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Video content is usually represented as a sequence of scenes joined together. Two adjacent 
scenes can share the same semantic content, similar to filming the scene from different angles, 
or they can describe semantically different content. The methods that switch between two adja-
cent scenes are called scene transitions. In the case when two scenes are just concatenated with 
no additional effects, the transition is called a scene cut. The scene transition is a vital instrument 
for guiding user’s attention in classical cinema, but the impact of scene transitions becomes more 
relevant in a 360° video environment. During the scene transition, the user loses his/her previous 
interest point, that may lead to a change in the exploration behavior and affect the content delivery 
system, diminishing the viewing experience of the user. In this work, we have studied how the 
user exploration behavior changes in terms of the exploration range and angular speed metrics, 
and we have investigated whether this change of exploration behavior is different when the scene 
cut is within the same semantic content compared to the semantically different scenes.  
We conducted an experiment with 20 test subjects. The experiment consisted of two sets of vid-
eos. The first set included eight 20 second videos that were semantically different from each 
other. The videos were stitched together in a temporal domain using scene cuts. The second set 
was comprised of three videos with 4-5 scene cuts in each of them. The shots between the cuts 
were semantically consistent. We collected the positional data of head-mounted displays and 
converted it into the defined metrics, as per above explanation. 
Our research showed an increase in exploratory behavior and also revealed that there was a 
delay between the scene transition and the start of the exploration. The results were attested 
using t-test procedures. We have also shown that the exploratory behavior is dominant in the 
inter-scene transitions compared to the intra-scene transitions. 
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1. INTRODUCTION 

The recent achievements in virtual reality media have allowed capturing the content in 

the 360-degree Field of View (FoV). This type of content becomes more and more pop-

ular as Head Mounted Displays such as Occulus Rift and Samsung Gear VR become 

more accessible to the general public. Nowadays, one of the most popular methods of 

delivering the omnidirectional content to end users is by streaming it through the network. 

Modern network infrastructures allow efficient storage and distribution of the material and 

are much more convenient than the other methods, such as production and shipping of 

external storage devices. To achieve the same quality of viewing experience on level of 

watching a traditional movie in SD quality, the content should have 4K resolution and a 

frame rate of 30FPS or more, resulting in required bandwidth being equal to 100 MB/S 

[1]. Therefore, we can see that even for lower levels of quality, these restrictions require 

a large network bandwidth and a significant amount of storage space for keeping the 

files on a server. 

 

Figure 1. An example of segment allocation and delivery during a watching session 
[2]  

The base operational point for 360-degree video streaming is transmitting the whole 

video at a constant high quality, regardless of the user’s input (i.e., the direction the user 
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is looking at, called viewport). Transmitting video at constant quality is known as the 

Viewport-Independent streaming model [3]. 

However, the end user watching a 360-degree video on a Head-Mounted Display (HMD) 

sees only a part of the omnidirectional video panorama at a given time and, therefore, 

there is no need to stream the content outside the user’s current viewport. The model 

that transfers the area inside the viewport in high quality and the surrounding space in 

lower quality (or not streaming it at all) is called the Viewport-Dependent streaming 

model, also known as viewport-adaptive model [3]. One implementation of that model is 

to split the viewing area into tiles [2], each having multiple quality levels. During the 

watching session, the playback client checks what tiles are intersected with the current 

viewport, and fetches the high-quality versions of those tiles. This method allows reduc-

ing the required network bandwidth considerably. This approach is illustrated in Figure 

1. 

However, this approach has some issues. One of the problems is related to the unpre-

dictability of the user’s viewing direction. If the head movement is slow enough, it is rel-

atively easy to set up the switching between the low and high-quality tiles in the manner 

that the user will not notice it. On the other hand, if the user’s motion is swift, he/she can 

go outside the area of the current high-quality viewport. The switch between low and high 

quality can be a time consuming operation, so the user may experience a lower quality 

video content before the switch. 

If the user’s head movement could be predicted, we would be able to mitigate this effect 

by prefetching the high quality tiles beforehand. One can assume that the user’s head 

movement correlates with the change of the area of interest. The area of interest 

changes due to a set of factors, such as the user’s personal preferences, the semantic 

content of the video and the staging/direction techniques. The user’s movement due to 

his/her personal preferences is irregular and can hardly be predicted. This is not the case 

for staging and directing techniques. One of these techniques is scene transition. In this 

work, we would like to explore the problem of how the scene transition affects the user’s 

exploration behavior, and whenever the difference in scene transition type impacts the 

behavior differently. This problem has been studied by us in [4]. 

While it is true that the viewport-dependent streaming model is more efficient in terms 

of bandwidth consumption, the implementations can still be wasteful due to the user’s 

head movement. The reasoning for that lies in the structure of the content prepared for 

streaming. The video is fragmented into tiles in spatial domain, but it is also divided into 

multiple fixed-length segments in time domain, i.e. the video is divided into a collection 
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of short-length clips.  The tiles selected at high quality must be buffered for the duration 

of the whole segment. If the user moves amid  the duration of the segment, some parts 

of the high-quality area would not be seen and hence are wasted. This problem is quite 

important, and it has been studied by us in [5]. In this paper we have investigated how 

the head movement velocity, duration of the segment, and the type of trajectory (across 

the equator or angled) affects the bandwidth wastage. The experiment was done by sim-

ulating artificial trajectories and averaging the data wastage statistics across them. The 

results were compared with some real trajectories. We have shown that on average 15-

20% is wasted due to head movement. We have also shown that the introduction of the 

trajectory prediction methods in the model can decrease the wastage by 4.3%. 

Scene transitions are widely used in the traditional cinematography. The problem of 

scene transitions and user guidance in omnidirectional videos has been addressed in 

several scientific papers. Lasse T. Nielsen et al. explored the challenge of guiding the 

audience’s attention in omnidirectional videos [6]. The authors presented a collection of 

methods that might help to guide the attention of the viewer. The authors clustered the 

guiding methods according to three aspects: 

• Does the method explicitly direct viewers’ attention, or it uses implicit cues? 

• Is the cue coming from the scene itself and is it semantically a part of the content 

(diegetic cue), or is it external to the virtual environment (nondiegetic cue)? 

• Does the method restrict the interaction with the scene in some way, or the user 

is free to interact with it? 

For example, an explicit nondiegetic cue with no restriction on a HMD, tells what area 

the user should watch by directing to it with arrows. 

The authors compared three guiding methods:  

• Forced rotation to the area of interest: the user can freely explore the content, but 

the orientation of the virtual world is forcefully rotated towards the area of interest. 

• Firefly: users can explore the content freely. A small flying firefly gives hints on 

the areas of interest. 

• No additional guidance. 

The authors of the mentioned work proceeded in the following manner: one clip was 

shown to 45 participants individually, with different types of cues as described above. 

After the viewing session, the authors quizzed the participants about their viewing expe-

rience using a questionnaire. 
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The results have shown a statistically insignificant difference between the methods, and 

the authors claimed that future studies would benefit from including behavioral and phys-

iological measures of presence. 

Exciting but statistically insignificant results of the paper demonstrate the necessity of a 

stricter measure of the human reaction. 

Film editing in traditional cinema is a widely researched topic. However, editing films in 

virtual environments is a new area that has just began to be explored. In his scientific 

paper, Serrano et al. analyses how different types of scene cuts affect the user’s viewing 

behavior [7]. 

The authors reviewed the papers regarding the cognition studies in movie content. The 

study made by Magliano et al. classified the edits into three groups: edits that are dis-

continuous in space, time and action (E1), edits that are discontinuous in space and time 

(E2), and edits that are continuous in space, time and action (E3). The participants of 

the experiment were asked to segment the video they watched into some meaningful 

events at two different scales: the most significant meaningful events and the least sig-

nificant ones. The study showed that the user’s segmentation aligned with the storyboard 

of the video and that E1 edits had the most substantial effect on the perceived disconti-

nuity [8, 9]. 

In the paper [7] the authors reproduced the research described above in the VR environ-

ment. In their work the authors have selected sixteen different videos within the range of 

thirteen seconds to two minutes. These videos were edited into 216 clips, each clip con-

taining two shots split up by an edit. Each shot lasted about six seconds. The authors 

have also noted that the VR shots could be much more prolonged compared to shots in 

conventional cinematography.  The duration of a single camera shot in classical cinema-

tography has been steadily decreasing since 1960, and today the average duration of a 

camera shot is around 5 seconds long [10]. For VR, such duration is too short to explore 

the environment in its entirety, and fast switching between different scenes can make 

the user feel uncomfortable.  Based on the analysis of the VR videos by the authors, the 

average length of the shot for omnidirectional video is longer, totaling 20 seconds. It was 

also noted that the cuts of type E3 are much less frequent for VR videos. Based on the 

collected statistics, the continuity edits (E3) correspond to 2% of the total number of the 

edits. Therefore, the authors have excluded those types of edits, focusing only on the 

type E1 and E2 cuts. The authors confirmed that the users maintained the perception of 

continuity across the edit boundaries in VR narrative content. 
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The authors also analyzed how different scene cut parameters affect the viewer’s be-

havior. There are three sets of conditions: 2 types of edit (discontinuous in time, space 

and action, discontinuous in time and space only), three alignments before and after the 

cut (0, 40 and 80 degrees region of interest (ROI) disparity before and after the cut) and 

nine region of interest configurations, that gives 54 different conditions in total. The au-

thors introduced the following metrics:  

• framesToROI – indicates how many frames it takes for a viewer to fixate on a 

new region of interest. 

• percFixInside – indicates the percentage of total fixations inside a region of inter-

est. To make this metric comparable between different configurations of ROIs, 

the authors computed this metric relative to the average percentage of fixations 

inside the ROI. This average was calculated for each ROI configuration sepa-

rately and before the edit. 

• ScanpathError – RMSE between of each scanpath and the corresponding base-

line scanpath. 

• Nfix – the ratio between the number of fixations and the total number of gaze 

samples after the edit. 

• State sequences – user’s fixations are split for different states: focusing on the 

first region of interest, focusing on the second region of interest (if it exists), fo-

cusing on the background and idle state (saccadic eye movement with no fixa-

tions). The authors performed state distribution analysis to general patterns of 

state sequences. 

The main results of the paper were the following:  

1. Regarding the influence of previous VR experience, no significant effect was 

found considering the metrics mentioned above. 

2. The initial ROI alignment had a sufficient effect on the metric’s values. The au-

thors claimed that higher misalignment across the edit boundary leads to the 

exploratory behavior of the viewers after the edit and initial ROI search. 

3. The type of edit did not show any significant effect within the defined metrics. 

4. The authors pointed out that there exists a typical behavioral pattern while watch-

ing the video. At first, the user displays a strong exploration peak at the beginning 

of the session. The same peak appears after the edit; the duration of the explo-

ration peak is around 1-2 seconds. The exploration peak is followed by attention 
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peak, which also lasts approximately 1-2 seconds. This behavior is consistent 

within different ROI alignments. 

The problem of virtual environment exploration was considered by Sitzmann et al. in their 

paper [11]. The authors gave quantitative and qualitative results on how people explore 

virtual reality content. The authors tested 169 users and collected their scan paths while 

observing static omnidirectional panoramas. The authors found the following results: 

• They compared the saliency maps generated from viewings in the HMD and 

through a desktop application. They concluded that there is no significant differ-

ence between these maps in these two cases and, therefore, since the desktop 

experiments were much easier to control, it might be possible to use these for 

collecting adequate training sets for data-driven saliency prediction in the future 

VR systems. 

• The authors have shown that users maintain strong equatorial bias and that this 

bias can be used to improve the accuracy of the existing saliency predictors.  

• The entropy of the saliency map has been studied. The authors have shown that 

entropy affects the transition time between the salient areas. The smaller is en-

tropy , the shorter is the transition time. 

• The final saliency maps converge to the same saliency map after 30 seconds, 

regardless of the starting head orientation. 

• The authors claimed that, according to the collected data, the users appear to 

behave in two different ways: attention and re-orientation. Eye fixations happen 

in the attention mode when users have “locked-in” on a salient part of the scene, 

while movements to new prominent regions occur in the re-orientation mode. On 

average, users fully explored each scene within 19 seconds. 

• The prediction obtained from head orientation data only is comparable with the 

results achieved with both the head and gaze data. This result is especially inter-

esting regarding the subject of the work in this thesis. 

The authors suggested the method of the scene’s alignment before and after the cut 

in order to avoid an abrupt change in content. For this purpose, they proposed to 

compute saliency maps for both scenes and align the maps horizontally so that the 

cross-correlation coefficient between the maps is maximized. 

In our work, we take into account the equatorial bias and head orientation data de-

scribed in this paper. The authors reveal that there were two peaks: the peak of ex-

ploration and the peak of attention, both lasting 1-2 seconds. Such peaks appear 
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regardless of the ROI configuration and alignment. The authors pointed out ‘we found 

no significant effect of the type of edit in our metrics; the graphs suggest a difference 

that our metrics are not capturing’. Our work tries to explore metrics that would show 

the difference between the types of edits. 

The effect of transitions in the traditional cinematography is a deeply explored topic. 

Nevertheless, there are very few papers regarding scene transitions in virtual reality. 

In the paper by Liang Men et al. [12], the authors examine how different types of 

transitions influence the user experience of presence in VR. They compared four 

different types of transitions: SimpleCut transition (directly connecting two scenes), 

SuperFast Transition (swift transfer between two points that are camera positions for 

the given scenes), Fade transition (using a fade effect during the transition), Vortex 

transition (using the vortex effect during the transition) with help of a questionnaire 

that explored how the scene transitions affected the viewer’s sense of presence, and 

how it changed the feeling of perceived realness and also if the scene transitions 

would generate some sensation in the users. The main conclusion of the authors 

was that the SimpleCut Transition provides maximum consistency of presence. In 

our work, we decided to also focus our attention on the SimpleCut transitions. 

Current work is based on the set of papers mentioned above. According to [11], head 

movements have comparable power of prediction to head + eye movements and 

required more straightforward setup. Therefore, we concentrated our work on head 

movements only. The metrics introduced by Sitzmann et al. had shown no difference 

between different types of scene cuts. Nevertheless, the authors pointed out that at 

a glance, the state distributions between those types of cuts are different. We intro-

duced new metrics that try to discriminate against this difference.  
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2. THEORETICAL BACKGROUND 

2.1 Omnidirectional video streaming 

Omnidirectional video is a type of media captured in a field of view larger than general 

2D video. The content is captured from multiple cameras (or with one camera using a 

special lenses, such as fish-eye lenses [13]). Each camera records the corresponding 

part of a 360 panorama, which are then mapped into one image. Afterwards, The image 

is projected into one of the commonly used types of projections, such as equirectangular 

projection, cubic projection or other [14]. The advantages and disadvantages of different 

projection types and the mechanisms for efficient streaming of the projected data have 

been a matter of several scientific works [15, 16]. One of the ways to improve the viewing 

experience in omnidirectional videos is the possibility to show the content stereoscopi-

cally.  On the other hand, 3D stereoscopic content brings new problems related to the 

capturing process and user’s response to the in-frame motion and artificial depth of field 

in the video [17].  Another issue arises due to the multiple camera imaging and the prob-

lem of arranging left and right 3D images. This problem has been considered and worked 

out in works such as [18, 19]. 

 

Figure 2. Example of standard streaming framework for omnidirectional content [2] 

It should be pointed out that the omnidirectional video is extremely resource-consuming 

due to a large field of view of the frame. This leads to the huge size of the final data file 

and the necessity of the efficient compression procedure. Therefore, to achieve efficient 
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compression of the content, HEVC encoding procedures have been used. The ad-

vantages and comparison of the method to the older standard can be seen in [20]. 

After encoding, the data is encapsulated in accordance to the guidelines of the omnidi-

rectional media format (MPEG-OMAF) [21] . To further decrease the bandwidth of the 

content, the video makes use of the independent tile-decoding procedure, as described 

in section 1. 

 The system should be able to switch the content quality with respect to the currently 

available bandwidth in order to take into account the volatile network bandwidth. MPEG-

DASH based streaming systems achieve bandwidth adaptability of the stream by split-

ting the video stream into smaller segments [22]. Each segment has several represen-

tations of varying quality levels, and the system can choose the representation to down-

load depending on the current bandwidth availability. Therefore, the content is divided 

into smaller segments of fixed duration and different quality levels that are stored sepa-

rately. A Media Presentation Description (MPD) file is generated, allowing the player to 

request different representations of the segment. Segments and MPD files are stored on 

the server. The client requests the content based on the current user orientation and the 

available bandwidth, which is then rendered onto the screen. The whole procedure is 

shown in Figure 2.  

The viewport-dependent streaming model dramatically reduces the required bitrate, 

achieving bandwidth savings up to 40% [16]. These savings can be further improved with 

the help of additional practices, such as using different tiling schemes, predicting tiles 

that will be viewed [23] or using unequal quality levels for each eye in case of stereo-

scopic video [24]. On the other hand, the viewport-dependent model introduces a new 

problem of motion-to-high quality delay. When the user moves his viewpoint into a 

low-quality area, the quality cannot change instantaneously to high since the high-quality 

tiles should be streamed to the user and decoded first. Downloading the currently 

watched segment in high quality would lead to some data wastage, since a part of the 

segment in low quality which was already viewed cannot be used again in high quality. 

So, to minimize the wastage, the switch from low to high quality usually happens between  

the segments, leading to the time delay between the low-high quality switch of at least 

one segment duration. It is possible to make the segment duration shorter, though doing 

so we decrease the compression advantages we get from the encoding algorithm. This 

switch delay can significantly reduce the user’s QoE and it is vital to take into account 

while following the bandwidth restrictions. 
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2.2 Measurement and analysis 

Measurement of the viewer’s perception is a complex problem. To provide such a meas-

urement, one should introduce some quantity that gives us the ability to measure and 

compare it. This measurement should reflect the influence of a film content on the user’s 

mind, and the results of the measurements should be reproducible and comparable. In 

literature, such measurement is usually called a metric, however,  one should note that 

it is not a metric in a strict mathematical sense. For VR content, it makes sense to meas-

ure some physical characteristics of the human body that may change according to the 

mental state of the subject. 

In general, the reactions of individuals strongly depend on their cultural and social back-

ground. Quan et al. have shown that for the simple models such as linear regression,  

the prediction accuracy of viewer’s future position drops significantly even with the mod-

est increase of the prediction interval [25].  That is why it is quite challenging to build a 

strict mathematical model when it comes to human behavioral patterns.  

Despite of that, it is possible to extract and prove some statements about human behav-

ioral patterns through statistical analysis and hypothesis testing. 

The general procedure for performing hypothesis testing can be defined in the following 

way [26]. 

First, we define our problem through the null and alternative hypotheses. The null hy-

pothesis is a statement that describes the default position regarding the tested subject 

[27]. For example, we can assume that the introduction of scene transitions in the omni-

directional video does not affect the user’s exploration behavior through any measurable 

metrics. The alternative hypothesis is a statement that contradicts the null hypothesis. 

Following our example, an alternative hypothesis can be the increase or decrease in 

some parameters related to the user, such as the head motion speed, after the observa-

tion of the scene transition. 

After the hypothesis was defined, the next step is to collect observations that would give 

us information on our theory. This collection of observations is called a sample. The 

sample is obtained from the population – a complete set of observations that can be 

made [26]. In our example, the population represents a complete set of all possible head-

motion trajectories for videos with scene transitions, and the sample would be the col-

lection of head-motion trajectories that were gathered by us throughout the testing. The 

observation can be defined as an absolute value of the angular velocity of the head, 

before and after scene transitions. When collecting observations, it is important to ran-

domize the sampling procedure. Unrandomized sampling can lead to strong bias within 
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the test and can make the results much less robust. For example, different age groups 

could have different reaction times, making the analysis for one age group unsuitable for 

the other ones. Therefore, it is essential to note the restrictions of one’s research and 

comprehend how the data was sampled. In some cases it can be convenient to split the 

population and test the hypothesis as two separate samples to see whether the different 

populations respond differently. 

The next step is to choose the test statistic, that checks whether or not our hypothesis 

holds. The selection of the statistic depends on many parameters, such as the type of 

the measurements, the number of measurements in the sample, the type of the statistic 

we are testing for (for example, it can be the sample mean or its variance) and popula-

tion’s distribution parameters. In some cases, we use several test statistics, one to check 

the parameters of our sample data, and then with the knowledge of our parameters, we 

choose the other test statistic that would finally verify our hypothesis.  

The hypothesis testing is based on the idea that the observation of unlikely events should 

be infrequent [27]. If this event is observed during a real experiment, the null hypothesis 

is wrong. It is up to the researcher to set the threshold that marks the event to be rare. 

In common practice, the event is regarded to be unusual when the probability of it is less 

than 5%. Of course, this threshold can be changed when we want to be more confident 

about the hypothesis. Test statistic measures the probability of the given event with re-

gards to the null hypothesis. Based on this probability, we either reject the null hypothesis 

and accept the alternative hypothesis or state that we do not have enough data to reject 

the null hypothesis. 

In the next section, we will look at the several test statistics, which will help us to perform 

hypothesis testing on the subject’s viewing patterns. 

In our case we would like to see if the exploration behavior of the subject differs before 

and after the scene transition, so we will focus on the test statistics that work on paired 

data. In paired tests, we test a hypothesis between two distributions, and each observa-

tion from one distribution has a corresponding observation in the other one. For scene 

transitions, the paired observation is the fixation some characteristics for each subject 

before and after the transition. The test is provided on the distribution of differences in-

stead of comparing parameters between distributions.  

Paired Student t-test is one of the most commonly used tests for comparing means. 

Usually, the hypothesis for the test is represented in the following form: 

• H0: the mean difference between observations is equal to zero. 
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• H1: the mean difference between observations is not equal to zero. 

The test statistic for the test has the following form: 

𝑡 =  
𝑑̅

√𝑠2 𝑛⁄
 

Where 𝑑̅ is the mean difference between observations, 𝑠2 is the standard deviation of 

the sample, and 𝑛 is the number of observations in the sample. Test statistic follows the 

t-test distribution and we can determine the rareness of the event from it. 

Our data should follow several assumptions for performing paired Student t-test [28] : 

• The data were randomly sampled from the population and gives a representation 

of that population. 

• 𝑑𝑖 follows a normal distribution.  

• 𝑑𝑖 are independent of each other.  

In general, the t-test is robust to the second condition as long as the distribution of 𝑑𝑖 is 

close to normal, and the sample size is big enough [29]. There have been several works 

that have studied the effectiveness of the t-test under non-normality conditions, which 

have shown that the increase of the sample size above 80 can mitigate the effects of 

skewness and flatness of the distribution [30]. 

 One can assess the normality of the distribution using the Q-Q plot method [31]. The 

method plots quantiles of the given distribution against quantiles of the alternative distri-

bution. In order to check normality, we can fit a continuous standard distribution curve 

using the maximum likelihood estimation and compare quantile of the original distribution 

and the fitted distribution. This method doesn’t provide the quantitative measure for as-

sessing the normality, but it gives a visual estimate which in a lot of cases is enough to 

determine if the normality condition is satisfied. For more quantitative result one can per-

form Lilliefors test which asseses whether the maximum discrepancy between the data 

and the fitted normal distribution is significant enough to conclude the non-normality of 

the data [32]. 

In case when the researcher expects or identifies an extreme non-normality of the data, 

specifically related to heavy tailness of the distribution, other more robust measures can 

be used such as truncated/winzorized mean [33] or median-based methods such as Wil-

coxon signed-rank test [26, 34].  
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The result of the statistical analysis typically is given by a p-value, which provides the 

probability of collecting the given sample with the computed statistic under the null hy-

pothesis. The p-value is then compared to the selected threshold. If the p-value is less 

than the chosen threshold, the null hypothesis is rejected. 

In this work, we consider two types of scene transitions, and it is important to analyze 

whenever the user’s behavior is different in these two separate cases. To solve this prob-

lem, one can use one of the methods from the family of two-sample location tests. These 

test compare Here we will present a short review of two-sample methods. 

Let us assume that the samples of sizes 𝑛1 and 𝑛2 were collected from two normal dis-

tributions with known variances 𝜎1and 𝜎2 and means 𝜇1 and 𝜇2. In this case, variable 

𝑍 =  
(𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅) − (𝜇1 − 𝜇2)

√𝜎1
2

𝑛1
⁄ +

𝜎2
2

𝑛2
⁄

 

where 𝑋1
̅̅ ̅ and 𝑋2

̅̅ ̅ are sample means, follows a standard normal distribution [26]. The null 

hypothesis is then represented in the following form: 

H0: 𝜇1 − 𝜇2 = 𝑑0 

In case when we want to check the equality of the means of the distributions, 𝑑0 is equal 

to zero. To test the hypothesis, we compute the z-score for our two samples  

𝑧 =  
(𝑥1̅̅ ̅ − 𝑥2̅̅ ̅)

√𝜎1
2

𝑛1
⁄ +

𝜎2
2

𝑛2
⁄

 

and its p-value. The p-value is then compared to our selected threshold. 

In the common case, the variance of the distributions is not known. Assuming that the 

variances of the given distributions are equal, we can use a two-sample Pooled t-test. 

We define t-test statistic t in the following way: 

𝑡 =  
(𝑥1̅̅ ̅ − 𝑥2̅̅ ̅)

𝑠𝑝√1
𝑛1

⁄ + 1
𝑛2

⁄

,      𝑠𝑝 = √
(𝑛1 − 1)𝑠𝑋1

+ (𝑛2 − 1)𝑠𝑋2

𝑛1 + 𝑛2 − 2
 

Where 𝑠𝑋1
and 𝑠𝑋2

represent the variance of the samples. We can find the p-value of the 

computed t-test statistic from the t-test distribution with 𝑛1 + 𝑛2 − 2 degrees of freedom 

and compare it with the chosen threshold. 

In other situations, we cannot assume that variances of the distributions are equal. In 

this case, one can use Welch’s t-test [35]. The equation below describes the statistic for 

the test: 
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𝑡 =  
(𝑥1̅̅ ̅ − 𝑥2̅̅ ̅)

√𝑠1
2

𝑛1
⁄ +

𝑠2
2

𝑛2
⁄

 

 

The statistic follows the t-distribution with approximate degrees of freedom equal to 

 

𝜐 =
(𝑠1

2/𝑛1 + 𝑠2
2/𝑛2)2

(𝑠1
2/𝑛1)2/(𝑛1 − 1) + (𝑠2

2/𝑛2)2/(𝑛2 − 1)
 

Just like the Paired Student t-test, the statistics become more robust to the violation of 

the normality assumption with the increase of sample size [36]. 

Statistical methods can also be used to pick atypical values from the data. Those meth-

ods fall under the category of outlier detection. They can be used to remove elements 

that might have been incorrectly recorded or to distinguish some unusual behavior of the 

data. For example, outlier detection methods can be used to identify unusual head mo-

tions during the test. The methods vary in complexity, depending on our prior knowledge 

about the data. In the case when we know the distribution our data adheres to, the outlier 

points can be defined through the statistical moments and quantiles of the distribution. 

For example, one can pick outliers by checking if the value falls inside a specified interval 

inside the distribution. The interval cab defined through the inter-quantile range of the 

distribution or by expressing it as an area around the mean/median of the distribution 

[33]. In the case when the distribution is unknown, more sophisticated methods are used, 

usually based on clustering, density-based, or other [37]. 

The statistical approach provides powerful and robust methods to assess the hypothesis, 

but it is crucial to understand the limitations of each test and use the right tool in the right 

situation. 

2.3 Film transitions 

Film transitions describe a set of methods of connecting one scene of the movie to an-

other. Conventional cinematography follows a set of rules that were invented in the early 

20th century and provide comfortable film viewing. One of the main approaches used in 

modern cinematography is continuity editing [38]. By editing movies using this set of 

rules, the viewers perceive the content as a continuous flow, even though it can change 

temporally and spatially across the scene. For example, a technique called insert shot 
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can be used to change the scale of the frame without breaking the continuation percep-

tion for the viewer [39]. This shot takes into account how the size of the objects should 

change between cuts. The general rule states that the camera position can change only 

by one-two orders in scale. In this way the change becomes more natural for the viewer 

and is better at capturing his/her attention [39].  Different scales of the scene can be 

seen in Figure 3. 

One of the most significant differences between VR and traditional cinema editing is the 

fact that generally traditional cinema directors employ the montage techniques to en-

hance the emotional response of the viewers and redirect the viewer’s focus to the object 

of the scene. In case of the VR editing and cinematography, the creator should also 

consider how the montage affects user’s perception inside the 3D space. Techniques 

like color adjustment, depth of field blurring or tone mapping in the stereoscopic content 

can lead to unpleasant viewing experience if done independently for the left and right 

images of the stereoscopic view. Depth perception and video stabilization also play an 

important role in the editing of the VR movie [40]. 

In traditional cinema, the duration of the shot in recent years is has been shortened in 

comparison with to how movies were edited in the previous century. On the other hand, 

the average shot length in VR can be 20 seconds or longer [7]. The rationale for this 

increase may be fact that the area that the user can observe in virtual reality is much 

larger than the screen used in the traditional cinema, thus it is reasonable to give the 

user more time to explore the environment. 

The classification of editing tricks and scene cutting techniques is widely developed in 

conventional cinematography. Scene transitions are used to either create a continuous 

action filling or to break the continuity and transfer the user to the next episode.  Scene 

transitions can be split into two main groups: transitions that conserve the continuity of 

perception between the scenes, and transitions that deliberately break that continuity. 

Continuity between the scenes can be defined within three axes: space (camera posi-

tion), time, and action. According to the recent studies in psychological science, human 

perception consists of a chain of discrete events [41]. An event is a sequence of episodes 

that are consistent in terms of space, time, action, from which a human can convincingly 

predict the next episode from the previous set of episodes. If the next episode is unpre-

dictable, then the previous set of episodes is stored in the long-term memory as a single 

event [9]. 
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Figure 3. A scene from the movie ‘Little Caesar’ represents different types of shots 

Modern editing techniques in cinema imitate this peculiarity of human perception. In gen-

eral, scene transitions can be divided into three classes: 

• Edits that are discontinuous in time, space, and action (action discontinuities). 

• Edits that are discontinuous in time, space but continuous in action (spatial/tem-

poral discontinuities). 

• Edits that are continuous in time, space, and action (continuity edits). 

One of the differences between VR setup and conventional cinematography is that the 

edits of the third type are transferred to the user since the user has control over the 

viewing direction. Therefore, our study focuses on the first two types of the scene cuts. 

The way the transition effect is done depends on the director’s vision of the scene. In 

some cases, the transitions can have some additional symbolic meaning, such as the 

passing of time, the similarity between the characters or other linked narratives. In gen-

eral, the scenes that are continuous in action (continuity edits and spatial/temporal dis-

continuities) are connected with simple scene cuts, so that the change is less perceivable 

by the user. In case of action discontinuities, we usually would like to emphasize the start 

of the new scene, and therefore, additional effects such as Fade, Dissolve, or Swipe can 
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be used. In our work, we focused on the scene cuts since it is the most common method 

for connecting two scenes. For works concerning the effects of different scene transitions 

in VR, see [12, 42]. 
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3. RESEARCH METHODOLOGY AND 

MATERIALS 

3.1 Experimental setup and data collection procedure 

Data collection procedure was performed in the following manner: 

• Find and prepare visual stimuli for the tests. 

• Enlist test subjects, complete pre-test fatigue questionnaire.  

• Run test session, save observed trajectories in a convenient format, conduct 

post-test fatigue questionnaire.  

The visual stimuli were divided into two parts: visual stimulus for inter-scene transitions 

(changes between two completely different scenes) and visual stimulus for intra-scene 

transitions (between the same scene, but different camera positions). For the first part, 

we selected eight clips presented in a Table 1. 

 

Title (Youtube) Offset (sec.) Href 

360° Wife Carrying I 100 Moods From 

Finland 

5 https://www.youtube.com/w

atch?v=E2dOKkg0ozY 

360° Barn Dance I 100 Moods From Fin-

land 

5 https://www.youtube.com/w

atch?v=skUHYb7FqK4 

GoPro Fusion Spatial Audio Demo - Ski-

ing 

25 https://www.youtube.com/w

atch?v=nOoWRhp9ZiA 

String quartet in Turku - 360 - Spatial Au-

dio 

180 https://www.youtube.com/w

atch?v=gkh4yW3WVn0 

VR 360 Wildfire Roller Coaster Onride 

POV Silver Dollar City Branson MO 

45 https://www.youtube.com/w

atch?v=jBHTKOtGDZU 

Survive a Bear Attack in VR 25 https://www.youtube.com/w

atch?v=g7btxyIbQQ0 

See aircraft carrier jet launches, air op-

erations for the first time in 3D VR 

25 https://www.youtube.com/w

atch?v=H4Q0RLoeyuY 

Pole vault 0 ftp://ftp.ient.rwth-aachen.de/ 

testsequences/testset360 

 

The clips were edited to be 20 seconds long, with starting offset defined in the Table 1 

for capturing the most interesting section of the given clip. To make the quality between 

clips consistent, they were edited to the following specifications: Video resolution – 

Table 1. Content used for the Inter-scene transitions experiment 
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3840x1920 and the framerate – 30 FPS. After the clips modification, they were concate-

nated one after another with no additional effects added, thus setting the instantaneous 

transitions between the clips (scene cuts).   

For the second experiment, we wanted to study the transitions that happened within the 

same semantic content, i.e., intra-scene transitions. Three different clips were selected 

from YouTube for that experiment. The clip details can be seen in the Table 2. 

 

 

Name (Youtube) Duration 

(sec.) 

Short name 

used in thesis 

Href (Youtube) 

Aunkai Bujutsu, a martial 

art based on body aware-

ness and the basics 

62 Martial /watch?v=cUkrXfFzFcQ 

Armored Combat League 

NYC VR 360 

66 Armor /watch?v=Zsl2bX7UT7g 

Lions 360° | National 

Geographic 

76 Lions /watch?v=sPyAQQklc1s 

 

The clips consisted of several scenes filmed in the same area. The transitions for some 

of the clips were not instantaneous. Therefore, the transition effects were edited out. 

Some scenes from the ‘Lions’ clip were deemed to be too gruesome for viewing, so we 

also removed them from the final version. The video resolution and frame rate were set 

as in the previous clip collection. The period between the scene cuts was roughly equal 

to 10 seconds, and each clip contained four scene transitions. 

The Mean Spatial and Temporal Perceptual Information [43] characteristics of the clips 

can be seen in the Figure 4. Spatial perceptual information is defined as the maximum 

standard deviation over pixels for Sobel-filtered frames. Spatial Information shows how 

much information (detail) frames in the clip contain on average individually. Temporal 

perceptual information is computed as the maximum of the difference between the in-

tensities of two adjacent frames. Temporal information shows the rate of change be-

tween the subsequent frames or how dynamic the content of the clip is. The calculations 

were done using a Python script, based on the description from the ITU-T recommenda-

tions [43, 44].  

Table 2. Content used for the Intra-scene transitions experiment 

https://www.youtube.com/watch?v=cUkrXfFzFcQ
https://www.youtube.com/watch?v=Zsl2bX7UT7g
https://www.youtube.com/watch?v=sPyAQQklc1s
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Figure 4. Spatial and Temporal Perceptual information of the clips. Left – character-

istics of the clips for inter-scene transitions, right - characteristics of the clips for 
intra-scene transitions. The spatial information values are similar across clips, 

while the temporal information differs from clip to clip. 

 

Subsequently, the clips were converted to the HEVC DASH-streamable format with the 

use of the MP4Box and FFMPEG tools. We used the viewport-independent streaming 

model, i.e., the quality of the video did not depend on the position of the viewport. Motion-

to-photon delay in the viewport-dependent streaming model is influenced by encoding 

parameters such as the number of tiles and the DASH segment duration, and this delay 

can interfere with the way how the user explore the content. In our work, we wanted to 

analyse the natural reactions to scene cuts with minimal additional interference. There-

fore, an independent model was chosen for these experiments. 

Our test system was analogous to a typical streaming system, as described in the prior 

art (see Figure 5). The system consisted of two components: the server and the client. 

The server stored streamable content with the MPD file, as well as the viewed trajecto-

ries. We implemented a simple manager for clip selection and start/pause controls. The 

client requested and rendered the content based on the viewer’s current orientation. We 

used the combination of Oculus Gear VR HMD and Samsung Galaxy 8 phone for our 

head-mounted display, in which the smartphone also worked as a client. The content 

was transferred to the phone via a wireless network, reducing the number of cables 

needed. The viewing orientation was collected based on the smartphone’s gyro sensor 

data. Data points were sampled at a frequency of 50 Hz. The orientation data was saved 

in the yaw-pitch-roll-timestamp format. Yaw values were bounded in the range [-180, 

180]; pitch and roll values were bounded in the range [-90,90]. The timestamp values 

were represented as a time interval between the start of the clip and the moment the 

data point was sampled, calculated in milliseconds. 
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Figure 5. The test setup used in the experiments 

After the clips were prepared, we selected 20 people to participate in our test session,17 

males, 3 females. Before the watching session, we tuned the inter-pupillary distance of 

the head-mounted display to accommodate it for each test subject.  We also conducted 

a pre-fatigue questionnaire to check whether any possible side effects could impede the 

user’s viewing trajectory. The survey was based on [44]. We verified the levels of pain in 

shoulders, difficulty in concentration, nausea, sleepiness, dizziness, stabbing pain and 

fatigue in eyes, stiffness of the neck, pain in the back, forehead or temples, difficulties 

with focusing, dry or watering eyes, feeling that the eyes are looking in different direc-

tions, double vision. The user was informed that he was allowed to close his eyes during 

the watching session to re-establish a clear vision, if needed. 

The users were not restricted in how they should explore the content. During the watch-

ing session, the user resided in a rotating chair, so the change of the viewing orientation 

could occur due to either head or chair rotation. The users could take a small break 

between clips if needed. After the viewing session was finished, we conducted a post-

test questionnaire to see how this test affected the users. The trajectory data was saved 

into a database and could be extracted into the Excel format for further analysis. 
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3.2 Research methodology 

The collected data was imported to Python as a dictionary for further analysis. The struc-

ture of the dictionary is shown in Figure 6. The study was done with the help of the 

Python’s scientific computing libraries, NumPy and SciPy. 

The analysis was done only on Yaw values for the following reasons. According to [11], 

the user retains strong equatorial bias while watching omnidirectional videos. Addition-

ally, the chosen videos also distribute the salient regions of the clip along the equator, 

so the most significant impact in the trajectory should happen along the yaw axis. With 

these details taken into consideration, we decided only to use yaw values. Pitch values 

assumed to be close to the equator. 

The user’s exploration behavior can differ significantly from person to person. Ideally, we 

wanted our users to explore similar content in a scene, so the factors that defined their 

behavior would be comparable. For example, if the clip has a fast-moving object in one 

part of the scene and some static landscape in the other, the user’s exploration behavior 

would be different depending on what part of the scene was observed. To remove users 

who viewed content atypically on average, we used the Similarity Ring Metric [45]. 

 

 

Figure 6. Structure of collected data 

First, we computed the typical trajectory by taking a median of yaw values from all the 

users within the given timestamp. Then, we bounded a ‘ring’ around each point with a 

diameter equal to the horizontal FOV of the head-mounted device, which in our case was 

equal to 100°. If the user was inside the ring for the given timestamp, at least 50% of the 
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content he explored intersected with the content explored by watching it within the typical 

trajectory. Then we computed the percentage of time the user was inside the ring by 

consecutively checking each point from the given user’s path. By setting the threshold 

on that percentage, we could either accept or reject the user’s trajectory as an outlier. 

By adjusting the ring diameter and ‘time within the ring’ threshold, we could make the 

outlier rejection procedure stricter or more relaxed. In our work, we set the limit to be 

equal to 50% of the time being inside the ring. The visual representation of the procedure 

can be seen in the Figure 7. 

 

Figure 7. Similarity Ring Measure for inter-scene transition experiment 

In our work we wanted to define the metrics that would show the change in viewing 

behavior without associating it within the specific viewed content. So, our analysis was 

focused on the changes in the Exploration Range (ER) and the magnitude of angular 

velocity during the content exploration. 

The exploration Range defines the maximum angular distance the user traversed during 

a specified time interval. To compute ER, we divided data into small intervals of specified 

duration, found the maximum and minimum yaw values in the given interval, and calcu-

lated the difference between them. 

𝐸𝑅𝑡𝑘
= Max(𝑌𝑎𝑤𝑡𝑘

, 𝑌𝑎𝑤𝑡𝑘+𝑑𝑡, … 𝑌𝑎𝑤𝑡𝑘+∆𝑡) − Min(𝑌𝑎𝑤𝑡𝑘
, 𝑌𝑎𝑤𝑡𝑘+𝑑𝑡, … 𝑌𝑎𝑤𝑡𝑘+∆𝑡), 

Where 𝑑𝑡 – sampling period, and ∆𝑡 – the duration of the selected interval. In our exper-

iments, we chose the interval with a duration of 250ms, which for our data was equivalent 

to taking five consecutive samples. 

The next characteristic we observed was the magnitude of  angular speed. The angular 

speed measures the speed within which the users explore the given content. Our setup 
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did not allow direct measurements of angular speed. Instead, we approximated the met-

ric by computing derivatives of the angular values using finite differences. Due to the 

noise in the measurements of the user’s position and the fact that differentiation empha-

sizes high frequencies of the original signal and therefore increases the noise in the 

derivative signal, it was essential to perform a smoothing procedure before computing 

the angular speed. In our work, we used the Savitzky-Golay filter [46], that performs 

least-squares polynomial approximation within an interval around each data point. The 

window size of the filter and the order of fitted polynomial was chosen to be 16 and 3, 

respectively. To compute the magnitude, we took the absolute values of the signal de-

rivative. Below, the metrics used in the experiment will be compared between each other.  

For the Exploration Range, it is necessary to introduce the duration of the interval within 

which we collect values for a single exploration range sample. This makes the metric 

less generalized since different interval sizes would lead to different results. On the other 

hand, the metric is more accurate for the viewport displacement computing in a case 

when the user makes fast head movements in a small vision cone. Another advantage 

is that this metric more accurately represents the user’s region of interest displacement 

in case of larger intervals. This makes it perfect for comparing the change in viewers' 

orientation concerning DASH segment length and size of the video tile. The angular-

speed metric is independent of the duration interval, making results more universal.  

For the chosen metrics, the change of the yaw values in time is more important than the 

absolute value of them. In our case, the yaw data was bounded in the interval [-180, 

180]. It should be mentioned that points 180 and -180 correspond to the same single 

point (cut point), and a small change in the position around point 180 or point -180 may 

lead to a significant jump in metric values. This effect arises because the yaw values are 

represented on a circle, points 180 and -180 of which are stitched together. To avoid the 

jump when the user crossed those points, we projected the points from the circle to the 

regular number line using the following procedure. We iterated over yaw values and 

computed the difference between current and previous values. If this difference was 

more significant than a predefined threshold (the threshold was set to 320 degrees), we 

assumed that the user went over the stitch point. In this case, we shifted the point so that 

the resulting curve becomes smooth. This procedure is illustrated in the Figure 8. 
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Figure 8. Yaw unrolling procedure. Left – original yaw values, right – unrolled ver-

sion 

The next characteristic we wanted to study was the reaction time of the user during a 

scene cut. Close inspection observing the above-described metrics showed that the 

change in the behavior did not happen instantaneously but with a small delay after the 

start of the transition. This delay between the end of transition and the start of the abnor-

mal watch behavior is called reaction time. We derived the following procedure for de-

termining the reaction time delay: 

First, we computed the histogram of exploration ranges for each user. From the inspec-

tion of those histograms, we concluded that exponential distribution could be a good fit 

for the given exploration range data (example  in Figure 9). 

In our study, we have assumed that the behaviour that the user exhibits after the scene 

cut is atypical from the normal behavior in terms of the metrics defined. We can consider 

of the problem of detecting the start of post-scene-cut exploration as an outlier detection 

problem, i.e., we want to find the timestamp after the scene transition where the user’s 

exploration range would differ significantly from the typical values. Therefore, we needed 

to define some threshold for the exploration range values, at which we assume the user’s 

behavior to be abnormal. One of the ways to establish such limit is by using the Tukey 

criterion [47]. This criterion defines the outlier threshold in terms of inter-quartile distance 

of the distribution. The threshold can be expressed as 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑄3 + 𝜆(𝑄3 − 𝑄1) 

Where Q1 and Q3 are the first and third quantile of the observed distribution, and λ is a 

scalar, which defines the strictness of the outlier test. Usually, λ is set to be 1.5 or 3; in 

our case, we have chosen it to be equal to 1.5. 
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Figure 9. Example of exponential distribution fit 

Assuming that the user’s exploration range distribution can be approximated with the 

exponential distribution, we can simplify the criteria by expressing threshold using the 

mean of the distribution: 

𝑄1 = log
4

3
∙ 𝑚𝑒𝑎𝑛,   𝑄3 = log 4 ∙ 𝑚𝑒𝑎𝑛  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑄3 + 1.5 ∙ (𝑄3 − 𝑄1) =  

log 4 ∙ 𝑚𝑒𝑎𝑛 + 1.5 ∙ (log 4 ∙ 𝑚𝑒𝑎𝑛 − (log 4 − log 3) ∙ 𝑚𝑒𝑎𝑛)  = 

(log 4 + 1.5 ∙ log 3) ∙ 𝑚𝑒𝑎𝑛 ≈ 3 ∙ 𝑚𝑒𝑎𝑛  

Therefore, we can assume that the exploration range values that are 3 times larger than 

the mean exploration range of the user are the sign of the abnormal exploration behavior 

of the user. 

The reaction time was computed using the following procedure: 

• For each subject in a fixed clip 

1. Compute the average exploration range of the user 

2. For each scene cut point in the clip 

▪ Collect the next K points of the exploration range data 

▪ Find the first value V that is three times larger than the average 

exploration range of the given user 

▪ If such value does not exist, take a local maximum of those 

points. 
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▪ The reaction time for the given scene cut and the user is equal 

to a duration of a time interval between the start of a new scene 

and the point V. 

 

3. Average the user’s reaction time over scene cuts of the clip using me-

dian or mean. 

• Average the reaction time over users to compute the reaction time of the clip. 

The value K was selected to be 16, that is equivalent to the next 4 seconds after the 

scene cut in the case when the exploration range is computed over intervals of 250ms. 

The visual representation of the algorithm can be seen in Figure 10. 

 

 

Figure 10. Reaction Time computation for one of the users 
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4. RESULTS 

 

4.1 Analysis of inter-scene transitions 

The inter-scene transition analysis was performed on the data, which had a variety of 

different clips concatenated together. First, we completed the SRM outlier procedure, as 

described in section 3.2. The individual scores of each test subject can be observed in 

the Figure 11.  

 

 
Figure 11. SRM scores for test subjects in the inter-scene transition experi-

ment. One subject was excluded. 

One test subject retained the score of 40.6%, that was less than the set threshold, and 

therefore the user was excluded from the subsequent analysis. 

Next, we computed Exploration Range statistics for each user. Average values of the 

Exploration Range can be seen in the Figure 11. 

From Figure 12, one can see an increase in the metric after the scene cut (scene cuts 

are marked as orange bars). On average, the rise in Exploration Range was equal to 

56% relative to the average Exploration Range of the clip. It should be mentioned that 

this increase varies and  depends on the content semantics. For example, the second 

scene cut was masked by a peak, due to the rapid movement of an area of interest in 

the frame before the end of the second clip in the sequence. The movement would result 

in the viewer’s head re-orientation and, therefore, creating a local maximum. 
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Figure 12. Average ER values for the inter-scene transition experiment 

 

 

Figure 13. Average angular velocity values for the inter-scene transition ex-
periment 

 

Next, we analyzed the changes in angular velocity after the scene cuts for the given 

sequence. The angular velocity represents the speed within which the user rotates the 

head during the viewing session. From Figure 13 we observed some similar patterns, as 

we see in the Exploration Range plot. The average increase in the angular speed during 

the scene cut is equal to 5.5%.  
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We also computed the average reaction time after the scene cut, as described in section 

3.2. The reaction time was calculated for all the test subjects individually and then aver-

aged, resulting in the mean reaction time equal to 1800ms. During this period, there is 

an opportunity to tune the parameters of the streaming setup in such way that it would 

mitigate the unfavourable effects of the user’s movement after the scene cut. 

We performed hypothesis testing to see if the hypothesis of increased exploration would 

have a strong support under our data. To check the hypothesis, we chose the Student t-

test statistic based on the mean Exploration Range before and after the scene cut. Be-

fore performing the test, we checked whether our sample distribution followed the nor-

mality assumption. The data was obtained in the following manner: we calculated Explo-

ration Range values during the time interval of two seconds just before the scene cut 

and averaged them. This computed value represented the Exploration Range before the 

scene cut. The appropriate dataset after the scene cut is averaged over a two-second 

interval that starts one second after the scene cut (to take into account the reaction time 

of the subjects). In our pair test, we used the differences between the two datasets men-

tioned above (before and after the scene cut) to obtain an independently sampled da-

taset.  

The normality assumption was checked using of QQ plot. From Figure 14, one can see 

that our sample closely follows the normality assumption.  

 
Figure 14. Quantile-quantile plot of difference distribution for inter-scene tran-

sition experiment 

 

P-value obtained from student t-test was equal to 6.2 ∙ 10−7 %. This means that the prob-

ability getting this set of data under the condition that nothing changes after the scene 
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cut is almost equal to zero, so we can state with a high degree of certainty that there is 

a difference in user’s exploration behavior before and after the scene cut. 

4.2 Analysis of intra-scene transitions 

In the case of intra-scene transitions, three clips were prepared. Every clip included 

approximately four scene cuts. Similar to the previous experiment, we performed the 

SRM outlier procedure. For the ‘Armor’ and ‘Lion’ clips, no test subjects were excluded 

from the analysis. The average SRM score for the clips show that in general trajectories 

were quite similar to each other, as seen in Table 3. Two test subjects were excluded for 

the ‘Martial’ clip since their trajectory differed drastically from the other ones. The SRM 

values can be seen in Figure 15. 

 

 
Figure 15. Similarity Ring metric for ‘Lions’, ‘Armor’ and ‘Martial’ clip. The red 

color represents the excluded subjects 

 

 

Clip SRM score, % 

Armor 0.92 

Lions 0.88 

Martial 0.80 

 

The analysis of the Exploration Range for intra-scene transitions has shown similar 

user’s exploration behavior during scene cuts, as in the inter-scene transition experi-

ment. The increase in Exploration Range varied from 28% to 76%. The Figures 16-18 

below show the average Exploration Range for ‘Armor’, ‘Martial’, and ‘Lions’ clips re-

spectively. 

Table 3. SRM scores for clips in intra-scene transition experiment 
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Figure 16. Average ER values for ‘Armor’ clip 

 

 

Figure 17. Average ER values for ‘Martial’ clip 

 

 

Figure 18. Average ER values for ‘Lions’ clip 
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The angular velocity plots also show similar patterns as in the inter-scene transition 

experiment. The plots can be seen in Figures 19-21.  

The average increase in Exploration speed after the scene cut is equal to 4.4% relative 

to exploration speed before the cut. We have found out that the drastic content change 

results in the significant metric change no matter whether the content switches with the 

intra-scene transition or changes using the inter-scene transition. For example, in the 

‘Lions’ clip, the scene cuts happen in the same semantic content, but the increase in 

Exploration Range was comparable to the results in the inter-scene transition experi-

ment due to a pronounced distinction in camera location for that clip. 

 
Figure 19. Average Absolute Angular Velocity values for ‘Armor’ clip 

 

 

 

Figure 20. Average Absolute Angular Velocity values for ‘Martial’ clip 
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Figure 21. Average Absolute Angular Velocity values for ‘Lions’ clip 

 

The mean reaction time has been computed for each clip, and it appears that the reaction 

time decreases as the content gets more diverse between scene cuts. The average re-

action times for each clip can be seen in the Table 4. 

 

Video Mean Reaction Time 

Armor 1500 

Lions 1400 

Martial 1800 

 

We have provided the same statistical tests for the inter-scene transition experiment. 

One can see that the tails of the sampled distribution are heavier than fitted the normal 

distribution. In this case, the normality assumption might not take place, and the Student 

t-test may lead to the wrong result. Therefore, we have also computed the Wilcoxon 

signed-rank test statistic, which is more robust to the violation of the normality assump-

tion. The QQ plot can be seen in the Figure 22. 

Table 4. Reaction time for clips in the inter-scene transition experiment 
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Figure 22. Quantile-quantile plot of difference distribution for intra-scene tran-

sition experiment 

The p-values for Student t-test and Wilcoxon signed-rank test statistics are equal to 0.5% 

and 0.1%, respectively. The test shows that the intra-scene transition forces the users 

to change their exploration behavior. Though it should be noted although both intra- and 

inter- scene transitions lead to a change in the user’s behavior; the statistical significance 

of the inter-scene transition effect is six orders greater than one of the intra-scene tran-

sition. 

4.3 Comparison between inter- and intra- scene transitions 

We have acquired the following results: 

• We have shown that in case with the intra-scene transition, the Exploration 
Range and Angular velocity of a user after the scene cut record a small change 
due to the similarity of the scene content before and after scene cut.  

• The content switch between dissimilar scenes would result in the change of Ex-
ploration Range and angular velocity, regardless of intra- or inter- scene transi-
tion.   

• There is a complex relationship between the reaction time, type of transition, and 
the content itself. Nevertheless, the reaction time for the intra-scene transition is 
on average higher than the reaction time for the inter-scene transition. 

The comparison for average Exploration range values in clips for the inter-scene transi-

tion and for the intra scene transition can be seen in the Table 5. The average relative 

increase in Exploration Range is equal to 77%. 
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Name Avg. exploration range in 

degrees (without scene 

cuts) 

Avg. exploration range in 

degrees (with scene cuts) 

Video cut (Inter-scene) 4.3 6.7 

Armor (Intra-scene) 3.4 5.1 

Lions (Intra-scene) 3.7 6.9 

Martial (Intra-scene) 3.6 5.0 

 

We have checked the statistical significance of the increase in the Exploration range 

between inter- and intra-scene transitions. Since the variance of the population is un-

known, and there is a doubt about the equality of variances for inter- and intra-scene 

transitions, we used the Welch t-test that takes into account the issues mentioned above. 

The sample distributions for changes in Exploration Range can be seen in the Figure 23. 

 
Figure 23. Histograms of differences for inter- and intra-scene transitions  

 

We have checked the equality of the mean values for the distributions of differences for 

the inter- and intra-scene transitions being used in the statistical tests mentioned above. 

The calculated p-value is equal to 2.7%, showing that the expected values of the distri-

butions are significantly different. Since the t-test value is positive and equal to 3.023, 

the increase of Exploration Range for inter-scene scene transition on average was more 

significant than the rise in another type of the cut. 

 

 

Table 5. Comparison between average exploration range during scene cuts  

and during normal viewing 



37 

 

4.4 Discussion 

Our experiment has shown that the user’s exploration behavior changes with the intro-

duction of the scene cut. This is confirmed by the statistical inference based on Explora-

tion Range data analysis. We reveal that the type of scene transition affects the user’s 

head movements differently, and on average the intra-scene transition leads to faster 

head movements than the inter-scene transition. It was also discovered that there was 

a delay between the change in the exploration behavior and the scene transition, aver-

aging about 1.5 seconds.  

It should be pointed out that some issues would be interesting to explore in future re-

searches. First, we analyzed the movement in the yaw direction only. While the most of 

the changes happen in the yaw dimension, the investigation of change in the pitch and 

roll dimension may lead to some new results. Second, there was some experimental 

imprecision related to the intra-scene transition experiment. For the selected clips, the 

average duration between scene transitions is equal to 13.3 seconds, while in the inter-

scene transition experiment, this duration was equal to 20 seconds. One may argue that 

if the duration between the transitions is too short, the participant might not explore the 

omnidirectional scene throughly enough; therefore, the unusual behavior induced by the 

previous scene transition may interfere with the current scene transition. This may be a 

reason for the increase in the p-value for the intra-scene transition test compared to the 

p-value in the inter-scene transition test.  

Our findings reveal that for three clips in the intra-scene transition experiment, the Ex-

ploration Range increase and reaction times differ from clip to clip. This means that the 

content of the clip itself affects the viewer’s behavior. The influence of the clip’s content 

on the viewer’s reaction is a sophisticated problem, which requires much more in-depth 

analysis than the one given in our work.  

Another area the research can be developed is to see how the transition method would 

affect the reaction time of the user. Reaction time can be used to prepare for the in-

creased exploration after the scene cut (for example, it is possible to switch to shorter 

DASH segments for the duration of the increased exploration, so that the motion-to-high-

quality delay would be decreased, improving the overall quality of experience). 
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5. CONCLUSIONS 

     In our work we designed and conducted an experiment that compares the viewing 

behavior before and after the scene transition in the omnidirectional video. We have 

prepared two sets of omnidirectional videos: the first set of clips was edited together to 

check the effect of scene transitions between different semantical locations (inter-scene 

transitions), the second set of clips contained three clips with multiple scene transitions 

in each of them, where the transition happened within the same location (intra-scene 

transition). The clips were then shown to twenty people. During the watch session, the 

subject’s viewing patterns were recorded in terms of the yaw, pitch and roll angles of the 

HMD, sampled at the constant rate and stored for the further analysis. 

We introduced metrics for analyzing the subject’s behavior, mainly Exploration Range, 

Similarity Ring Metric, and the magnitude of angular speed. Exploration Range and mag-

nitude of angular speed describe how swift the user’s movement is at the given moment 

of time. On the other hand, Similarity Ring Metric describes how similar viewer’s explo-

ration patterns were for the given clip. Viewers with the exploration patterns highly dis-

similar from the general viewing pattern for the clip were removed from the sample to 

reduce the amount of factors that could affect the exploration behavior for the scene 

transition.    We developed a Python program for extracting the above-mentioned metrics 

from the collected traces. Based on those metrics, we developed hypothesis testing pro-

cedures that determined a set of patterns during the scene cut. The testing procedures 

were implemented  using the SciPy library for the Python programming language. 

The following results were obtained: 

• The videos were watched with a high degree of similarity between different users, 
based on the Similarity Ring Metric. 

• The introduction of the scene cut into the video leads to increased exploration 
behavior for both inter- and intra-scene transitions. On average, the movement 
after the scene transition is 77% higher than during normal exploration. 

• The response to the inter-scene transition differs from the one to the intra-scene 
transition, that is the inter-scene transition leads to higher exploration on aver-
age. 

• There exists a delay between the transition and the start of the exploration be-
havior that we characterize as reaction time. This delay depends on the content 
and is constrained by 1-2 seconds. The reaction time for the intra-scene transi-
tion is, on average, higher than the reaction time for an inter-scene transition. 
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Some of these results can be further explored in future works, for example, reaction time 

delay can work as a helpful mechanism for mitigating the bandwidth spikes during the 

increased exploration after the transition. Another direction for further research would be 

to check whether different transition effect can decrease the rise in exploration metrics. 

We hope that the analysis presented in this work would be helpful for the further devel-

opment of streaming systems for omnidirectional videos. 
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