
TYPE Original Research

PUBLISHED 20 October 2022

DOI 10.3389/fcomp.2022.945652

OPEN ACCESS

EDITED BY

Tobias Grosser,

University of Edinburgh,

United Kingdom

REVIEWED BY

Hiroyuki Tomiyama,

Ritsumeikan University, Japan

Luca Muratore,

Italian Institute of Technology

(IIT), Italy

*CORRESPONDENCE

Pekka Jääskeläinen

pekka.jaaskelainen@tuni.fi

SPECIALTY SECTION

This article was submitted to

Software,

a section of the journal

Frontiers in Computer Science

RECEIVED 16 May 2022

ACCEPTED 05 October 2022

PUBLISHED 20 October 2022

CITATION

Leppänen T, Lotvonen A and

Jääskeläinen P (2022) Cross-vendor

programming abstraction for diverse

heterogeneous platforms.

Front. Comput. Sci. 4:945652.

doi: 10.3389/fcomp.2022.945652

COPYRIGHT

© 2022 Leppänen, Lotvonen and

Jääskeläinen. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Cross-vendor programming
abstraction for diverse
heterogeneous platforms

Topi Leppänen, Atro Lotvonen and Pekka Jääskeläinen*

Customized Parallel Computing Group, Tampere University, Tampere, Finland

Hardware specialization is a well-known means to significantly improve

the performance and energy e�ciency of various application domains.

Modern computing systems consist of multiple specialized processing

devices which need to collaborate with each other to execute common

tasks. New heterogeneous programming abstractions have been created to

program heterogeneous systems. Even though many of these abstractions are

open vendor-independent standards, cross-vendor interoperability between

di�erent implementations is limited since the vendors typically do not have

commercial motivations to invest in it. Therefore, getting good performance

from vendor-independent heterogeneous programming standards has proven

di�cult for systems with multiple di�erent device types. In order to help unify

the field of heterogeneous programming APIs for platforms with hardware

accelerators from multiple vendors, we propose a new software abstraction

for hardware-accelerated tasks based on the open OpenCL programming

standard. In the proposed abstraction, we rely on the built-in kernel feature

of the OpenCL specification to define a portability layer that stores enough

information for automated accelerator utilization. This enables the portability

of high-level applications to a diverse set of accelerator devices with minimal

programmer e�ort. The abstraction enables a layered software architecture

that provides for an e�cient combination of application phases to a single

asynchronous application description from multiple domain-specific input

languages. As proofs of the abstraction layer serving its purpose for the layers

above and below it, we show how a domain-specific input description ONNX

can be implemented on top of this portability abstraction, and how it also

allows driving fixed function and FPGA-based hardware accelerators below in

the hardware-specific backend. We also provide an example implementation

of the abstraction to show that the abstraction layer does not seem to incur

significant execution time overhead.

KEYWORDS

heterogeneous computing, heterogeneous programming, OpenCL, hardware

abstraction layer, hardware acceleration, built-in kernel

1. Introduction

Specialization is a powerful paradigm that has emerged in mainstream computing in

the past decades. The benefits of domain or application specialized computing devices are

usually motivated by higher performance. Also, its potential to enhance power-efficiency

has received increased interest outside the usual power-supply constrained IoT devices.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.945652
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.945652&domain=pdf&date_stamp=2022-10-20
mailto:pekka.jaaskelainen@tuni.fi
https://doi.org/10.3389/fcomp.2022.945652
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.945652/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org










Leppänen et al. 10.3389/fcomp.2022.945652

FIGURE 2

(Left) Proposed method of controlling various hardware devices with a common OpenCL platform. (Right) Current status of the field with

multiple vendor-specific hardware abstraction layers. The vertical arrows correspond to the control commands being passed down the software

stack. The horizontal arrows between the devices describe inter-device functionality such as direct memory access and synchronization. The

dashed arrows show the management of such inter-device functionality.

The identification of the built-in kernels in the registry

is based on their name. The same names are also used

in OpenCL programs when using built-in kernels. Every

built-in kernel in the registry must have a unique name.

We propose a hierarchical naming scheme that follows

the structure: pocl.<category>.<function>.<optional

qualifier(s)>.<datatype>. The naming scheme increases

the human readability of the registry, but it is not meant to be

used by the tools for semantic information.

The proposed registry must contain all the information

required to be able to implement the built-in on different

hardware. Therefore the semantics of the built-in kernel must

be clearly defined. In the current abstraction, the semantics of

the built-in kernels are described either in OpenCL C or SPIR-

V (Khronos, 2021). The choice of languages is natural since they

are already supported by the OpenCL standard. Furthermore,

they also have their language semantics defined at a strict-

enough level with minimal aspects left as implementation

choices, which is needed to remove ambiguities in the built-

in kernel semantic definitions. OpenCL C or SPIR-V based

semantic definitions have another advantage of being usable as

a software or FPGA high-level synthesis tool fallback in the

cases where a programmable device does not have optimized

implementation for a certain built-in kernel that is convenient

to call from the upper layers of the stack.

Another option for describing the semantics would be

an abstract operation graph consisting of other built-in

kernels and primitive built-in kernels. The benefits of such a

hierarchical description of the built-in kernels would be the

easier development of tools that utilize the built-in kernels

such as the one example shown in Figure 3. Implementing a

hierarchical description of the semantics was not done in this

work, but will be investigated in the future.

An example snippet of a built-in kernel registry is shown

in Table 1. The built-in kernel registry is designed to be

extended in a “hardware first” fashion, where new kernels

are added to it whenever hardware acceleration support for

them is added the first time. This is different from more

traditional library specifications such as TOSA (Linaro, 2021),

where the functions are carefully designed to include as few

primitive operators as possible. Instead of carefully balancing

between hardware specialization and general usability of the

functions, the proposed method opts to include even the

most specialized versions of the functions in the registry as

independent entries.

Since every built-in kernel has to have a unique name if

their semantics vary even slightly, it means that the registry

is expected and allowed to grow large. The possible variations

include different data types, data layouts, kernel specializations,

fusings of multiple kernels, etc. The number of these variations

combine multiplicatively which means that the registry will

easily grow to over thousands of built-in kernels. However, with

automatic tools parsing the registry, the size of it is not estimated

to become problematic.

Initially, the built-in kernel registry is implemented inside

the open-source OpenCL implementation PoCL (Jääskeläinen

et al., 2015), which means that the updates to the registry will

be merged in by the PoCL developers after community proposes

them through pull requests. However, in the future, the registry

will be proposed to be merged to the Khronos repository. The

registry is designed to be easy to extend for hardware and

application developers.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

FIGURE 3

Task graph lowering by a middleware software component. The middleware queries the available devices for built-in kernel implementations

and lowers the task graph to an OpenCL “task graph” implemented with kernels and event dependencies. It accesses the static built-in kernel

registry to match the semantics of the built-in kernel to the input graph semantics.

4.2. Executing the built-in kernels

The fixed high-level specification of the built-in kernels

makes it possible to execute them efficiently on different

hardware platforms. The abstraction proposed in this work does

not define any specific ways of creating the built-in kernel

implementations but instead leaves it for the implementation,

similar to what is specified in the OpenCL standard. Therefore,

the OpenCL implementation is responsible to manage the

execution of the built-in kernels. This gives a lot of freedom

for the implementation to use the most effective execution

method available for each device. Some practical aspects of

implementing the OpenCL built-in kernels in the OpenCL

implementation are discussed in this section.

In the simplest case, if the host device is also an OpenCL

device, it can simply execute the built-in kernel functionality

in the host software. Since the built-in kernel abstraction hides

the implementation details, the built-in kernel implementation

can also consist of calls to an external acceleration library. This

enables fast development of built-in kernels through the use of

ready-made acceleration components.

Alternatively, if the target device supports online

compilation, the implementation can compile the semantic

specification as if it was the kernel source code. We call this

feature software fallback, since it allows the utilization of the

built-in kernels even if the device does not have a specialized

implementation for that kernel. In this case, the development

effort of new built-in kernels is equivalent to developing

OpenCL software kernels. Additionally, it is possible to create

specialized kernel source-based implementations that can utilize

intrinsics or domain-specific languages as long as they are

behaviorally equivalent to the semantic specification.

One of the motivations of the built-in kernel abstraction

is to enable easier utilization of specialized fixed-function

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

TABLE 1 Example snippet of a built-in kernel registry.

Kernel

name

Verbal description of

semantics

Arithmetic operations

pocl.arith.add.i8 Element-wise addition for two arrays of

n elements.

pocl.arith.mul.i32 Element-wise multiplication for two

arrays of n elements.

pocl.arith.sqrt.f32 Element-wise square-root for an array

of n elements.

Deep neural network Operations

pocl.dnn.conv2d.nchw.f16 2D convolution with parameterizable

input and output dimensions, stride,

dilation, and padding.

pocl.dnn.conv2d.nchw.f32 2D convolution with parameterizable

input and output dimensions, stride,

dilation, and padding.

pocl.dnn.conv2d.nchw.relu.i8 2D convolution and ReLU with

parameterizable window size and stride

for n input channels.

pocl.dnn.dense.relu.i8 Dense layer with ReLU activation.

pocl.dnn.maxpool.i8 2D maxpool with parameterizable

window size and stride.

OpenVX operations

khronos.openvx.scale_image.bl.u8 Image rescale with bilinear

interpolation.

khronos.openvx.tensor_convert_

depth.u8.f32

Converts an 8-bit integer tensor to a

32-bit floating-point tensor with

parameterizable norm and offset.

IO operations

pocl.io.stream.in.i8 Reads n bytes from a streaming source

to an output buffer.

pocl.io.stream.out.i8 Writes n bytes from an input buffer to a

streaming source.

The kernels are identified by their name. For illustration purposes, the exact bit-level

semantics are not written out in the table. Instead, a short verbal description is included.

hardware implemented as a custom digital circuit. These can also

include highly specialized configurable accelerators with limited

programmability. Utilizing an FPGA device as a deployment

platform for customized accelerators is attractive since FPGA

devices enable cost-effective realization of customized logic

and memories.

FPGA devices are nowadays programmable by means

of high-level languages (also OpenCL C) through high-level

synthesis (HLS) tools, thus raising the question of whether

HLS-supported FPGAs should be considered as programmable

devices instead of hardware accelerators in the proposed

abstraction. For now, FPGAs are treated as a collection of IP

blocks of which functionality can be invoked through the built-

in kernel mechanism. FPGA designers can implement built-in

kernels as IP blocks with various methods and tools, without

the OpenCL application having to take into account FPGA

device-specific details. However, since the proposed abstraction

is designed to also include a semantic definition that serves as a

software fallback, it could be interesting to provide an alternative

means to utilize FPGAs through on-the-fly generated IP blocks

by employing HLS tools to generate missing built-in-kernel

implementations, or even by integrating them to the OpenCL

platform also as online compiler-capable devices.

The specialized hardware only has to be able to execute

the specific kernels it has been designed to execute. Therefore,

it doesn’t have to be generally programmable. However, it

needs to be able to connect to and communicate with the

OpenCL implementation. This means that for the most portable

solutions, the hardware interface must be defined at a quite

low level. For example, communication and synchronization

through a shared memory hierarchy between different devices

should be taken into account when defining the hardware

control interface. Examples of such hardware interfaces are

HSA (HSATM Foundation, 2018) and AlmaIF (Leppänen

et al., 2021), the latter was used in the evaluation of this

work. In the longer term, we believe efficient interoperability

between heterogeneous devices still requires further interface

specification work, similar to what was done in HSA, in order

to probe for an efficient peer-to-peer communication and

synchronization means without resorting to device-pair-specific

intelligence in the driver layer.

5. Utilization of built-in kernels in
higher-level programs

There are multiple different ways to utilize the proposed

abstraction layer as an acceleration platform to achieve

portability while still having competitive performance due to

the use of highly specialized built-in kernels. The proposed

abstraction layer only defines the kernel registry to manage the

OpenCL built-in kernels and to store and share their semantics.

For demonstration purposes, an example method of utilizing the

registry by a higher-level program is presented in this section.

The higher-level tool cannot directly use the built-in kernel

registry as its backend target, because not all built-in kernels

in it are available in the final execution platform. Instead, the

higher-level tools need to query the platform for the built-in

kernel implementations. This is done by a standard OpenCL

API call, which returns a list of built-in kernels each device is

able to execute. After that, the higher-level tool can lower the

internal representation of the program to a task graph consisting

of OpenCL kernels.

The concept of a such tool is shown in Figure 3. The tool still

utilizes the built-in kernel registry to fetch the built-in kernel

semantics based on the unique built-in kernel name, which it

can use to choose the optimal set of built-in kernels to execute

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

the program in question. It’s important to note that the tool has

to always begin by querying the platform for a set of supported

built-in kernels. Then out of that set, the tool picks the built-in

kernels that produce the best result based on the definedmetrics.

In principle, this problem of choosing the optimal set of kernels

to cover the task graph is very close to the traditional instruction

selection problem, which can be solved by, e.g., graph covering

algorithms (Floch et al., 2010).

The green boxes in Figure 3 correspond to software-based

OpenCL kernels, which can be freely intermixed with built-

in kernels in devices that support both. The tool queries this

information as well at the beginning of its analysis.

For this article, we created a proof-of-concept using the

open-source DL compiler TVM (Chen et al., 2018). The

implementation replaces certain hand-picked operations from

the internal representation of TVM with built-in kernels,

which it then passes to its pre-existing OpenCL backend for

either direct execution or for the generation of a stand-alone

application. Not all the operations need to be replaced by the

built-in kernels, the proof-of-concept implementation can pass

some parts of the intermediate representation to the OpenCL

backend of TVM, which can then fuse them into OpenCL

compiled kernels, which are inserted into the same OpenCL

command queue as the built-in kernels. In the future, this

implementation will be developed further to more closely match

the idea shown in Figure 3, which will enable a more generic use

of the tool for different neural networks than the ones used for

the abstraction evaluation purposes.

The proposed abstraction layer is not meant to be used as

just a backend for a single middleware (e.g., DL framework),

instead, its purpose is to share the same OpenCL platform

with multiple such tools which work together to insert their

OpenCL kernels into shared OpenCL command queues, like

shown in the left subfigure of Figure 2. This combines the full

application phases consisting of also pre- and post-processing to

an OpenCL task graph, implemented with kernels, events, and

command queues. The implementation can then take advantage

of the task-level parallelism and the low-level control of the

hardware to most efficiently execute the complete application on

a heterogeneous multi-vendor platform.

Once the OpenCL program with the built-in kernels has

been constructed, the implementation will then be able to

execute it on various types of devices. At this point, the OpenCL

program is completely conformant to the standard, which

means that it can be passed to any OpenCL implementation for

execution, as long as they support the built-in kernels in it.

6. Evaluation

In order to test the abstraction layer in practice, an open-

source OpenCL implementation PoCL (Jääskeläinen et al., 2015)

was extended to support the efficient execution of built-in

kernels. To evaluate the portability of the proposed method

to different hardware platforms, implementations for neural

network inference built-in kernels were created for three

different types of hardware platforms (CPU, GPU, and FPGA)

from three different vendors (Intel, Nvidia, Xilinx, respectively).

In order to demonstrate the proposed method’s ability to

execute complete programs, multiple neural network inference

applications were mapped to the abstraction. The applications

chosen were semantic segmentation, audio classification and

object detection: The first case, semantic segmentation, estimates

the performance overhead of the proposed method. While

the proposed method is not expected to incur significant

performance overhead, it is verified by means of a proof-

of-concept implementation. The built-in kernel abstraction

simply “hardens” the kernel to a fixed specification. Therefore,

any software kernel could simply be hardened to a built-in

kernel to achieve at least the same performance as the original

kernel. Additionally, this case study shows the portability

of the proposed method by executing the same OpenCL

program on CPU and GPU devices while utilizing existing

acceleration libraries.

The second case, audio classification, demonstrates the

benefits of the abstraction layer in implementing complete

processing pipelines with multiple devices while hiding the low-

level implementation details of FPGA-based designs. From the

point of view of the higher-level software, the FPGA device is

abstracted as a set of regular OpenCL devices implementing the

built-in kernels.

And finally, the third case, object detection, demonstrates

how the proposed abstraction enables the use of a shared

OpenCL context between multiple middleware frameworks.

The example application performs preprocessing in

OpenVX and neural network inference in TVM, both

which internally use OpenCL API to utilize the proposed

method. Additionally, this case study shows the flexibility

of the method in utilizing heterogeneous platforms, since

the preprocessing and the inference can also be executed on

different devices.

6.1. Semantic segmentation
demonstrator

The first demonstrator was a semantic segmentation

application called fastseg (Eric, 2020) based on theMobileNetV3

architecture (Howard et al., 2019). The network was trained

with the Cityscapes dataset (Cordts et al., 2016) to annotate 19

different categories. Example input and output can be seen in

Figure 4.

The ONNX description of the network was imported

to TVM as described in Section 5, where the convolution

operations were replaced with calls to built-in kernels. This

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

FIGURE 4

Example input and output of the fastseg CNN (Eric, 2020). The network takes an RGB image as an input and outputs a segmented image with an

annotation from 19 di�erent categories.

demonstrator utilized TVM’s OpenCL runtime to launch

the kernels.

The built-in kernel pocl.dnn.conv2d.nchw.f32 from Table 1

was chosen as the test built-in kernel for this demonstrator. It

performs a 2D convolution for N channels with parameterized

stride, dilation, and padding. The network consists of also

other operations than convolutions. To evaluate the effect of

just the convolution built-in kernel, the other operations were

implemented with TVM’s OpenCL C code generation backend.

6.1.1. Semantic segmentation on GPU

GPU implementation for pocl.dnn.conv2d.nchw.f32-kernel

was created. It was implemented as a very thin wrapper on

top of the cuDNN API by Chetlur et al. (2014), which is

designed for neural network acceleration on NVIDIA GPUs.

The implementation was built on top of PoCL’s support for

CUDAdevices. The built-in kernel arguments were forwarded to

the cuDNN’s convolution implementation and the convolution

computation was launched.

PoCL compiled theOpenCLC kernels of the remaining non-

convolution operations with LLVM’s NVPTX backend similar

to work done by Hahnfeld et al. (2018). The OpenCL buffer

management was implemented with CUDA driver API. This

means that the input and output buffers for both NVPTX-

compiled and cuDNN kernels can be shared which made it

possible to use the same data pointers for both, eliminating

unnecessary data copies when compiled and built-in kernels

were mixed in the same command queue.

The execution times of the network where some operations

were replaced with built-in kernels are compared to the

original network executed by TVM’s CUDA and cuDNN

backends. The GPU used for the measurements was NVIDIA

RTX 2080 Ti. The inference runtimes are listed in Table 2.

For comparison also the version of the network where all

kernels were kept as software kernels is included. The “With

accelerated convolutions”-column corresponds to the version

of the network where convolutions were performed using the

cuDNN-library either using direct external calls from TVM’s

runtime or using the proposed built-in abstraction layer. The

TABLE 2 Inference runtime in milliseconds for the fastseg semantic

segmentation network with NVIDIA RTX 2080 Ti GPU with 1,920 ×

1,080 RGB input.

Runtime

(ms)

Device Software

kernels

+Accelerated

conv

+Tensor

cores

TVM’s CUDA

Backend

GPU 158 (CUDA) 115 (cuDNN) 68 (cuDNN)

TVM’s

OpenCL

backend with

built-ins

(proposed)

GPU 157 (OpenCL) 110 (cuDNN) 67 (cuDNN)

TVM’s

OpenCL

backend with

built-ins

(proposed)

CPU 127,699

(OpenCL)

49,868 (oneDNN)

The column “Software kernels” corresponds to the original application where the kernels

are compiled OpenCL C or CUDA kernels. The “+Accelerated conv” -column uses

cuDNN/oneDNN for acceleration. The baseline on the first row is TVM’s CUDA/cuDNN

backend, whereas the proposed method replaces the convolution kernels with built-in

kernels, which are then internally executed with calls to cuDNN/oneDNN library. The

“+Tensor cores” -column uses cuDNN again, but with fp16 arithmetic, which allows for

the utilization of tensor core acceleration hardware.

“With tensor cores”-column is a slightly modified network with

fp16 arithmetic, which can take advantage of the specialized

acceleration hardware available in the GPU for half precision

floating point tensor arithmetic.

As expected, it can be seen from the results that the proposed

portability layer does not add performance overhead. Actually,

the execution time is slightly lower, but this is due to minor

implementation differences between TVM’s CUDA Backend

and the proposed method utilizing PoCL. Another reason for

the slight runtime discrepancy is that for this network the

accelerated convolutions may use different internal convolution

algorithms. The last column of the results shows that the

proposed method enables the use of specialized hardware

acceleration blocks by utilizing GPU’s tensor cores without

incurring an overhead.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

6.1.2. Semantic segmentation on CPU

The same built-in kernel pocl.dnn.conv2d.nchw.f32 was

also implemented on Intel i7-3930K CPU. Similar to the

GPU implementation, the CPU implementation of it was

implemented in PoCL’s driver layer as a thin wrapper over

oneDNN API (Intel, 2021) designed for neural network

acceleration supported by mainly Intel CPUs and GPUs. Similar

to the GPU test case, the non-convolution operations were kept

as OpenCL C kernels, which PoCL compiled using LLVM’s

x86 backend.

It is important to note that the OpenCL host program

was not modified when the execution platform was switched

from GPU cuDNN implementation to CPU oneDNN

implementation. This demonstrates the portability of the

proposed abstraction layer between different device types from

different vendors.

The inference results from the CPU device are shown in the

last row in Table 2. It can be seen that utilizing the oneDNN

acceleration library improved the performance by a factor of 2.5.

The speedup is likely due to the DNN-optimized acceleration

library being able to utilize data-level parallelism (multiple CPU

cores and SIMD instructions) better than the compiled kernel.

6.2. Audio classifier demonstrator

The second application chosen for evaluation of the

proposed abstraction layer was an audio classification program.

The application classified audio samples to belong to one of

10 classes. The classifier was based on a convolutional neural

network by Abdoli et al. (2019), which was further quantized to

use 8-bit signed integer values.

Slightly different from the previous semantic segmentation

application, all the operations of the network were now replaced

with built-in kernels, with no OpenCL C kernels being used.

The kernels used for this demonstrator were pocl.io.stream.in.i8,

pocl.add.i8, pocl.dnn.conv2d.nchw.relu.i8, pocl.dnn.dense.relu.i8

and pocl.dnn.maxpool.i8 from Table 1. The application was split

between two devices with the first kernel of the aforementioned

list executed on the first device and the rest on the second device.

As opposed to the previous demonstrator, now the TVM’s

OpenCL runtime was not utilized, but instead, its OpenCL

backend was utilized to generate a standalone OpenCL

program. This program was then manually augmented with the

pocl.io.stream.in.i8 built-in kernels for the first device and a

double-buffering scheme was created for the input data passed

between the devices.

A full system-level case study shown in Figure 5 was

conducted on an FPGA, starting from amicrophone input signal

to a classification result, all running in real-time for real input

data. PYNQ-Z1 was chosen as a demonstration platform since

it includes an ARM CPU, programmable logic (PL) region, and

a built-in microphone connected to the PL region. All the data

FIGURE 5

Standalone FPGA board demonstration setup which performs a

real-time classification of an audio signal.

processing was performed on the FPGA device and the ARM

CPU was used as the OpenCL host device. The standalone

OpenCL program was transferred to the host CPU where it was

compiled as a regular OpenCL program. This avoided having to

compile the TVM’s full OpenCL runtime on the small embedded

CPU.

The built-in kernel implementations were created as custom

hardware components, which were instantiated on an FPGA

device as two separate OpenCL devices. The first device

simply moved the stream of data to on-chip memory, while

the second device processed the data further to produce

a classification result. The devices implement the hardware

interface by Leppänen et al. (2021) to allow them to be connected

to the OpenCL implementation PoCL. The common interface

also enabled them to communicate and share data directly with

each other on-chip.

The application took an input signal directly from the

microphone and classified the sound to belong in one of

10 categories. The convolutional neural network used for

classification was quantized to an 8-bit signed integer, since

implementing floating-point operations on the small FPGA

was deemed too costly for this application. The demonstrator

worked in real-time to process a 16 kHZ audio stream in

0.5 s windows.

6.2.1. Microphone input device

Built-in kernel abstraction allows for a natural description

of IO devices in OpenCL programs. IO device is seen by

the OpenCL implementation as a regular OpenCL device that

implements the built-in kernel to load the data.

In this demonstrator, the input was coming as a stream of 8-

bit PCM-encoded signal values. The signal was available on the

FPGA programmable logic region as a stream with valid/ready

handshaking from where it should be moved to an on-chip

memory component so that it could be processed by the DNN

accelerator device.

The device that implements the pocl.io.stream.in.i8 kernel

must already have the streaming interface connected to its

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

datapath. The single argument of the kernel is the pointer to

the output memory address that the data must be written to.

The first dimension of the work-item range was used to define

how many consecutive items should be moved. This makes the

first device to be very similar to typical stream-to-memory-

mapped DMA components. Themain difference is the hardware

interface (Leppänen et al., 2021) it implements so that it can be

connected to PoCL and controlled just like any OpenCL device

by enqueuing built-in kernels. The device’s hardware description

was created with Vitis HLS tools starting from C language input,

which demonstrates that the built-in kernel implementations

can be generated with vendor tools, but used as part of vendor-

independent abstraction.

6.2.2. Programmable DNN processor

The DNN accelerator was implemented with the OpenASIP

toolset by Jääskeläinen et al. (2017). The DNN accelerator was

a very small soft processor running on the FPGA fabric. The

device had an associated firmware that implemented the kernels

required by the application. The firmware was modified by

hand to use assembly intrinsics. The proposed abstraction layer

makes it possible to utilize the custom intrinsics since the kernel

functionality is hidden under the built-in kernel abstraction. If

the kernels were compiled as OpenCL C kernels, the source code

for them would have had to be modified specifically for this

device, which would have reduced the portability of the OpenCL

program by making it non-compliant to the standard.

The network did not fit into the limited scratchpad memory

of the light-weight DNN accelerator at once. Therefore, the

network was executed layer by layer, with the host CPU

managing the intermediate and coefficient buffers such that the

device memory did not run out.

The accelerator ran the inference for the entire network

every 500ms to produce a single classification result. The

host CPU then took the vector of class probabilities from

the OpenCL output buffer, accumulated it together with five

previous frames classification results, and displayed the final

classification estimate to the console.

The audio classification demonstrator shows that the

proposed abstraction layer can be used to create complete

applications with multiple devices working in parallel

processing real-world data. The well-defined kernel semantics

of the abstraction layer was observed to serve as a clear

synchronization point between the software engineer working

on the application and the hardware engineer creating the

built-in kernel implementations.

6.3. Object detection demonstrator

The third case study demonstrates the ability of the proposed

abstraction to describe complete task pipelines consisting of

FIGURE 6

Object detection demonstration setup. The user program

defines the application in standard OpenVX and TVM library calls,

which internally share the OpenCL context with each other.

multiple domain-specific frameworks and ways to execute them

on heterogeneous platforms consisting of multiple device types.

The application chosen for demonstration was an object

detection network YOLOv3-tiny (Redmon and Farhadi, 2018).

The network finds bounding boxes for objects in an image

and classifies them to belong to a specific category. The

complete demonstration application also included an image pre-

processing step to show how the proposed abstraction enables

efficiently adding pre- and post-processing kernels to neural

network-based applications.

The pretrained neural network expects the input data to be

in the same format as was used in its training. The YOLOv3-

tiny expects a 3 × 416 × 416 tensor with a 32-bit floating-point

number in range 0.0–1.0. Therefore, conversion from integer

storage format is required. The input image has to be rescaled

and necessary padding has to be added to the image edges, so

the aspect ratio of the image is preserved. TVM implements the

preprocessing steps with OpenCV and NumPy-python libraries.

However, having the entire application described as a task

pipeline targeting a common acceleration backend would be

beneficial due to the opportunities related to efficient data

sharing and parallelization.

Therefore, for this case study, the pre-processing step was

created as a OpenVX (Khronos, 2022) program. A minimal

OpenVX implementation was created that implements the API

calls needed in the demonstrator. The OpenCL interoperability

extension of OpenVX was utilized to allow passing an

external OpenCL context, command queues and buffers to

the OpenVX implementation. The OpenVX implementation

used OpenCL memory objects as backing storage and

implemented the OpenVX node functions as built-in kernel

calls to OpenCL command queue. For this demonstrator, two

new built-in kernels khronos.openvx.scale_image.bl.u8 and

khronos.openvx.tensor_convert_depth.u8.f32 were added to the

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

TABLE 3 Execution times for YOLOv3-tiny object detection neural

network.

Pre-processing Pre-processing Neural network

method time (ms) time (ms)

TVM (CPU) 4.9

OpenVX (GPU) 2.1 33

OpenVX (CPU) 2.3

The pre-processing consisted of rescaling the 768× 576 8-bit RGB image to a 416× 416

image using floating-point format. TVM’s pre-processing used OpenCV and NumPy.

The OpenVX pre-processing used the proposed built-in kernel abstraction through

the OpenVX programming model. The measurements were performed with NVIDIA

Quadro K620 GPU and i7-6700 CPU. The neural network execution time was measured

to be the same for all of these methods.

built-in kernel registry. The semantics of the built-in kernels

are very close to the similarly named functions of the OpenVX

standard. The difference is the additional specialization

parameters that are hardened in the built-in kernel specification.

It is possible to add support for other OpenVX datatypes

and specializations inside the OpenVX implementation at the

point when the built-in is chosen. The built-in kernels were

implemented using the software fallback-mechanism described

in Section 4.1, which means that they were described as OpenCL

C source code, and the OpenCL implementation then compiled

the description at run time for the device user is asking for. This

made it possible to execute the preprocessing built-in kernels on

either CPU or GPU with minimal user effort.

For this demonstrator, the pre-trained YOLOv3-tiny

network was executed in TVM’s OpenCL runtime and the

convolution operations were replaced with the same built-in

kernel pocl.dnn.conv.2d.nchw.f32 as was done in the earlier

demonstrator in Section 6.1. The network was then executed on

NVIDIA Quadro K260 GPU using PoCL’s CUDA driver similar

to the semantic segmentation demonstrator. TVM’s OpenCL

runtime was modified to be able to utilize externally created

OpenCL contexts, command queues and input buffers. This way

both the OpenVX and TVM could internally push commands

to a common OpenCL command queue.

The top-level user application in Figure 6 for this

demonstrator was a Python program. The user application

managed the OpenCL context, command queues, and the

intermediate data buffers. It used OpenVX API to execute

the pre-processing commands and called the TVM library to

execute the neural network. Figure 6 reflects the goal stated in

the Figure 2, where now the two middleware frameworks used

the abstraction layer as their target and the execution platform

consisted of devices from different vendors.

The runtime results in Table 3 show that the proposed

method was able to execute the pre-processing faster than

the TVM’s current method utilizing OpenCV and NumPy.

This is likely due to using a lower-level parallel programming

method that minimized unnecessary data copies. The GPU

pre-processing is slightly faster than the CPU pre-processing

due to the more data-level parallel structure of the GPU.

However, it would be possible to get the best system-level

performance by creating an interleaved task pipeline where the

CPU would perform the pre-processing while GPU would be

busy computing the previous frame’s detection.

The execution time of the neural network was the same

for all the methods in Table 3. Even though the GPU device

performing the pre-processing leaves the processed input image

in the GPU memory, the transfer time of the input image is not

visible in the inference time. This is due to the relatively small

size of the image (2.1 MB).

The evaluation framework supports the easy addition of

more OpenVX kernels for pre-and post-processing. Thus,

this demonstrator showed how the proposed abstraction

can be targeted simultaneously by multiple domain-specific

frameworks. Additionally, this example demonstrated how the

proposed abstraction can execute in heterogeneous platforms

with the CPU performing the pre-processing and the GPU

accelerating the neural network kernels. The device can be

chosen using the standard OpenCL API and the cross-vendor

OpenCL platform handles inter-device functionality.

7. Conclusions

Heterogeneous computing platforms have potential for

highly efficient execution of different parts of applications,

thanks to the specialized hardware. However, programming

them efficiently still often requires vendor-specific approaches,

which limits the portability of the applications. Abstractions

have been proposed in the past, but they still lack especially

on the cross-vendor portability aspects, leading to duplication of

efforts when engineering the heterogeneous software stacks.

This article proposed a software abstraction that is based

completely on the current open OpenCL standard. The

proposed abstraction leans on the idea of a shared centralized

built-in kernel registry that includes built-in kernel semantics to

facilitate cross-vendor implementation. In order to demonstrate

the abstraction with a cross-vendor OpenCL implementation,

the abstraction was implemented on PoCL, an open-source

OpenCL implementation. The performance portability of

the built-in kernels was demonstrated by implementing the

same convolution kernel on CPU and GPU devices utilizing

commercial neural network acceleration libraries. The overhead

of the built-in kernel abstraction was shown to have minimal

impact on the execution time. Additionally, the ability to

use the proposed abstraction as a target of multiple input

languages was shown with the case study combining OpenVX

and TVM both utilizing the proposed abstraction with portable

OpenCL API. Benefits of the built-in kernels approach were also

identified for utilizing fixed-function and soft processor-based

devices implemented on an FPGA fabric. The case study also

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

demonstrated cooperative execution between multiple OpenCL

devices on a single FPGA programmable logic fabric to execute

full task pipelines.

In order to stimulate adoption and further development

of the abstraction layer, we will merge the example built-in

kernel implementation facilities to the upstream PoCL project

and publish the built-in kernel registry as a community-driven

open source repository. In the longer term, we aim to refine

the registry to the point that it can be integrated to official

Khronos open source repositories. Technical plans for the future

include adding support for more domain specific languages on

top with general lowering methods and further streamlining the

FPGA support.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

TL developed the support for built-in kernel abstraction to

the OpenCL implementation and created the example built-in

kernels used for evaluation for GPU, CPU, and FPGA devices.

AL created the proof-of-concept integration of the abstraction

to TVM (Section 5) and prepared the evaluation applications for

Section 6 and ran themeasurements. PJ contributed significantly

to the conception and the design of the study. All authors wrote

sections of the manuscript and contributed to its revision, read,

and approved the submitted version.

Funding

This work was supported by European Union’s Horizon

2020 research and innovation programme under Grant

Agreement No. 871738 (CPSoSaware).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning On Heterogeneous Systems. Available
online at: tensorflow.org.

Abdoli, S., Cardinal, P., and Lameiras Koerich, A. (2019). End-to-end
environmental sound classification using a 1D convolutional neural network.
Expert Syst. Appl. 136, 252–263. doi: 10.1016/j.eswa.2019.06.040

AMD (2022). The AMD ROCm 5 Open Platform for HPC and ML
Workloads. Available online at: https://www.amd.com/system/files/documents/
the-amd-rocm-5-open-platform-for-hpc-and-ml-workloads.pdf

Bai, J., Lu, F., and Zhang, K. (2019). ONNX: Open Neural Network Exchange.
Available online at: https://github.com/onnx/onnx

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., et al. (2015). MXNet:
a flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv: 1512.01274 [Preprint]. Available online at: https://arxiv.org/abs/
1512.01274

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., et al. (2018). “TVM:
an automated end-to-end optimizing compiler for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18) (Carlsbad,
CA), 578–594.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., et al. (2014). cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759. doi: 10.48550/ARXIV.1410.0759

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
et al. (2016). “The cityscapes dataset for semantic urban scene understanding,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(Las Vegas, NV), 3213–3223.

Eric, Z. (2020). Fastseg. Available online at: https://github.com/ekzhang/fastseg
(accessed May 13, 2022).

Floch, A., Wolinski, C., and Kuchcinski, K. (2010). “Combined scheduling and
instruction selection for processors with reconfigurable cell fabric,” in ASAP 2010
- 21st IEEE International Conference on Application-specific Systems, Architectures
and Processors (Rennes), 167–174.

Galoppo, N., Hansen-Sturm, C., Guo, Y., and Ashbaugh, B. (2016). OpenCL
Extension cl_intel_accelerator. Available online at: https://www.khronos.org/
registry/OpenCL/extensions/intel/cl_intel_accelerator.txt

Hahnfeld, J., Terboven, C., Price, J., Pflug, H. J., and Müller, M. S. (2018).
“Evaluation of asynchronous offloading capabilities of accelerator programming
models for multiple devices,” in Accelerator Programming Using Directives, eds
S. Chandrasekaran and G. Juckeland (Cham: Springer International Publishing),
160–182.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:
surpassing human-level performance on imagenet classification,” in Proceedings of
the IEEE International Conference on Computer Vision (Santiago), 1026–1034.

Henry, S., Denis, A., Barthou, D., Counilh, M.-C., and Namyst, R. (2014).
“Toward OpenCL automatic multi-device support,” in Euro-Par 2014 Parallel
Processing, eds F. Silva, I. Dutra, andV. Santos Costa (Cham: Springer International
Publishing), 776–787.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., et al.
(2019). “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (Seoul), 1314–1324.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
tensorflow.org
https://doi.org/10.1016/j.eswa.2019.06.040
https://www.amd.com/system/files/documents/the-amd-rocm-5-open-platform-for-hpc-and-ml-workloads.pdf
https://www.amd.com/system/files/documents/the-amd-rocm-5-open-platform-for-hpc-and-ml-workloads.pdf
https://github.com/onnx/onnx
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://doi.org/10.48550/ARXIV.1410.0759
https://github.com/ekzhang/fastseg
https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_accelerator.txt
https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_accelerator.txt
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Leppänen et al. 10.3389/fcomp.2022.945652

HSATM Foundation (2018).HSA Platform System Architecture Specification v1.2.
HSATM Foundation

Intel (2021). OneAPI Specification 1.1. Available online at: https://spec.oneapi.
io/versions/latest/oneAPI-spec.pdf

Jääskeläinen, P., Korhonen, V., Koskela, M., Takala, J., Egiazarian, K., Danielyan,
A., et al. (2019). Exploiting task parallelism with OpenCL: a case study. J. Signal
Process. Syst. 91, 33–46. doi: 10.1007/s11265-018-1416-1

Jääskeläinen, P., Sanchez de La Lama, C., Schnetter, E., Raiskila, K., Takala, J.,
and Berg, H. (2015). pocl: a performance-portable OpenCL implementation. Int. J.
Parall. Programm. 43, 752–785. doi: 10.48550/arXiv.1611.07083

Jääskeläinen, P., Viitanen, T., Takala, J., and Berg, H. (2017).HW/SW Co-Design
Toolset for Customization of Exposed Datapath Processors (New York, NY: Springer
International Publishing), 147–164.

Katel, N., Khandelwal, V., and Bondhugula, U. (2022). “MLIR-based code
generation for GPU tensor cores,” in Proceedings of the 31st ACM SIGPLAN
International Conference on Compiler Construction, CC 2022 (New York, NY:
Association for Computing Machinery), 117–128.

Khronos (2021). SPIR-V specification 1.6. Available online at: https://www.
khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html

Khronos (2022). The OpenVX Specification 1.3.1. Available online at: https://
www.khronos.org/registry/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_
3_1.html

Khronosr OpenCL Working Group (2020). The OpenCLTMSpecification.
Khronosr OpenCLWorking Group.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., et al.
(2021). “MLIR: scaling compiler infrastructure for domain specific computation,”

in 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO) (Seoul), 2–14.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1, 541–551.

Leppänen, T., Mousouliotis, P., Keramidas, G., Multanen, J., and Jääskeläinen,
P. (2021). “Unified OpenCL integration methodology for FPGA designs,”
in 2021 IEEE Nordic Circuits and Systems Conference (NorCAS) (Oslo),
1–7.

Li, M., Liu, Y., Liu, X., Sun, Q., You, X., Yang, H., et al. (2021). The deep
learning compiler: a comprehensive survey. IEEE Trans. Parall. Distrib. Syst. 32,
708–727. doi: 10.1109/TPDS.2020.3030548

Linaro (2021). TOSA 0.23.0 Specification. Available online at: https://developer.
mlplatform.org/w/tosa/

Luebke, D. (2008). “Cuda: scalable parallel programming for high-
performance scientific computing,” in 2008 5th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (Paris),
836–838.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: An Imperative Style, High-Performance Deep Learning Library. Red Hook,
NY: Curran Associates Inc.

Reddy, S. R. K., Wang, H., Bourd, A., Golikeri, A., and Calidas, B.
(2022). “OpenCLML integration with TVM,” in International Workshop on
OpenCL (Bristol), 1.

Redmon, J., and Farhadi, A. (2018). YOLOv3: an incremental improvement.
arXiv: 1804.02767 [Preprint]. Available online at: https://arxiv.org/abs/1804.02767

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2022.945652
https://spec.oneapi.io/versions/latest/oneAPI-spec.pdf
https://spec.oneapi.io/versions/latest/oneAPI-spec.pdf
https://doi.org/10.1007/s11265-018-1416-1
https://doi.org/10.48550/arXiv.1611.07083
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html
https://www.khronos.org/registry/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html
https://www.khronos.org/registry/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html
https://doi.org/10.1109/TPDS.2020.3030548
https://developer.mlplatform.org/w/tosa/
https://developer.mlplatform.org/w/tosa/
https://arxiv.org/abs/1804.02767
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

