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Abstract—The advent of Artificial Intelligence (AI) has im-
pacted all aspects of human life. One of the concrete examples of
AI impact is visible in radio positioning. In this article, for the
first time we utilize the power of AI by training a Convolutional
Neural Network (CNN) using 5G New Radio (NR) fingerprints
consisting of beamformed Channel State Information (CSI). By
observing CSI, it is possible to characterize the multipath channel
between the transmitter and the receiver, and thus provide a
good source of spatiotemporal data to find the position of a User
Equipment (UE). We collect ray-tracing-based 5G NR CSI from
an urban area. The CSI data of the signals from one Base Station
(BS) is collected at the reference points with known positions to
train a CNN. We evaluate our work by testing: a) the robustness
of the trained network for estimating the positions for the new
measurements on the same reference points and b) the accuracy
of the CNN-based position estimation while the UE is on points
other than the reference points. The results prove that our trained
network for a specific urban environment can estimate the UE
position with a minimum mean error of 0.98 m.

Index Terms—5G New Radio (NR), Artificial Intelligence (AI),
Channel State Information (CSI), Convolutional Neural Network
(CNN), Fingerprinting, Machine Learning (ML), Outdoor Posi-
tioning

I. INTRODUCTION

In urban areas, where Global Navigation Satellite Systems

(GNSS) signals are only partially available and degraded by

multipath, it is difficult to reach a satisfactory positioning

performance for many important use cases. To address the

difficulty and achieve an accurate position solution, expensive

and professional sensors such as Inertial Measurement Units

(IMUs), cameras or other Radio Frequency (RF) signals are

required to assist the positioning solution.

Radio signals enable the position estimation by different

methods, such as fingerprinting and signal features [1], [2],

range measurement and multilateration [3], and the combi-

nation of the ranging and Angle of Arrival (AoA) [4]. In

addition, known or estimated channel properties of signals

which are known as Channel State Information (CSI) are able

to characterize the environment by describing how a signal

propagates from a transmitter to a receiver. Consequently,

in dense urban areas the multi-path effect resulted from the

environment, is embedded in the CSI data. Thus, CSI is a

good candidate for positioning purposes, where one of the

use cases is fingerprinting [5], [6]. Fingerprinting is mainly

made of two phases: offline and online. In the offline phase,

a large data set of fingerprints for each known position is

collected and fed to the system. Later in the online phase, the

test data is compared with the data set and maps the collected

data to the corresponding position [7]. Compared to traditional

ranging and angular based positioning methods, where Non-

Line-of-Sight (NLOS) propagation can considerably decrease

the accuracy [8], fingerprinting can exploit the richer features

in NLOS scenarios to obtain a better positioning solution.

CSI fingerprints of Wi-Fi systems have been frequently

used for indoor positioning [6], [9], [10]. Nevertheless, in

outdoor urban areas Wi-Fi signals are not always available, or

they are of poor quality. On the other hand, in the emerging

5G networks, efficient communications require continuous

exchange of CSI data between the BS and the User Equipment

(UE) [11], which makes 5G New Radio (NR) CSI a convenient

fingerprint in the urban area.

The new millimeter Wave (mmWave) frequency band, in-

troduced in the 5G NR, can be used to reach sub-meter

level positioning accuracy [12]. However, due to the high

frequencies, the mmWave signals suffer from high penetration

and path loss as well as the rain fading, which typically limits

the number of available BSs for positioning. On the other hand,

the short wavelength in millimeter level allows implementation

of larger antenna arrays compared to the previous technologies

[12]. Partly resulting from the increased array sizes, another

supplement provided by 5G NR technology is the beam-based

operation, which enables highly directional beamforming via

Massive Multiple Input Multiple Output (MIMO) technology

[13]. Therefore, in this work, the utilized CSI data is beam-

formed and the CSI observations are performed per beam.

These beam-wise CSI measurements work as an input to

the proposed Convolutional Neural Network (CNN) based

positioning engine.

The main contributions of this paper are as follows:

1) We introduce a novel utilization of 5G mmWave in

position estimation. To the best of our knowledge,

5G NR CSI-based fingerprinting utilizing beamforming

technology has not been reported in the literature.

2) For obtaining the results, we utilize a realistic ray-

tracing-based CSI data, considering a real-life city area
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TABLE I
NEURAL NETWORK-BASED FINGERPRINTING METHODS

Reference Environment Radio Signal Fingerprint Minimum Mean Error

[5] indoor Wi-Fi CSI 1.8 m

[14] indoor Wi-Fi RTT 0.91 m

[6] indoor Wi-Fi CSI 1.16 m

[1] outdoor 5G and GNSS radio signal strength 1.75 m

[2] outdoor 5G RSRP and beam IDs 1.4 m

[15] indoor 5G CSI from 4 BSs 1.17 m

Proposed Work outdoor 5G CSI from 1 BSs with beamforming technology 0.98 m

with rich multipath propagation while following the

guidelines of 5G NR specifications [16].

3) We propose and analyze a neural network-based finger-

printing with CNN-architecture for positioning in urban

area. This method requires low-power and low-memory.

4) We consider a single BS positioning scenario to re-

duce the system complexity, and avoid the demand of

observing multiple BSs using mmWave signals under

high path loss scenarios. In addition, wrapping up the

neural network-based processing in a single BS enables

efficient scalability of the proposed methods for various

use cases, including cases with varying BS deployment.

The remainder of the article is as follows. The related works

are discussed in Section II, the preliminaries are provided in

Section III. Our proposed CNN-based fingerprinting utilizing

5G NR CSI is presented in Section IV, the experiment and

analysis are provided in Section V, followed by conclusion

and future work in Section VI.

II. RELATED WORKS

Fingerprints of radio signals for positioning have been

frequently used in the literature. Wu et al. in [5], have utilized

Wi-Fi-based CSI data collected by an Atheros CSI tool in

an indoor environment. They have proposed a supervised

Deep Neural Network (DNN) to estimate the position of the

UE. Authors proved that their proposed network architecture

outperforms its counterpart in terms of being fast in the online

phase and saving memory for the storage of the weights and

biases of the network.

In [14], DeepNar was proposed as a neural network-based

fingerprinting method. Authors have used Wi-Fi Round Trip

Time (RTT) fingerprints from 7 BSs to localize a UE in

an indoor scenario. There, the RTT measurements are first

normalized to stay in the range between [0,1] and then fed

to the neural network. By utilizing DeepNar, the authors have

achieved a minimum mean positioning error of 91 cm with

the test samples. This error is the minimum calculated average

error in estimation of test points positions using the test CSI

samples. In [6], a deep residual sharing learning based system

was presented utilizing Wi-Fi CSI data collected in an indoor

environment with the Intel 5300 NIC tool. To prepare the

input data for the neural network, authors have constructed

CSI tensors utilizing CSI amplitude and AoA measurements.

Considering the two types of measurements, the authors feed

the data to two different channels. Thus, the trained weights

and biases are different in the output of the channels and they

will be shared at the end of a residual block. Authors have

tested their method in the indoor environment of a laboratory

and a corridor, and they were able to achieve the minimum

mean error of 1:16 m, which is the least achieved average

error among the estimations for the test samples. In urban

environments, Wi-Fi signals are not always available.

In [1], authors take advantage of the fingerprints including

beamformed radio signal strength in a 5G NR network. They

have also fused the position estimations with the available

GNSS position data to achieve higher accuracy. The consid-

ered signals are transmitted by seven beamforming-capable

BSs over 32 beams for each. The results in their work show

that 3:4 m mean positioning error is achieved by the proposed

fingerprinting method. This error decreased to 1:75 m mean

by fusing the radio signal strength based estimates with GNSS

position data utilizing a neural network. In [2], authors exploit

deep learning-based fingerprinting to localize a UE in an urban

area. They have used the Reference Signal Received Power

(RSRP) of 5G beams and the beams ID as the input data

to their proposed neural network. For simulating the data,

the authors have used WinProp ray-tracing simulation tool.

They have utilized 8 5G radio nodes (gNBs) and achieved

the minimum average error of 1:4 m. Authors in [15] have

utilized 5G CSI fingerprints and Siamese CNN to find the

position of a UE in an indoor area. They have achieved a

minimum mean error of 1:17 m using 4 BSs. In this work,

despite the previous works, we are interested in beamformed

CSI fingerprints. Furthermore, regarding the lack of Wi-Fi

signals in outdoor environment, we take advantage of the

beamforming technology of 5G signals to improve the results

for an outdoor scenario. Besides, we utilize only one BS to

evaluate the performance of the proposed method in an outdoor

positioning scenario.

A summary of methods considered in the literature, which

utilize neural networks is presented in Table I. Besides the

literature references, the environment type, radio signal finger-

print, and the minimum mean error achieved by the method

are provided in the table. The minimum mean error is the

lowest error among the averaged errors achieved in position

estimation by feeding the test CSI samples to the trained

network.



III. PRELIMINARIES WITH DATA DESCRIPTION

In this work, we take advantage of the 5G mmWave

CSI fingerprints of a MIMO Orthogonal Frequency Devision

Multiplexing (OFDM) system to train a CNN. The trained

network will be then used for fingerprinting.

A. Neural network based fingerprinting

In traditional fingerprinting methods, a large amount of data

is required during the real-time process to estimate the position

of the UE. However, utilizing neural networks enables the

system to eliminate the required memory and expense to carry

the heavy database in the online phase.

There are mainly two phases in the neural network-based

fingerprinting method: 1) Offline phase: a large amount of CSI

data are given as input to the system. The data are labeled with

the position of each training point. The weights and biases

of the neural network will be optimized based on the given

labeled data. Finally, the trained network will be used in the

online phase. 2) Online Phase: There will be no requirement

of memorizing the training data set. The only necessity will

be the weights and biases of the trained network. The test data

which is not previously seen by the network will be provided

as the input to the network. The network will then estimate

the position of the UE.

B. Channel State Information (CSI)

While the radio signals propagate through the air, they expe-

rience different types of channel effects, such as diffractions,

specular reflections, scattering, and path loss. The radio chan-

nel can be represented by CSI which is essentially a complex-

valued frequency response of the channel in OFDM-based

transmission. Assuming a single antenna UE, the received

signal at the mth subcarrier of the bth beam can be represented

as

rm;b = Hm;bFbsm;b + nm;b; (1)

where sm;b is the transmitted signal, Hm;b 2 R1�NTX is

the channel matrix between the transmitter and the receiver

including the effect of all multipaths, Fb 2 RNTX�1 is the

beamformer vector, and nm;b � N (0; �2) is Additive White

Gaussian Noise (AWGN). From (1), the effective beamformed

CSI for the mth subcarrier and bth beam can be observed as

HCSI
m;b = Hm;bFb. In practice, the CSI is estimated from the

received signal assuming a known transmitted reference signal

[5]. To prepare the input data for the neural network, the

available CSI data are received by M number of subcarriers

and B number of beams. Considering that the CSI data involve

complex numbers, to prepare the CSI data in a way that they

are applicable to CNN, we have added the real and imaginary

parts of the CSI data separately in two consecutive columns.

Using this method prevents any probable data loss during the

CNN classification [11]. Thus, finally, we have the data of

M � 2B matrices as the input to the network.

Assuming a fixed and static environment, separate CSI

measurements collected at the same location differ only by

measurement noise. In addition, the noise on the CSI data

can be considered to vary according to changes in the envi-

ronment, such as the movement of vehicles [17]. Thus, for

each considered measurement location simulated in the ray-

tracing tool, a large amount of data can be generated by

obtaining different random noise realizations. The quality of

the beam-wise CSI measurements is dependent on the signal

SNR, which is defined as

SNRb = 10 log10

�P
m jrm;bj2

M�2

�
[dB]; (2)

where �2 is the noise power.

C. CNN and data splitting

CNNs have the ability to extract the features of the given

input and detect the important features in comparison with

other traditional Machine Learning (ML) methods including

random forests. The features extraction is performed by an

element-wise product between the inputs and a small array of

numbers, called a kernel. The kernel is applied to the input

by sliding over all the locations to extract the features. Notice

that the convolutional layer is linear. Thus, a nonlinear function

such as a Rectifying Linear Unit (ReLU) is required to enable

the back-propagation.

Before feeding the data set as the input to the neural

network, the data set is first split into the following categories:

1) Training data set: Some measurement points on the

simulation area are considered as the reference points. A

large amount of CSI data are collected at each reference

point. Notice that the labels of the CSI data are the

positions of each reference point.

2) Validation data set: This data set is generated for each

reference point. However, the validation data has been

never seen previously by the network as it has different

noise from the training data set. This data set is used to

evaluate the robustness of the neural network.

3) Test data set: In this data set, new points other than

reference points are considered to evaluate the network

performance and positioning accuracy. For this data set,

there will not be any specific labels. Instead of finding

only one label, the network will find the probabilities of

the labels. The position will then be estimated based on

the predicted probabilities.

These data sets are then fed to the proposed CNN when

considering the numerical evaluations shown in Section V.

IV. PROPOSED CNN-BASED FINGERPRINTING UTILIZING

5G NR CSI

The proposed system architecture is illustrated in Fig. 1,

where the CNN is developed to extract the features in CSI

data. The hyperparameter of number of layers is optimized by

observing the generalization error while increasing the number

of layers. The optimum number of layers is selected based

on the lowest validation error while avoiding overfitting. We



Fig. 1. System architecture of the proposed positioning method.

have utilized 5 convolutional2D layers with a ReLU function

at each layer to define non-linearity. As the downsampling

strategy, 2D max-pooling is used in the first 4 layers [18].

Then, in the 5th layer, flattening is done to prepare the input

for the output layer of the network, which is the classifier.

A. Hyperparameters

To achieve the highest accuracy, the choice of hyperparam-

eter of a network plays an important role. Furthermore, having

optimal or close to optimal hyperparameters results in saving

time, energy, computation, and money [19]. Hyperparameters

consist of two types of variables: a) the variables which

determine the network structure like the number of hidden

layers, and b) the variables which affect the training of the

network, such as the learning rate, weight decay, and batch

size. Moreover, the tuned hyperparameters for the developed

CNN are listed in Table II.

Regularization is one of the most essential hyperparameters.

In this work, the techniques utilized for regularization are

L2 norm and Batch Normalization (BatchNorm). L2 norm

is applied with the weight decay and BatchNorm normalizes

the input of the layer. It subtracts the input by mean value

of the mini-batch and finally divides it by the mini-batch

standard deviation. This technique solves the problem of

internal covariate shift. This problem occurs due to the varying

distribution of the input weights to the neurons at each epoch.

Neurons must adapt to this change, which is solved by the

BatchNorm technique [20]. Another issue that DNNs might

experience, is the vanishing or exploding gradient. Vanishing

gradients occur due to the gradients getting smaller while

TABLE II
HYPERPARAMETERS FOR TRAINING THE NETWORK

Hyperparameter Value

Activation Function ReLU

Regularization BatchNorm and Weight Decay

Decay Rate 0.001

Learning Rate 0.000001

Epochs Size 150

Batch Size 20

the network is being trained. On the other hand, exploding

gradients occur when big errors accumulate and represent

large values to the network. This issue prevents the network

to be trained and results in an unstable network. BatchNorm

prevents the values to become very big or very small. In this

work, we have used a 2D BatchNorm in the first main layer

and a 1D BatchNorm in the last main layer after the output

has been flattened to a 1D feature vector.

B. Loss Function

The parameters of the neural network are optimized using

AdamW optimizer explained in detail in [21]. AdamW is an

adaptive optimizer which provides the optimization of weight

decay and learning rate separately. The loss function is used to

calculate the error in predictions while training the network.

We have used two different error calculations during the

training and the test phase.

1) Training and the robustness of test performance: For

training the network, we aim to minimize the Negative Log

Likelihood (NLL) loss function given as

loss = �
NX

n=1

yn log ŷn; (3)

where N is the number of labels (number of reference points

in our work), yn is the true label of the nth training data and

ŷn represent the probabilities computed by the softmax layer

as

ŷn = Softmax(zj) =
exp zj

PK
k=1 exp zk

; (4)

where zj represents the neurons values in output layer. The

values are calculated by the input to the neurons, weights and

biases. We utilize NLL loss for both training and validation.

The validation is done by CSI data which have never been

seen by the network previously. However, this CSI data have

the same labels with the reference points.

2) New Test Points: The final test is done for the CSI

data collected at the points other than reference points. The

loss/error in the predictions which are estimated positions for

the test points is the Euclidean distance to the ground truth.

The predicted coordinates (xpred,ypred) for the correspond-

ing CSI data are estimated using the softmax layer probabili-

ties as
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Fig. 2. Reference and test points in the simulated environment. The green
circles are the reference points, and the red circles with unique label
numbering are the test points. The BS location is shown with a magenta
marker accompanied with a pointer vector to illustrate the antenna direction.

xpred =
RX

i=1

pi
PR

j=1 pj
xi and

ypred =
RX

i=1

pi
PR

j=1 pj
yi;

(5)

where (xi; yi) represents the position of the training points,

pi is the probability calculated by the softmax layer, and R
is the number of selected training points, defined as R = 4
in this work. The R selected training points have the largest

calculated probabilities pi among the others. The estimator is

sensitive to the value of R. R = 4 is selected considering the

consistency it provides in the accuracy of calculated positions.

Higher values of R result in lower accuracy and lower values

of R provides inconsistent solutions.

V. NUMERICAL EXPERIMENT AND ANALYSIS

The proposed method is tested by simulating CSI data in

an urban environment in Helsinki metropolitan area called

Punavuori. In order to obtain the CSI data, we utilize a pro-

prietary ray-tracing software, following the map-based channel

modeling principles proposed by the 3GPP in [16]. In total of

30 number of training point locations and 10 number of test

point locations are considered in the environment, as shown

in Fig. 2. The carrier frequency is defined as 30 GHz.

At each location, the CSI is measured from a single

BS based on a downlink transmitted Synchronization Signal

Blocks (SSBs) consisting of 240 subcarriers with subcarrier

spacing of 60 kHz (bandwidth of 14:4 MHz). Furthermore,

the SSBs are beamformed over B = 32 beams using a

uniform rectangular array with dimensions of 16 azimuth and

8 elevation elements. For each reference point, 1000 noisy CSI

samples are obtained for training and validation, as discussed

in Section III.B. The radio link budget is designed so that in

Line-of-Sight (LOS) conditions, the SNR for the best beam is

approximately 10 dB at 100 m distance from the BS. From the
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Fig. 3. The accuracy of training and validation.
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Fig. 4. The loss of training and validation.

generated data 60% is used for training and 40% for validation

using random splitting. Similarly, for testing purposes, 100
CSI samples are correspondingly generated for the test point

locations.

The training and validation accuracy are presented in Fig. 3.

Considering the training accuracy, we can realize that the

network has been appropriately trained. It shows that the

proposed CNN is able to extract the features out of the CSI

tensors. Furthermore, the validation accuracy, extracted from

the validation set, has reached maximum 97:77%. The high

validation accuracy indicates that first the network is well-

regularized due to regularization methods, and second, the

network is robust against the unseen data.

The training and validation loss are presented in Fig. 4.

It is shown that the training loss values are decreasing to a

point of stability and the optimized model fits well to the

training data. Moreover, considering that also the validation

loss is decreasing to a good extent, the model seems to perform

adequately. However, it can be seen that the validation loss

begins to slightly increase around the 80th epoch. This can

be a result of the data shuffling at each epoch. It could be

the case that the random sampler has taken a more complex

data at these epochs in comparison with the previous epochs.

However, at this point we expect the regularization method to
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Fig. 5. The mean absolute error of positioning for the test points.

modify the learning algorithm so that the model generalizes

in the optimum way.

The mean absolute positioning error for the test point loca-

tions is presented in Fig. 5. The time required for our system

to estimate the position of a test point by feeding one CSI

sample to the network is 8 ms. It should be yet emphasized

that the test data is collected at different locations compared

to the training data, and thus, by enhancing the generalization

of the network, it should be possible to reduce the positioning

error. Although the network is able to consistently reduce the

positioning error when increasing the number of epochs, it

is seen that similarly as with the validation loss, the network

struggles around the 80th epoch. It seems that it took a few

epochs for the regularization method to modify the learning

algorithm and reduce the generalization error and achieve the

consistent downward trend in test error.

In order to analyze the positioning errors at different map

locations, the error distribution at each test point is illustrated

in Fig. 6. It is shown that in most of the points, the average

error is below one meter. Considering that points number 1532
and 1560 are in NLOS conditions and the rest are in LOS

conditions, one noticeable observation is that the proposed

method works accurately also in NLOS conditions. From the

CSI perspective this is justified by the fact that the CSI is more

unique per location in NLOS conditions compared to LOS-

dominated scenarios, where nearby locations share similar

multipath characteristics with only a slight power difference.

Thus, on contrary to traditional positioning methods, machine

learning based methods seem to naturally manage positioning

in both LOS and NLOS conditions in the considered urban

environment.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented a deep learning-based

position estimation method using 5G CSI fingerprints and

beamforming technology for the first time in the literature. We

have taken advantage of the neural networks to find the static

single BS-based position of a UE in a specific outdoor area.

The CSI fingerprints of 5G NR mmWave have been collected

based on ray-tracing simulations. The results show that by
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Fig. 6. The distribution of positioning errors at each test point.

using machine learning-based CSI fingerprinting with CNNs, it

is possible to achieve a sub-meter positioning error regardless

of the LOS condition of the channel.

In the next steps of this research, higher number of reference

points in a wider area will be considered. Furthermore, a

mobile user positioning will be investigated by utilizing the

time series and recurrent neural networks with measurements

from several BSs.
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