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ABSTRACT Recently standardized millimeter-wave (mmWave) band 3GPP New Radio systems are
expected to bring extraordinary rates to the air interface efficiently providing commercial-grade enhanced
mobile broadband services in hotspot areas. One of the challenges of such systems is efficient offloading
of the data from access points (AP) to the network infrastructure. This task is of special importance for
APs installed in remote areas with no transport network available. In this paper, we assess the packet level
performance of mmWave technology for cost-efficient backhauling of remote 3GPP NR APs connectivity
“islands”. Using a queuing system with arrival processes of the same priority competing for transmission
resources, we assess aggregated and per-AP packet loss probability as a function environmental conditions,
mmWave system specifics and generated traffic volume. We show that the autocorrelation in aggregated
traffic provides a significant impact on service characteristics of mmWave backhaul and needs to be
compensated by increasing either emitted power or the number of antenna array elements. The effect of
autocorrelation in the per-AP traffic and background traffic from other APs also negatively affects the per-
AP packet loss probability. However, the effect is of different magnitude and heavily depends on the load
fraction of per-AP traffic in the aggregated traffic stream. The developed model can be used to parameterize
mmWave backhaul links as a function of the propagation environment, system design, and traffic conditions.

I. INTRODUCTION AND MOTIVATION
Today, the development of wireless systems and uncontrol-
lable growth of the interconnected devices number pushed
the community towards developing new technology which is
expected to provide support for the demands of tomorrow
outlined by IMT-2020. One of the technology enablers that
recently came to the research community attention is 5G New
Radio (5G NR) based on mmWave technology [1].

The primary goal of 5G NR is to reach the performance
characteristics of fiber-like links in wireless domain [2].
5G NR was standardized by 3GPP Rel. 15 in December 2017
and is expected to be on the chipset market soon [3]. The
non-standalone architecture leverages the LTE and 5G NR air
interfaces as well as the existing LTE core network. This con-
figuration will likely be used for early 2019 deployments [4].
Enabling such high throughput at the last mile of the network
leads to higher load at the intermediate communication links.

The fiber optic technology currently utilized for connecting
BSs to the infrastructure could handle this load in most of
the situations [5], [6]. However, there are scenarios, where
BS connectivity via fiber is not feasible, for example, islands
or ski resorts. In those cases, network operators are forced
to rely on wireless backhaul links with highly directional
antennas [7]. 3GPP standardization activities are in progress
attempting to address the requirements and challenges of
wireless backhaul links that utilize mmWave and higher fre-
quency band. Notably, the Integrated Access Backhaul (IAB)
is expected to provide improved topology management, bet-
ter route optimization, and higher spectral efficiency together
with better reliability [8].

Conventionally, the performance of the backhauling tech-
nology is studied using the tools of stochastic geometry.
These models capture channel variations induced by random
locations of communicating entities often taking simplified



assumptions about traffic load. When two or more traffic
flows from remote NR APs are aggregated over the backhaul
link, properties of individual flows, as well as dependencies,
be- tween them may drastically affect backhaul performance.
In this paper, aiming at characterizing mmWave backhaul pa-
rameters including the dedicated bandwidth, emitted power,
antenna configurations at both sides of a communications
link in complex weather and traffic conditions, we develop
a packet level performance evaluation model. The system of
interest is modeled by a queuing system with multiple au-
tocorrelated concurrent processes of the same priority com-
peting for transmission resources. The service time follows
generic distribution and is related to mmWave propagation
specifics. We analytically characterize losses experienced by
both individual flow and aggregated traffic as a function of
system parameters.

The main contributions of our study are:

• Queuing-theoretic packet level performance evaluation
model capturing specifics of mmWave system design
and channel propagation in different environmental con-
ditions and allowing to investigate aggregated and per-
AP performance metrics of interest;

• Numerical assessment of systems and channel parame-
ters allowing to maintain the prescribed values of per-
AP and aggregated traffic packet loss probabilities;

• Numerical assessment of the effect of autocorrelation
in the per-AP and aggregated traffic flows showing that
it negatively affects the associated packet loss proba-
bilities and needs to be compensated by the improved
channel capacity by increasing either emitted power
or the number of antenna array elements forming the
radiation or sensitivity patterns.

The rest of the paper is organized as follows. First, we
cover the related work on mmWave backhauling and the
queuing models with multiple arrival flows in Section II.
Further, we describe the scenario of interest in Section III.
In Section IV, we develop the performance evaluation frame-
work. Numerical assessment is carried out in Section V. The
conclusions are drawn in the last section.

II. RELATED WORK
A. MMWAVE BACKHAULING
The efficient use of by 5G NR systems naturally calls for
cost-efficient wireless backhauling matching the rates offered
at the air interface. The use of mmWave spectrum is thus con-
sidered as a logical choice for 5G backhauls. The fundamen-
tal study in [9] elaborates on the general evolutionary move-
ment towards backhauling in 5G that would enable wide-area
Gbps coverage. Similarly, the authors in [10] bring readers
attention to redesigning wireless relayed backhauls by jointly
optimizing their topology, power, and bandwidth utilization.
Authors in [11] discuss the applicability of mmWave back-
hauling for small cell heterogeneous networks and related
challenges [12] highlighting the benefits of using massive
MIMO antenna arrays with high receptivity. The study in [13]

further proposes scheduling mechanisms to improve energy
efficiency by optimizing simultaneous transmission schedul-
ing and power control for the mmWave backhauling. The
industry-driven analysis in [14] elaborates on the eligibility
of self-backhauling as a solution for a simple cost-efficient
strategy to enable dense mmWave cellular networks. The au-
thors in [15], [16] propose to use terahertz (THz) frequencies
for the 5G NR backhauling. However, the requirement for
line-of-sight (LoS) operation and inherent high atmospheric
attenuation makes long-distance backhauling in the THz
band a challenging task.

Backhaul links are also expected to aggregate traffic
streams from a number of APs into a single bundle for
further transmission over the wireless medium. Most of the
papers published so far concentrated on principle feasibility
mmWave/THz backhaul designs neglecting the properties of
aggregated traffic streams from multiple NR APs. At the
same time, the choice of the bandwidth, antenna configu-
rations, and other long-distance mmWave link parameters
heavily depend on the traffic generated users associated
with APs. The choice of the optimal operational parameters
of mmWave backhauls (bandwidth, antenna configurations,
etc.) is critical as the same spectrum is shared between
user and backhaul interfaces. Furthermore, since these traf-
fic streams can be heterogeneous in nature and may have
different service requirements, the decision on the optimal
parameters may depend on individual flow performance. Per-
source analysis of heterogeneous sources is non-trivial as the
contribution of each multiplexed source needs to be explicitly
accounted. It becomes even more challenging when individ-
ual flows are autocorrelated as it usually happens in practice.

B. QUEUING SYSTEMS WITH CONCURRENT FLOWS
Performance parameters provided to the single traffic flow in
the presence of a certain number of concurrent flows of the
same priority have not been deeply studied so far. In [17],
Beritelli et al. consider a packet multiplexor loaded with
a number of voice-over-IP (VoIP) streams each of which
was modeled using a special case of discrete-time batch
Markovian arrival process (D-BMAP). The service time was
assumed to be constant and equal to the time unit. Per-
formance parameters of interest were the mean number of
lost packets and the mean delay of a packet experienced by
individual sources. Unfortunately, only quantitative results
were provided by the authors. A similar model with infinite
buffer has been studied in [18]. Using generating functions
approach, the authors obtained the mean delay experienced
by packets emitted by a single source. The extended model
of the general case of

∑
D-BMAP/D/1/K queuing system

is given in in [19]. The authors obtained expressions for
probability mass function (pmf) of the number of lost packets
in a slot and delay of an arbitrary packet from a single source.

Fiems et al. [20] considered the model with two Markov
modulated arrival sources and generally distributed service
times. Performance parameters of interest were the packet
loss probability, consecutive packet loss probability, and
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FIGURE 1. Illustration of the considered mmWave backhaul scenario for 3GPP NR systems.

moments of the number of successfully accepted packets
from a single source between two consecutive losses. Un-
fortunately, no results for distribution functions of these met-
rics have been provided. Finally, MMPP+MMPP/Er/1/K and
MMPP+M/M/1/K models have been analyzed in [21], [22].
Motivated by applications of forward error correction (FEC)
the authors obtained per-source packet loss characteristics
including the packet loss probability and the probability that
there are exactly k losses in a sequence of n packets.

III. SYSTEM MODEL
In this section, we define the system model by introducing its
components including the deployment of interest, propaga-
tion model under different environmental conditions, antenna
and traffic models, as well as our metrics of interest. Main
notations used in this work are given in Table 1.

A. DEPLOYMENT CONSIDERATIONS
Overall, we consider a scenario with a number of edge access
points (including base stations and local service provider
APs) serving the area of interest. The APs’ traffic collected
from the conventional users tends to get aggregated at just
one link at some point. The system model of the backhaul
link we use in our study is shown in Fig. 1. This brings
us to the conventional problem of the backhaul bottleneck.
In our case, this link is a mmWave backhaul connecting
the APs with the optical fiber that, in turn, provides higher
capacity access to the global network. We assume that a
certain number of flows of the same priority, that may
themselves be traffic aggregates, share a wireless link of the
constant bit rate raw capacity. We assume that the size of
all packets is constant and equal to L bytes including all
headers. The buffering is done at the IP layer. The number of
waiting positions in the buffer is limited to (K − 1) packets.
Whenever there is at least one packet in the buffer, and the
channel is free for transmission – this packet is scheduled to
the data-link layer.

Although specific standards for mmWave backhaul links
are to be specified within the next two years by 3GPP,
they are expected to inherit most of 3GPP NR functionality.
We assume that data-link and physical layers functionality
including the set of modulation and coding schemes (MCS)
to follow 3GPP NR as described in [23].

B. PROPAGATION MODEL
The signal-to-noise ratio (SNR) in the linear scale at the
receiver located at a distance x from the AP is S(x) =
(PTGTGR)/(JBL(x)), where PT is the transmit power,GT
and GR are the antenna gains at the transmitter and receiver
sides, respectively, which depend on the antenna array, L(x)
is the path loss in linear scale, J is the Johnson-Nyquist noise
at one Hz, B is the operational bandwidth.

Following 3GPP the path loss measured in dB is [24]

LdB(x) = 32.4 + 21 log(x) + 20 log fc, (1)

where fc is operational frequency measured in GHz, and
x is the distance between AP and UE. We note that the
effect of LoS blockage that is detrimental to 3GPP NR access
links is not expected to play an important role in backhauls
dimensioning. The reason is that in most cases there is a
way to install transceivers at a certain height such that LoS
between two ends of a link is available.

Being specified for access technologies, the previous
model does not include two important characteristics inherent
for long-distance backhaul links. Overall, the backhaul link
operating at mmWave or higher frequencies could be affected
by the weather conditions [25]. Several studies so far reported
on measurements on mmWave propagation conditions under
various meteorological impairments [26], see Table 2. Note,
that the most significant impact is produced by foliage, up
to 2 dB/m. The impairments brought by heavy snow and
fog/clouds are fairly insignificant (less than 1 dB/km) for re-
alistic backhaul distances. On the other hand, rain is typically
characterized by around 10 dB/km of additional attenuation

VOLUME 4, 2016



TABLE 1. Notation used in the paper.

Notation Details

S(x) SNR at the receiver located at a distance x

PT The transmit power

GT , GR The antenna gains at the transmitter and receiver

L(x) The path at the receiver located at a distance x

J The Johnson-Nyquist noise

αT , αR HPBW angles of the radiation pattern

θ3db The 3-dB point of the radiation pattern

β Antenna array direction angle

N Number of antenna elements

∆t Slot duration

D The transition probability matrix of D-BMAP

M Number Markov modulating chain states of D-BMAP

W (n) Discrete-time batch Markovian arrival process

Y (n) Modulating Markov chain of D-BMAP process

~π The steady-state vector of the modulating Markov chain

A,B, T Indices for aggregated, tagged and background processes
~E The mean vector of D-BMAP

εl The ls eigenvalue of D

~gl,~hl ls left and right eigenvectors of D

~e The vector of ones

L Packet size in bytes

K The capacity of the system measured in IP packets

YQ(n) The number of packets in the system

Z(i, j) Blocks of transition probability matrix of the queue

T Transition probability matrix of the queuing model

~xD, ~x Steady-state distribution at the departure and arbitrary slots

LA, LT Number of lost packets from aggregated and tagged flows

IL(n) The indicator of the event that at least one packet is lost

Cn
i Combination of i elements from n

ψ(·) Probability of arrangement of packets from tagged source

IL(n) The indicator of the loss event in the slot n

RA, RT Arrival rates from aggregated/tagged flows

ρA, ρT Offered load from aggregated/tagged flows

KA,0,KT,0 Lag-1 NACFs of aggregated/tagged flows

that may severely affect backhaul performance.
Based on the considerations listed above, in this paper we

address impairments caused by rain. To account for 10 dB/km
degradation we modified the 3GPP propagation model to take
the following form LdB(x) = 32.4+24.5 log(x)+20 log fc.

In addition to weather conditions, the transmission is
also affected by atmospheric absorption. These impairments
heavily depend on the operational frequency and drastically
vary as illustrated in Fig. 2. In the frequency range 30− 100
GHz the most impact is provided by oxygen and water vapor.
Accounting for absorption, the overall losses at 28 GHz is

LdB(x) =

{
32.4 + 29.5 log(x) + 20 log fc, clear,
32.4 + 33.1 log(x) + 20 log fc, rain.

(2)
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FIGURE 2. Absorption losses caused by various atmospheric substances.

C. ANTENNA ARRAYS

Following [35], we assume linear antenna arrays at both the
transmit and receive sides. The crucial coefficients of the
antenna model – the transmit and receive directivities αT
and αR – need to be related to the parameters of the antenna
arrays. Half-power beamwidth (HPBW) of the array, α, is
proportional to the number of elements in the appropriate
plane and is α = 2|θm − θ3db|, where θ3db is the 3-dB point
and θm is the location of the array maximum [36]. The latter
is θm = arccos(−β/π), where β is the array direction angle.

Assuming β = 0, we have θm = π/2. The upper and lower
3-dB points are thus θ±3db = arccos[−β ± 2.782/(Nπ)],
where N is the number of antenna elements. For β = 0, the
mean antenna gain over HPBW is [36]

G =
1

θ+3db − θ
−
3db

∫ θ+3db

θ−3db

sin(Nπ cos(θ)/2)

sin(π cos(θ)/2)
dθ. (3)

D. TRAFFIC MODELS

We model the packet arrival processes using D-BMAP. Gen-
eral D-BMAP is defined as follows. Assume the discrete-
time environment, i.e., time axis is slotted, the slot duration
is constant and given by ∆t. Consider the discrete-time
homogeneous ergodic Markov chain {Y (n), n = 0, 1, . . . }
defined at the state space Y (n) ∈ {1, 2, . . . ,M}. Let D be
its transition probability matrix and ~π = (π1, π2, .., πM ) be
the row array containing equilibrium state probabilities. Let
then {W (n), n = 0, 1, ..} be a D-BMAP whose underlying
Markov chain is {Y (n), n = 0, 1, . . . }. We define D-BMAP
as the set of matrices D(k), k = 0, 1, . . . , each containg
of transition probabilities with k = 0, 1, . . . , arrivals, re-
spectively. It is easy to see that for each pair of states
i, j ∈ {1, 2, . . . ,M} the following elements of D(k)

dij(k) = Pr{W (n) = k, Y (n) = j|Y (n− 1) = i}, (4)

are conditional pmfs of D-BMAP.

Let ~E = (E1, E2, . . . , EM ) be the mean vector of D-
BMAP, where Ei =

∑M
j=1

∑∞
k=1 kdij(k), i = 1, 2, . . . ,M .



TABLE 2. Environmental effects on mmWave propagation losses

Type Reference Scenario Measurements

Rain [27]–[29] Rate of 50 mm/hr < 10 GHz: 1 − 6 dB/km
> 10 GHz: 10 dB/km

Fog/cloud [30], [31] Density of 0.5g/m3 50.44 GHz: 0.16 dB/km
81.84 GHz: 0.349 dB/km

Snow [32] Density of 700g/m3 35 − 135 Ghz: 0.2 − 1 dB/km

Foliage [33], [34] Density of 0.5m2/m3 28.8, 57.6 GHz: 1.3 − 2.0 dB/m
73 GHz: 0.4 dB/m

The ACF of the mean process of D-BMAP is [37]

RE(i) =
∑
l,l 6=1

φlε
i−1
l , i = 1, 2, . . . ,

φl = ~π

∞∑
k=0

kD(k)~gl~hl

∞∑
k=0

kD(k)~e, (5)

where εl is the ls eigenvalue of D, ~gl and ~hl are ls left and
right eigenvectors of D, and ~e is the vector of ones.

In this paper, we define two arrival processes. These are
the tagged process, {WT (n), n = 0, 1, . . . }, representing
superposed traffic from a randomly selected AP and the back-
ground process, {WB(n), n = 0, 1, . . . }, modeling super-
posed traffic from the rest of APs. As D-BMAP is closed with
respect to the superposition property, the background process
can represent the superposition of arrivals from a number of
APs.We denote superposition of the tagged and background
arrival processes as {WA(n), n = 0, 1, . . . }, where sub-
script A stands for aggregation. Let DT (k), DB(k), DA(k),
k = 0, 1, . . . be the transition probability matrices with ex-
actly k arrivals of corresponding processes. Then, transition
probability matrices with k, k = 0, 1, . . . arrivals from the
aggregated process can be found using Cartesian product of
the transition probability matrices of individual processes as

DA(k) =
k∑
i=0

DT (i)⊗DB(k − i), k = 0, 1, . . . (6)

In what follows, we will also need transition probability
matrices of the superposed process with exactly i, i =
0, 1, . . . , arrivals from the tagged process and j, j = 0, 1, . . . ,
arrivals from the background process. We denote them as
DA(i, j), i = 0, 1, . . . , and derive as follows

DA(i, j) = DT (i)⊗DB(j). (7)

E. METRICS OF INTEREST

The metrics of interest are those related to aggregated and
per-source traffic performance over the mmWave backhaul.
Thus, we concentrate on the pmfs of the number of lost
packets from both aggregated and per-source traffic streams.

IV. PERFORMANCE EVALUATION FRAMEWORK
In this section, we present our performance evaluation frame-
work. We start by describing our modeling methodology.
Then, we introduce the queuing model and its solution for
stationary-state probabilities. Finally, we characterize aggre-
gate and per-source packet loss probabilities.

A. MODELING METHODOLOGY
The packet losses in mmWave wireless backhauls can happen
due to both imperfect error concealment at the air interface,
and buffer overflows. In our study, we decompose the com-
plex problem of modeling performance of packet transmis-
sion over mmWave backhaul link to two simpler problems:
(i) characterization of the effective rate provided by the
backhaul link and (ii) analysis of queuing performance. This
decomposition is feasible due to the use of adaptive modula-
tion and coding schemes (MCS) at the air interface in modern
cellular technologies including mmWave systems [23]. In
particular, there is always an MCS specifying the effective
rate of the mmWave backhaul and bounding packet losses
by a given value for given environmental conditions. Using
the effective rate, we proceed to specify a queuing model
and characterize the aggregated and per-source packet losses
caused by buffer overflows.

B. QUEUING MODEL
To account for two specified arrival processes, we model
the buffering process at the mmWave backhaul using the
D-BMAPT+D-BMAPB /G/1/K, where K is the capacity of
the system measured in IP packets. System time is discrete
with constant slot duration ∆t given by the time required to
transmit one IP packet. The first step in the analysis is to find
the steady-state distribution of the number of packets in the
system at the arbitrary time slot and just before the arrival of a
batch. To achieve that, we consider D-BMAPA/D/1/K queu-
ing system, where the arrival process is the superposition of
{WT (n), n = 0, 1, . . . } and {WB(n), n = 0, 1, . . . }.

Time diagram of D-BMAPA/G/1/K queuing system is
shown in Fig. 3. According to this system, packets arrive
in batches just before the end of slots. Arrivals are not al-
lowed to seize the server immediately, and the service of any
arrival starts at the beginning of a slot. Packets depart from
the system at the slot boundaries, just after batch arrivals.
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FIGURE 3. Time diagram of D-BMAPA/G/1/K queuing system.

The state of the system is observed just after departure. This
system is known as the late arrival model with delayed ac-
cess [38], [39]. We assume partial batch acceptance strategy.

The complete description of the queuing system re-
quires two-dimensional Markov chain {YQ(n), YA(n), n =
0, 1, . . . } imbedded at the moments of packet departures
from the system, where YA(n) = YB(n) ⊗ YT (n) is
the state-space of the aggregated arrival process, YQ(n) ∈
{0, 1, . . . ,K − 1} is the number of packets in the system just
after packet departures.

Let DA(i, k), k = 0, 1, . . . , i = 0, 1, . . . , be the set
of matrices containing i-steps transition probabilities of the
modulating Markov chain of the arrival process with exactly
k packet arrivals. Setting DA(1, k) = DA(k), k = 0, 1, . . .
we find them using DA(k), k = 0, 1, . . . , as follows

DA(i, k) =
i∑
l=0

DA(l, k − 1)DA(i− l). (8)

Let DQ(k), k = 0, 1, . . . , be the set of matrices de-
scribing transitions from the state i to the state j, i.e.,
i, j ∈ {0, 1, . . . ,M} of the modulating Markov chain of the
arrival process with exactly k arrivals in a service time of
a single packet. We determine them using the service time
distribution, d(k), k = v, v + 1, . . . , r as

DQ(k) =
∞∑
i=0

DA(k, i)d(i), k = 0, 1, . . . (9)

Let Z(i, j), i, j ∈ {0, 1, . . . ,K} be transition probability
matrices describing time evolution of the {YQ(n), Y (n), n =
0, 1, . . . }. These matrices can be completely defined using
DQ(k), k = 0, 1, . . . as follows

Z(0, j) =

{
DQ(k), j 6= K,∑∞
m=K DQ(m), j = K,

Z(i, j) =

{
DQ(j − i+ 1), j 6= K, j > i− 2,∑∞
m=K−iDQ(m), j = K, j > i− 2.

(10)

Let T be transition probability matrix containing Z(i, j),
i, j ∈ {1, 2, . . . ,M} as its (i, j) elements and let ~xD =
(xD,01, .., xD,K−1M ) be its steady-state distribution. Solving
~xDT = ~xD, ~xD~e = 1, we get xD,kj = Pr{YQ(n) =

(k-1) packets

i out of WA(n) are lost

(K-k) free places

1 2 3 4Packets:

Packets:

k+1k K

1 2 3 K-k K-k+1

WA(n)=K-k+i arriving packets

K-k+i

FIGURE 4. Case when i out of WA(n) packets are lost in the slot n.

k, Y (n) = j}. There are a number of numerical algorithms
to compute ~xD, e.g., [40]–[42].

To obtain pmfs of the number of lost packets in a slot we
need steady-state probabilities of the number of packets in the
system in the arbitrary slot. Using the flow balance principle,
it was shown that for the D-BMAP/G/1/K late arrival system
the following relation between steady-state probabilities at
departure, ~xD, and arbitrary time slot, ~x, holds [43][

~πA

∞∑
k=0

DA(k)~e

]
~xD,i = ~xi(DA −DA(0)). (11)

C. LOSS PERFORMANCE OF THE AGGREGATED FLOW
Consider first loss performance of the aggregated flow. We
characterize it by obtaining pmf of the number of lost packets
in a single slot. Let the RV LA, LA ∈ {0, 1, . . . }, denote
the number of lost packets in a slot and let fLA

(i) =
Pr{LA(n) = i|WA(n) ≥ 1}, i = 0, 1, . . . , be its pmf
conditioned on the event of at least one packet arrival from
the aggregated arrival process.

Consider the case when exactly i, i = 1, 2, . . . , packets are
lost in the slot n. It happens when the following conditions
are simultaneously met, see Fig. 4, (i) there are exactly k,
k = 0, 1, . . . ,K packets in the system in the slot (n − 1)
and (ii) the number of arriving packets in the slot n is exactly
K − k + i. We have

fLA
(i) =

∑K
k=0 ~xkDA(K − k + i)~e

Pr{WA(n) ≥ 1}
, i = 1, 2, . . . , (12)

where ~e is the vector of ones of appropriate size, ~xk, k =
0, 1, . . . ,K is the vector containing steady-state probabilities
that there are exactly k packets in the system in an arbitrary
slot. Observe that fLA

(0) can be obtained as 1−
∑∞
i=1 fLA

(i)
The probability of at least one packet arrival is

Pr{WA(n) ≥ 1} = ~πA

∞∑
i=1

DA(i)~e, (13)

where ~πA is the steady-state probability vector.
We get fLA

(i), i = 0, 1, . . . by substituting (13) in (12).

D. PER-SOURCE LOSS PERFORMANCE
Now, we proceed deriving expression for pmfs of the number
of lost packets arriving in a slot from the tagged arrival
process. Here, in addition to characterizing the number of
lost packets we also need to specify which of those actually
belong to the tagged process.



Consider behavior of D-BMAPB+D-BMAPT /G/1/K sys-
tem between two arbitrary imbedded Markov points. Since
the number of arrivals per slot from both process is virtually
unlimited, there can be infinitely many lost packets in a slot.
Let the RV LT , LT ∈ {0, 1, . . . }, denote the number of lost
packets in a slot and let fLT

(j) = Pr{LT (n) = j|WT (n) ≥
1}, j = 0, 1, . . . , be its pmf conditioned on the event of at
least one packet arrival from the tagged source.

Firstly, consider the case when LT = 0, i.e., the tagged
arrival process does not lose any packets. Here, we have
to find the probability that the system successfully accom-
modates all the arriving packets from the tagged source.
Observe that the tagged source may not lose any packets even
when WB(n) + WT (n) ≥ K − k, i.e., when the number of
arrivals from both processes is greater than the system can
accommodate. However, at least one arrival form the tagged
source is always lost when WT (n) > K − k. We consider
fLT

(0) as a sum of two components. The first component
corresponds to the case when the tagged process cannot lose a
packet in a slot, i.e., WB(n) +WT (n) ≤ K − k. The second
one – to the case when some packets arriving from the tagged
source can be lost, i.e., WB(n) +WT (n) > K − k.

Let IL(n) be the indicator of the event that at least one
packet loss in the slot n from the aggregated process. For i,
i = 0, 1, . . . , lost packets in a slot we define the following
conditional pmfs

fLT
(i, j) = Pr{LT (n) = i, IL(n) = j|WT (n) ≥ 1}. (14)

Using (14), we have

fLT
(i) = fLT

(i, 0) + fLT
(i, 1), i = 0, 1, . . . (15)

Consider case when WB(n) + WT (n) ≤ K − k, i.e., the
tagged source cannot lose a packet and let us firstly con-
centrate on obtaining fLT

(0). Observe that fLT
(i, 0) = 0,

i = 1, 2, . . . meaning that only fLT
(i, 0) contributes to

fLT
(0). The tagged source cannot lose any packets when

the following conditions are simultaneously met (i) there
are k packets in the system in the slot n meaning that the
system can accommodate at most (K − k) packets (ii) i,
i = 0, 1, . . . ,K − k− 1 packets arrives from the background
source (iii) j, j = 1, 2, . . . ,K − k − i arrivals occur from
the tagged source. Note that these conditions ensure that
WB(n) + WT (n) ≤ K − k. Since no packets are lost in the
slot we do not care how packets are arranged in the arrival
batch. We obtain

fLT
(0, 0) =

∑K−1
k=0

∑K−k−1
i=0

∑K−k−i
j=1 ~xkDA(i, j)~e

Pr{WT (n) ≥ 1}
.

(16)

where the probability of at least one packet arrival from the
tagged source can be found as

Pr{WT (n) ≥ 1} = ~πT

∞∑
i=1

DT (i)~e, (17)

where ~πT is the steady-state probability vector.
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FIGURE 5. All packets from the tagged source are accommodated.

Consider now the case when the tagged source does not
lose any packets while losses still occur in a slot, i.e., find
the probability fLT

(0, 1). Observe Fig. 5 and note that this
happens when the following conditions are simultaneously
met (i) there are k packets in the system in the slot nmeaning
that the system can accommodate at most (K − k) packets
(ii) there are j, j = 1, 2, . . . ,K − k arrivals from the tagged
sources (iii) there are i, i = K − k − j + 1,K − k − j +
2, . . . arrivals from the background source, (iv) all arrivals
from the tagged sources are arranged in the arrival batch such
that the system accommodates them. Using these conditions,
we arrive at

fLT
(0, 1) =

K−1∑
k=0

K−k∑
j=1

∞∑
i=K−k−1

~xA,kDA(i, j)~e

[ψ(i, j,K, k, i)]−1

Pr{WT (n) ≥ 1}
, (18)

where ψ(i, j,K, k, i) is the probability that all arriving pack-
ets from the tagged source are accommodated by the system
given that WB(n) = i and WT (n) = j packets arrive from
the background and tagged sources, respectively, there are k
packets in the system just before arrival of a batch, and the
capacity of the system is K. For clarity, we denote this term
as ψ(WB ,WT ,K, k,WB) in what follows.

Consider the term ψ(WB ,WT ,K, k,WB) and tag an ar-
bitrary packet arriving to the system. Since both arrival
processes are of the same priority place occupied by this
packet in the arriving batch is distributed uniformly over
the size of a batch, i.e., the probability that this packet is
at the ith place is given by 1/(WB + WT ). Thus, we can
find ψ(WB ,WT ,K, k,WB) as the ratio of the number of
cases favoring the loss of 0 packets from the tagged source
to all possible number of cases. Observe Fig. 5 and notice
that for the tagged process to not lose a packet in a slot, all its
packets need to be at the first (K−k) positions in the arriving
batch. This fact implies that only (K − k −WT ) positions
are available for arrivals from the background source. Denot-
ing Ckn =

(
n
k

)
we observe that these arrivals can be arranged

using CK−k−WT

WB
ways giving the number of cases favoring

no losses from the tagged source. The overall number of ways
how (K − k) places can be occupied by arrivals from both
processes is CK−kWB+WT

. We have

ψ(WB ,WT ,K, k,WT ) =
CK−k−WT

WB

CK−kWB+WT

. (19)
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FIGURE 6. Loss of j packets arriving from the tagged source.

Substituting (19) and (17) in (18), (17) in (16), and further
summing up (18) and (16) we get fLT

(0).
To obtain the probability that there are j, j = 1, 2, . . . ,

lost packets from the tagged source in a slot, in addition to
placement of packets in the arriving batch we have to take
into account the number of packets in the system just before
a batch arrival. Also recall that the only component in (15)
contributing to fLT

(i), i = 1, 2, . . . is fLT
(i, 1). Firstly, con-

sider the case when there are no packets in the system in the
slot n (YQ(n) = 0) and the tagged process losses one or more
packet. This can only happen when WB(n) + Wk(n) > K.
The tagged source losses j packets when the following con-
ditions are simultaneously met (i) i packets arrive from the
background source, (ii) at least (K − k + j) packets arrive
from the tagged source, and (iii) j packets are not accepted
in the system. These conditions are illustrated in Fig. 6, where
the case of non-zero packets in the system in the slot n is
shown. Taking into account these conditions over all possible
transitions of the underlying Markov chain of the superposed
arrival process with i, i = 0, 1, . . . arrivals from the back-
ground arrival process and r, r = 0, 1, . . . ,min(K, i) arrivals
from the tagged process, we obtain

fLT
(j, 1) =

∞∑
i=0

min(K,i)∑
r=0

~x0D(i,K + j − r)~e
[ψ(i,K + j − r,K, 0, j)]−1

Pr{WT (n) ≥ 1}
, (20)

where ψ(i,K+j−r,K, 0, j) is the probability that j packets
from the tagged source are lost given that there are (K − k)
places to accommodate arriving packets, andWB = i,WT =
K+ j−r packets arrive from the background and the tagged
sources, respectively. For clarity of notation we denote this
term as ψ(WB ,WT ,K, k, lT ) in what follows.

Extending (20) to the case of k packets in the system just
prior a batch arrival, we have

fLT
(j, 1) = (21)
K−1∑
k=0

∞∑
i=0

min(K−k,i)∑
r=0

~xkD(i,K − k + j − r)~e
[ψ(i,K − k + j − r,K, k, j)]−1

Pr{WT (n) ≥ 1}
.

(22)

Let us now obtain the term ψ(WB ,WT ,K, k, lT ). Note
that estimation of this probability is essentially similar
to (19). The important difference is that now only (WT − lT )

packets are accommodated by the system. In order to proceed
observe Fig. 6, where arrival of a batch of (WB + WT )
packets to the queuing system having (K − k) free waiting
positions is illustrated. The number of ways how exactly lT
out of WT packets arriving from the tagged source can be
chosen is given by ClTWT

= WT !/lT !(WT − lT )!. We also
have to ensure that we lose exactly (WB+WT −K+k− lT )
out of WB packets from the background source. It can be
done using the following number of ways

WB !

(WT +WB −K + k − lT )!(WT −K + k − lT )!
. (23)

Observe now that the product ClTWT
CWT+WB−K+k−lT
WB

gives the number of cases favoring the loss of exactly lT
packets from the tagged source. The overall number of ways
to have (WB +WT −K + k) lost packets from both tagged
and background sources given that (WT+WB) packets arrive
and the number of free waiting positions is (K − k) is

CWB+WT−K+k
WB+WT

=
(WB +WT )!

(WB +WT −K + k)!(K − k)!
. (24)

Thus, the probability that there are exactly lT lost packets
from the tagged source given that there are (K − k) places
to accommodate arriving packets and (WB + WT ) packets
arrive from both sources is given by

ψ(WB ,WT ,K, k, lT ) =
ClTWT

CWT+WB−K+k−lT
WB

CWB+WT−K+k
WB+WT

. (25)

Substituting (25), (17) in (21), we obtain the final expres-
sion for fLT

(i), i = 1, 2, . . . Supplementing it with fLT
(0)

obtained earlier, we get fLT
(i), i = 0, 1, . . .

V. NUMERICAL ASSESSMENT
In this section, we investigate the packet level performance
of mmWave backhauls. First using the results of Section III,
we report on essential channel characteristics as a function
of system parameters including SNR and capacity. Then,
relying on the analysis performed in Section IV, we study
loss performance of traffic aggregated from all APs. Finally,
we characterize the impact of system parameters on the loss
performance of a single AP flow.

The default system parameters used to produce the nu-
merical results are summarized in Table 3. In what follows,
whenever a particular parameter is not explicitly specified, its
default value is used.

A. CHANNEL CHARACTERISTICS
Before we proceed with reporting on the packet level charac-
teristics of traffic performance over mmWave backhauls we
need to understand the response of channel characteristics
to transmission system parameters and weather conditions.
First, we illustrate the effect of weather conditions on the
SNR performance of the channel in Fig. 7, where average
conditions from Table 2 are used. Here, snow and fog only
slightly affect channel performance while the effect of rain is
much more noticeable. Further, foliage provides the drastic



TABLE 3. Default system parameters.

Parameter Value

Emitted power 2 W

Carrier frequency 28 GHz

Bandwidth 1 GHz

Transmit side antenna array 64×64

Receive side antenna array 64×64

Propagation exponent for clear weather 2.1

Propagation exponent for rainy weather 2.45

Propagation constant 28935037

SNR threshold 0 dB

IP packet size 1500 bytes

Buffer size 300 packets

Offered load of the tagged source 0.1ρA Gbps

Arrival rate of aggregated traffic 1.8 Gbps

Arrival rate of the tagged source 0.1RA pkts/s

Lag-1 NACF of aggregated traffic 0.0

Lag-1 NACF of the tagged source 0.0
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FIGURE 7. Effects of the weather conditions on SNR.
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FIGURE 8. SNR as a function of distance.

effect of SNR. In Fig. 7, we illustrate two cases of blockage
by foliage. The first case represents sudden blockage of
propagation path (caused by, e.g., wind) assuming that signal
travels through just 5 meters of foliage. The second case
highlights poorly planned backhaul where 20 meters of the
propagation path is affected by foliage.

SNR is the channel characteristic affecting communica-
tions distance. Fig. 8 shows the SNR as a function of the

PT=2W, NT,H=NR,H=64, clear

PT=2W, NT,H=NR,H=64, rain

PT=40W, NT,H=NR,H=64, rain
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FIGURE 9. SNR as a function of weather conditions.
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FIGURE 10. Backhaul capacity as a function of system parameters.

communications distance for a number of horizontal transmit
and receive antenna array elements. By using the standard
emitted power of 2W and receiver sensitivity threshold of
0 dB communications distances up to 4000 meters can be
achieved with 64 antenna array elements at both sides of
a communications link. Recall that 64 horizontal elements
also ensure that only insignificant interference is created
to adjacent communications systems operating in the same
frequency band as the half-power beamwidth (HPBW) is
approximated 1.59◦ [36]. However, as highlighted in Fig. 9
the weather conditions may drastically decrease the achiev-
able communications distance. Notably, the in rain conditions
using 2 W of emitted power the effective distance decreases
to just 1100 meters.

Regarding communications distance, one needs to use
adaptive power control functionality or by increasing the
amount of arrays elements forming the transmit and receive
antenna radiation patterns. Note that the former approach
may not be viable due to governmental regulations on the
amount of emitted power. The latter may inherently suffer
from as decreasing the HPBW may place additional con-
straints on beam alignment. In fact, environmental effects
such as wind may cause frequent SNR degradation when
using extremely narrow beamwidths. Thus, both power adap-
tation and dynamic antenna arrays are expected to be used in
real systems.

To proceed with packet level analysis, we also need to
specify the capacity provided by mmWave backhauls. Fig. 10
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FIGURE 11. Aggregated packet loss probability as a function of buffer size.
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FIGURE 12. Aggregated packet loss probability as a function of distance.

shows the capacity provided in different weather conditions,
emitted powers and number of horizontal antenna arrays.
For all considered system parameters the capacity decreases
exponentially with distance. Both emitted power and antenna
arrays provide flexible means to tune the channel capacity.
Note that when reaching receiver sensitivity threshold kept at
0dB, the rate is approximately 1 Gbps.

B. AGGREGATED TRAFFIC PERFORMANCE
Let us now proceed characterizing performance of aggre-
gated traffic on mmWave backhauls. The effects of the buffer
size and communication distance on packet loss probability
are shown in Figs. 11 and 12, where ρA = λA/µA denotes
the offered aggregated traffic load. Notably, the effect of the
buffer size at these extremely high data rates heavily depends
on the value of ρA. When ρA < 1 the packet loss probability
is drastically affected by the buffer size. However, even small
buffers having less than 200 places for arriving packets (just
300 Kbytes) are efficient enough to keep the packet loss
probability lower than 10−5. When ρ > 1 the effect of buffer
size is negligible. Thus, in what follows, we keep the buffer
size at 300 packets.

The effect of backhaul communications distance is shown
in Fig. 12 for two values of the arriving traffic rate, RA,
and different weather conditions. Note, that there is a sharp
change in the packet loss probability behavior around critical
communications distance. This distance corresponds to the
point, where the channel rate equals the arriving traffic load,
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FIGURE 13. Aggregated packet loss probability as a function of arriving traffic
rate.
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FIGURE 14. Aggregated packet loss probability as a function of lag-1 NACF.

e.g., ρA = 1. Furthermore, if the system is underutilized,
ρA < 1 almost no packet losses occur while there is a sharp
jump to the critical regime when the packet loss probability
reaches values higher than 0.1. These conclusions apply to
all considered weather conditions.

The effects of arriving traffic rate, RA for several commu-
nications distances, d, and lag-1 NACF values, KA are illus-
trated in Figs. 13 and 14. Observe that the higher autocorrela-
tion leads to higher packet loss probability, e.g., for RA = 3
Gbps, KA = 0.3 we have pL,A ≈ 10−5 while for the same
value of the arriving traffic rate and KA = 0.6 the associated
packet loss probability is higher than 0.01. This behavior is
explained by the specifics induced by the autocorrelation to
the arriving stream of packets. Particularly, the higher values
ofKA leads to more pronounced “waves” in stochastic traffic
behavior. Thus, for the same traffic rate more packets are
lost, and the buffer cannot effectively conceal this effect. It
is interesting to note by comparing the illustrated data, that
the effect of autocorrelation in the arriving traffic stream is
equivalent to the change of the backhaul communications
distance. For considered system parameters, the increase in
the lag-1 NACF value by 0.3 roughly corresponds to the
increase in the distance between communicating entities by
approximately 100 meters.

C. PER-SOURCE PERFORMANCE
Having observed the importance of aggregated traffic auto-
correlation, we now assess whether the autocorrelations of
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FIGURE 15. Tagged source packet loss probability as a function of lag-1
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FIGURE 16. Tagged source packet loss probability as a function of lag-1
NACF of background source.

tagged traffic source (e.g., aggregated traffic patterns from
a single AP) and background traffic affects the associated
packet loss probability. To perform fair comparison and visu-
alize the effect of autocorrelations for different load fractions
of the tagged source in the aggregated stream, we fix the
communications distance to d = 1000 meters, arrival rate
of the aggregated traffic to 3.3 Gbps and use γ to represent
the load fraction of tagged source, i.e., RT = γRA.

Figs. 15 and 16 illustrate the effect of autocorrelations
of the tagged and background traffic on the packet loss
probability of the tagged traffic. According to Fig. 15, the
packet loss probability pL,A depends on both the lag-1 NACF
value of the tagged traffic and the fraction γ of the tagged
traffic. Expectedly, the higher the fraction γ, the higher the
difference between curves corresponding to the same value
of KT . For a fixed value of γ, the increase in the packet
loss probability is not linear. Notably, the increase caused
by changing KA from 0 to 0.3 is less profound compared
to the increase from 0.6 to 0.9. Overall, the autocorrelation
results in the adverse effect on the packet loss probability of
the tagged traffic.

The effect of the correlation in the background traffic is
less profound in the magnitude compared to the effect of
correlation in the tagged traffic as evident from Fig. 15.
Still, the same trends remain valid. Mainly, the packet loss
probability of the tagged source also depends on the load

fraction of the tagged source in the traffic aggregate and the
trend is qualitatively similar to the effect of the load fraction
of the tagged source. Furthermore, for a fixed value of γ, the
effect becomes more profound for higher values of KB .

VI. CONCLUSIONS
The use of mmWave technology for backhaul links is nowa-
days considered as one of the options for cost-efficient con-
nectivity of remote 3GPP NR APs. In this paper, we have
developed a packet level performance evaluation model for
mmWave backhaul links that capture the specifics of system
design and propagation environment as well as per-AP and
aggregated traffic dynamics simultaneously.

Using the developed model, we have revealed that the pres-
ence of autocorrelation in the aggregated traffic may severely
affect the associated packet loss probability. The effect of
autocorrelation is similar to increasing the backhaul com-
munications distance and can be compensated by improving
the backhaul rate by either increasing the amount of emitted
power or increasing the number of antenna array elements
forming the sensitivity or radiation patterns. Analyzing the
effect of per-AP traffic and background traffic from other
APs on the packet loss probability of the per-AP traffic we
have shown that the latter is also affected by autocorrelation.
However, the effects of autocorrelation in the per-AP and
background traffic is of different magnitudes with the latter
producing less profound impact. Furthermore, the effect of
autocorrelation of per-AP traffic also depends on the load
fraction of this traffic in the whole aggregate.

The developed model can be used for fine-tuning of system
parameters of mmWave backhaul dynamically adapting them
to changing environmental and traffic conditions. Particu-
larly, knowing the current state of these parameters a network
operator may change and transmit and receive side system
parameters such that the aggregated and per-AP traffic packet
loss probabilities are kept at the acceptable level.
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