIOM iterations for all possible
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intervention combinations possible with the options of the statements flagged as

interventions. This feature amounts to a comparatively high level of automation

in deriving higher-order information from the cross-impact model. The analyst

can focus on the model development and there is no need to manually test different

intervention combinations and model setups; these tests can be planned in the

model construction phase by introducing interventions and flagging other suitable

statements as intervention statements in the cross-impact model, keeping the

usage of the AXIOM program very simple.

The AXIOM method is rather experimental at its current state. The author

believes that the right strategy to develop the software implementing the AXIOM

method is to extensively test the method and program in various research and

modeling cases before venturing to develop a more user-friendly interface for

the program. Modeling cases to be undertaken in the near future will provide

information on the real information needs of modelers and analysts as well as

the most informative and useful format of outputs. These activities will likely

still bring about changes and improvements to the program. When this kind of

development is done, it might be called for to create a graphical user interface

for the tool to lower the barrier of adoption of the AXIOM method.

5.2 Ideas for further development of the method

In this section some ideas for possible further development of the AXIOM method

and software implementation are proposed. There are certain additions that could

be made to the model evaluation process that might be useful for cross-impact

modelers. First, the AXIOM software implementation could offer a mechanism

for flagging statements and options so that the possible combinations of their

inclusion and exclusion would all be automatically calculated and added to the

iteration sets. This mechanism would be similar to the currently existing possi-

bility to flag statements as intervention statements. This addition might prove

useful for investigating effects of changes to the system models from a slightly dif-

ferent perspective than using the intervention statement method. The analytical

advantages would be similar. This addition would only involve some additional

computations in the highest level of the computation process; no changes in the

modeling primitives or model evaluation would be necessary. This kind of analy-

sis is completely possible now, but requires the analyst to perform it manually, by

having multiple AXIOM models having the inclusion-exclusion combinations of
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interest and processing them separately. If the use of AXIOM method in future

modeling cases reveals a need for this addition, it is likely to be added to the

software implementation as doing so is fairly straightforward.

Another expansion-type improvement, which might prove to be in demand in

analysis of the outputs of AXIOM method, would be to somehow provide infor-

mation about the causes of the probability changes. The author cannot clearly

outline a way to do this at the time of writing. Such facility could nevertheless

be useful especially in analysis of big cross-impact models where surprising, per-

haps counter-intuitive shifts in probability might emerge when the higher-order

interactions between model components are computed.

The AXIOM method might also be developed by introducing new modeling prim-

itives. One interesting possibility would be to add another statement type that

would have a continuous probability distribution and that would, after evaluation,

have a real number value as its state instead of an option. This type of statement

would probably be a more natural way to represent quantities and shares than

the option-based representation AXIOM currently offers. A challenge in this type

of modeling primitive would be the valuation: a continuous a priori probability

distribution would have to be provided by the model valuators and providing this

valuation might prove to be more demanding than assigning a priori probabilities

to a small set of discrete options.

Another new primitive to be introduced to AXIOM could be a statement type that

would have a changing state. This kind of statement would in effect be evaluated

in each timestep of the model and the different states at different time categories

would be accounted. Statements like this can currently be approximated by

having several statements with the same content (same options) but different

timesteps. For this reason, the new statement type with a changing state would

be more of a modeling convenience, rather than something that would enable

analytical possibilities that are not currently available at all.

A possibly important change in the way time is modeled in AXIOM models could

be to make it possible for statements to have multiple possible timesteps instead

of a single definite timestep. The statement would be a candidate for evaluation

at any timestep associated with it. The different possible timesteps of a statement

could have a probability distribution. It is possible that modelers cannot assign

a definite timestep for all statements, so this change would definitely increase the

modeling power. This improvement is likely to be introduced into the AXIOM
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approach in the future.

As mentioned in the introduction, AXIOM and other methods of cross-impact

analysis are most useful as modeling tools in domains where ”hard” empirical

and time-series data is not available. An interesting avenue of modeling research

could be to find ways to practically combine traditional modeling and cross-

impact modeling in the same framework.
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