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Abstract—Soft cores are used as flexible software pro-
grammable components in FPGA designs. Transport-Triggered
Architecture (TTA) is interesting for this use due to its scala-
bility, modularity, simplified register files (RF) and fine-grained
compiler control, but has the drawback of wider instructions
and additional multiplexing due to extensive RF port sharing.
In this paper we evaluate the trade-offs of TTA in soft core use
in comparison to its closest multi-issue relative, the traditional
“operation triggered” VLIW architecture, as well as the Xilinx
MicroBlaze, a popular single-issue soft core.

For the compared alternatives running CHStone benchmarks,
the dual-issue TTA with a monolithic RF provides the best
performance/area trade-off. Its program size increase varies from
21% to 49% in comparison to the VLIW programming model.
However, synthesis results on a Xilinx Zynq Z7020 device show
that the dual-issue TTA requires 67% of the resources while
providing up to 88% improvement in execution time compared
to VLIW. Partitioning the RF is found beneficial for both VLIW
and TTA programming models, resulting in a very similar FPGA
resource usage, but with TTA model improving execution time
up to 77%. As a single-issue soft core, we measured execution
time improvements up to 173% when comparing with the TTA
approach against the performance-optimized MicroBlaze with
similar datapath resources.

I. INTRODUCTION

Soft cores in FPGA-based system designs are typically used
to run serial control oriented parts of the application, often
on top of full blown general purpose operating systems. This
trend can be seen in the FPGA-optimized soft cores offered
by the major FPGA vendors: The Nios II Gen 2 soft cores
from Altera (Intel) [1] and the MicroBlaze from Xilinx [2]
are general purpose scalar RISC cores with capabilities tuned
to running complex operating systems such as Linux.

With the introduction of FPGA system-on-a-chip (SoC)
devices that include hard processor cores that are better-
equipped to run general purpose operating systems, the number
of use scenarios for the general purpose soft cores from the
FPGA vendors is reduced. However, the overall benefits of
soft core based designs are not limited to general purpose
or tightly coupled accelerator control use cases. If the soft
core template is configurable enough and provides a different
degree of fine grained parallelism to improve performance, the
designs can be useful also for performance critical “number
crunching” parts of implementations. In that case, the ben-
efits of a software based control over fixed function, state
machine based designs are seen in easier resource sharing

across various algorithms and algorithm phases in the imple-
mented application. Ideally, designers can reap the efficiency
benefits of custom logic while retaining the flexibility and
speed of development of a software system. Up to 70% gate
count reductions have been reached with application-specific
instruction-set processor (ASIP) based soft cores in large
FPGA-based designs [3].

Exploiting parallelism is crucial in performance critical soft
core designs where the achievable per-operation delays are
typically much higher than with ASIC based implementa-
tions. A form of fine-grained parallelism, instruction-level
parallelism (ILP) is a means to improve performance of
the application within a single thread by issuing multiple
program operations concurrently. Because dynamic multi-issue
out-of-order instruction scheduler hardware incurs rather high
resource costs [4], it is popular to choose a variation of the
Very Long Instruction Word (VLIW) paradigm [5] for multi-
issue soft core use.

Instead of extracting parallel instructions during execution,
VLIW relies on the compiler to issue multiple instructions
concurrently. However, VLIW suffers from the register file
(RF) complexity bottleneck; for each parallel function unit
(FU), an RF in the datapath must typically support two parallel
reads and a parallel write. VLIW also requires hardware logic
to control value forwarding to avoid the RF latency in depen-
dent operation chains. Complex RFs and the forwarding logic
consume precious resources and can reduce the achievable
clock frequency.

Transport-Triggered Architecture (TTA) is an “exposed dat-
apath” processor design style which has been proposed as a
scalability optimization for VLIW processors. TTA exposes
additional control by letting the programmer define the data
movements in the interconnection network. This helps to
reduce RF complexity and avoid forward resolution hard-
ware [6], [7], but leads to less dense instructions, which has
been identified as the main drawback of TTA. In addition, the
extensive port sharing that is common in TTA designs adds
complexity to the IC in form of additional multiplexers. Port
sharing can also add penalty to the software side due to the
need to serialize simultaneous accesses to the same RF when
not enough parallel ports are not available, which is a problem
also with partitioned RF VLIW designs.

Previously, TTAs have been studied in the context of ASIC



implementation with soft core use receiving little attention.
FPGA presents different challenges and tradeoffs than ASIC
technologies due to its predefined set of coarser grain resources
and routing paths. This paper presents an evaluation of the
benefits and drawbacks of the TTA programming model when
used for both multi-issue and single-issue soft core designs.
We report our findings in terms of FPGA resource usage,
instruction memory impact, and the overall execution perfor-
mance.

The rest of this paper is organized as follows. Section II
gives an overview of the related work. Section III discusses
the TTA approach with focus on details relevant to FPGA
implementation. Section IV describes our experimental setup,
and Section V presents the results. Finally, Section VI con-
cludes the paper and outlines our plans for future work.

II. RELATED WORK

Many VLIW-based soft cores have been proposed in the
past [8]–[10]. In [11], the authors acknowledge the RF to
be a major bottleneck for VLIWs in FPGAs and propose
improvements to FPGA fabrics to alleviate it. Various other
approaches attempt to tackle the multiported RF bottleneck
at the implementation or architecture level. These techniques
rely on replication of data to multiple block RAMs and can
require more than ten times the RAM bits in the FPGA imple-
mentation per each useful storage bit [12], [13]. Other FPGA-
specific hardware techniques to optimize different aspects of
soft-core VLIW processors, such as using SIMD FUs, are also
presented in [14].

In this paper, we approach the FPGA soft core optimization
challenge from the programming model aspect. Using a soft
core template with a fine grained programming model, some
instruction memory density is traded for simplifications in the
general purpose RFs and additional software optimizations.
VLIW-SCORE [15] resembles the idea to some extent. It is
a VLIW variant with separate operand RFs attached to each
input of each of the FUs. The organization is similar to the
clustered RF approach which can be supported with both
VLIW and TTA designs, but leads to additional code par-
titioning complexity in the compiler. The paper proposes the
architecture for a specific programming language to accelerate
SPICE simulations and no intentions for using it as a target
for general purpose programming languages such as C were
discussed.

The TTA processor paradigm was introduced in the 1970s
with a control processor use case [16], [17]. The foundational
ideas underlying the VLIW improvement were introduced later
by Corporaal et al. [18] who conducted extensive research
on the benefits of data transport programming in scalable
statically scheduled processor architecture design. However,
TTA has not been systematically optimized and evaluated for
soft core use before. The closest related work to this paper
is our previous publication [19] where we describe the open
source TCE toolset [20] for customized TTA-based soft core
design. However, the publication did not evaluate the important
aspects for the soft core use case extensively, but merely

demonstrated the validity of the design flow in rapid custom
soft core generation accompanied with initial results.

Since GPGPU programming became more mainstream,
there has also been interest to study “GPU-like” soft cores
to support programming models targeting GPGPUs on FP-
GAs [21]. We consider the scope of these works at a higher
design level than the one of this paper; the TTA soft cores
under investigation can be used to design components that
can act either as processing elements (PE) or compute units
in OpenCL terminology [22]. The PEs can be arranged to
a “GPU-like” single-instruction multiple threads data parallel
execution organization. This is something we plan to look into
in the near future.

III. TRANSPORT-TRIGGERED ARCHITECTURES

TTA exposes the datapath interconnection network (IC) to
the programmer. In this so called data transport programming
model, programs are defined as sequences of instructions each
declaring a list of parallel moves, which cause the processor to
perform data transfers between ports of datapath components
such as FUs and RFs. Actual program functionality such
as arithmetic or memory operations are triggered as a side
effect when transporting operand data to designated trigger
ports of the FUs. Fig. 1 presents the programmer’s view of
an example TTA processor with five transport buses which
allow a maximum of five simultaneous data transports per
instruction.

Because the TTA programming model is very fine grained,
its instruction format requires only a little hardware logic
to decode. The format resembles the ones in horizontal mi-
crocode programmed architectures [23]. The cost of encoding
the instruction at a low abstraction level is reduced code den-
sity, which can be improved with instruction compression [24]
and sensible instruction memory hierarchy design.

A. Interconnection Network

In the TTA variant we consider in this paper, the IC consists
of buses and sockets. Sockets are used to connect ports of FUs
and RFs to the move-controlled buses. The socket concept and
a lower level implementation view is illustrated in Fig. 2.

In TTAs, buses with multiple writers and readers are com-
mon as they can sometimes reduce wiring. However, the
programming model does not require bus sharing in any
way. When shared buses are not optimal for the underlying
implementation technology or use case, less connected and
even point-to-point connections can be used similarly to other
architectures. Therefore, when judging the complexity of TTA
IC, a key point to realize is that one can design a VLIW or
a coarse-grain reconfigurable array with their usual connec-
tivity and resources, and then expose the connections to the
programmer to convert it to a TTA. In fact, an interesting
optimization starting point for a TTA design is a standard
VLIW with an IC that has a point-to-point bus per parallel
FU to RF port connection and optional RF forwarding paths
between FU ports to avoid the RF write back latency. The
length and complexity of the wiring required by the IC then
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Fig. 1: Example of a TTA processor. In TTA, data transports between components are explicitly programmed. The example instruction defines an instruction
with three moves controlling data transports in three buses out of the five. The instruction performs an integer summation of a value loaded from a data
memory with a constant while simultaneously storing a previously computed value to memory.

depends mostly on the size of the processor design; how many
FUs need to be connected to other RFs and how far apart they
end up being laid out on the implementation medium.

B. Function Units and Forwarding

TTA FUs can contain a mix of operations with complexity
varying from simple scalar arithmetics to vector processing on
customized data types. The FUs can be pipelined, multi-cycle,
single-cycle and even implement complex resource sharing
between multiple operations. For FU pipelining, the evaluated
variant of TTA uses semi-virtual time latching [18] where the
pipeline is controlled with valid bits as depicted in Fig. 3b.
The pipeline starts an operation whenever there is a move to
the trigger port, i.e., when the o load signal is activated. The
result can be read from the result register after the internal
latency of the FU passes, but the read can be also postponed
up until the time the old result is replaced by a result from a
new operation.

TTAs replace hardware based forwarding logic with soft-
ware bypassing, which allows the program to move data
between FUs without accessing or even referencing a general
purpose register file [6], [7]. It is also possible to utilize the
(optional) storage in FU input ports by omitting an operand
move in case the same data was already moved to the port.
In addition to these TTA-specific optimizations, the general
ability to control the timing of the operand and result data
transports alleviates the parallel register file access pressure.

C. TTA as an Optimized VLIW

The use of the TTA paradigm to provide a more scalable
alternative for traditional VLIW architectures has been studied
extensively [18]. A key result is that TTAs can support more
instruction-level parallelism with simpler register files than
“traditional” VLIWs thanks to the additional programming
freedoms. In VLIWs, the total number of RF ports must be
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Fig. 3: Function units in the considered TTA: a) symbolical representation
and b) implementation illustration diagram.

scaled according to the best-case issue rate of the processor:
Each parallel FU must be able to read their operands and
write their results to an RF at the same cycle. For example,
in [6] it was found that by utilizing the TTA programming
model, two parallel operations can be sustained by using only
a two-ported RF, and an average of 3.6 parallel operations
supported by a six-ported RF, whereas a traditional VLIW
requires at least four read/two write and eight read/four write
ports, respectively.

In order to illustrate how the TTA approach can simplify
VLIW designs, the series of pictures in Fig. 4 demonstrate
an example of a 4-issue VLIW that is optimized step-by-
step to an application (domain) customized TTA datapath.
In Fig. 4a the internals of an example VLIW datapath are
presented as a TTA. The interconnection network contains the
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(a) Original 4-issue monolithic-RF VLIW data-
path.

(b) Register file port count reduced.

(c) Bypass network connectivity pruned. (d) Some of the buses merged.

Fig. 4: From VLIW to an optimized TTA. ALU = Arithmetic-Logic Unit, CTRL = Control Unit, BOOLRF = BOOLean Register File (predicates), LSU =
Load-Store Unit, MUL = MULtiplication unit, and RF = Register File.

same connections and the RF has the same number of ports
as in an “operation triggered” VLIW with a full RF bypass
(forwarding) network.

Fig. 4b shows a TTA with the general purpose RF simplified
without sacrificing issue rates. By utilizing the additional
programming freedoms and the storage in the FU input or
output, there is less need to perform concurrent accesses to
the RF.

D. Register File Partitioning

Partitioning a single, many-ported RF to multiple smaller
RFs with fewer ports helps to alleviate the RF complexity
problem for both VLIW and TTA datapaths. The drawback
of splitting RFs is that when too many operations require
operands from the same register file, it forces serialization of
operations that could be otherwise parallelized. This puts more
pressure to the compiler code generation to assign variables
efficiently to the RFs. However, it should be noted that while
VLIW also supports splitting the RFs to reduce port counts
per RF, port counts in the split RFs can be made even smaller
with the TTA approach [7]. Simplifying and splitting RFs to
use fewer ports greatly simplifies their implementation, but
requires extra multiplexing in the IC. It is important to consider
this tradeoff when implementing a VLIW or TTA in FPGA.

In the TTA case, as the IC is explicitly visible to the pro-
grammer, it is typical that the connectivity is pruned according
to a single application or an application domain. Fig. 4c
presents the design after underutilized bypass connections are
pruned, and Fig. 4d after merging buses with connections
that are rarely utilized concurrently. IC optimization also
heavily affects the TTA instruction word width as the size
is proportional to the number of buses (move slots in the
instruction) and the binary logarithm of connections in each

bus (source and destination fields in move slots). Naturally any
application-specific tailoring always means reduced flexibility,
which can result in performance reduction for other workloads.
TTAs can reduce this negative impact by the additional degrees
of programming freedom as can be seen later in the presented
results.

IV. EXPERIMENTAL SETUP

The goal for our evaluation was to quantify the benefits and
drawbacks of TTAs in comparison to traditional “operation
triggered” in-order architectures starting from the smallest
useful design up to multi-issue machines. For the single-
issue comparison, we designed a small 3-bus TTA, m-tta-1,
comparable to a 32b scalar RISC processor. The processor
includes an integer datapath with a load-store unit (LSU), an
arithmetic-logic unit (ALU) and 32 general purpose registers.
This configuration was compared against two MicroBlaze
cores with 3- and 5-stage pipelines, later referred to as mblaze-
3 and mblaze-5. In order to keep their capabilities comparable
to the single-issue TTA, the MicroBlaze configurations were
set to their minimum, with the exception of adding a 32-bit
multiplier that is optional. For compilation of the benchmark
applications, the Xilinx IDE with GCC 6.2.0 was used with
the optimization flag -O3.

For the multi-issue comparison, we started with a two-issue
machine with the same function units as the m-tta-1, but with
resources to issue both a memory operation and arithmetic
operation in parallel. This base datapath was extended to a
three-issue machine by adding a second ALU. In order to
focus on the effects of the programming model instead of
the choice of operations, we included only the minimal set
of FU operations required by the C compiler used in the
experiments and an integer multiplication operation to avoid
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TABLE I: Integer operations and their latencies (in parenthesis) included in
the FUs of the evaluated base datapath. The memory operations are all to
absolute addresses.

ALU
add (1) +
and (1) &
eq (1) =
gt (1) signed >
gtu (1) unsigned >
ior (1) |
mul (3) ∗
shl (2) <<
shr (2) arithmetic >>
shru (2) logical >>
sub (1) −
sxhw (1) sign extend

16b
sxqw (1) sign extend 8b
xor (1) ∧

LSU
ldw (3) load 32b
ldh (3) load 16b and sign extend
ldq (3) load 8b and sign extend
ldqu (3) load 8b and zero extend
ldhu (3) load 16b and zero extend
stw (0) store 32b
sth (0) store 16b
stq (0) store 8b

excessive software emulation code for integer multiplications
confusing the results. The 32b operations and their latencies
included in the two fully pipelined FUs are listed in Table I.
There is also a control unit with absolute jump and return
address saving call operations.

For the multi-issue measurements, we produced various
design points of interest with the same FUs. The general
purpose register counts for the architectures were chosen to
avoid underutilization of the distributed RAM blocks available
in the target platform which had a minimum size of 32
registers.

Monolithic VLIW (m-vliw-2/3) represents monolithic RF
VLIW processors. It has all the 32b registers in a single
register file. The dual-issue machine (m-vliw-2) has a
64x32b RF with two write ports and four read ports,
and the three-issue one (m-vliw-3) has a 96x32b RF with
three write ports and six read ports. Each FU output and
input has a dedicated connection to a port in the RF.

Monolithic TTA (m-tta-2/3) are TTA alternatives of m-vliw-
2/3. The difference is that the port complexity of the
monolithic RF is reduced by relying on TTA specific
optimizations. m-tta-2 has a single RF with one read and
one write port and m-tta-3 a single RF with two read and
one write port, but requires more multiplexing in the IC
due to the shared ports.

Partitioned VLIW (p-vliw-2/3) are versions of m-vliw with
the monolithic RF split to two RFs for p-vliw-2 and to
three RFs for p-vliw-3, each with half or a third of the
ports. Each individual register file has 32 registers, so the
total register count and the FU connectivity of these RFs
was identical.

Partitioned TTA (p-tta-2/3) are TTA versions of p-vliw-2/3
with similarly partitioned RFs, but with only one read
and one write port in each RF.

Bus merged TTA (bm-tta-2/3) is like p-tta-2/3, but it has its
buses merged similarly to what was shown in Fig. 4d.
These variations showcase the instruction width and per-
formance impact from bus merging [25]. The IC pruning
was not done per benchmark application, but aiming for

the flexibility to execute all the benchmark programs
efficiently.

TTA-Based Co-design Environment (TCE [19]) was used
to design the architecture variations. TCE is a design toolset
for customizing TTA processors. It can also generate RTL for
FPGA or ASIC synthesis, and has both a C compiler [26]
and an instruction-cycle accurate architecture simulator. In
addition to supporting TTA code generation (which can be
considered a superset of VLIW compilation), the compiler
also supports turning off the additional TTA programming
freedoms, which allowed us to produce cycle counts for the
VLIW cases with minimal differences in the compilation
chain. The CHStone [27] benchmark set was used as the test
workload, The SoftFloat cases were not included due to lack
of double precision float support in TCE.

TCE produces an instruction encoding automatically for
the TTA alternatives. However, as TCE does not currently
support generating a VLIW encoding and a supporting decoder
hardware, we designed the instruction encoding manually for
the VLIW machines with the following rationale: Each VLIW
issue slot takes the form of an opcode followed by two source
fields and a destination field. Both issue opcodes require 4 bits.
A destination field is simply a register address, but a source
field requires an extra bit to select an immediate value. The 2-
issue architectures require 6 bits per register address, while the
3-issue architectures require 7 bits. The resulting instruction
format is 44 bits wide for 2-issue VLIW machines, and 73
bits for 3-issue ones.

For FPGA synthesis we utilized a Xilinx Zynq Z7020 (speed
grade -1) FPGA device and Vivado 2017.2 tools. The RTL for
the architectures generated by TCE was synthesized first with
hierarchical synthesis at 100 MHz to get resource utilization
breakdowns and separately with a flattened hierarchy to find
the maximum clock frequencies. No area constraints were used
for the synthesis or place-and-route in this experiment.

Register files were implemented using distributed RAM
utilizing a design proposed in [28]. The RFs with fewer ports
could use the memory primitives directly, but in the case of
m-vliw with its multiple write ports, additional bookkeeping
logic and multiplexers were needed.

V. RESULTS

A. Program Size

Table II summarizes the instruction width and program size
statistics for the tested alternatives. The wider instructions of
TTA do not directly translate to program image size because
often the TTA schedules are shorter due to the additional
compiler optimizations. For example, when comparing the
monolithic RF cases, the instruction width of TTA is almost
double of the VLIW’s, but in these benchmarks the program
image size increase is only from 21% to 49%. The relative
size of MicroBlaze and TTA program image sizes vary more
extremely depending on the benchmark, with TTA image sizes
between 32% and 248% of the corresponding MicroBlaze
program. In blowfish, for example, the considerably smaller
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TABLE II: Instruction widths and total program image sizes, reported relative to MicroBlaze (the 3 and 5 stage versions are binary compatible) in the 1-issue
case, and to m-vliw-2/3 in the multiple-issue cases.

instr. width adpcm aes bfish gsm jpeg mips motion sha
1-issue

mblaze 32b 122kb 202kb 177kb 99kb 299kb 55kb 97kb 190kb
m-tta-1 43b (1.34x) 1.32x 1.10x 0.54x 1.42x 2.48x 0.89x 0.83x 0.32x

2-issue
m-vliw-2 48b 170kb 262kb 114kb 159kb 876kb 55kb 94kb 69kb
p-vliw-2 48b (1.00x) 0.98x 1.01x 0.99x 1.01x 1.00x 1.01x 1.10x 1.03x
m-tta-2 81b (1.69x) 1.47x 1.29x 1.23x 1.49x 1.31x 1.43x 1.28x 1.21x
p-tta-2 83b (1.73x) 1.44x 1.37x 1.38x 1.48x 1.38x 1.52x 1.34x 1.28x
bm-tta-2 66b (1.38x) 1.14x 1.05x 1.10x 1.24x 1.11x 1.23x 1.04x 1.03x

3-issue
m-vliw-3 72b 228kb 373kb 160kb 227kb 1233kb 78kb 139kb 101kb
p-vliw-3 72b (1.00x) 1.03x 1.03x 1.05x 1.03x 1.04x 1.04x 1.05x 1.01x
m-tta-3 145b (2.01x) 1.63x 1.39x 1.32x 1.58x 1.45x 1.67x 1.21x 1.08x
p-tta-3 134b (1.86x) 1.50x 1.29x 1.22x 1.48x 1.36x 1.54x 1.10x 1.01x
bm-tta-3 99b (1.38x) 1.01x 0.86x 0.85x 1.09x 0.97x 1.17x 0.76x 0.74x

TTA program size is due to using LLVM in the TCE compiler,
which performs more aggressive whole program optimizations
than the GCC-based compiler of MicroBlaze.

An important phenomenon to observe with TTAs is that
the instructions get smaller when the IC is properly opti-
mized [25]. The bm-tta machines highlight this effect. The
benefit of IC optimization for program size is clearly visible
in the shown results: In all of the cases bm-tta produces more
compact programs than p-tta due to the reduced instruction
width, while reaching similar cycle counts thanks to the TTA
programming freedoms. In the 2-issue comparison, bm-tta-2
still has instruction memory overhead compared to the VLIW
cases, but it is at least halved in all cases compared to p-tta-2,
with a maximum increase of 24% in comparison to m-vliw-2.
In the 3-issue case, bm-tta-3 program image sizes are in some
cases smaller than with VLIW (due to the shorter schedules),
with image size varying from 74% to 117% of m-vliw-3’s.

B. Synthesis Results

The maximum clock frequencies and FPGA resource usage
are shown in Table III. The interesting subcomponents in the
VLIW comparison are RFs and IC. The other parts of the
designs are similar with the same, or only marginally differing
resource utilization. All of the alternatives used 3 DSP blocks
for the multiplier.

As was expected, the monolithic VLIW register file reduces
the clock frequency for the multi-issue cases. This is em-
phasized in m-vliw-3 where the maximum frequency drops
to 146 MHz. When using the partitioned RF, the differences
between VLIW and TTA architectures are not major, but the
TTA variants still reach somewhat higher clock frequency.
This is despite the fact that the comparison is not completely
fair to the TTA as the VLIW would include the additional
forward resolution logic and write back stages in the instruc-
tion pipeline, which might end up increasing the critical path
length.

We consider the achieved clock frequencies rather good
given the relatively low operation pipelining and the FPGA
device speed grade. It might be possible to increase the clock
frequencies by adding more pipelining, but this would move

the latencies to the software side where additional cycles are
often hard to hide with the limited ILP available in typical
programs.

The differences in clock frequencies are clearer in the
1-issue comparison against the MicroBlaze cores, with the
TTA reaching up to 28% higher clock frequency. However,
in comparison to MicroBlaze, the TTA pays for its higher
clock frequency with 15% higher logic utilization than the
performace-focused mblaze-5.

The 2-issue utilization figures are very similar outside the
RFs. The more complex RF of m-vliw-2 needs significantly
more resources, requiring 6 to 14 times more logic than the
other machines, but the difference falls to 25-50% when the
whole core is taken into account. The 3-issue numbers show
a similar pattern, with m-vliw-3 requiring 9 to 27 times more
resources for the RF, and 41% to 65% for the core.

C. Execution Performance

For soft cores aimed for acceleration, the achieved execution
performance per consumed resources is eventually the most
interesting metric. To this end, Table IV shows the instruction
cycle counts, and Fig. 5 shows the expected runtime with the
achieved maximum clock frequencies.

In terms of execution performance, the TTA alternatives
clearly outrun their VLIW counterparts as well as both Mi-
croBlaze configurations. In comparison to the MicroBlaze
cores, m-tta-1 shows speedups between 15% and 173% relative
to the speed optimized mblaze-5.

In the monolithic RF case, m-tta sees speedups between
24% and 88% compared to m-vliw in the 2-issue case and
between 20% and 202% in the 3-issue case. While the split
RF cases reach similar clock frequencies for both issue widths,
the TTA specific compiler optimizations improve performance
up to 77% for the 2-issue comparison and up to 174% for the
3-issue comparison.

D. Discussion

The relevance of the instruction memory size increase in
comparison to the achieved resource savings and the per-
formance improvements naturally depends on the case at
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TABLE III: FPGA resource usage and maximum clock frequency, reported relative to mblaze-3, m-vliw-2 and m-vliw-3 for the respective issue widths. RF
port counts are listed for TTA and VLIW architectures to highlight the relationship between RF complexity and logic utilization. LUT = look-up table, RF
= register files, LUT as RAM = LUT used by distributed RAM primitives, IC = interconnection network (numbers not available for MicroBlaze), and FF =
flip-flop.

RF read RF write fmax LUT utilization
ports ports (MHz) core RF / LUT as RAM IC FF

1-issue
mblaze-3 - - 169 715 128 / 128 - 303
mblaze-5 - - 174 (1.03x) 829 (1.16x) 64 (0.50x) / 64 - 582 (1.92x)
m-tta-1 1 1 216 (1.28x) 956 (1.34x) 24 (0.19x) / 24 265 507 (1.67x)

2-issue
m-vliw-2 4 2 176 1806 638 / 352 439 694
p-vliw-2 2 1 203 (1.15x) 1441 (0.80x) 96 (0.15x) / 96 587 (1.34x) 632 (0.91x)
m-tta-2 1 1 212 (1.20x) 1208 (0.67x) 44 (0.07x) / 44 437 (1.00x) 599 (0.86x)
p-tta-2 1 1 213 (1.21x) 1342 (0.74x) 48 (0.08x) / 48 542 (1.23x) 619 (0.89x)
bm-tta-2 1 1 212 (1.20x) 1212 (0.67x) 48 (0.08x) / 48 438 (1.00x) 590 (0.85x)

3-issue
m-vliw-3 6 3 146 3825 1970 / 1056 680 977
p-vliw-3 2 1 194 (1.33x) 2710 (0.71x) 144 (0.07x) / 144 1290 (1.90x) 923 (0.94x)
m-tta-3 2 1 167 (1.14x) 2399 (0.63x) 210 (0.11x) / 176 932 (1.37x) 895 (0.92x)
p-tta-3 1 1 197 (1.35x) 2651 (0.69x) 72 (0.04x) / 72 1290 (1.90x) 908 (0.93x)
bm-tta-3 1 1 189 (1.29x) 2320 (0.61x) 72 (0.04x) / 72 1023 (1.50x) 850 (0.87x)

TABLE IV: Cycle counts. Numbers for other architectures given in relation
to mblaze-3 or m-vliw for easier comparison.

mblaze-3 mblaze-5 m-tta-1
adpcm 283954 0.90x 0.53x
aes 84892 0.92x 0.42x
blowfish 2081752 0.89x 0.66x
gsm 33731 0.87x 0.66x
jpeg 4483651 0.91x 0.98x
mips 72650 0.97x 0.73x
motion 12670 0.97x 1.05x
sha 1843148 0.87x 0.56x

m-vliw-2 p-vliw-2 m-tta-2 p-tta-2 bm-tta-2
adpcm 142402 1.01x 0.84x 0.81x 0.82x
aes 39491 0.99x 0.77x 0.68x 0.87x
blowfish 1594847 0.95x 0.73x 0.77x 0.84x
gsm 27279 1.00x 0.74x 0.69x 0.78x
jpeg 4731551 1.01x 0.88x 0.86x 0.93x
mips 53612 1.00x 0.97x 1.00x 1.02x
motion 17362 1.05x 0.64x 0.62x 0.65x
sha 1172304 1.01x 0.71x 0.67x 0.77x

m-vliw-3 p-vliw-3 m-tta-3 p-tta-3 bm-tta-3
adpcm 133718 1.03x 0.76x 0.75x 0.67x
aes 37899 1.01x 0.59x 0.57x 0.65x
blowfish 1552318 1.01x 0.53x 0.53x 0.59x
gsm 26760 1.01x 0.57x 0.56x 0.62x
jpeg 4638550 1.03x 0.77x 0.77x 0.80x
mips 51661 1.02x 0.96x 0.95x 0.98x
motion 17154 1.00x 0.38x 0.37x 0.41x
sha 1121799 1.00x 0.45x 0.45x 0.50x

hand. Instruction memory hierarchy can be implemented with
multiple levels with the lowest level in an external memory
to store large programs. The storage in lower levels of the
memory hierarchy can be shared between several cores in case
of multicore designs. It is thus not typical to include a large
dedicated on-chip program memory per core, but to either
include a small on-chip program memory to store only the core
loops, or use a multilevel hierarchy with a small instruction
cache and a large external memory. The resource consumption
impact of a larger RF, on the other hand, is paid for each core
also in case of multicore designs.

Figure 6 shows performance and logic utilization of
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Fig. 5: Execution times according to the achieved max clock frequencies,
normalized to mblaze-3 for the 1-issue comparison, and m-vliw-2/3 for the
multi-issue comparisons.

the tested architectures to visualize overall logic efficiency.
The design points closest to origin provide the best re-
sources/performance tradeoff. The 1-issue and 2-issue TTAs
have the best efficiency for the used benchmark suite.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the first pragmatic study of the TTA
approach in comparison to the VLIW programming model
and a vendor specific scalar architecture in FPGA soft core
use. We measured the effects of the TTA programming model
to the program size, FPGA resource usage, and execution
performance. We confirmed that the main drawback of TTA
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Fig. 6: Slice utilization and performance of the tested architectures. Overall
execution time is calculated as the geometric mean of all benchmarks,
normalized to m-tta-1.

is the larger program size with up to 67% increase with a
monolithic RF multi-issue design. However, the program size
can be reduced with a careful TTA IC design, and it can be
made less significant with a multi-level instruction memory
hierarchy. The 2-issue comparison demonstrated achievable
FPGA resource savings with TTA up to 33%, and up to
39% for the 3-issue case, in comparison to datapaths with
VLIW RFs. This saving does not even include the additional
hardware required by the more complex VLIW control unit.
The speedups received from the TTA programming freedoms
were considerable, up to 88% faster than the VLIW.

In the future, we will investigate the limits of TTA in
implementing more powerful soft cores. We will study the
effects from adding more powerful FUs, more and larger RFs
and using SIMD FUs. We are also interested in various multi-
core/manycore configurations and FPGA-optimized instruction
compression methods.
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